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Abstract

One of the most troubling and persistent challenges for Bayesian

Confirmation Theory is the Problem of Old Evidence (POE, Glymour

1980). The problem arises for anyone who wants to model confir-

mation and theory appraisal in science by means of Bayesian Condi-

tionalization. This paper addresses the problem as follows: First, I

clarify the nature and the varieties of the POE, following Eells (1985,

1990). Second, I analyze solution proposals where (i) confirmation is

evaluated relative to a counterfactual credence function; or (ii) con-

firmation occurs through learning the proposition that theory T ac-

counts for evidence E (Garber 1983; Jeffrey 1983; Niiniluoto 1983).

Third, I present a novel solution that combines previous attempts

while making weaker and more plausible assumptions. Finally, I

summarize my findings and put them into the context of the general

debate about POE and Bayesian reasoning.
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1 Introduction: The Problem of Old Evidence (POE)

One of the most troubling and persistent challenges for Bayesian Con-

firmation Theory (BCT) is the Problem of Old Evidence (POE): A phe-

nomenon E remains unexplained by the available scientific theories. At

some point, a theory T is discovered that accounts for E. Then, E is “old

evidence”: at the time when T is developed, the scientist is already certain

or close to certain that the phenomenon E is real. Nevertheless, E ap-

parently confirms T—at least if T was invented on independent grounds.

After all, it resolves a well-known and persistent observational anomaly.

A famous case of old evidence in science is the Mercury perihelion

anomaly (Glymour 1980; Earman 1992). For a long time, the shift of the

Mercury perihelion could not be explained by Newtonian mechanics or

any other reputable physical theory. Then, Einstein realized that his Gen-

eral Theory of Relativity (GTR) could explain the perihelion shift. This

discovery conferred a substantial degree of confirmation on GTR, much

more than some pieces of novel evidence.

Also in other scientific disciplines, newly introduced theories are com-

monly assessed with respect to their success at accounting for observa-

tional anomalies. Think, for example, of the assessment of global climate

models against a track record of historical data, or of economic theories

that try to explain anomalies in decision-making under uncertainty, e.g.,

the Allais or Ellsberg paradoxes.

All this is hard to capture in the Bayesian framework, where confirma-

tion is expressed as increase in an agent’s subjective degree of belief. On

the Bayesian account, E confirms T if and only if the posterior degree of

belief in T, p′(T), exceeds the prior degree of belief in T, p(T). These two

probabilities are related by means of conditioning on the evidence E and

Bayes’ Theorem (e.g., Howson and Urbach 2006):

p′(T) := p(T|E) = p(T)
p(E|T)

p(E)
(1)

Here and in the sequel, reference to an accepted body of background as-

sumptions K in the credence function p(·) is omitted for the sake of sim-

plicity.

Let us now apply the Bayesian calculus to POE. When E is old ev-

idence and already known to the scientist, the prior degree of belief in
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E is maximal: p(E) = 1. But with that assumption, it follows that the

posterior probability of T cannot be greater than the prior probability:

p′(T) = p(T|E) = p(T) · p(E|T) ≤ p(T). Hence, E does not confirm

T. The very idea of confirmation by old evidence, or equivalently, con-

firmation by accounting for well-known observational anomalies, seems

impossible to describe in the Bayesian belief kinematics.

This paper investigates the variety of the problems that POE poses for

BCT, reviews existing approaches and finally proposes a novel solution.

Section 2 distinguishes the dynamic and the static version of POE and

briefly comments on attempts to solve the static problem. Section 3 an-

alyzes the solutions of the dynamic version proposed by Garber (1983),

Jeffrey (1983), Niiniluoto (1983) and Earman (1992). On these accounts,

confirmation occurs through conditionalizing on the proposition T ⊢ E.

Section 4 presents my own improvement on these attempts. Finally, Sec-

tion 5 puts my findings into the context of the general debate about POE

and BCT.

Throughout the paper, I will work in the framework of Bayesian epis-

temology (Bovens and Hartmann 2003; Hájek and Hartmann 2010; Hart-

mann and Sprenger 2010). I am using Bayesian Nets for representing

dependencies between propositions of interest—a technique that has re-

cently proved its merits for modeling complex confirmation phenomena

(e.g., Dawid, Hartmann and Sprenger 2014).

2 The Varieties of the POE

Part of the controversy about the Problem of Old Evidence concerns the

question of what the problem really consists in. Eells (1985, 1990) has

introduced a helpful conceptual distinction between different problems of

old evidence:

(1) The Problem of Old New Evidence: E is learned after T is formulated,

but even after updating our degrees of belief on E, we still say that

E confirms T although by now, p′(E) = 1. (As before, p′ denotes the

posterior probability distribution.)

(2) The Problem of Old Evidence: E is known before T is formulated.
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(2a) The Problem of Old Old Evidence. Even after formulating T and

discovering that T accounts for E, E seems to confirm T.

(2b) The Problem of New Old Evidence. Why does E confirm T at the

moment where T is discovered, or when it is discovered that T

accounts for E?

(1) and (2a) describe the static (Eells: “ahistorical”) aspect of POE: belief

changes induced by the discovery of T, or the fact that T accounts for E,

have already taken place. Still, we would like to say that E is evidentially

relevant for T: when faced with a decision between T and a competitor

T′, E is a good reason for preferring T over T′. (2b), however, captures the

dynamic (Eells: “historical”) aspect of the problem: it refers to the moment

in time where T and its relation to E are discovered. Here, the challenge

for the Bayesian is to describe how the discovery of a new theory T and

its explanatory successes raises our confidence in T.

The Bayesian usually approaches both problems by different strate-

gies. The standard take on the dynamic problem consists in allowing for

the learning of logical truths. In classical examples, such as explaining

the Mercury perihelion shift, the newly invented theory (here: GTR) was

initially not known to entail the old evidence. It took Einstein some time

to find out that T entailed E (Brush 1989; Earman 1992). Learning this

deductive relationship undoubtedly increased Einstein’s confidence in T

since such a strong consilience with the phenomena could not be expected

beforehand.

However, this belief change is hard to model in a Bayesian framework.

A Bayesian reasoner is assumed to be logically omniscient and the logical

fact T ⊢ E should always have been known to her. Hence, the proposition

T ⊢ E cannot be learned by a Bayesian: it is already part of her background

beliefs.

To solve this problem, several philosophers have relaxed the assump-

tion of logical omniscience and enriched the algebra of statements about

which we have degrees of belief. New atomic sentences of the form T ⊢ E

are added (Garber 1983; Jeffrey 1983; Niiniluoto 1983), such that BCT can

account for our cognitive limitations in deductive reasoning. Then, it can

be shown that under suitable assumptions, conditioning on T ⊢ E con-

firms T. I will comment on these efforts in the next section.
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The response to the static problem is different. Eells (1990: 209) pro-

poses that “E is (actual) evidence for T [. . . ] if, at some point in the past,

the event of its confirming T took place” (original emphasis). On that def-

inition, the solution of the static problem in (1) and (2a) would reduce to

the solution of the dynamic problem (cf. Christensen 1999: 444): when we

can show that at the time of the formulation of T, E confirmed T, then E

would also be evidence for T afterwards (Eells 1990: 210). However, most

takes on the dynamic problem do not try to show that E confirms T at

the relevant moment in time: rather, this work is done by the proposition

T ⊢ E. This strategy also fails to account for changes over time in our

assessment of the strength of the evidence that E provides for T.

Therefore, Colin Howson (1984, 1985, 1991) developed a more princi-

pled take on the static problem. He gives up the Bayesian explication of

confirmation as positive probabilistic relevance relative to actual degrees of

belief. Rather, he suggests to subtract the old evidence E from the agent’s

background knowledge K and to evaluate the confirmation relation with

respect to the counterfactual credence function pK\{E}:

“[T]he Bayesian assesses the contemporary support E gives H

by how much the agent would change his odds on H were he

now to come to know E [. . . ] In other words, the theory is ex-

plicitly a theory of dispositional properties of the agent’s belief-

structure [. . . ].” (Howson 1984: 246, original emphasis)

For instance, if T is a hypothesis about the bias of a coin and E the out-

come of some series of coin tosses, then eliminating E from the back-

ground knowledge allows to describe how E raises the probability of T

since we would have definite and non-trivial values for pK\{E}(E|T) and

pK\{E}(E|¬T) (Howson 1991: 551–552).

As the above quote indicates, Howson thinks that Bayesian Confirma-

tion Theory is essentially a counterfactual or dispostional theory. I happen

to agree with him on this point, but there are a couple of technical prob-

lems with Howson’s specific choice of a counterfactual credence function.

In particular, E may be entangled with other propositions that are part of

K. As Chihara (1987) notes, just removing E from the set of background as-

sumptions K will not work in general if K is supposed to be a deductively

closed set. If we ignore this feature, we would sacrifice a main advan-

tage of Howson’s counterfactual approach: that it need not give up the
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elegance of the standard Bayesian rationality assumptions (e.g., epistemic

closure) in order to account for the POE.

Alternatively, Howson may choose to evaluate the confirmation rela-

tion with respect to the agent’s credence function at some point in the

past, e.g., just before she learned E. But the agent’s belief in E may have

gradually grown over time, and no such time point may exist. Moreover,

without knowledge of E, T may even not have been formulated (cf. Gly-

mour 1980: 87–93).

All in all, the credence function pK\{E} that is supposed to ground the

confirmation relation between T and E is rather indefinite even in cases

where everybody agrees that E confirms T. As a consequence, we can

hardly determine whether the degree of confirmation conferred upon T

by E is strong, weak or nil.

Another solution proposal for the static problem is based on the choice

of a specific confirmation measure (Fitelson 1999, 2014). Christensen (1999)

contends that for the measure s∗(T, E) = p(T|E)− p(T|¬E), the POE does

not arise. For instance, if T entails E, then ¬E also entails ¬T, which

implies p(T|¬E) = 0 and s∗(T, E) = p(T|E) > 0. According to s∗, old ev-

idence E can substantially confirm theory T whereas the degree of confir-

mation is zero for measures that compare the prior and posterior probabil-

ity of T, such as d(T, E) = p(T|E)− p(T) or r(T, E) = log(p(T|E)/p(T)).

Christensen’s move has its merits for cases where p(E) is close to, but

not entirely equal to one (though it is questionable whether s∗ is a good

explicatum for degree of confirmation, see Eells and Fitelson 2000). But

in the classical POE where p(E) = 1, p(T|¬E) may not have a clear-cut

definition since p(T|¬E) = p(T ∧ ¬E)/p(¬E) involves a division by zero.

And if p(T|¬E) has to be evaluated relative to a counterfactual credence

function, not much may have been gained with respect to Howson’s pro-

posal.

The static POE thus proves to be a tough challenge for Bayesian confir-

mation theorists. Are prospects any better for the dynamic problem?

3 The GJN Approach to POE

The first models of the dynamic POE have been developed by Daniel Gar-

ber, Richard Jeffrey and Ilkka Niiniluoto in a group of papers that all ap-
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peared in 1983. Henceforth, we will refer to the family of their solution

proposals as GJN solutions. In order to properly compare my own solu-

tion proposal to the state-of-the-art, and to assess its innovative value, I

will briefly recap the achievements of the GJN models and elaborate their

limitations and weaknesses.

The GJN models take into account that a scientist is typically not aware

of all possible theories and their relations to the evidence, thus parting

with the assumption of logical omniscience that characterizes the ideal

Bayesian reasoner. Consequently, the relevant piece of evidence is not E

itself, but the learning of a specific relation between theory and evidence,

namely that T implies E or accounts for E. The notational convention to

write this proposition as pT ⊢ Eq conceals that we do not necessarily deal

with a strict logical deduction—also explanatory relationships may fall

under the scope of this model (Garber 1983: 103; Eells 1990: 212). Such

cases count, after all, as confirmatory arguments for T in ordinary scien-

tific reasoning. However, thinking of deduction facilitates notation and

can be used as a guide for intuition and the development of an adequate

Bayesian model.

What the GJN models aim to show is that conditionalizing on the

proposition T ⊢ E increases the posterior probability of T. Eells (1990: 211)

distinguishes three steps in this endeavor: First, parting with the logical

omniscience assumption and developing a formal framework for imper-

fect Bayesian reasoning. Second, describing which kind of relation obtains

between T and E. Third, showing that learning this relation increases the

probability of T. While the GJN models neglect the second step, probably

in due anticipation of the diversity of logical and explanatory relations in

science, they are quite explicit on Step 1 and Step 3.

Garber’s (1983) model focuses on Step 1 and on learning logical truths

in a Bayesian framework. After all, no reasoner ever is logically omni-

scient. Learning logical/mathematical truths can be quite insightful and

lead to great progress in science. The famous, incredibly complex proof

of Fermat’s Last Theorem may be a good example (see http://www.
s.

berkeley.edu/~anindya/fermat.pdf for a short version). Garber there-

fore enriches the underlying language L in a way that T ⊢ E is one of the

atomic propositions of the extended language L′.

Garber also demands that the agent recognize some elementary rela-
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tions in which the proposition T ⊢ E stands to other elements of L′:

p(E|T, T ⊢ E) = 1 p(T, E, T ⊢ E) = p(T, T ⊢ E). (2)

These constraints express the closure of degree of belief under modus

ponens. Or alternatively, if an agent takes T and T ⊢ E for granted,

then she maximally believes E. Even in a boundedly rational picture of

Bayesian reasoning, such as Garber’s, knowledge of such elementary in-

ference schemes sounds eminently sensible. Garber then proves the fol-

lowing theorem: there is at least one probability function on L′ such that

every non-trivial atomic sentence of the form T ⊢ E gets a value strictly

between 0 and 1. Thus, one can coherently have a genuinely uncertain at-

titude about all propositions in the logical universe, including tautologies.

Finally Garber shows that for any atomic L′-sentence of the form pT ⊢ Eq,

there are infinitely many probability functions such that p(E) = 1 and

p(T|T ⊢ E) > p(T). A similar point is, though with less formal rigor and

elaboration, made by Niiniluoto (1983).

While Garber’s efforts are admirable, they only address the first step

of solving the dynamic POE: he provides an existence proof for a solution

to the Problem of Old Evidence, but no set of conditions that guide our

judgments on when learning T ⊢ E confirms T. This lacuna is closed

by Richard Jeffrey (1983), who published his solution in the same volume

where Garber’s paper appeared.

Jeffrey considers the proposition T ⊢ E as an object of subjective un-

certainty, but he keeps formalities down to the standard level of Bayesian

Confirmation Theory. Then he makes the following assumptions:

(α) p(E) = 1.

(β) p(T), p(T ⊢ E), p(T ⊢ ¬E) ∈ (0, 1).

(γ) p([T ⊢ E] ∧ [T ⊢ ¬E]) = 0.

(δ) p(T|[T ⊢ E] ∨ [T ⊢ ¬E]) ≥ p(T).

(η) p(T,¬E, T ⊢ ¬E) = p(T, T ⊢ ¬E).

From these assumptions, Jeffrey derives p(T|T ⊢ E) > p(T), which amounts,

given the constraint p(E) = 1, to a solution of the dynamic POE.

The strength of Jeffrey’s solution crucially depends on how well we

can motivate condition (δ). The other conditions are plausible: (α) is just
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the standard presumption that at the time where confirmation takes place,

E is already known to the agent. (β) demands that we not be certain about

the truth of T or T ⊢ ±E beforehand, in line with the typical description

of POE. (γ) requires that T do not entail for E and ¬E at the same time. In

particular, T has to be consistent. Finally, (η) is a Modus Ponens condition

similar to (2): the joint degree of belief in T, ¬E and T ⊢ ¬E is equal to the

joint degree of belief in T and T ⊢ ¬E, demanding that the agent recognize

the implications that the latter two propositions have on ¬E.

Hence, (δ) really carries the burden of Jeffrey’s argument. This con-

dition has some odd technical consequences, as pointed out by Earman

(1992: 127). Assume, for instance, that p(T ⊢ E) = p(T ⊢ ¬E), which may

be a plausible representation of our momentary ignorance regarding the

implications of T for ±E. Then it follows that p(T|T ⊢ E) ≥ 2p(T), which

implies that the prior degree of belief p(T) must have been be smaller than

.5. In other words, (δ) cannot be satisfied for theories that are rather prob-

able a priori. This restriction is ad hoc and quite troubling since it severely

limits the scope of Jeffrey’s solution: why shouldn’t probable theories be

confirmed by old evidence? To this I would like to add that in the absence

of specific motivation, it is very surprising that the posterior probability of

T should be at least twice as large as the prior probability.

The real problem with (δ) is, however, not technical, but philosophical.

Jeffrey (1983: 148–149) supports (δ) by mentioning that Newton was, upon

formulating his theory of gravitation G, convinced that it would bear on

the phenomena he was interested in, namely the mechanism governing the

tides. Although Newton did not know whether G would entail the phe-

nomena associated to the tides or be inconsistent with them, he used his

knowledge that G would bear on the tides as an argument for endorsing

it and for temporarily accepting it as a working hypothesis.

To my mind, this reconstruction conflates an evidential virtue of a the-

ory with a methodological one. We are well-advised to cherish theories of

which we know that they make precise predictions on an interesting sub-

ject matter, even if we do not yet know what these predictions look like

in detail. This is basically a Popperian rationale for scientific inquiry: go

for theories that have high empirical content, that make precise predic-

tions, and develop them further. They are the ones that will finally help

us to solve urgent scientific problems. It is plausible that Newton, upon
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deciding to further pursue his theory of gravitation, followed this method-

ological rule when discovering that it would have some implications for the

tides phenomena. But following this rule is very different from arguing

that the informativity and empirical content of a theory increases its plausi-

bility. Actually, Popper (1959/2002: 268–269) thought the other way round:

theories with high empirical content rule out more states of the world and

will have low (logical) probability! This is just because they take, in the

virtue of making many predictions, a higher risk of being falsified. Indeed,

it is hard to understand why increasing the (unconfirmed and unrefuted)

empirical content of T provides an argument that T is more likely to be

true. The reply that p describes a subjective rather than a logical probabil-

ity function will not help much: even if p is a purely subjective function, it

remains opaque why increasing the class of potential falsifiers of T will in-

crease its plausibility. Jeffrey’s condition (δ) is therefore ill-grounded and

at the very least too controversial to act as a premise in a solution of the

POE.

Earman (1992: 128–129) considers two alternative derivations of p(T|T ⊢

E) > p(T) where assumptions different from Jeffrey’s (δ) carry the burden

of the argument. One of them is the inequality

(φ) p(T|T ⊢ E) > p(T|[T 6 ⊢E] ∧ [T 6 ⊢¬E]).

but it is questionable whether this suffices to circumvent the above ob-

jections. What Earman demands here is very close to what is supposed

to be shown: that learning T ⊢ E is more favorable to T than learning

that T gives no definite prediction for the occurrence of E or ¬E. In the

light of the above arguments against (δ) and in the absence of independent

arguments in favor of (φ), this condition just seems to beg the question.

The second alternative derivation of p(T|T ⊢ E) > p(T) relies on the

equality

(ψ) p([T ⊢ E] ∨ [T ⊢ ¬E]) = 1.

However, as Earman admits himself, this condition is too strong: it amounts

to demanding that upon formulating T, the scientist was certain that it ei-

ther implied E or ¬E. In practice, such relationships are rather discovered

gradually. As Earman continues, discussing the case of GTR:

the historical evidence goes against this supposition: [. . . ] Ein-

stein’s published paper on the perihelion anomaly contained
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an incomplete explanation, since, as he himself noted, he had

no proof that the solution of the field equations [. . . ] was the

unique solution for the relevant set of boundary conditions

(Earman 1992: 129)

Taking stock, we conclude that Garber, Jeffrey, Niiniluoto and Earman

make interesting proposals for solving the dynamic Problem of Old Evi-

dence, but that their solutions are either incomplete (Garber, Niiniluoto)

or based on highly problematic assumptions (Earman, Jeffrey). I will now

present a novel solution proposal that also aims at the dynamic problem,

but that makes use of a slightly different conceptualization.

4 A Novel Solution of POE

The troubles with both Howson’s approach to the static problem and the

GJN approach to the dynamic problem seem to be technical at first sight.

Howson has trouble with the counterfactual credence function pK\{E}, and

the GJN-style solutions by Jeffrey and Earman are based on implausible

assumptions. How are we supposed to take it from there?

The aim of this section consists in solving the dynamic problem and

in showing that if E is already known, learning R := T ⊢ E raises the

subjective probability of T. To achieve this goal, we will combine ideas

from Howson with the machinery of the GJN models. More precisely, we

have to assume a couple of conditions on when R confirms T relative to E.

The first condition has the following qualitative form:

(+) If ¬T is already known, then learning R = T ⊢ E leaves the proba-

bility of E unchanged.

To motivate this constraint, consider the following fictitious scenario. Con-

sider the hypothesis that Steven is going on a ski trip in the Alps. We

already know that Steven had to cancel the trip because his employer did

not give him leave. Now, Steven tells us: “Oh, by the way, if I were to

go on this ski trip (T), I would soon buy a new winter jacket (E).” Does

this utterance raise our credence that Steven will buy a new winter jacket

soon? Plausibly not. Does it lower it? Plausibly not. Steven’s statement

neither undermines nor supports those reasons for buying a winter jacket
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that are independent of his (not) going on a ski trip, e.g., the winter tem-

peratures in his homeplace. More generally, learning that certain events

are predicted by a refuted hypothesis is just irrelevant to our assessment

of the plausibility of these events. Nostradamus’s astrological theory is in

all probability wrong, therefore, upon learning the content of his predic-

tions, we should neither raise nor lower our credence in the events that his

theory predicted to happen.

Formally, (+) can be written as p(E|¬T, R) = p(E|¬T) or p(E|¬T, R) =

p(E|¬T,¬R). However, one may worry about the credence function in-

volved. If E is old evidence, then p(E|·) = 1, regardless of which propo-

sition stands to the right of the vertical dash. In this reading, (+) would

be utterly trivial. Therefore, we have, like Howson, to define a counter-

factual credence function p and to give it an interpretation. Instead of just

eliminating E from the background knowledge, p should represent the de-

grees of belief of a scientist who has a sound understanding of theoretical

principles and their impact on observational data, but who is an imper-

fect logical reasoner and lacks full empirical knowledge (cf. Earman 1992:

134). In particular, the scientist does not know the entire observational his-

tory. This is also not required for making routine judgments in assessing

evidence and reviewing journal articles: How probable would the actual

evidence E be if T were true? How probable would E be if T were false?

When T and ¬T are two definite statistical hypotheses, such judgments

are immediately given by the corresponding sampling distribution. But

even in broader contexts, such judgments may be straightforward, or at

least a matter of consensus in the scientific community.

This proposal resembles Howson’s proposal for introducing counter-

factual reasoning into the POE, but it is not bound to a particular credence

function. I will say more about this in the final section. Let us now proceed

by formulating constraints on p that allow us to solve the dynamic POE.

The first one characterizes the elementary inferential relations between E,

T and R:

[1] p(E|T, R) = 1.

If T is true and T entails E, then E can be regarded as a certainty. In this

scenario, R codifies a strict deductive relation between T and E; later, we

will relax this condition also consider weaker (e.g., explanatory) depen-

dencies.
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The second condition just spells out (+) in terms of the p-function:

[2] p(E|¬T, R) = p(E|¬T,¬R) > 0.

In other words, if ¬T is already known, then learning R or ¬R does not

change the probability of E, as argued on pp. 12-13. However, E should

still be possible if T were false, hence the constraint that both probabilities

are greater than zero.

Finally, we have the following inequality:

[3] p(E|T,¬R) < 1−p(R|¬T)
p(R|¬T)

p(R|T)
1−p(R|T)

.

This condition demands that the value of p(E|¬R, T) be smaller than the

threshold on the right hand side.1 When the (dubious) Jeffrey condition

(δ) is satisfied and R and T are positively relevant or neutral to each other,

[3] is trivially satisfied since in that case, p(R|T) ≥ p(R|¬T), implying that

the right hand side of [3] is greater or equal than one. But also if R and T

are negatively relevant to each other, [3] is plausibly satisfied. To see this,

note that [3] can be written in the form p(E|¬R, T) < O(R|¬T)/O(R|T),

where O represents the betting odds for a proposition that correspond to

a particular degree of belief. When the mutual negative impact of R and

T is not too strong and the two betting odds are quite close to each other,

[3] will be satisfied as long as p(E|¬R, T) is not too close to 1. And given

that T is assumed to be true, but that by ¬R, it does not fully account for

E, E should not be a matter of course for a rational Bayesian agent.

These three conditions are jointly sufficient to prove the following re-

sult (proof in the appendix):

Theorem 1 Let T, R, and E be three elements of an algebra A with associated

probability measure p, and let the following three conditions be satisfied:

[1] p(E|T, R) = 1.

[2] p(E|¬T, R) = p(E|¬T,¬R) > 0.

[3] p(E|T,¬R) < 1−p(R|¬T)
p(R|¬T)

p(R|T)
1−p(R|T)

.

1In this formulation of condition [3], it is implicit that 1 > p(R|T), p(R|¬T) > 0 since

otherwise, the expression would either be undefined (divison by zero), or p(E|¬R, T)

would have to be smaller than zero, which is impossible.
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Then, R confirms T relative to old evidence E, that is, p(T|E, R) > p(T|E). In

other words, learning that T entails E also confirms T.

This result solves the POE based on a conceptualization that combines

elements from the GJN and Howson’s counterfactual strategy. We use the

main idea from the GJN models—the confirming event is the discovery

that T accounts for/explains E—, but we spell out the confirmation rela-

tion relative to counterfactual credences, as Howson envisions.

However, in many cases of scientific reasoning, condition [1], that is,

p(E|T, R) = 1, may be too strong. It may apply well to the Mercury peri-

helion shift, which is deductively implied by GTR, but it may fail to cover

cases where T accounts for E in a less rigorous manner (see also Earman

1992: 121; Fitelson 2014). If we allow for a weaker interpretation of R,

e.g., as providing some explanatory mechanism, then we are faced with

the possibility that even if we are certain that T is true, and that T explains

E, the conditional degree of belief in E may not be a certainty. p(E|T) < 1

could even make sense if the relationships between T and E are deduc-

tive: the proof of T ⊢ E could so complex that the involved scientists have

some doubts about its soundness and refrain from assigning it maximal

degree of belief. Again, Fermat’s Last Theorem may be a plausible intu-

ition pump.

For covering this case, I prove a second theorem which covers the case

of p(E|T, R) = 1 − ε for some small ε > 0 (proof in the appendix).

Theorem 2 Let T, R, and E be three elements of an algebra A with associated

probability measure p, and let the following three conditions be satisfied:

[1’] p(E|T, R) = 1 − ε for some 0 < ε < 1.

[2’] p(E|¬T, R) = p(E|¬T,¬R) > 0.

[3’] p(E|T,¬R) < (1 − ε) 1−p(R|¬T)
p(R|¬T)

p(R|T)
1−p(R|T)

.

Then, R confirms T relative to old evidence E, that is, p(T|E, R) > p(T|E). In

other words, learning that T accounts for E also confirms T.

The motivations and justifications for the above assumptions are the

same like in Theorem 1. [1’] just accounts for lack of full certainty about

the old evidence, and [2’] is identical to [2]. Moreover, condition [3] of

Theorem 1 can, with the same line of reasoning, be extended to condition
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[3’] in Theorem 2. [3’] sharpens [3] by a factor of 1 − ε, but leaves the

qualitative argument for [3] intact. As long as p(E|T,¬R) and p(E|T, R)

decrease by roughly the same margin, the result of Theorem 1 transfers to

Theorem 2.

Thus, we can extend the novel solution of POE to the case of residual

uncertainty about the old evidence E—a case that is highly relevant for

case studies in the history of science. If we compare this solution of the

POE to Jeffrey’s and Earman’s proposals, we note that our assumptions

[1], [2] and [3] are silent on whether Jeffrey’s (δ)—or Earman’s (φ) and (ψ),

for that matter—is true or false.2 Hence we can discard Jeffrey’s dubious

assumption (δ) that increasing empirical content makes a theory more

plausible, without jeopardizing our own results.

I have thus provided a solution of the dynamic POE that makes less de-

manding assumptions than Jeffrey and Earman and that achieves stronger

results than Garber and Niiniluoto. The final section discusses the reper-

cussions of these results on the general debate about POE, and the role of

Bayesian Confirmation Theory.

5 Discussion

This paper has analyzed some Bayesian attempts to solve the Problem of

Old Evidence (POE), and it has proposed a new solution. I have started

with a distinction between the static and the dynamic aspect of the prob-

lem. Then I presented my criticism of the Garber-Jeffrey-Niiniluoto (GJN)

approach and my own solution proposal to the dynamic POE. Like How-

son, I rely on counterfactual credences, but unlike him, I use them for de-

veloping a more plausible and robust solution to the dynamic POE. Since I

have already defended the specific assumptions of Theorem 1 and 2, this

last section is devoted to placing my proposal in the literature, and to a

general synopsis of the relation between POE and Bayesian Confirmation

Theory (BCT).

Let us first reconsider the relation between the static and the dynamic

POE. The static problems concerns, in a nutshell, the question of whether

2A Mathematica notebook file which checks the relevant probability models is appended

as proof of this claim. In the model checking, we use the PrSAT decision procedure for

probabilistic models invented by Branden Fitelson (2008).
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E provides evidence for T, and the dynamic problem concerns the ques-

tion of whether discovering T ⊢ E confirms T. The words evidence and

confirmation are often used synonymously, but they have a different em-

phasis, namely explanatory power for the data vs. increase in degree

of belief. This is mirrored in the statistics literature (e.g., Berger and

Wolpert 1984; Royall 1997; Lele 2004), but also in Bayesian measures of

evidential support. Some of them, like the log-likelihood ratio l(T, E) =

p(E|T)/p(E|¬T), express the difference in explanatory power of T and ¬T

for the evidence whereas others, such as the difference measure d(T, E) =

p(T|E) − p(T), focus on the increase in degree of belief in T. If we are

interested in the dynamic POE—modeling our increase in degree of be-

lief in T—, then by assumption, old evidence E cannot confirm T. This

is why many philosophers have investigated how learning the proposition

R := T ⊢ E affects our degree of belief in T. In the static POE, however, we

compare how expected E is under the competing hypotheses. In scientific

practice, such assessments are usually counterfactual, as Howson right-

fully remarks. That is, we standardly interpret p(E|T) and p(E|¬T) as

principled statements about the predictive import of ±T on E, without re-

ferring to our complete observational record. Such judgments are part and

parcel of scientific reasoning, e.g., in statistical inference, where theories T,

T′, etc. impose definite probability distributions on the observations, and

our credences p(E|T), p(E|T′), etc. follow suit.

So I believe that a resolution of the static problem should not be tech-

nical, but conceptual—by spelling out why central aspects of scientific rea-

soning are suppositional and counterfactual. If we managed to substanti-

ate this claim, the static POE would vanish because the relevant concept

of evidence would differ from increase in degree of belief. This would not

imply a farewell to Bayesian reasoning since subjective degrees of belief

are required for weighing hypotheses within complex models, integrating

out nuisance parameters, and so on. However, making such a counterfac-

tual theory of scientific reasoning explicit and articulating the role of BCT

in this context goes beyond the scope of this paper. I hope to address the

challenge in a future paper by means of a detailed analysis of scientific

reasoning patterns.

It is also worth mentioning that our treatment of the POE allows for

a distinction between theories that have been constructed to explain the
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old evidence E and those that explain E surprisingly (like Einstein’s GTR).

In the first case, we would not speak about proper confirmation. Indeed,

if we accommodate the parameter values of a general theory T such that

it explains the old evidence E, then R is actually a certainty, conditional

on E: p(R|E) = 1. This is because T has been designed to explain E. As

a consequence, p(T|E, R) = p(T|E) and R fails to confirm T. Whereas

in the case of a surprising discovery of an explanatory relation between T

and E, p(R|E) < 1. The degree of confirmation that R confers on T then

gets the bigger the more surprising R is, a property that aligns well with

our intuitive judgment that surprising explanations have special cognitive

value.

Finally, a general, but popular critique of Bayesian approaches to the

POE is inspired by the view that the POE poses a principled and insoluble

problem for BCT. For instance, Glymour writes at the end of his discussion

of the POE:

[...] our judgment of the relevance of evidence to theory de-

pends on the perception of a structural connection between the

two, and [. . . ] degree of belief is, at best, epiphenomenal. In

the determination of the bearing of evidence on theory there

seem to be mechanisms and strategems that have no apparent

connections with degrees of belief. (Glymour 1980: 92–93)

What Glymour argues here is not so much that a specific formal as-

pect of the Bayesian apparatus (e.g., logical omniscience) prevents it from

solving the POE, but that these shortcomings are a symptom of a more

general inadequacy of BCT: the inability to capture structural relations be-

tween evidence and theory. This criticism should not be misunderstood as

claiming that confirmation has to be conceived of as an objective relation

that is independent of contextual knowledge or contingent background

assumptions. Rather, it suggests that solutions to the dynamic POE mis-

take an increase in degree of belief for a structural relation between T and

E. But what makes E relevant for T is not the increase in degree of be-

lief p(T|E) > p(T), but the entailment relation between T and E. Hence

Glymour’s verdict that BCT gives “epiphenomenal” results.

To my mind, this criticism is too fundamental to be a source of con-

cern: it does not only affect solutions to the POE, but it directly attacks the
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entire Bayesian explication of confirmation as increase in degree of belief.

However, BCT can point to a lot of success stories: explaining the confir-

matory value of evidential diversity, mitigating the tacking by conjunction

paradoxes, resolving the raven paradox, and so on (see Crupi 2014 for a

detailed review). What I have shown in this paper is that the confirmatory

power of old evidence might be added to this list.

Proofs

Proof of Theorem 1: First, we define

e1 = p(E|T, R) e2 = p(E|¬T, R)

e3 = p(E|T,¬R) e4 = p(E|¬T,¬R)

t = p(T) r = p(R|T)

t′ = p(T|R) r̄ = p(R|¬T)

By making use of [1] (e1 = 1), [2] (e2 = e4 > 0), and the Extension Theorem

p(X|Z) = p(X|Y, Z)p(Y|Z) + p(X|¬Y, Z)p(¬Y|Z), we can quickly verify

the identities

p(E|T) = p(E|T, R)p(R|T) + p(E|T,¬R)p(¬R|T)

= r + e3 (1 − r)

p(E|¬T) = p(E|¬T, R)p(R|¬T) + p(E|¬T,¬R)p(¬R|¬T)

= e2r̄ + e4(1 − r̄)

= e2

that will be useful later. Second, we note that by Bayes’ Theorem and

assumption [1],

p(T|E, R) = p(T|R)
p(E|T, R)

p(E|R)

=

(

1 +
p(¬T|R)

p(T|R)

p(E|¬T, R)

p(E|T, R)

)−1

=

(

1 +
1 − t′

t′
· e2

)−1

(3)

19



Third, we observe that by [1], [2] and the above identities for p(E|T) and

p(E|¬T),

p(T|E) = p(T)
p(E|T)

p(E)

=

(

1 +
p(¬T)

p(T)

p(E|¬T)

p(E|T)

)−1

=

(

1 +
1 − t

t

e2

r + e3 (1 − r)

)−1

(4)

We also note by [3] that e3 = 1−r̄
r̄

r
1−r . This allows us to derive

r + e3 (1 − r) < r +
1 − r̄

r̄

r

1 − r
(1 − r)

= r ·

(

1 +
1 − r̄

r̄

)

=
r

r̄
(5)

and in addition,

1 − t′

t′
=

p(¬T|R)

p(T|R)
=

p(R|¬T)

p(R|T)
·
p(¬T)

p(T)
=

1 − t

t
·

r̄

r
(6)

All this implies that

p(T|E, R)

p(T|E)

(3),(4)
=

(

1 +
1 − t′

t′
· e2

)−1

·

(

1 +
1 − t

t

e2

r + e3 (1 − r)

)

(5)
>

(

1 +
1 − t′

t′
· e2

)−1

·

(

1 +
1 − t

t

e2r̄

r

)

(6)
=

(

1 +
1 − t′

t′
· e2

)−1

·

(

1 +
1 − t′

t′
e2

)

= 1,

completing the proof. The second line has also made use of e2 > 0, as

ensured by [2].3 �

3It might be objected that we have tacitly assumed that t = p(T) < 1. This is right in so

far as if p(T) = 1, then no confirmation can occur. However, p(T) < 1 is entailed by [1]-[3].

If p(T) = 1, then also p(E|R) = 1, because R states that T implies E and T is (almost)

certain. However, p(E|R) = p(E|¬T, R)p(¬T|R) + p(E|T, R)p(T|R), and from [2] and the

implicit condition in [3] (p(T|R) < 1) it follows that this expression is smaller than one.

Hence, we have a contradiction, and p(T) must be smaller than one, too.
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Proof of Theorem 2: By means of performing the same steps as in the

proof of Theorem 1, we can easily verify the equalities

p(T|E, R) =

(

1 +
p(¬T|R)

p(T|R)

p(E|¬T, R)

p(E|T, R)

)−1

=

(

1 +
1 − t′

t′
·

e2

1 − ε

)−1

p(T|E) =

(

1 +
p(¬T)

p(T)

p(E|¬T)

p(E|T)

)−1

=

(

1 +
1 − t

t

e2r̄ + e4(1 − r̄)

(1 − ε)r + e3 (1 − r)

)−1

=

(

1 +
1 − t

t

e2

(1 − ε)r + e3 (1 − r)

)−1

where we have made use of [1’] and [2’]=[2]. We also note that [3’] implies

(1 − ε)r + e3 (1 − r) < (1 − ε)r + (1 − ε)
1 − r̄

r̄

r

1 − r
(1 − r)

= (1 − ε) · r ·

(

1 +
1 − r̄

r̄

)

= (1 − ε)
r

r̄

This brings us to the final calculation:

p(T|E, R)

p(T|E)
=

1 + 1−t
t

e2

(1−ε)r+e3 (1−r)

1 + 1−t′

t′ · e2
1−ε

>

1 + 1−t
t

1
1−ε

r̄
r e2

1 + 1−t
t · r̄

r ·
e2

1−ε

= 1,

where we have, in the penultimate step, also applied equation (6). This

completes the proof.

�
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