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Abstract

The paper considers the “GR-desideratum”, that is, the way general rela-
tivity implements general covariance, diffeomorphism invariance, and back-
ground independence. Two cases are discussed where 5-dimensional gen-
eralizations of general relativity run into interpretational troubles when the
GR-desideratum is forced upon them. It is shown how the conceptual prob-
lems dissolve when such a desideratum is relaxed. In the end, it is suggested
that a similar strategy might mitigate some major issues such as the problem
of time or the embedding of quantum non-locality into relativistic space-
times.

Keywords: General relativity, general covariance, diffeomorphism in-
variance, background independence, Kaluza-Klein theory, induced matter
theory, problem of matter.

Notation: In the following, Einstein’s convention will apply. Lower-case in-
dices will be taken to range from 0 to 3, while upper-case ones will range from
0 to 4. A semicolon before one or more indices will indicate covariant differ-
entiation with respect to those indices, a comma will instead indicate ordinary
differentiation. Moreover, all equations will be written in natural units such that
c=G=1.
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1 Introduction
General relativity (GR) is the most corroborated theory of gravitation we have so
far. It is also considered a spacetime theory because it is taken to unify gravita-
tional phenomena and physical geometry.1 The dynamics of GR is encoded in the
Einstein’s field equations:2

G[g] = 8πT[g,ϕ]. (1)

The left-hand side of the equation is the Einstein tensor defined over a 4-di-
mensional differentiable semi-Riemannian manifold M4: since it depends on the
4-metric tensor g, it is taken to encode information on the 4-geometry of phys-
ical spacetime. The right-hand side comprises the stress-energy tensor, which
encodes information such as the energy-momentum density of some matter field
ϕ distributed over (a region of) spacetime. A solution (or model) of (1) is then
a triple < M4, g,T > that represents a physical scenario where the geometry of
spacetime (aka the gravitational field) interacts with matter fields distributed over
it. In short: «Space acts on matter, telling it how to move. In turn, matter reacts
back on space, telling it how to curve.» (Misner et al., 1973, p.5).
Equations (1) are formulated in terms of geometrical field-theoretic objects, more
precisely tensor fields, defined over a 4-manifold M4. In order to make them sim-
pler to handle for sake of calculation, it is possible to introduce some coordinate
system {xi} over a neighborhood U of M4, and then rewrite them in terms of com-
ponents of the geometrical objects in that coordinate system:

Gi j[gi j] = 8πTi j. (2)

Unlike (1), the equations compactly written as (2) involve derivatives and sym-
metric matrices, which simplify (but not over-simplify) the work of the physicists
dealing with calculations. The important fact is that, by construction, the physical
information encoded in the relations between field-theoretic objects as described
by (1) remain unchanged when switching to (2), independently of the particular
coordinatization chosen. For example, for two coordinate systems {xi} and {x̃i}
and two associated bases {ei} and {ẽi} on a neighborhood of a point P ∈ M4, we
have:

g = gi j|Pei ⊗ e j = g̃i j|Pẽi ⊗ ẽ j, (3)

the (invertible) transformation law relating gi j and g̃i j, being:

gi j → g̃i j =
∂xh

∂x̃i

∂xk

∂x̃ j ghk. (4)

1I will not even try to address here questions regarding the meaning (if any) of the unification
involved. The interested reader can take a look, for example, at Lehmkuhl (2008, 2014).

2I choose to disregard the cosmological constant, since it does not affect the analysis carried
out in this paper.
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Since we know from elementary tensor calculus that (3) holds for whatever ten-
sorial object, it follows that it is possible to recover (1) from (2) for whatever
coordinate system {xi} defined on a neighborhood of a point in the manifold.
Further, it can be shown that to any (sufficiently smooth) coordinate transforma-
tion {xi} → {x̃i} defined in (a neighborhood of) M4 corresponds a self-diffeomor-
phism3 f such that, for each point P in (a neighborhood of) M4, it is the case that
xi( f (P)) = x̃i(P).4

In the following, we will take advantage of the duality between the geometri-
cal or intrinsic formulation of GR (involving geometrical objects and diffeomor-
phisms) and its local formulation (involving components of geometrical objects
and change of coordinate systems), and we will switch back and forth from the
intrinsic to the coordinates-related language for the sake of simplicity, according
to the specific circumstances considered.
Nowadays, GR is so widely and firmly accepted by the scientific community to
be considered one of the pillars of modern physics. At the root of such a vast
agreement lies not only the empirical success of the theory, but also its numerous
applications to, just to mention two major fields, astrophysics and cosmology. In
the words of Misner, Thorne, and Wheeler:

Einstein’s theory attracts the interest of many today because it is rich
in applications. No longer is the attention confined to three famous
but meager tests: the gravitational redshift, the bending of light by
the sun, and the precession of the perihelion of Mercury around the
sun. The combination of radar ranging and general relativity is, step
by step, transforming the solar-system celestial mechanics of an older
generation to a new subject, with a new level of precision, new kinds
of effects, and a new outlook. Pulsars, discovered in 1968, find no
acceptable explanation except as the neutron stars predicted in 1934,
objects with a central density so high (∼ 1014g/cm3) that the Ein-
stein predictions of mass differ from the Newtonian predictions by
10 to 100 per cent. About further density increase and a final con-
tinued gravitational collapse, Newtonian theory is silent. In contrast,
[GR] predicted [...] the properties of a completely collapsed object, a

3A self-diffeomorphism (from now on called simply diffeomorphism), is a mapping f : M4 →
M4 that is bijective, continuous, and differentiable together with its inverse f −1.

4Suggestively speaking, while in the “coordinate” case we “keep P fixed” and we evaluate it
(in the sense of associating a 4-tuple of real numbers to it) under a coordinate system different
from the starting one, in the “diffeomorphic” case we “move P around the manifold” and then
we evaluate it under the same coordinate system. For the reader unsatisfied by this, indeed, very
rough characterization, Norton (2011) has a section that nicely explains the difference between
extrinsic (or passive) transformations expressed in terms of coordinate systems, and intrinsic (or
active) transformations expressed in terms of diffeomorphisms.
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“frozen star” or “black hole”.
(Misner et al., 1973, pp. viii,ix)

However, the success of GR is not only due to its empirical adequacy and its
richness in applications. Many physicists (and mathematicians) would in fact add
that GR is an extremely elegant and mathematically beautiful theory. This further
virtue of the theory should not be regarded as merely aesthetic, but it should be
taken as a hint of the fact that GR points at some deep physical “truth” about the
world. Dirac addresses this view as follows:

Let us now face the question, suppose a discrepancy had appeared,
well confirmed and substantiated, between the theory and observa-
tions. [...] Should one then consider the theory to be basically wrong?
[...] I would say that the answer to the [q]uestion is emphatically NO.
The Einstein theory of gravitation has a character of excellence of its
own. Anyone who appreciates the fundamental harmony connecting
the way Nature runs and general mathematical principles must feel
that a theory with the beauty and elegance of Einstein’s theory has to
be substantially correct. If a discrepancy should appear in some ap-
plications of the theory, it must be caused by some secondary feature
relating to this application which has not been adequately taken into
account, and not by a failure of the general principles of the theory.
(Dirac, 1978, pp. 6,7 (Dirac’s emphasis))

The questions about how, in general, a physical theory becomes accepted by the
community, and what features should be privileged over others when assessing the
merits of such a theory (e.g. empirical over formal), are beyond the scopes of this
essay (see, for example, Brush, 1999 for a historical reconstruction and a philo-
sophical discussion of the reasons that led to the acceptance of Einstein’s theory).
Here we will just make the working hypothesis that there is “something” physical
and formal about GR (what Dirac calls the «general principles of the theory»)
that, according to mainstream physicists, places a constraint on future generaliza-
tions of the theory (to include, for example, quantum effects). In the remainder
of the section, we will briefly consider some candidates for this “something”, and
we will finally propose a tentative definition that captures the «character of excel-
lence» of GR that should therefore be preserved in any decent generalization of
the theory.
To start our inquiry, let us consider the most straightforward candidate to be such
“something”: general covariance. With the designation “general covariance” here
we will intend the formal invariance of the dynamical equations (2) under an ar-
bitrary coordinate transformation. Einstein originally thought that general covari-
ance so intended was some sort of generalization of the principle of relativity
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that holds in Newtonian mechanics and special relativity. Very simply speaking,
while in these two latter theories the description of the dynamics of a physical
system remained unchanged under coordinate transformations between inertial
reference frames, so that these frames where considered physically equivalent,5

in GR such a description is unchanged under whatever coordinate transformation,
so one might claim that all reference frames are physically equivalent. Can the
“virtue” of GR reside in its general covariance simpliciter?
The answer, as firstly pointed out by Kretschmann (1917), is no since it is possi-
ble to render generally covariant also a theory that patently accords a privileged
status to inertial reference systems. Hence, general covariance cannot be taken
as the implementation of the physical requirement that all reference frames are
physically equivalent. To understand why it is so, consider a theory of a massless
Klein-Gordon field ϕ over a manifold endowed with a Minkowski metric η. We
can write the field equations of the theory as:

ηi jϕ,i j = 0. (5)

Equation (5) is not generally covariant because it holds only in inertial coordinate
systems. In order to make it generally covariant we just have to make the purely
formal move of rewriting it in a way such that it preserves its form in whatever
coordinate system and reduces to (5) in those coordinate system that are inertial.
This means that we have to write η in a generalized form g and introduce the
(unique) compatible covariant derivative operator ∇,6 so that (5) finally reads:

gi jϕ;i j = 0. (6)

It is easy to understand that (6) is invariant in form under whatever coordinate
transformation but, still, the theory - being specially relativistic - accords to iner-
tial frames of reference a privileged status. In the language of geometrical objects,
(6) is written

□gϕ = 0, (7)

and, as expected, it is invariant in form (that is, covariant) under diffeomorphic
transformations. Since such a move can be performed for whatever spacetime
theory - even Newtonian mechanics - then (i) general covariance per se has no
physical import and (ii) the generally covariant nature of GR cannot be linked to
a peculiar feature such as a generalized principle of relativity. If Kretschmann’s
point is correct, then what is it that renders GR such a peculiar and successful
theory?

5The question of the equivalence between coordinate systems and frames of reference is an-
other extremely delicate matter I will not touch upon here. See, e.g., Norton (1993, section 6.3).

6“Compatible” means that ∇g = 0.
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The most simple reaction would be to claim that the peculiarity of GR does not
reside just in the mere formal invariance of its field equations, but also in the phys-
ical import of the solutions space of such equations. If, in fact, we consider two
solutions of (6)/(7) related by a diffeomorphism f , they will represent one and the
same physical situation if and only if f is an isometry7 of the Minkowski metric.
Not surprisingly, the group of isometries iso(η) of the Minkowski metric is just
the Poincaré group. In the case of equation (1), instead, since the metric g is not
fixed a priori but it is subject to the dynamical evolution, the group di f f (M4) is
unrestricted and, as expected, whatever two solutions of (1) related by a diffeo-
morphism are physically indistinguishable.8

The above reply points at the fact that what makes the fortune of GR is not
just its general covariance, but its diffeomorphism invariance: in virtue of hav-
ing a dynamical geometry, GR has no fixed isometries different from the whole
di f f (M4) and, hence, diffeomorphisms are physical symmetries of the theory. In-
deed, di f f (M4) can be considered the gauge group of GR.
The question whether GR can be really considered a gauge theory in the sense
commonly intended in particle physics is complex and highly debated (to have a
substantive example of such debate, see Earman, 2006; Pooley, 2010); here we
will just sketch a counter-reply to the above argument.
If the real difference between GR and previous spacetime theories is the dynam-
ical status of spacetime’s geometry, then we can just straightforwardly rewrite
whatever spacetime theory by adding dynamical constraints on the spatiotempo-
ral structures, so that such a difference can be obliterated. To see this, let us take
the above theory of a Klein-Gordon field over a Minkowski spacetime and rewrite
the dynamical equations as:

Riem[g] = 0, (8a)

□gϕ = 0, (8b)

Riem[g] being the Riemann curvature tensor. The Minkowski metric, now, is a
dynamical object picked up as a solution of (8a). The theory whose dynamics

7Roughly speaking, f ∈ di f f (M4) is an isometry for a geometrical object θ if the application
of such a transformation to the object does not change it: f ∗θ = θ.

8Just to have a more concrete idea of what this means, consider a solutionM of (1) where we
can construct a physical observable interpreted as a 4-distance function dg : M4×M4 → R defined
in terms of the metric g. Let us now take a diffeomorphically transformed model f ∗M, where
f ∈ di f f (M4); in such a model we can construct an observable diffeomorphically related to dg,
namely a function d f ∗g defined by the diffeomorphic metric f ∗g. It is now easy to see that, taken
two arbitrary points P,Q ∈ M4, we have dg(P,Q) = d f ∗g( f (P), f (Q)). It follows that no 4-distance
measurement can discriminate M from f ∗M. By repeating the same reasoning for all the observ-
ables constructible inM and f ∗M, we can conclude either that the two models represent different
physical possibilities which are empirically indistinguishable - and then we would immediately
fall pray of arguments from indeterminism, such as the infamous “hole argument”, cf. Earman
and Norton (1987) - or that the two models represent one and the same physical scenario.
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is encoded in (8) has the feature that two models related by whatever diffeomor-
phism represent in fact one and the same physical situation.
The immediate reaction to such an example is that it exploits a mere mathematical
trick to render the transformations in di f f (M4) \ iso(η) just mathematical sym-
metries of the theory and then mix them up to the physical symmetries in iso(η)
in order to patch them together into a fake gauge group. In this particular case, a
possible implementation of this counter-argument is, following Anderson (1967);
Friedman (1983), to point out that some geometrical objects have been artificially
rendered dynamical and, thus, the theory can be deparametrized by quotienting
out the redundant structures in the solutions space introduced by adding the fake
dynamical sector.9 Such a strategy makes sense in the present case: if we de-
parametrize (8) by quotienting out the solution space by di f f (M4) \ iso(η), we
end up again with (7). If this reasoning could be carried out for all spacetime the-
ories prior to GR, we would then have a reasonable candidate to be the peculiar
feature of this latter theory, namely, the absence of spacetime structures that are
not genuinely dynamical. Some authors would dub such a feature “background
independence”.
However, the above reasoning cannot be the final word in the debate. The present
case per se is, in fact, too artificial to represent a really difficult challenge. Here
the Minkowski metric represents an elephant in the room in the sense that we are
perfectly able to see that such a structure “persists” unaltered in all models of
the theory modulo a diffeomorphism transformation.10 In general, however, mak-
ing the distinction between genuine dynamical and pseudo-dynamical structures
varies from difficult to impossible so that defining background independence in an
accurate manner is a hard task (Giulini, 2007; Belot, 2011, discuss at length the
problem and try to propose some alternative solutions).
So, in the end, what is it that confers on GR a «character of excellence of its
own»? Let us try to filter from the above discussion the salient uncontroversial
claims regarding the features of GR, and come up with the following tentative
characterization: Unless its predecessors, GR is a di f f (M4)-gauge theory whose
only non-dynamical constraint is to be formulated over some 4-dimensional semi-
Riemannian manifold, and that does not postulate more spatiotemporal structure
than just that encoded in a Lorentzian 4-metric. If this is (or gets close to) what
is at the root of the major success of GR, then we can consider it as a (minimal)
constraint on any future (quantum) spacetime theory that seek to supersede GR:

9Just to have a rough idea of what adding redundant structure means when passing from (7)
to (8), it is sufficient to point out that to each solution < M4, g, ϕ > of (7) corresponds a set of
solutions {< M4, g, ϕ >, < M4, f ∗g, f ∗ϕ >, < M4, h∗g, h∗ϕ >, . . . } of (8) with f , h, · · · ∈ di f f (M4) \
iso(η).

10Which means that, for whatever two models < M4, g, ϕ > and < M4, g′, ϕ′ >, there is always
some f ∈ di f f (M4) such that g′ = f ∗g.
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GR-desideratum. Any theory which is a valid candidate for superseding GR
must be [become in the classical limit] a di f f (Md)-gauge theory whose only
non-dynamical constraint is to be formulated over some d-dimensional semi-
Riemannian manifold and that does not postulate more spatiotemporal structure
than just that encoded in a d-metric.11

Note that, in general, besides arguments from physics, the GR-desideratum
can be backed up by metaphysical arguments. One might for example argue that
(1) is preferable to (8) because, in this latter theory, there is a “lack of reciprocity”
between the Minkowski metric and the scalar field: in (8) spacetime tells matter
how to move, but matter does not tell spacetime how to curve.
In the following, I will show how a too strict pursuit of the GR-desideratum might
negatively affect the interpretation of prima facie genuine generalizations of GR.

2 5-Dimensional Extensions of General Relativity
The Kaluza-Klein approach, so called because, historically, the first attempts in
this sense were made by Theodor Kaluza (1921) and, slightly later, by Oskar Klein
(1926), started as a theoretical program that sought to unify gravitational and elec-
tromagnetic forces as curvature effects of a 5-dimensional semi-Riemannian man-
ifold. This is achieved by considering the 5-dimensional vacuum Einstein’s equa-
tions:12

RAB[gAB] = 0, (9)

with the 5-Ricci tensor RAB depending on a metric of the form:

gAB =

(
gi j + κ

2ϕ2AiA j κ2ϕ2Ai

κ2ϕ2A j ϕ2

)
, (10)

where A is the 4-vector potential, ϕ is a scalar field, and κ is a free parameter. The
signature of the 5-metric will be assumed to be Lorentzian, thus identifying the
extra fifth dimension as space-like.
The original Kaluza-Klein theory placed two very strong constraints on the fifth
dimension, namely, (i) that all partial derivatives with respect to the fifth coordi-
nate are zero (cylinder condition), and (ii) that the fifth dimension has a closed
short-scale topology (compactification condition).13 The most important conse-
quences of these conditions are that there is no change in 4-dimensional physical

11The gi j part of such a metric having Lorentzian signature.
12In the 4-dimensional case, if we take (1) and we set the stress energy tensor equal to zero (that

is, no matter is present), we obtain that the equations reduce to Ric[g] = 0, Ric being the so-called
Ricci tensor. This is why they are in general said to be “vacuum” field equations.

13To be fair to historians of physics, (i) was proposed by Kaluza, while (ii) was added later by
Klein, who further showed that, in fact, (ii) implies (i).
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quantities that can be ascribed to the presence of an extra spatial dimension and
that such a fifth dimension is unobservable at low energies. Condition (ii) was also
a vital ingredient in the attempt to explain the quantization of electric charge.14

En passant, it is interesting to note that condition (ii) obviously prevents whatever
macroscopic object from spanning the fifth dimension.15

If we set ϕ = 1 and κ = 4
√
π in (10), and we substitute it in (9), the i j-components

of the field equations become:

Gi j = 8πT EM
i j , (11)

with Gi j the Einstein 4-tensor and T EM
i j =

1
4gi jFklFkl − F k

i F jk the electromagnetic
stress-energy 4-tensor of standard GR. The i4-components, instead, become:

F ;i
i j = 0, (12)

with Fi j = A j,i−Ai, j the Faraday 4-tensor. In short, (9) collapse into Einstein’s field
equations of GR and the (source free) Maxwell’s equations of electromagnetism
coupled together. This is the so called “Kaluza-Klein miracle” and represents a
remarkable result in that it “geometrizes away” the electromagnetic field as GR
does with gravity, thus suggesting that both gravity and electromagnetism are just
a manifestation of the geometry of a 5-dimensional spacetime. Is this a right sug-
gestion? Let us consider a reason why it does not seem so.
In order to see what is fishy about the interpretation of Kaluza-Klein theory as a
genuine 5-dimensional theory, we just have to notice that conditions (i) and (ii) re-
strict the possible topologies of the 5-manifold to M4×S 1, with M4 whatever topol-
ogy compatible with the i j-part of the metric tensor (10) and S 1 the topology of the
circle. This hints at the fact that, as long as we restrict our attention to the i j-part
of the theory, we are dealing with standard GR and, hence, whatever coordinate
transformation xi → x̃i = f (xi) we apply to the metric (10), we always end up with
the same equations (11) and we do not change the physical information originally
encoded in the 4-metric before the transformation. What about the components of
the metric depending on the fifth coordinate? In this case, the freedom in choosing
the coordinate transformations that leave (12) invariant in form and do not alter the
physical information encoded in (10) is severely limited. In fact, the only possible
choice that we can make is x4 → x̃4 = x4 + f (xi). To realize why it is so, we have

14Attempt which experiments proved unsuccessful: According to Kaluza-Klein theory, the elec-
tron had a mass of twenty-two orders of magnitude higher then the measured one.

15The reader is invited to think about the strange consequences for spatial 3-dimensional beings
like us of living in an uncompactified 4-space. For example, if we were allowed to move in an
extra spatial dimension, we could “switch” the left and right sides of our body without altering the
up-down and front-back orientations. Moreover, from the perspective of the extra dimension, the
interior of our bodies would be exposed (our skin represents just a 3-dimensional boundary).
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just to plug this transformation in the 5-dimensional extension of the law (4) for
the transformation of the metric tensor: it is easy to see that such a transformation
induces just one change in the metric (10), namely, Ai → Ãi = Ai +

∂ f (xi)
∂xi , which

obviously does not alter the electromagnetic part of the theory. In short, the gauge
group of the theory is not di f f (M5) but di f f (M4) × U(1).
If, now, we claim that a genuine 5-dimensional extension of GR should admit
di f f (M5) as gauge group, we cannot but reach the conclusion that Kaluza-Klein
theory is a fake 5-dimensional theory in that it is a version of 4-dimensional GR
that camouflages the gauge group of electromagnetism by “spatializing” the sym-
metries of the theory using an additional space-like dimension: there is no sub-
stantial unification here, just a mere algebraic play.16 Note that the above reason-
ing is based on the simple fact that the conditions of cilindricity and compact-
ification are fixed a priori, i.e., they are not part of the dynamics of the theory.
Simply speaking, the theory is not really dealing with solutions of (9) but with a
small subset of it, namely Ricci-flat spacetimes with topology M4 × S 1 where, ad-
ditionally, S 1 has to “appear” at short scales. This situation is nothing but a more
complex instance of that occurring with the theory (6)/(7). It is then clear that we
can in principle modify the field equations (9) so that they can encode cilindricity
and compactification conditions17 in order to have a fully di f f (M5)-invariant the-
ory, exactly as (8) is a di f f (M4)-invariant extension of (6)/(7).
Such a move is exactly as controversial as the one discussed in the previous sec-
tion, but can it be charged of hiding an elephant in the room as it was the case
with the Minkowski metric in (8)? Well, if we hold the firm commitment to the
GR-desideratum, then we can clearly hear the M4 × S 1 structure trumpeting be-
neath the dynamics. Notice, however, that in this case the GR-desideratum cannot
be backed up with compelling metaphysical arguments as, for example, the “reci-
procity” one mentioned at the end of the previous section. Here we are dealing
with an empty spacetime, so there is nothing acting on anything without being
affected in return. Hence it would not be that weird to claim that the dynamically
extended version of Kaluza-Klein theory (9) just depicts spacetimes that are, as
a bare matter of fact, more structured then a generic (empty) general relativis-
tic spacetime, in that it adds to such generic spacetime an extra-dimensional tiny
ring for each point. The counter-reply would be that, in this case, such a theory
would be unable to explain why spacetime has to have such a structure. This is fair
enough, but any theory has to start from some assumptions in order to be devel-
oped: even standard GR does not explain why spacetime has to be 4-dimensional
and Lorentzian; it just takes as a bare matter of fact that special relativity holds at

16This line of reasoning can be found, for example, in Maudlin (1989, p.87).
17For example, by adding some conditions that pick up at each point of 4-spacetime a fifth-

dimensional-like vector field whose integral curves are circles with small radii.
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quasi-point-sized regions. The whole discussion, then, seems to turn into meta-
physical tastes about what has to be counted as a bare fact and what has not. We
could, for example, endorse some variant of the regularity account of laws where
the dynamical laws of Kaluza-Klein theory just supervene on a pure spatiotempo-
ral Humean mosaic of local matters of particular fact. In such a context, asking
why the Kaluza-Klein 5-spacetime has this structure is a misleading question: it
just happen to show a pattern of regularities that is best described by the equations
of the theory.
Let us recap: if we insists on the GR-desideratum, then we are driven to judge
Kaluza-Klein theory as a mathematical trompe-l’œil that spatializes the symme-
tries of the electromagnetic theory, so it cannot count as a genuine unification
of gravity and electromagnetism. However, such a judgment seems too harsh and
does not involve in any way the empirical adequacy of the theory (whose failure is
the only uncontroversial argument that historically led to the dismissal of Kaluza-
Klein theory). It is in fact possible to make perfect physical and metaphysical
sense of Kaluza-Klein theory as a unified theory by relaxing the GR-desideratum.
The moral to draw from the discussion so far is that, all things considered, perhaps
the GR-desideratum is not that strict a desideratum: we can relax such a require-
ment without necessarily falling into patently artificial theories such as (6)/(7).
But let us go ahead in the analysis, and show a case where the GR-desideratum is
not only too rigid, but has also metaphysically odd consequences.
Since the strongest source of resistance to the idea that Kaluza-Klein theory rep-
resents a genuine 5-dimensional theory lies in the conditions of cilindricity and
compactification, let us now consider an implementation of the Kaluza-Klein pro-
gram18 that dispenses with such constraints. This is the case of induced matter
theory, especially known in its “space-time-matter” version as firstly put forward
by Wesson (1984). This theory (or, better, class of theories) rests on the mathe-
matical result that any analytic N-dimensional [semi-] Riemannian manifold can
be locally embedded in a (N+1)-dimensional Ricci-flat [semi-] Riemannian man-
ifold (Campbell-Magaard theorem, see for example Romero et al., 1996); hence,
the field equations of the theory are, again, (9).
If we now take a 5-metric in its diagonal form:

gAB =


0
0

gi j 0
0

0 0 0 0 g44

 . (13)

and we substitute it in (9), we obtain again the 4-dimensional Einstein’s field equa-
tions plus an expression for the 4-stress-energy tensor of the form (see Wesson and

18See Overduin and Wesson, 1997 for an extensive survey of Kaluza-Klein gravity.
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Ponce de Leon, 1992, for the detailed calculations):

Ti j =
(ϕ,i); j

ϕ
− 1

2ϕ2

{
ϕ,4gi j,4

ϕ
−gi j,44+gklgik,4g jl,4−

gklgkl,4gi j,4

2
+

gi j

4

[
gkl

,4gkl,4+(gklgkl,4)2
]}
,

(14)
where, for notational simplicity, it is assumed g44 = ϕ

2.
From these constructions it follows that, whenever we consider a 4-hypersurface
Σ4 by fixing x4 = const., we obtain a 4-metric gi j and a stress-energy tensor Ti j

both well-defined on Σ4.
Just to have a rough idea of how this works, let us consider an example taken
from Ponce de Leon (1988) and, in order to simplify the notation, let us follow the
author in naming the coordinates as follows: x0 = t, x1 = x, x2 = y, x3 = z, x4 = ψ.
In case of a homogeneous and isotropic 5-dimensional universe, a class of 5-
line elements (parametrized by α ∈ R,0) correspondent to 5-metrics which are
solutions to (9) is:

ds2 = ψ2dt2 − t
2
αψ

2
1−α (dx2 + dy2 + dz2) − α2

(1 − α)2 t2dψ2. (15)

It is easy to see that, if we restrict to 4-hypersurfaces (ψ = const., dψ = 0), (15) is
reduced to:

ds2 = dt2 − R2
α(t)(dx2 + dy2 + dz2), (16)

which is just the family of Friedman-Lemaître-Robertson-Walker metrics in 4-
dimensions corresponding to flat 3-geometries. Moreover, if we substitute (15) in
(14), we recognize that the stress-energy tensor resembles that of a perfect fluid
with density ρ and pressure p given by:

ρ =
3

8π(αψt)2 , (17a)

p =
(
2α
3
− 1

)
ρ. (17b)

Hence, by fixing α and ψ we obtain different possible FLRW 4-models, with state
equation for matter given by (17). For example, for α = 3

2 , we would have a 4-
dimensional universe filled with dust, while for α = 2 we would have one filled
with radiation.
The moral to be drawn from the above facts is that matter and energy are 4-
dimensional physical properties of spacetime “induced” by the 5-metric tensor.
Therefore, the cosmological solutions of (9) all agree in giving us a picture of a 5-
dimensional empty universe whose restriction to a 4-surface is a spacetime curved
by matter.
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In conclusion, it seems that now we have a truly 5-dimensional generalization of
GR: the theory is di f f (M5)-invariant and there are neither background geometri-
cal objects camouflaged as dynamical, nor bizarre restrictions on the topology of
5-spacetime. However, such a complete fulfillment of the GR-desideratum does
not come for free.
To see what is the price to be paid, consider, for example (Wesson, 1995), a 5-
dimensional Minkowski spacetime. The correspondent line element in polar co-
ordinates reads:

ds2 = dt2 − dr2 − r2dΩ2 − dψ2, (18)

whose sections ψ = const. are 4-dimensional Minkowski spacetimes.
However, if we consider the transformation:

t′ = t, r′ =
r
ψ

(
1 +

r2

ψ2

)− 1
2
, ψ′ = ψ

(
1 +

r2

ψ2

) 1
2
, (19)

then (18) becomes

ds2 = dt′2 − ψ′2
( dr′2

1 − r′2
+ r′2dΩ2

)
− dψ′2, (20)

whose sections ψ′ = const. are FLRW spacetimes.
Using the intrinsic language, we can think that (18) belongs to a 5-model M =<
M5, gAB >, and that the transformation (19) is dual to a 5-diffeomorphism f , such
that the metric (20) belongs to the diffeomorphic model f ∗M =< M5, f ∗gAB >.
We therefore have two 5-models which are diffeomorphically equivalent, but that
induce 4-models, which are empty in the former case and non-empty in the latter.
What is the physical meaning of this fact? None, and that is exactly the problem.
If, in fact, we claim that f is a gauge transformation, then we cannot but ac-
cept thatM and f ∗M are physically indistinguishable, which means that (18) and
(20) carry exactly the same physical information, namely, that related to the 5-
geometry of spacetime. The fact that we are free to convey such an information
by writing the line element either in the form (18) or (20) means that such free-
dom has no physical consequences: this is exactly what physicists refer to as
“gauge freedom”. The puzzling consequence is that it makes no physical differ-
ence whether we take the 5-spacetime under consideration as a “pile” of empty
Minkowski 4-spacetimes or matter-filled FLRW 4-spacetimes, since, in the end,
the only thing that counts for the theory is the 5-geometry of spacetime. Crudely
speaking, the theory is “blind” to whatever change in 4-spacetimes (as long as
their piling up leads to the same 5-spacetime), and if we insist that M and f ∗M
are ontologically distinct albeit physically indistinguishable, we commit the the-
ory to indeterminism, as already mentioned in footnote 8. For let us assume for
the sake of argument that the dynamics of the theory under scrutiny can be cast
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in a (4+1) fashion, that is, that a 5-geometry can be recovered by considering a
generic foliation of 4-hypersurfaces, specifying some initial data on one of such
surfaces, and then evolving these data on the subsequent leaves of the foliation. In
this case, the gauge freedom of the theory - as hinted above - would be translated
in the freedom of choosing such a foliation without altering the dynamical evolu-
tion. Now let us consider a foliation F whose folios are Minkowski 4-spacetimes
and another one F ′ which is identical to F except for the fact that some leaves
in-between are FLRW 4-spacetimes. If we claim that F and F ′ are ontologically
distinct, then so will be the corresponding dynamical evolutions and, hence, we
are forced to accept that, even by specifying with arbitrary precision the data on an
initial Minkowski 4-surface (which is common to F and F ′), the theory is unable
to single out a unique dynamical evolution between F and F ′, which means that
the theory is indeterministic. Such a situation is of course avoided if we take F
and F ′ to represent one and the same physical situation.
In conclusion, since the theory is di f f (M5)-invariant, all the quantities that are
not invariant under 5-diffeomorphisms are just “gauge fluff” that can be fixed at
will without changing the physical information conveyed by the theory. This is
the case for all the 4-dimensional quantities extracted by 5-dimensional ones by
fixing the gauge (for example by setting ψ = const.): under a different gauge
fixing, in fact, we would obtain different 4-quantities from the same 5-ones. Of
course, the 4-dimensional stress-energy tensor (14) is among the non-gauge in-
variant quantities.
If we take seriously this picture, then we cannot but claim that, in this theory,
matter is just an unphysical illusion which merely depends on the 4-dimensional
“perspective” from which 5-dimensional spacetime is seen, just like a holographic
sticker that shows a different image depending on how it is inclined with respect to
the light source. One could say that the unreality of matter in this theory already
stems from the fact that, at the fundamental level, there is nothing but 5-spacetime,
but that would be a half-truth. While in fact we can agree that according to equa-
tions (9) at the fundamental ontological level there is nothing but 5-dimensional
geometry, this does not rule out the possibility that matter configurations super-
vene on such a geometry, and hence are real albeit ontologically non-fundamental.
Naively, we could solve such a “problem of matter” just by declaring our firm
pre-theoretical commitment to the existence of matter as a substance and hence
arguing for the dismissal of induced matter theory. This line of reasoning, how-
ever, would be weird to say the least, since it pushes us to reject a well-defined
and consistent physical theory based only on metaphysical considerations. The
other option would be to grant the theory physical dignity, in the sense that we
should judge its validity based on its empirical adequacy. This second choice is
potentially even worse, because it would drive us into something that smells like
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a case of empirical incoherence:19 the truth of this theory would undermine our
empirical justification for believing it to be true. This is because, if induced matter
theory fulfills the GR-desideratum, there is no way to account for whatever mea-
surement in a 5-diffeomorphic invariant way.
Such a situation is all the more strange for the following reason. Since induced
matter theory rests on the Campbell-Magaard theorem, GR is embedded in such
a theory already at the mathematical level, which means that the former is a for-
mal generalization of the latter and hence, if we forget for a moment the GR-
desideratum, all the empirical tests that corroborate GR, would corroborate in-
duced matter theory. Moreover, the theory would give novel testable predictions,
mainly related to deviations in the geodesic motion of 4-dimensional objects due
to the presence of the uncompactified fifth dimension (see, e.g., Wesson, 2006).
In order to find a solution to the problem of matter compatible with the GR-
desideratum, some coherent account could in principle be put forward that saves
the reality of 4-dimensional material entities (including measuring devices), per-
haps by appealing to some distinction between “partial” and “complete” observ-
ables à la Rovelli (Rovelli, 2002), but that would look more like a patch rather
than a real solution. Of course, we can prevent the problem from happening by
putting in the theory 5-dimensional matter, thus retrieving a 5-dimensional analog
of Einstein’s field equations (1)/(2). However this would not count as a genuine
solution because (i) it would just amount to dismissing induced matter theory
in favor of another one, and (ii) it would not straightforwardly wash away any
“perspectival” character from 4-dimensional matter: such a “full” 5-dimensional
generalization of GR would for example fire up a metaphysical debate between
5- and 4-dimensionalists that would be very similar to that between 4- and 3-
dimensionalists in standard relativistic physics (for an example of the literature,
see Balashov, 2000; Gilmore, 2002).
Be it as it may, the moral to draw from the above analysis is that, in induced matter
theory, the GR-desideratum has rather undesired consequences. Hence, if we are
willing to solve the problem of matter without dismissing induced matter theory,
we can do it in a straightforward way, i.e., by relaxing the GR-desideratum.
A possible strategy in this direction would be simply to add more structure to 5-
spacetime, for example a 5-flow in spacetime. This would amount to selecting a
privileged fifth-dimension-like vector field ψ with components ψA ≡ (0, 0, 0, 0, ψ)
by adding to the field equations (9), the following ones:

ψAψ
A = −1, (21a)

ψA
;i = 0. (21b)

19The definition of empirical incoherence given here is taken from Huggett and Wüthrich (2013,
section 1), who follow in turn Barrett (1999, section 4.5.2).
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It is easy to see that ψ induces a privileged decomposition of the 5-manifold M5

in 4-hypersurfaces that are normal to the vector field and, hence, spacetime-like:
each 4-slice of the foliation will have equation ψ = const.. For this reason, equa-
tions (21) restrict the possible topologies compatible with (9) to M5 = M4 × R.
In a sense, we are back to the case of the compactified Kaluza-Klein theory: we
are using (21) as a dynamical constraint on the possible topologies. But there is
more to that: (21) tells us that not only M5 has to be foliable by spacetime-like
hypersurfaces, but that there is, for each model, a distinguished way to foliate it.
In short, according to (21), M5 is a “pile” of 4-spacetimes.20

Under this new reading, a 5-model M of the theory will not be just a couple
< M5, gAB > but a triple < M5, gAB, ψ

A >. Let us return to the two models whose
line elements are (18) and (20), which are related by the intrinsic transformation
f ∈ di f f (M5) (dual to the extrinsic transformation (19)): we see that they cor-
respond to the new situation where the first model is, say, < M5, gAB, ψ

A > and
the second model is < M5, f ∗gAB, ψ

A >. We immediately notice that, due to the
introduction of the structure ψA, the two models cannot be considered anymore as
really related by a diffeomorphic transformation because the only diffeomorphi-
cally related objects in them are the 5-metrics. It is then clear that now the two
models represent distinct physical situations unless f ∗ψA = ψA.
Also in this case, we can be accused of cheating - not once but twice! Firstly be-
cause we are not considering the starting theory but a brand new one that admits a
structure (namely, a privileged foliation) fixed a priori. Secondly because we are
hiding such an a priori fixing behind (21), thus massaging a di f f (M4) × di f f (R)-
invariant theory into a fake di f f (M5)-invariant one.
As regards the first charge, the plea is: guilty. It is undeniable that the starting
theory dealt just with a generic 5-metric (13) solution to the field equations (9)
and nothing more (e.g. no cilindricity or compactification conditions), but this is
exactly at the root of the problem of matter: a 5-dimensional theory just resting on
(13) and (9) has simply not enough structure to ground claims about the existence
of 4-matter. Can a physical theory that places dynamical constraints so weak to
risk to be empirically incoherent be considered really a theory in any useful phys-
ical sense? Under this reading, adding further structure to such a theory is more
like completing it, rather than merely changing it.
As regards the second charge, the plea is: not guilty. ψA is not a “background” ob-
ject as the Minkowski metric in (8) in that it does not persist unchanged (modulo
diffeomorphisms) throughout all the models of the theory: (21) admits solutions
that are in fact physically distinct 5-flows. To see this, it is sufficient to show that

20In this case, 4-matter would still supervene on 5-dimensional state of affairs, such as the
rigging of the pile (e.g., a certain matter configuration would not have existed having the 5-flow
been different).

16



there are two models < M5, gAB, ψ
A > and < M5, g′AB, ψ

′A > such that ψA and ψ′A

are not related by any diffeomorphism. Still, one may claim that the 5-flows affect
the 4-matter distributions in each model without being affected in return. How-
ever, the “influence” we are talking about is not a physical interaction (5-flows do
not really push 4-matter in any physical sense), but an ontological one: in each
model 4-matter supervenes on the 5-dimensional structure comprising 5-metric
and 5-flow.
To sum up, ψA is a genuine dynamical object, although it represents an additional
structure besides the 5-metric: as in the Kaluza-Klein case, there is nothing par-
ticularly wrong in that as long as we do not mind relaxing the GR-desideratum.
Indeed, the payoff for this relaxation is huge: the problem of matter just vanishes.

3 Conclusion
The starting point of this paper was considering the possibility that, although gen-
eral covariance, diffeomorphism invariance, and background independence are not
features uniquely ascribable to GR, there is something in the way GR implements
such features that renders this theory better than its predecessors. We tentatively
identified this “something” in the GR-desideratum, and we then discussed two
cases in which forcing such a desideratum on theories that seek to generalize GR
leads to conceptual difficulties. We finally suggested to overcome these difficulties
just by relaxing the GR-desideratum, in particular by introducing further (dynam-
ical) spatiotemporal structures besides the metric. From what has been discussed
in section 1, it appears clear that questioning the GR-desideratum is not question-
ing general covariance, diffeomorphism invariance, or background independence
by themselves, but the necessity of implementing these features in the way GR
does.
The analysis developed in this paper is far from being just an otiose conceptual
exercise, since fully understanding what the GR-desideratum really is might shed
light on two huge open problems in the philosophy and physics of spacetime the-
ories. Namely, (i) the problem of time in Hamiltonian GR and (ii) the problem of
constructing a theory that combines the main tenets of relativistic physics with the
empirically proven non-locality of quantum theories.
The first problem (debated for example in Earman, 2002; Maudlin, 2002), roughly
speaking, arises when we decompose the 4-dimensional spacetime of GR by
means of space-like 3-surfaces in the so-called ADM formulation of Hamilto-
nian GR (Arnowitt et al., 1962). The idea behind this (3+1) decomposition is that
we can render the general relativistic dynamics simpler for calculational purposes
by using the machinery of Hamiltonian dynamics. In such a setting, we specify a
set of initial conditions on a starting 3-surface and we evolve it using Hamilton’s
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equations of motion. Of course, such a decomposition is merely formal: it is just
a convenient way to recast the standard dynamics of GR. However, there is a con-
ceptual problem lurking beneath the formalism.
To see this, let us consider some arbitrary model of GR; since the (3+1) decom-
position is merely formal, we can imagine two different ways to foliate the model
by means of the foliations F and F ′. Let us further assume that the foliations
agree only on the initial surface Σ0. We are now in the strange situation already
experienced in the previous section: even by specifying with arbitrary precision
the initial data on Σ0, the dynamics is unable to single out one evolution among F
and F ′. Does this imply indeterminism? Of course no, because both evolutions
represent one and the same physical situation. However, if we take the freedom
to foliate the model as a gauge freedom, then we are forced to say that F and
F ′ are physically indistinguishable, which means that the only physically mean-
ingful observables definable in this context are those that do not change whatever
foliation we choose. This excludes that whatever physically significant quantity
changes in time: taking this picture seriously seems to imply that the universe is
a frozen block. Note how this problem stems from forcing a strict requirement of
gauge invariance on the theory: from this point of view, the problem of time in
Hamiltonian GR is strikingly similar to the problem of matter in induced matter
theory. Also in this case, then, a way out of the conundrum would be to loosen or
modify the gauge requirement so that other observables besides the unchanging
ones could be defined.
The second problem (discussed at length in Maudlin, 1996, 2011), can be roughly
summarized as follows. Let us imagine a quantum system made up of space-like
separated parts A and B in an entangled state, and let us consider an event E(A)
such as a certain outcome of a measurement performed on A. It has been exper-
imentally shown (Aspect et al., 1981) that E(A) is not determined solely by the
events in its past light-cone. This is what Bell called non-locality (Bell, 2004, ch.
2) and that might mean that E(A) can be affected either by events in its future
light-cone or by space-like separated events such as a measurement taking place
on B. In any case, quantum non-locality seems to be at odds with the physical
interpretation of the light-cone structure of relativistic spacetimes, so that some
modification of such a structure might be called for.
If we consider that one of the most promising theoretical programs towards the
construction of a quantum theory of gravitational phenomena (viz. canonical
quantum gravity) seeks to quantize GR starting from its Hamiltonian formula-
tion, we immediately realize that this program faces a conceptual tangle that is
basically the combination of the above mentioned problems. This is a further
reason for reflecting on the GR-desideratum and finding ways to relax it without
giving up general covariance, diffeomorphism invariance, and background inde-
pendence.
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