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Abstract 

Despite the impressive amount of financial resources invested 
in carrying out large-scale brain simulations, it is 
controversial what the payoffs are of pursuing this project. 
The present paper argues that in some cases, from designing, 
building, and running a large-scale neural simulation, 
scientists acquire useful knowledge about the computational 
performance of the simulating system, rather than about the 
neurobiological system represented in the simulation. What 
this means, why it is not a trivial lesson, and how it advances 
the literature on the epistemology of computer simulation are 
the three preoccupations addressed by the paper. 
 
Keywords: Large-scale neural simulations; epistemology of 
computer simulation; target-directed modeling; neuromorphic 
technologies 

Introduction 

In the last twenty years or so, several research groups have 

been working on large-scale brain simulations. In the face of 

the impressive amount of financial resources invested in 

such projects, it is controversial what the payoffs are of 

carrying out large-scale brain simulations. The present paper 

explores this issue, asking: Currently, what do scientists 

learn from designing, building, and running large-scale 

neural simulations? One plausible answer is that at least for 

some such simulations scientists learn about the 

computational performance of the simulating system. 

Plausible as it sounds, the significance of this answer 

should not be downplayed, for at least two reasons. First, 

most work in the epistemology of computer simulation 

overlooks or downplays the computational and material 

aspects of computer simulation. But learning about the 

computational performance of a machine is far from trivial. 

Second, the kinds of neural simulations examined in this 

paper involve an interesting set of practices that have not 

been adequately discussed in the epistemology of modelling 

and computer simulation. 

In particular, these simulations have two kinds of targets: 

one target is a real neural system, which is represented in 

the simulation; the other target is the computing system 

itself, which is not represented in the simulation but studied 

both directly and through complicated inferences. If this is 

correct, then two interesting conclusions follow. (1) When 

scientific models and computer simulation are employed to 

gain new knowledge, it is not always knowledge about their 

represented target systems that is sought. For some neural 

simulations, the real neural system that one tries to represent 

is not the system about which one wants to learn. (2) Some 

neural simulations imitate some features of a real neural 

system (i.e., their representational target) not in order to 

serve as surrogates that are investigated to gain new 

knowledge about the brain. Rather, these neural simulations 

imitate some features of a real neural system in order to gain 

useful knowledge about the simulating system itself. 

While claim (1) concerns the type of knowledge one may 

want or hope to acquire with computer simulation, claim (2) 

concerns one possible representational function of computer 

simulation. 

 

Large-scale Neural Simulations: Aims and 

Prospects 

For many large-scale neural simulations, a simulating 

system implements some algorithm that finds solutions to 

mathematical equations that are believed to describe the 

dynamics and pattern of connectivity of a large number 

(e.g., over a million) of neurons and synapses (for reviews 

Brette et al. 2007; de Garis et al. 2010; Goertzel et al. 2010; 

Eliasmith & Trujillo 2014). 

A large-scale neural simulation is a type of computer 

simulation. Computer simulation can be characterised 

broadly as “a comprehensive method for studying systems,” 

which “includes choosing a model; finding a way of 

implementing that model in a form that can be run on a 

computer; calculating the output of the algorithm; and 

visualizing and studying the resultant data” (Winsberg 

2013). Accordingly, some real-world system should be 

picked as the representational target of the computer 

simulation; some mathematical equations should be chosen, 

which are believed to model (some aspect of) the behavior 

of the target system; and an appropriate simulating system, 

consisting of both hardware and software components, 

should be used to implement the mathematical model. 

In line with much of the philosophical literature, where 

models and simulations are understood as serving as 

representations of some system about which one wants or 

hopes to gain knowledge (e.g., Humphreys 2004; Parker 

2009; Grüne-Yanoff & Weirich 2010; Weisberg 2013), 

Winsberg (2013) claims that the entire process constituting 

computer simulation is “used to make inferences about the 

target system that one tries to model.” 

The claim also coheres with the stated aims of many 

large-scale neural simulations. For example, the Blue Brain 

Project set out to “simulate brains of mammals with a high 

level of biological accuracy and, ultimately, to study the 

steps involved in the emergence of biological intelligence” 

(Markram 2006, 153). The objective of carrying out certain 

large-scale neural simulations is to understand why and how 
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many different ion channels, receptors, neurons, and 

synaptic pathways in the brain contribute to different brain 

functions and to emergent, intelligent behavior (158). The 

aim of Izhikevich & Edelman’s (2008) simulation of a 

million spiking thalamo-cortical neurons and half a billion 

synapses was analogous. They explained that “[o]ne way to 

deepen our understanding of how synaptic and neuronal 

processes interact to produce the collective behavior of the 

brain is to develop large-scale, anatomically detailed models 

of the mammalian brain” (3597). Similarly, the objective of 

Eliasmith and colleagues’ (2012) 2.5 million neuron 

simulation was to understand why and how the robust and 

rapid flexibility of biological systems can be generated from 

a unified set of neural mechanisms. 

Despite significant differences, the aim shared by these 

projects is to use large-scale neural simulations to 

understanding of how and why brains’ multi-scale, complex 

organization generates different brain functions and 

emergent cognitive phenomena. This aim may be reached. 

Yet, it is far from uncontroversial that, currently, a large-

scale neural simulation is a fruitful approach to addressing 

questions about why and how neurons and synapses’ 

dynamics generate different brain functions and cognitive 

phenomena (Mainen & Pouget 2014). 

Commenting on this approach, Carandini (2012) argues 

that, currently, “putting all of the subcellular details (most of 

which we don’t even know) into a simulation of a vast 

circuit is not likely to shed light on the underlying 

computations” (509). If the underlying neural computations 

are not understood, there is little hope to learn how and why 

neural circuits generate different brain functions and 

cognitive phenomena. In a similar vein, Sporns (2012) 

points out that the success of projects like Markram’s Blue 

Brain “depends on knowledge about the organization of 

neurons and molecules into complex networks whose 

function underpins system dynamics” (168). Such 

knowledge is currently sparse and not easily incorporable 

into large-scale neural simulations. So, it is doubtful that, 

currently, carrying out large-scale neural simulations is a 

fruitful approach to learn about the neurobiological systems 

represented in the simulation. 

 

Brains and Computational Performance 

More plausible is that, currently, from at least some large-

scale neural simulations, scientists gain knowledge about 

the computational performance of the simulating system 

itself, rather than about the neural system that the simulation 

represents. 

Simulating systems are computing systems comprising 

both software and hardware components. They include a 

computational architecture and a set of algorithms 

formulated as computer programs that can be executed on 

concrete computing machines. The computational 

performance of the simulating system depends on a complex 

combination of properties of its architecture, of the 

algorithms it uses, the programs it executes, and of the 

materials and technological devices of which it is made. 

Three dimensions on which computational performance 

can be assessed are: the time it takes for the computing 

system to carry out a given task, the maximum number of 

tasks that can be completed by the system in a given time 

interval, and the electrical power it takes for the system to 

carry out a task. 

The total time required for a computing system to 

complete a task is called execution time. One way to 

measure the execution time of a program is in terms of clock 

period, which is the time length (in nanoseconds) of a cycle 

of the clock built into the system that determines when 

events take place in the hardware. The clock rate (in hertz) 

is the inverse of the clock period. Increasing computational 

performance for a given program requires decreasing its 

execution time, which may be tackled as an engineering 

problem—viz. as the problem of reducing the clock 

period—or as a computational problem—viz. as the 

problem of designing a more efficient computational 

architecture or more efficient algorithms and programs. 

The number of tasks that can be completed per unit time 

by a computing system is called throughput. If we focus on 

the communication channels of a computing system, then 

the maximum throughput of a channel is often called 

bandwidth (measured in bits of data/second). The amount of 

time it takes for a communication channel to become 

unoccupied so that it can allow for data transfer is called 

latency. The available bandwidth of a communication 

channel is a limited resource, and should be used sparingly. 

The greater the bandwidth capacity, or the lower the latency 

of the communication channels, the more likely it is that the 

system displays better computational performance. The 

throughput, bandwidth, and latency of a computing system 

are a complex function of the physical medium being used 

for communications, the system’s wiring architecture and 

the type of code used for programming. 

The microprocessors of computing systems dissipate 

heat. Heat must be removed from a computing system; else, 

its hardware components will overheat. Conserving power 

and avoiding overheating, while improving computational 

performance, have led computer scientists and engineers to 

explore novel architectures, hardware technologies, software 

solutions and programming languages for highly-efficient 

computing systems. 

There are two reasons why carrying out a computer 

simulation of a large number of neurons and synapses can 

yield non-trivial knowledge of the computational 

performance of the simulating system. First reason: brains 

can be understood as computational systems, which can be 

used to set a real biological benchmark for artificial 

computing systems’ performance. Second reason: 

scalability, which indicates how efficient an application is 

when using increasing numbers of parallel processing units 

or amount of computational resources. 

If the brain is a computing system, then it displays high 

performance in the face of low power consumption and 

small size. On average, the human brain weighs around 

1.3 to 1.5 Kg, is constituted by about 100 billion neurons 



and around 100 trillion synapses, and its volume is about 

1,400 ml. For carrying out its computations, it consumes 

energy at a rate of about 20 watts. Brains’ computational 

architecture and style of computing are very different from 

those of modern artificial computing systems. Modern 

artificial computing systems possess von Neumann 

architecture and have stored programs, which are typically 

implemented in digital, serial, synchronous, centralized and 

fast microcircuits. By contrast, biological brains possess a 

non-von Neumann, multiscale, network architecture; they 

have distributed computational units, which carry out 

mixed-mode analog-digital, parallel, asynchronous, slow, 

noisy, computations (Montague 2007; Piccinini & Bahar 

2013). 

Available information about general computational 

features of biological brains can provide one basis for 

benchmarking the performance of artificial computational 

systems along some dimension of interest like power 

consumption or scalability. Comparing the computational 

performance of the simulating system in a large-scale neural 

simulation to that of its neurobiological target along some 

dimension of interest allows scientists to learn about why 

and how certain features of the simulating system (e.g., its 

network architecture, its materials) impact its performance 

relative to that dimension. 

What about scalability? Although it is problematic to 

precisely define ‘scalability,’ the term is generally used in 

computer science to denote the capacity of a multiprocessor 

parallel computing system to accommodate a growing 

number of processing units or to carry out a growing 

volume of work gracefully (Hill 1990). Scalability is a 

desirable feature of a computing system because it allows 

for hardware or software components to be added in the 

system without outgrowing it. Two more specific notions, 

helpful to assess the performance of a large-scale 

simulation, are those of strong scaling and weak scaling, 

which denote respectively the capacity of a system to reduce 

execution time for solving a fixed-size problem by adding 

processors, and the capacity to keep execution time constant 

by adding processors so as to accommodate additional 

workload. Assessing strong scaling is particularly relevant 

to learning about why some program takes a long time to 

run (something that is CPU-bound). Assessing weak scaling 

is particularly relevant to learning why some program takes 

a lot of memory to run (something that is memory-bound). 

Lack of scalability in large-scale neural simulation can 

indicate that the architecture of the simulating system 

cannot effectively solve problems of a certain size that 

biological brains can solve quickly. It can indicate that 

adding more simulated neurons and synapses to the 

simulating system is not an efficient strategy to execute a 

certain program more quickly, as the communication costs 

would increase as a function of the number of processors 

added to the system. It can also indicate that the power 

consumption required by a system that grows larger is too 

costly. So, by taxing an artificial computing system by 

simulating millions of neurons and synapses, scientists can 

learn about trade-offs between memory, computation, and 

communication in a certain computational architecture. 

 

Brains, simulations, and neuromorphic devices 

Learning about the computational performance of a 

computing system can be important for developing 

neuromorphic technologies. Neuromorphic technologies are 

devices for information processing and data analysis that 

aim to approximate the computational architecture and style 

of computing of biological brains. Such technologies 

include vision systems, auditory processors, multi-sensor 

integrators, autonomous robots, and tools for handling and 

analysing large amount of data (Indiveri & Horiuchi 2011). 

SyNAPSE (Systems of Neuromorphic Adaptive Plastic 

Scalable Electronics) is an on-going research program 

funded by the U.S. Defense Advanced Research Projects 

Agency (DARPA). “The vision for the SyNAPSE program 

is to develop electronic neuromorphic machine technology 

that scales to biological levels” (DARPA BAA08-28). This 

research program aims to develop electronic technology 

with similar computational performance to the mammalian 

brain in terms of size, speed, and energy consumption. 

Under the SyNAPSE program, Preissl and colleagues 

(2012) carried out a computer simulation of a very large 

neural circuit with the ultimate goal of exploring how 

closely one can “approximate the function, power, volume 

and real-time performance of the brain within the limits of 

modern technology” (10). The representational target 

system of their simulation was a network comprising 65 

billion neurons and 16 trillion synapses, which imitated the 

largest known wiring diagram in the macaque monkey’s 

brain. This biological target was modelled as a network of 

neurosynaptic cores containing digital integrate-leak-and-

fire neurons. 

The simulating system involved a 16-rack Blue Gene/Q 

supercomputer of 16,384 to 262,144 CPUs and 256 TB of 

main memory, and Compass, a multi-threaded, massively-

parallel software, which enabled the simulation of billions 

of neurosynaptic cores operating in a parallel, distributed, 

and semi-synchronous fashion. 

The modelling choices of Preissl and colleagues were 

congenial to the pursuit of an engineering goal. The 

neurons, synapses, and axons in their simulation were 

modelled as event-driven (asynchronous), digital, integrate-

leak-and-fire circuits. The leaky integrate-and-fire model is 

one of the simplest models of spiking neurons. Given its 

lack of biophysical detail, the range of phenomena that this 

model can address is limited. Nonetheless, the model is 

analytically solvable and relatively easy to implement in a 

computer simulation. For many integrate-and-fire neurons 

models, the model fits nicely with an event-driven 

simulation, whereby all operations in the simulation are 

driven by neural spike events, which is generally well suited 

to decrease computational time and minimize memory load. 

The inter-core pattern of connections embodied in Compass 

imitated the macaque’s neural wiring. The relationship 

between the model-network and its neurobiological target 



was not isomorphic; it was a similarity relation, which is 

generally sufficient to allow scientists to learn from 

computer simulation, especially when, like in this case, 

some relevant aspects and degrees of similarity are specified 

based on the question at hand, available background 

knowledge and the larger scientific context (Teller, 2001; 

Giere, 2004; Weisberg, 2013). 

Implementing the macaque’s wiring diagram 

“challenges the communication and computational 

capabilities of Compass in a manner consistent with 

supporting brain-like networks” (11). The performance of 

the simulating system could then be compared with that of 

the real neurobiological system represented in the computer 

simulation. A quantitative characterization of the deviations 

between the real neural system and the simulating system 

allowed scientists to identify which features of architectural 

and communication-design contributed to computational 

efficiency. 

Preissl and colleagues’ computer simulation could be 

used as a test-bed for learning about the performance of 

hardware and software components of a simulating system 

put under serious computational stress. Simulating a neural 

network at that scale poses major challenges for 

computation, memory, and communication, even with 

current supercomputers. If we consider N neurons, whose 

average firing rate is H, and whose average number of 

synapses is S, and we take account of all spike 

transmissions, then a real-time simulation of 1 second of 

biological time should process N x H x S spike 

transmissions. This minimal number of operations set a 

benchmark to assess the computational performance of a 

neural simulation (Brette et al. 2007, 350-1). 

Preissl et al.’s (2012) simulation yielded two main 

results. First, as the average spiking rate of neurons was 8.1 

Hz, the simulation was 388x slower than real time. Second, 

simulating the pattern of structural connectivity of the 

macaque’s brain, the simulating system displayed near-

perfect weak and strong scaling. While acquiring this type 

of information does not obviously yield novel insight about 

phenomena produced by biological brains, it is relevant to 

the development of more efficient artificial computing 

systems. As Preissl and colleagues put it: “Compass is a 

harbinger of an emerging use of today’s modern 

supercomputers for midwifing the next generation of 

application-specific processors that are increasingly 

proliferating to satisfy a world that is hungering for 

increased performance and lower power while facing the 

projected end of CMOS scaling and increasing obstacles in 

pushing clock rates ever higher” (11). 

 

Representing and Learning with Large-scale 

Neural Simulations 

Two claims are widely shared in the literature about the 

epistemology of computer simulation and scientific 

modelling (Frigg & Hartmann 2012). First, in target-

directed modelling, when scientific models and computer 

simulations are used to acquire new knowledge, it is 

knowledge about their represented targets that is ultimately 

sought (Weisberg 2013, Ch. 5). Second, computer 

simulations imitate some features of their represented target 

just to serve as surrogates that are investigated to gain new 

knowledge about it (Swoyer 1991). That is, the 

representational relation that holds between computer 

simulations and their represented targets allow scientists to 

perform inferences just from the simulation to its 

represented target. 

These two claims should be rectified in the light of 

computer simulations like Preissl and colleagues’. For some 

large-scale neural simulations, computer simulations have 

two kinds of targets about which one may want to gain new 

knowledge. One kind of target is a real neural system, which 

is represented in the simulation; the other kind of target is 

the computing system itself, which is not represented in the 

simulation, but studied either directly, or through 

complicated inferences. Depending on the goal of the 

scientists designing and running the computer simulation, 

these inferences may or may not be based on the assumption 

that the simulating system bears some representational 

relation with its neural target. 

Generally, computer simulations can instruct scientists 

about some aspect of reality even if it is not assumed that 

the mathematical model implemented in the simulation has 

counterparts in the world about which scientists want or 

hope to learn. In these cases, the aspects of reality about 

which scientists hope to gain novel information are some of 

the computational features of the simulating system, rather 

than some of the features of the real system represented in 

the computer simulation. Assuming that the simulating 

system bears some representational relation with a 

neurobiological target is not necessary to gain this 

information. In fact, benchmarking software exists that can 

be used to assess the relative performance of artificial 

computing systems’ hardware or programs. 

However, assuming that a simulating system does bear 

some representational relation with its neural target allows 

scientists to study performance discrepancies between the 

simulating system and the neurobiological system, which 

can function as useful benchmark along some dimension of 

interest. By characterising such discrepancies, constraints on 

computational efficiency can then be identified, which is 

particularly useful when the goal is to acquire knowledge 

useful for designing neuromorphic innovations. 

The claim that computer simulation can instruct scientists 

about kinds of target systems that are different from those 

represented in the simulation resonates with Humphreys’ 

(2009), Parker’s (2009), and Winsberg’s (2010) emphasis 

on the specifically computational and material features of 

computer simulations. Commenting on the philosophical 

novelty of computational science, writes Humphreys: a 

“novel feature of computational science is that it forces us to 

make a distinction between what is applicable in practice 

and what is applicable only in principle… Ignoring 

implementation constraints can lead to inadvisable remarks 



[e.g. about the epistemology of computer simulations]” 

(2009, 623). 

Learning about a simulating system’s computational 

performance is one way to learn about “what is applicable in 

practice and what is applicable only in principle” with 

respect to the engineering of novel computing technologies. 

If some computer simulations are intended to yield new 

knowledge only about the computing system used in the 

simulation, then scientific models and simulations need not 

be vehicles to learn about their represented targets. 

Sometimes, scientists do not translate the results of a 

computer simulation into knowledge about the represented 

target. Since these simulating systems are computing 

systems, they instantiate a set of computational, measurable 

properties. Running a large-scale neural simulation can 

yield measurements of these properties, which provide 

information about the computational performance of the 

system, given some benchmark. Knowing about the 

computational performance of the system along some 

dimension of interest can ground the practical design of 

neuromorphic computing devices. 

Examining the relationship between computer simulations 

and traditional experiments, Parker (2009) stresses “the 

importance of… understanding computer experiments as, 

first and foremost, experiments on real material systems. 

The experimental system in a computer experiment is the 

programmed digital computer—a physical system made of 

wire, plastic, etc… In a computer simulation study, 

scientists learn first and foremost about the behavior of the 

programmed computer” (488-9). 

Learning about the behavior of a programmed computer is 

far from being trivial or unimportant, as Preissl and 

colleagues’ (2012) work illustrates. Compass incorporated 

“several innovations in communication, computation, and 

memory” based on available knowledge of some aspects of 

the function, power and volume of organic brains (10). 

Compass was found to have near-perfect weak and strong 

scaling when a model was run of the neural dynamics of a 

large circuit of the macaque’s brain. By themselves, these 

types of results do not yield novel information about some 

set of computational properties instantiated by biological 

brains; and, given the aims of Preissl et al.’ simulation, they 

were not translated into knowledge about the represented 

target system. Instead, the specific importance of these 

results lies in their offering the basis for developing a novel, 

efficient, computational architecture that can support a host 

of neuromorphic applications (Modha et al. 2011). 

Having stressed the importance of recognizing that “in a 

computer simulation study scientists learn first and foremost 

about the behavior of the programmed computer,” Parker 

(2009) claims that: “from that behavior, taking various 

features of it to represent features of some target system, 

they hope to infer something of interest about the target 

system” (489). This widely-held claim should be qualified 

in two ways, however. 

First, Preissl and colleagues’ (2012) study shows that, 

from the behavior of a computing system that simulates the 

dynamics of a large-scale neural network, scientists need not 

draw any inference about the neural system represented in 

the simulation. Second, assuming that the simulating system 

does bear some representational relation with a set of 

computational properties instantiated by some biological 

neural network allows scientists to characterise the 

performance discrepancies between neurobiological 

network and artificial simulating system. The 

characterisation of this discrepancy can be valuable for 

some scientific or engineering aim. 

The brain is a kind of computing machine. If the brain is a 

computing machine, then there is a set of properties 

possessed by both biological brains and artificial computing 

systems such that specific instantiations of these properties 

determine the computational performance that the 

computing machine—biological or otherwise—can reach. 

From available information, biological brains instantiate 

determinate properties such that the computational 

performance they can reach is significantly higher than the 

performance of the best current artificial super-computers. If 

these properties are known, and if some information is 

available about how they determine the performance of 

biological brains, then scientists may justifiably assume that 

in some large-scale neural simulation the simulating system 

imitates some features of the brain relevant to instantiate 

those computational properties. 

Unlike scale models such the scale model of a bridge or 

of a car, which are typically down-sized or enlarged copies 

of their target systems, Preissl et al.’s (2012) large-scale 

neural simulation imitated some features of the brain not in 

order to serve as a surrogate that is investigated to draw 

conclusions on the represented neurobiological target. 

Rather, the assumed representational relation between the 

simulation and the biological brain justified scientists to 

draw inferences about how closely the function, power, 

volume and real-time performance of the brain can be 

approximated within the limits of current technology. The 

neural scale and pattern of connectivity embodied in 

Compass challenged its communication, memory and 

computational capabilities. In the face of these challenges, 

the simulating system performance could be compared to 

that of a biological brain along some dimensions of interest 

like neural spiking rates, latency and bandwidth. For 

example, running on the IBM Blue Gene/Q supercomputer, 

Compass was found to be 388x slower than real-time 

performance of the brain, which is useful to characterise its 

computational performance. 

So, in some cases, large-scale neural simulations imitate 

the brain not in order to serve as a surrogate investigated in 

its stead. The brain is imitated because it offers a biological 

benchmark against which the simulating system’s design 

and performance can be assessed. Information about how 

certain properties determine the computational performance 

of biological brains can then be used not only to try and 

instantiate those properties in the design of artificial 

systems, but also to characterise the discrepancy between 

the brain’s and the simulating system’s performance. This 



characterisation might provide insight into what types of 

constraints and what determinate properties an artificial 

computing system need to instantiate for carrying out some 

task of interest more efficiently. 

Conclusions 

For some large-scale neural simulation, what is learned 

concerns the computational performance of the simulating 

system itself. Learning about the computational 

performance of a computing machine is far from trivial, and 

can afford knowledge useful for several engineering 

purposes. Once this role is recognized of some large-scale 

neural simulations, some widely held beliefs about the 

epistemology of computer simulations and modelling are in 

need of qualification. First, computer simulation can involve 

more than one kind of target system, about which one wants 

or hopes to acquire new knowledge. Second, when scientific 

models and computer simulations are employed to gain new 

knowledge, it is not always knowledge about their 

represented target systems that is sought. Third, assuming 

that some large-scale neural simulations imitate some 

features of their target neurobiological system allows 

scientists to characterize the performance discrepancies 

between biological brains and artificial computers, which 

may help identify constraints on computational efficiency 

for the design of neuromorphic technologies. 
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