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The quantum mechanical no-cloning theorem for pure states is generalized and transfered to the
quantum logics with a conditional probability calculus. This is, on the one hand, an extension
of the classical probability calculus and, on the other hand, a mathematical generalization of the
Lüders - von Neumann quantum measurement process. In the non-classical case, a very special
type of conditional probability emerges, describing the probability for the transition from a past
event to a future event independently of any underlying state. This probability results from the
algebraic structure of the quantum logic only and is invariant under algebraic morphisms, which
is used to prove the generalized no-cloning theorem in a rather abstract, though simple and basic
fashion without relying on a tensor product construction or finite dimension as required in other
approaches.
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I. INTRODUCTION

A pioneering result with far-reaching consequences in
quantum information and communication theory is the
no-cloning theorem, stating that unknown pure quan-
tum states cannot be copied unless they are orthogo-
nal [12, 29–31]. An interesting generalization is the no-
broadcasting theorem for mixed states [3]. Originally,
both were proved in Hilbert space quantum mechanics,
then extended to the C*-algebraic setting [11] and later
to finite-dimensional generic probabilistic models [1, 2]
and to quantum logics [20]. In the latter case, only uni-
versal cloning is impossible, while the cloning of a small
set or pair of states can be ruled out in the other cases.
Though these results preclude the perfect cloning, the
approximate or imperfect cloning of quantum states re-
mains possible [8, 10, 19]. In this paper, the (perfect)
cloning of a small set or pair of states is considered in
the setting of quantum logics with a conditional prob-
ability calculus [21, 22], including finite-dimensional as
well as infinite-dimensional models.

A quantum logic E is a purely algebraic structure for
the quantum events (or propositions). It is quite common
to use an orthomodular partially ordered set or lattice
[4, 5, 17, 25]. States are then defined in the same way as
the classical probability measures, and conditional prob-
abilities are postulated to behave like the classical ones
on compatible subsets of E. Note that a subset is called
compatible if it is contained in another subset of E form-
ing a Boolean algebra (i.e., in a classical subsystem of
E) [7]. Some quantum logics entail unique conditional
probabilities, many others don’t. The classical Boolean
algebras and the Hilbert space quantum logic (consisting
of the closed subspaces or, equivalently, the selfadjoint
projection operators) do and, in the latter case, condi-
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tionalization becomes identical with the state transition
of the Lüders - von Neumann (i.e., projective) quantum
measurement process [21]. Therefore, the quantum logics
with unique conditional probabilities can be regarded as
a generalized mathematical model of projective quantum
measurement.

In this framework, a very special type of conditional
probability emerges in the non-classical case [21, 22]. It
describes the probability for the transition from a past
event e to a future event f , independently of any underly-
ing state, and results from the algebraic structure of the
quantum logic E. This probability exists only for certain
event pairs e and f . It exists for all events f ∈ E, if e is a
minimal event (atom) in E. The states resulting in this
way are called atomic. They represent a generalization
of the pure states in Hilbert space quantum mechanics.

After the early pioneering work by Birkhoff and von
Neumann in 1937 [6], quantum logics have been studied
extensively between 1960 and 1995 [4, 5, 17, 18, 24–28].
Various forms of conditional probability have also been
considered [4, 9, 13–16]. However, the quantum logics
which possess unique conditional probabilities and par-
ticularly the special type of the state-independent condi-
tional probability have not attracted any attention before
the author’s work [21, 22].

Considering such a quantum logic, this special type of
conditional probability is used in the present paper to
prove, in a very basic fashion, the generalized no-cloning
theorem for atomic states. A tensor product construction
as used in the other approaches is not required. Instead,
the embedding of two copies of E, which shall be com-
patible with each other, in a larger quantum logic L is
sufficient.

The paper is organized as follows. The algebraic struc-
ture of the quantum logic is considered in section II.
Section III then turns to states and briefly sketches the
non-classical conditional probability calculus from Refs.
[21, 22]. The main results are presented in sections IV
and V. The proof of the quantum mechanical no-cloning
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theorem rests upon the following two basic properties
of the inner product in the Hilbert space: It is invariant
under the unitary cloning transformation and multiplica-
tive for the Hilbert space tensor product. These proper-
ties are transferred to the non-classical conditional prob-
abilities in a certain way (Lemmas 1(a) and 2), which
then allows to mimic the quantum mechanical proof for
the generalized no-cloning theorem (Theorem 1). In sec-
tion VI, the ties to Hilbert space quantum mechanics are
pointed out.

II. COMPATIBILITY IN ORTHOMODULAR
PARTIALLY ORDERED SETS

In quantum mechanics, the measurable quantities of
a physical system are represented by observables. Most
simple are those observables where only the two discrete
values 0 and 1 are possible as measurement outcome;
these observables are called events (or propositions) and
are elements of a mathematical structure called quantum
logic.

In this paper, a quantum logic shall be an orthomod-
ular partially ordered set E with the partial ordering ≤,
the orthocomplementation ′, the smallest element 0 and
the largest element I [4, 5, 17, 25]. This means that the
following conditions are satisfied by all e, f ∈ E:

(A) e ≤ f implies f ′ ≤ e′.
(B) (e′)′ = e.
(C) e ≤ f ′ implies e∨f , the supremum of e and f , exists.
(D) e ∨ e′ = I.
(E) f ≤ e implies e = f ∨(e∧f ′). (orthomodular law)

Here, e∧ f denotes the infimum of e and f , which exists
iff e′∨f ′ exists. Two elements e, f ∈ E are called orthog-
onal if e ≤ f ′ or, equivalently, f ≤ e′. An element e 6= 0
in E is called an atom if there is no element f in E with
f ≤ e and 0 6= f 6= e.

The interpretation of this mathematical terminology
is as follows: orthogonal events are exclusive, e′ is the
negation of e, and e ∨ f is the disjunction of the two
exclusive events e and f .

It is not assumed that E is a lattice (in a lattice, there is
a smallest upper bound e∨f and largest lower bound e∧f
for any two elements e and f). If E were a distributive
lattice (i.e., e∧(f∨g) = (e∧f)∨(e∧g) for all e, f, g ∈ E),
it would become a Boolean lattice or Boolean algebra.
The orthomodular law is a weakening of the distributivity
law.

Classical probability theory uses Boolean lattices as
mathematical structure for the random events, and it can
be expected that those subsets of E, which are Boolean
lattices, behave classically. Therefore, a subset E0 of E
is called compatible if there is a Boolean lattice B with
E0 ⊆ B ⊆ E. Any subset with pairwise orthogonal el-
ement is compatible [7]. Two subsets E1 and E2 of E
are called compatible with each other if the union of any
compatible subset of E1 with any compatible subset of

E2 is a compatible subset of E. Note that this does not
imply that E1 or E2 themselves are compatible subsets.

A subset of an orthomodular lattice is compatible if
each pair of elements in this subset forms a compatible
subset. However, the pairwise compatibility of the ele-
ments of a subset of an orthomodular partially ordered
set does not any more imply the compatibility of this
subset [7].

A quantum logical structure, which is more general
than the orthomodular partially ordered sets, has been
used in Refs. [21, 22]. This more general structure is
sufficient when only compatible pairs of elements in the
quantum logic are considered. However, compatible sub-
sets with more than two elements will play an important
role in this paper.

A quantum logic is a purely algebraic structure, unfurl-
ing its full potential only when its state space has some
nice properties which shall be considered in the next sec-
tion.

III. NON-CLASSICAL CONDITIONAL
PROBABILITY

The states on the orthomodular partially ordered set E
are the analogue of the probability measures in classical
probability theory, and conditional probabilities can be
defined similar to their classical prototype. A state ρ
allocates the probability ρ(f) with 0 ≤ ρ(f) ≤ 1 to each
event f ∈ E, is additive for orthogonal events, and ρ(I) =
1. It then follows that ρ(f) ≤ ρ(e) for any two events
e, f ∈ E with f ≤ e.

The conditional probability of an event f under another
event e is the updated probability for f ∈ E after the
outcome of a first measurement has been the event e ∈ E;
it is denoted by ρ(f |e). Mathematically, it is defined by
the conditions that the map E 3 f → ρ(f |e) is a state
on E and that it coincides with the classical conditional
probability for those f which are compatible with e. The
second condition is equivalent to the identity ρ(f |e) =
ρ(f)/ρ(e) for all events f ∈ E with f ≤ e. It must be
assumed that ρ(e) 6= 0.

However, among the orthomodular partially ordered
sets, there are many where no states or no conditional
probabilities exist, or where the conditional probabilities
are ambiguous. It shall now be assumed for the remaining
part of this paper that

(F) there is a state ρ on E with ρ(e) 6= 0 for each e ∈ E
with e 6= 0,

(G) E possesses unique conditional probabilities, and

(H) the state space of E is strong; i.e., if
{ρ | ρ is a state with ρ(f) = 1}

⊆ {ρ | ρ is a state with ρ(e) = 1}
holds for two events e and f in E, then f ≤ e.

If ρ is a state with ρ(e) = 1 for some event e ∈ E, then
ρ(f |e) = ρ(f) for all f ∈ E. This follows from (G).
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For some event pairs e and f in E, the conditional
probability does not depend on the underlying state; this
means ρ1(f |e) = ρ2(f |e) for all states ρ1 and ρ2 with
ρ1(e) 6= 0 6= ρ2(e). This special conditional probability
is then denoted by P(f |e). The following two conditions
are equivalent for an event pair e, f ∈ E:

(i) P(f |e) exists and P(f |e) = s.
(ii) ρ(e) = 1 implies ρ(f) = s for the states ρ on E.

Due to condition (H), f ≤ e holds for two events e and
f in E if and only if P(e|f) = 1. Moreover, e and f are
orthogonal if and only if P(e|f) = 0.

P(f |e) exists for all f ∈ E if and only if e is an atom
(minimal event), which results in the atomic state Pe
defined by Pe(f) := P(f |e). This is the unique state
allocating the probability value 1 to the atom e. For
two atoms e and f in E, the following four identities are
equivalent: Pe(f) = 1, Pf (e) = 1, Pe = Pf , and e = f .

IV. MORPHISMS

In this section, the invariance of the special conditional
probability P(·|·) under quantum logical morphisms is
studied. In the proof of the main result, this will later
replace the invariance of the inner product under unitary
transformations in the Hilbert space setting.

Suppose E and F are orthomodular partially ordered
sets and T : E → F is an (algebraic) morphism (i.e.,
Te1 ≤ Te2 for e1, e2 ∈ E with e1 ≤ e2, T (e′) = (Te)′

for all e ∈ E and T I = I). A dual transformation T ∗,
mapping the states ρ on F to states T ∗ρ on E, is then
defined by (T ∗ρ)(e) := ρ(Te) for e ∈ E. In the case where
both E and F possess unique conditional probabilities,

(T ∗ρ)(e2|e1) = ρ(Te2|Te1)

holds for all events e1, e2 ∈ E with ρ(Te1) 6= 0. To see
this, consider the state e→ ρ(Te|Te1) on E; the unique-
ness of the conditional probability implies that it must
coincide with the state e→ (T ∗ρ)(e|e1).

Lemma 1: Let E and F be orthomodular partially or-
dered sets, satisfying (F) and (G), and let T : E → F be
a morphism.
(a) If P (e2|e1) exists for two events e1 and e2 in E with
Te1 6= 0, then P (Te2|Te1) exists and

P (Te2|Te1) = P (e2|e1) .

(b) T ∗Pf = PT−1f for the atoms f in F .

Proof. (a) Suppose P (e2|e1) exists for e1 and e2 in
E. Then P (e2|e1) = (T ∗ρ)(e2|e1) = ρ(Te2|Te1) for all
states ρ on F with (T ∗ρ)(e1) = ρ(Te1) > 0. Therefore,
P (Te2|Te1) exists and is identical with P (e2|e1).
(b) Let f be an atom in F . Then T−1f is an atom in E
and, by (a), P(e|T−1f) = P(Te|f) for e ∈ E. Therefore,
PT−1f = T ∗Pf .

V. THE GENERALIZED NO-CLONING
THEOREM

In this section, a quantum logic shall always be an
orthomodular partially ordered set and shall satisfy (F),
(G) and (H). Suppose that E is a quantum logic and that
two copies of it are contained in the larger quantum logic
L. This means that there are two injective morphisms
π1 : E → L and π2 : E → L. Moreover, suppose

(I) the subsets π1(E) and π2(E) of L are compatible
with each other and

(J) π1(e)∧π2(f) is an atom in L for each pair of atoms
e and f in E.

The proof of the quantum mechanical no-cloning the-
orem rests upon the multiplicativity of the inner prod-
uct for the Hilbert space tensor product. The following
lemma provides the substitute for this in the more gen-
eral setting.

Lemma 2: Suppose P(e2|e1) and P(f2|f1) both exist for
e1, e2, f1, f2 ∈ E. Then

P((π1e2) ∧ (π2f2)|(π1e1) ∧ (π2f1))

exists and

P((π1e2) ∧ (π2f2)|(π1e1) ∧ (π2f1)) = P(e2|e1)P(f2|f1).

Proof. Given the above assumptions, consider a state ρ
on L with

ρ((π1e1) ∧ (π2f1)) = 1.

Then ρ(π1e1) = 1 = ρ(π2f1). Now define two states µ1

and µ2 on E by

µ1(e) := ρ((π1e) ∧ (π2f1)) and µ2(e) := ρ((π1e))

for e ∈ E. Note that µ1 is a state due to (I). Since
µ1(e1) = 1 = µ2(e1) and P(e2|e1) exists, it follows that
P(e2|e1) = µ1(e2) = µ2(e2) and P(e2

′|e1) = µ1(e2
′) =

µ2(e2
′). Thus

P(e2|e1) = ρ((π1e2) ∧ (π2f1)) = ρ((π1e2))

and

P(e2
′|e1) = ρ((π1e2

′) ∧ (π2f1)) = ρ((π1e2
′)).

In the case P(e2|e1) > 0, define the state ν on E by

ν(f) :=
ρ((π1e2) ∧ (π2f))

P(e2|e1)

for f ∈ E. Then ν(f1) = 1 and therefore

P(f2|f1) = ν(f2) =
ρ((π1e2) ∧ (π2f2))

P(e2|e1)
.
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In the case P(e2|e1) = 0, it follows P(e2
′|e1) = 1. Then

e1 ≤ e2′ and e2 ≤ e1′. Therefore,

ρ((π1e2)∧(π2f2)) ≤ ρ(π1e2) ≤ ρ(π1e1
′) = 1−ρ(π1e1) = 0

and ρ((π1e2) ∧ (π2f2)) = 0. In both cases,

ρ((π1e2) ∧ (π2f2)) = P(e2|e1)P(f2|f1).

Since this holds for all states ρ on L with ρ((π1e1) ∧
(π2f1)) = 1, it finally follows that

P((π1e2) ∧ (π2f2)|(π1e1) ∧ (π2f1)) = P(e2|e1)P(f2|f1).

Note that the proof of Lemma 2 does neither require
assumption (J) nor any tensor product construction, but
instead only assumption(I).

A state ρ on L can be restricted to each one of the two
copies of E in L, resulting in the following two states on
E: π∗1ρ = ρπ1 and π∗2ρ = ρπ2.

Lemma 3: Let e and f be atoms in E and ρ a state
on L. Then ρπ1 = Pe and ρπ2 = Pf if and only if ρ =
P(π1e)∧(π2f).

Proof. Assume ρπ1 = Pe and ρπ2 = Pf . Then (I) implies

1 = Pee = ρπ1e = ρ ((π1e) ∧ (π2f)) + ρ ((π1e) ∧ (π2f
′))

and

0 ≤ ρ ((π1e) ∧ (π2f
′)) ≤ ρπ2f ′ = Pff ′ = 0.

Therefore 1 = ρ ((π1e) ∧ (π2f)) and, since (π1e) ∧ (π2f)
is an atom in L,

ρ = P(π1e)∧(π2f).

Now assume ρ = P(π1e)∧(π2f) and a ∈ E. Then by Lem-
mas 1(a) and 2

ρπ1a = P((π1a)|(π1e) ∧ (π2f))

= P((π1a) ∧ (π2I)|(π1e) ∧ (π2f))

= P(π1a|π1e)P(π2I|π2f)

= P(π1a|π1e)

= P(a|e) = Pea

The second identity ρπ2 = Pf follows in the same way.

Now suppose that C is a set of atoms in E and that f is
a fixed atom in E, that the local state on the first copy of
E is any element in {Pe|e ∈ C} and that the local state
on the second copy of E is Pf . For the state ρ on L
this means that ρπ1 = Pe for some unknown e ∈ C and
ρπ2 = Pf .

In the usual quantum mechanical setting, the cloning
is performed by a unitary transformation on the Hilbert
space tensor product. In this paper, it shall be performed
by an automorphism of L; cloning means that the auto-
morphism transforms the initial local state on the second
copy of E to a copy of the unchanged local state on the

first copy of E. After the transformation, both copies of
E are in the same local state and this is the local state
on the first copy before the transformation.

Definition 1: A cloning transformation for {Pe|e ∈ C}
is an automorphism T of the quantum logic L such that
(T ∗ρ)π1 = ρπ1 = (T ∗ρ)π2 holds for the states ρ on L
with ρπ1 ∈ {Pe|e ∈ C} and ρπ2 = Pf .

Theorem 1: A cloning transformation T for {Pe|e ∈ C}
exists only if the atoms in C are pairwise orthogonal.

Proof. Assume T is a cloning transformation for
{Pe|e ∈ C}. Note that, by Lemma 3, ρπ1 = Pe and
ρπ2 = Pf holds for the states ρ = P(π1e)∧(π2f) with e ∈ C
and, furthermore, (T ∗ρ)π1 = Pe = (T ∗ρ)π2 with e ∈ C
implies T ∗ρ = P(π1e)∧(π2e). Therefore by Lemma 1(b)

P(π1e)∧(π2e) = T ∗P(π1e)∧(π2f) = PT−1((π1e)∧(π2f))

and thus

T−1 ((π1e) ∧ (π2f)) = ((π1e) ∧ (π2e))

for each e ∈ C. Now assume e1, e2 ∈ C and consider

P ((π1e2) ∧ (π2f)|(π1e1) ∧ (π2f)) .

On the one hand, the repeated application of Lemmas
1(a) and 2 yields

P ((π1e2) ∧ (π2f)|(π1e1) ∧ (π2f))

= P
(
T−1 ((π1e2) ∧ (π2f)) |T−1 ((π1e1) ∧ (π2f))

)
= P ((π1e2) ∧ (π2e2)|(π1e1) ∧ (π2e1))

= P (π1e2|π1e1)P (π2e2|π2e1)

= P (e2|e1)P (e2|e1)

= (P (e2|e1))
2

and, on the other hand,

P ((π1e2) ∧ (π2f)|(π1e1) ∧ (π2f))

= P (π1e2|π1e1)P (π2f |π2f)

= P (e2|e1)P (f |f))

= P (e2|e1) .

Therefore, (P (e2|e1))
2

= P (e2|e1) and P (e2|e1) ∈ {0, 1}.
This means that e1 and e2 are either orthogonal or iden-
tical.

If L is a finite Boolean algebra (i.e., classical), different
atoms are orthogonal and a cloning transformation T is
defined by extending to L the following permutation of
the atoms in L: T ((π1e) ∧ (π2e)) = (π1e) ∧ (π2f) and
T ((π1e)∧ (π2f)) = (π1e)∧ (π2e) for all e ∈ C, Td = d for
the other atoms d in L. However, non-orthogonal atoms
are quite characteristic of quantum mechanics and Theo-
rem 1 rules out that the corresponding atomic states can
be cloned.
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VI. QUANTUM MECHANICS

Quantum mechanics uses a special quantum logic; it
consists of the self-adjoint projection operators on a
Hilbert space H and is an orthomodular lattice. Com-
patibility here means that the self-adjoint projection op-
erators commute. Conditions (F) and (H) in section III
are satisfied, and the unique conditional probabilities ex-
ist (G) unless the dimension of H is two [21]. Moreover,
it has been shown in Ref. [21] that, with two self-adjoint
projection operators e and f on H, the conditional prob-
ability has the shape

ρ(f |e) =
trace(aefe)

trace(ae)
=
trace(eaef)

trace(ae)

for a state ρ defined by the statistical operator a (i.e., a is
a self-adjoint operator on H with non-negative spectrum
and trace(a) = 1). The above identity reveals that con-
ditionalization becomes identical with the state transi-
tion of the Lüders - von Neumann measurement process.
Therefore, the conditional probabilities defined in section
III can be regarded as a generalized mathematical model
of projective quantum measurement.

P(f |e) exists with P(f |e) = s if and only if the opera-
tors e and f satisfy the algebraic identity efe = se. The
state-independence of this conditional probability has not
attracted much attention so far, although it may have
profound implications for quantum foundations and in-
terpretation, quantum information theory, and the philo-
sophical question what constitutes physical reality. This
topic needs further study; a first starting point is Ref.
[23].

The atoms are the self-adjoint projections on the one-
dimensional subspaces of H; if e is an atom and ξ a

normalized vector in the corresponding one-dimensional
subspace, then

P(f |e) = 〈ξ|fξ〉 .

The atomic states thus coincide with the quantum me-
chanical pure states or vector states. Their general non-
orthogonality is quite characteristic of quantum mechan-
ics.

The quantum mechanical model of a composite system
consisting of two copies is the Hilbert space tensor prod-
uct H ⊗H. The self-adjoint projection operators e on H
are mapped to two copies on H⊗H by π1(e) := e⊗I and
π2(e) := I ⊗ e. Note that (I) and (J) are then satisfied.
The time evolution of the composite system is described
by unitary transformations of H ⊗ H and therefore the
cloning operation should be a unitary transformation. It
defines an automorphism of the quantum logic of H⊗H.

Theorem 1 thus includes the quantum mechanical no-
cloning theorem for pure states as a special case. Instead
of the Hilbert space and tensor product formalism, The-
orem 1 requires only a few very basic principles; these
are the existence and the uniqueness of the conditional
probabilities and the existence of two compatible copies
of the system in a larger system. Nevertheless, the proof
of the no-cloning theorem in the quantum mechanical
Hilbert space formalism can be mimicked, replacing the
Hilbert space inner product 〈 | 〉 by the specific state-
independent conditional probability P( | ).

Theorem 1 considers only the atomic or pure states,
while other approaches to a generalized no-cloning or no
broadcasting theorem [1, 2, 20] include the mixed states.
On the other hand, these approaches are restricted to
finite-dimensional theories or universal cloning and need
an explicit tensor product construction.
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