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Abstract Schrödinger (1935) averred that entanglement is the characteristic trait
of quantum mechanics. The first part of this paper is simultaneously an explo-
ration of Schrödinger’s claim and an investigation into the distinction between
mere entanglement and genuine quantum entanglement. The typical discussion of
these matters in the philosophical literature neglects the structure of the algebra
of observables, implicitly assuming a tensor product structure of the simple Type
I factor algebras used in ordinary QM. This limitation is overcome by adopting
the algebraic approach to quantum physics, which allows a uniform treatment of
ordinary QM, relativistic QFT, and quantum statistical mechanics. The algebraic
apparatus helps to distinguish several different criteria of quantum entanglement
and to prove results about the relation of quantum entanglement to two addi-
tional ways of characterizing the classical vs. quantum divide, viz. abelian vs.
non-abelian algebras of observables, and the ability vs. inability to interrogate the
system without disturbing it. Schrödinger’s claim is reassessed in the light of this
discussion. The second part of the paper deals with the relativity-to-ambiguity
threat: the entanglement of a state on a system algebra is entanglement of the
state relative to a decomposition of the system algebra into subsystem algebras; a
state may be entangled with respect to one decomposition but not another; hence,
unless there is some principled way to choose a decomposition, entanglement is
a radically ambiguous notion. The problem is illustrated in terms a Realist vs.
Pragmatist debate, the former claiming that the decomposition must correspond
to real as opposed to virtual subsystems, while the latter claims that the real vs.
virtual distinction is bogus and that practical considerations can steer the choice of
decomposition. This debate is applied to the fraught problem of measuring entan-
glement for indistinguishable particles. The paper ends with some (intentionally
inflammatory) remarks about claims in the philosophical literature that entangle-
ment undermines the separability or independence of subsystems while promoting
holism.

1 Introduction
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For Schrödinger, one of the founders of quantum mechanics (QM), entan-
glement is the characteristic feature of QM that separates it from classical
mechanics. The opening sentences of Schrödinger (1935) read:

When two systems, of which we know the states by their respec-
tive representatives, enter into temporary physical interaction due
to known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be
described in the same way as before, viz. by endowing each of
them with a representative of its own. I would not call that one
but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought.
By the interaction the two representatives (or ψ-functions) have
become entangled. (p. 555; italics in original)

Obvious counterclaims would be that the characteristic trait of quantum
systems lies in the non-abelian nature of the observables, or in the fact that
quantum systems cannot be measured without disturbance while classical
systems can. It turns out that Schrödinger’s claim and the counterclaims
are closely related, at least on one understanding of what quantum entangle-
ment is. That is what this paper is about: it is not about the moaning over
spooky action-at-a-distance that accompanies (some forms of) entanglement
but about how to characterize quantum entanglement and about how this
entanglement marks what is distinctive of the quantum realm.1The need for
such a treatment arises from the fact that, despite the many hundreds (thou-
sands?) of papers on entanglement, there are still puzzles and unresolved
issues. Mathematical physicists are well aware of these issues but curiously
most philosophers of science seem oblivious, even though some of the issues
have interesting philosophical content and even though philosophers are well
equipped to contribute. The purpose of this paper is to lay out the issues in
a way that will engage philosophers who are interested in the foundations of
quantum physics.
The paper is organized as follows. Section 2 introduces the algebraic ap-

proach to quantum physics which, I claim, promotes clear-headed thinking
about entanglement. In the version of the approach used here a system is
characterized in terms of a von Neumann algebra of observables and a state
on the algebra. Entanglement of this state is entanglement relative to a choice
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of subalgebras of observables corresponding to subsystems. In Sections 3-7
it is taken for granted that the choice of subsystem algebras has been made,
and the focus is on finding criteria for quantum entanglement over these
subalgebras. The search is guided by two ideas: first, that the correlations
contained in genuine quantum entanglement should not be producible by a
classical mechanism; and, second, that the analysis of quantum entanglement
should capture what is characteristic about the entanglement of states over
non-abelian subalgebras of quantum observables as opposed to entanglement
over the abelian subalgebras of classical observables. These ideas lead to sev-
eral distinct criteria for quantum entanglement that form a strict hierarchy
of increasing strength. As with all explications, formal criteria never square
completely with intuitions, and some of the misfits are detailed in Sections 6
and 7. Results about the ubiquity of quantum entanglement are detailed in
Section 8. Section 9 then revisits Schrödinger’s claims about entanglement to
give both a partly sympathetic and a partly non-sympathetic assessment in
light of what we have learned about entanglement over the intervening three
quarters of a century. Section 10 starts with a truism– that entanglement
means entanglement of a state on a system algebra with respect to a de-
composition of the system algebra into subsystem algebras– and an obvious
fact– that the very same system state may be unentangled with respect to
one decomposition but entangled with respect to another. Unless there are
limitations on the choice of decompositions, this relativity of entanglement
results in a hopeless ambiguity of entanglement. A Realist would respond
that real entanglement concerns entanglement over subalgebras correspond-
ing to real as opposed to virtual subsystems, and that where there is no
principled way to draw the distinction questions of entanglement become
moot. The Pragmatist responds that there is no valid metaphysical basis for
drawing the distinction between real and virtual systems; but practical fac-
tors, such as experimental accessibility, can make it reasonable to work with
one decomposition rather than another. Since these practical factors vary
with context, so does entanglement. The Realist vs. Pragmatist debate is
illustrated in terms of concrete examples. Section 11 introduces the fraught
issue of how to talk about entanglement for indistinguishable particles. The
physics literature contains proposals to measure the depth of entanglement
for vector states for fermionic and bosonic systems. These are formal require-
ments stated as conditions on Hilbert space vectors. But since nothing is said
about the decomposition of the system algebra into subsystem algebra, it is
pertinent to ask “What are they talking about when they conclude from the
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satisfaction (respectively, failure) of the formal criteria that entanglement
holds (respectively, fails)?”The Realist vs. Pragmatist debate is brought to
bear on this question. Section 12 contains conclusions, along with a closing
rant about attempts in the philosophical literature to relate entanglement to
non-separability of physical systems and to holism.

2 The Apparatus

The present discussion of entanglement will employ the algebraic approach to
quantum physics, one advantage being that it provides a unified way to talk
about entanglement in ordinary non-relativistic quantum mechanics (QM),
relativistic quantum field theory (QFT), and quantum statistical mechanics.
Additionally, starting with algebras helps to underscore a blindingly obvious
point that, despite its crucial nature, seems to elude many commentators;
namely, while the typical discussion of entanglement focuses on states, the
algebras of observables come first; for the entanglement of a state must be
understood as relative to a choice of (sub)system algebras, and the very same
state that is entangled with respect to one choice may be unentangled with
respect to another. This observation will be the starting point for Section 10,
but before reaching that juncture much initial spade work needs to be done.
The present Section provides a brutally brief introduction to the algebraic
the apparatus. Readers interested in more in depth treatments can consult
any number of good texts (e.g. Haag 1992, Horuzhy 1990, and Bratelli and
Robinson 1987).
A von Neumann algebra N is a ∗-algebra of bounded operators acting

on a Hilbert space H.2 It is required that N be closed in the weak operator
topology or, equivalently (by von Neumann’s double commutant theorem)
N′′ := (N′)′ = N where ‘′’ denotes the commutant (consisting of all the
bounded operators that commute with all the element of N). The most
familiar example comes from ordinary QM (sans superselection rules) where
the algebra of observables is (isomorphic to) the Type I factor algebraB(H),
the algebra of all bounded operators acting on H.3 In the algebraic approach
to relativistic QFT algebras of observables are associated with open bounded
regions of Minkowski spacetime, and these algebras are typically Type III.
To give but one example of how exotic these latter algebras are, at least to
someone raised on ordinary QM, I mention that they do not contain any
finite dimensional projection operators.
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A state ω on an algebra N is an expectation value functional, i.e. a
normed (ω(I) = 1) positive linear functional ω : N → C. A state is said
to be pure if it cannot be written as a non-trivial convex combination ω =
λ1ϕ1 +λ2ϕ2, 0 < λ1, λ2 < 1, λ1 +λ2 = 1, where ϕ1 and ϕ2 are distinct states
on N; otherwise ω is said to be mixed. A vector state ω is a state where there
is a |ψ〉 ∈ H such that ω(A) = 〈ψ|A|ψ〉 for all A ∈ N. For N = B(H) the
vector states and the pure states coincide; but the coincidence is broken for
more general algebras, e.g. for Type I non-factors and for Type III algebras
(where all vector states are mixed). A state ω on N is normal if and only
if there is a normed trace class operator (“density matrix”) % such that
ω(A) = Tr(A%) for all A ∈ N. Vector states are, or course, normal. An
element E ∈ N is a projection if it is self-adjoint and idempotent (E2 = E).
The projections of a system algebra N are supposed to correspond to Yes-No
questions that can be asked about the system, and if ω is a normal state with
corresponding density matrix % then ω(E) = Tr(E%) is the probability of a
Yes outcome for a measurement of E made in state ω.
The projections P(N) of a von Neumann algebra N have a natural struc-

ture as a lattice. Quantum probability theory can be thought of as the study
of probability measures on these non-abelian, orthocomplemented projection
lattices. A normal state on N induces a countably additive probability mea-
sure on P(N). By the generalized Gleason theorem, a countably additive
measure on P(N) has (under mild restrictions on N) a unique extension to
a normal state on N.4 It follows that for a countably additive measure on
P(N) the probabilities must conform to the “Born rule.”
In practice physicists consider only normal states, their implicit assump-

tion being that non-normal states are not physically realizable. I know of
no convincing argument for this assumption, and it certainly deserves more
scrutiny than it has received in the literature; but I will not belabor the point
here, and will follow the standard practice of focusing on normal states. But I
will note from time to time that issues about entanglement take on a different
complexion if non-normal states are admitted.

3 What is Entanglement?

In the version of the algebraic approach used here a physical system is char-
acterized by a von Neumann algebra N, and subsystems of the system are
characterized by von Neumann subalgebras N1,N2, ....5 In the present Sec-
tion a “bottom up” version of this approach is used: start with algebras
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N1 and N2 thought of as giving the observable algebras of two subsystems,
and define the system algebra to be N1 ∨ N2, the smallest von Neumann
algebra to be generated by N1 and N2. One major goal is to specify cri-
teria for a state ω on N1 ∨ N2 to be quantum entangled over N1 and N2.
One implicit assumption (inherited from Schrödinger) of this quest is that
quantum entanglement, properly understood, will reveal features that dis-
tinguish quantum systems from classical systems. Another assumption that
seems to be ingrained in the philosophical literature is that quantum entan-
glement somehow compromises the separability/independence of subsystems.
I think this is a mistake, and I will have more to say about it in Section 12.
But at the start I will assume that talk about entanglement of subsystems
makes sense only if these subsystems enjoy some minimal degree of separabil-
ity/independence; and, arguably, the minimal degree would include mutual
commutativity of subsystem algebras so that the subsystem observables can
be simultaneously measured. In ordinary QM the mutual commutativity
of the subsystem algebras corresponding to distinguishable particles is uni-
versally if silently imposed.6 In the algebraic approach to relativistic QFT,
algebras of observables N(O) are associated with open bounded regions O
of Minkowski spacetime, and the requirement that [N(O1),N(O2)] = 0 when
O1 and O2 are relatively spacelike is known as micro-causality (aka Einstein
causality or Einstein locality).
With this in mind, we meet the basic notion of entanglement in the fol-

lowing:

Def. 1. Let N1 and N2 be mutually commuting von Neumann
algebras acting on a common Hilbert space.

(i) A state ω on N1 ∨ N2 is a product state with respect to N1

and N2 iff ω(AB) = ω(BA) = ω(A)ω(B) for all A ∈ N1 and
B ∈ N2.7

(ii) A state ω on N1 ∨ N2 is entangled (E0) with respect to N1

and N2 iff it is not a product state.

The connection between non-product states and the existence of corre-
lations in the familiar probabilistic sense can be seen from the application
to projection operators. If C ∈ N1 ∨ N2 is a projector and ω is a state on
N1∨N2 then ω(C) is the probability Prω(C) in state ω of a Yes outcome of a
measurement of C. If E ∈ N1 and F ∈ N2 are projectors, ω’s being a prod-
uct state on over N1 and N2 implies that Prω(EF ) = Prω(E) Prω(F ), the
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usual criterion for no correlation between E and F ; and since von Neumann
algebras are generated by their projections, it follows for a normal state ω
on N1 ∨ N2 that Prω(EF ) = Prω(E) Prω(F ) for all projectors E ∈ N1 and
F ∈ N2 if and only if ω is a product state over N1 and N2. Or stated in
terms of entanglement in the sense of Def. 1, a state on N1∨N2 is entangled
(E0) with respect to N1 and N2 iff it entails a non-zero correlation between
some of the subsystem observables.
If this is all entanglement amounts to, then (the reader may well wonder)

what’s all the shouting about? The short answer is that quantum entangle-
ment involves much more than is captured in Def. 1. The more will unfold
in the coming sections. But before moving on it is worth pausing to note
that the algebraic apparatus already points to some differences between the
quantum and the classical. In particular, if both of the subsystem algebras
N1 and N2 are classical (= abelian) then every pure state– normal or not–
on N1 ∨N2 is a product state, so entanglement (E0) is possible for classical
systems only for mixed states.8 For quantum (= non-abelian) subsystem al-
gebras, entanglement (E0) is possible for pure as well as mixed states.
Another difference between the quantum and the classical emerges from

the observation that for non-abelian subsystem algebras it can happen that,
although N1 and N2 are mutually commuting (and thus meet our minimal
requirement for separability/independence), there may not exist any nor-
mal product states on N1 ∨ N2. An example from the quantization of the
Klein-Gordon field is provided by the algebras N(WL) and N(WR) associ-
ated respectively with left and right Rindler wedge regions WL and WR of
Minkowski spacetime.9 SinceWL andWR are relatively spacelike and micro-
causality holds for the Klein-Gordon field, [N(WL),N(WR)] = 0; and yet
because of the cluster property of the vacuum, there are no normal product
states on N(WL)∨ N(WR).10 (Note that the qualification ‘normal’is essen-
tial since there are non-normal product states on N(WL)∨ N(WR).) On the
standard definition of quantum entanglement discussed in Section 4 it follows
that every normal state on N(WL)∨ N(WR) is quantum entangled over the
subsystem algebras.
This last example raises an issue about how to understand entangle-

ment: Assuming that the physically realizable states coincide with the normal
states, does the fact a system algebra N1 ∨ N2 does not admit any normal
product states over N1 and N2 mean that (a) entanglement over N1 and
N2 is necessary/essential since all physically realizable states are entangled
(indeed, quantum entangled), or does it mean that (b) N1 and N2, despite
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their mutual commutativity, are not suffi ciently separable/independent for
the question of entanglement to be properly raised? Choosing option (b) in-
volves opening the Pandora’s box of separability/independence requirements
studied in the mathematical physics literature.11 I will only mention here one
of the strongest of these separability/independence requirements:

Def. 2 The mutually commuting von Neumann algebras N1 and
N2 satisfy the split property iff there exist a Type I factor F such
that N1 ⊂ F ⊂ N′2.

The split property implies that N1∨N2 is ∗-isomorphic to the tensor product
algebra N1⊗N2 and, thus, that there are normal product states aplenty.12 (It
follows that N(WL)∨ N(WR) does not have a tensor product structure and
that N(WL) and N(WR), although mutually commuting, are not split.) For
the Klein-Gordon field the split property has been established for some local
algebras associated with relatively spacelike regions, in particular, strictly
spacelike separated double cone regions.13 But the split property can fail
for the algebras associated with relatively spacelike but unbounded regions,
e.g. Rindler wedge regions. In ordinary QM the split property automatically
holds if, as is tacitly assumed, the algebras associated with distinguishable
particles are mutually commuting Type I factors; indeed, B(H1)∨B(H2) '
B(H1)⊗B(H2) ' B(H1)⊗B(H2) ' B(H1 ⊗H2).
The implicit assumption in most of the philosophical literature, and a

good deal of the physics literature on quantum computing and quantum in-
formation theory, that the composite system algebra has the structure of
tensor product of Type I factors is to be deplored because it neglects possi-
bilities that need to be explored. But to simplify the discussion below, I will
operate with a tensor product structure for system algebras.

4 What Is Quantum Entanglement?

Entanglement (E0) in the sense of Def. 1(i) can obtain even when the sub-
system algebras N1 and N2 are classical (abelian), although as noted above
the entangled states must be mixed. If, however, N1 and N2 are quantum
(non-abelian) then pure states can be entangled, and no one doubts that
these states are examples of quantum entanglement. But for mixed states
on non-abelian subsystem algebras it is far from clear that (E0) captures
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genuine quantum entanglement. Consider, for example, the system algebra
B(H1)⊗B(H2) and a normal mixed state corresponding to a density oper-
ator of the form

1

2
E|η1〉 ⊗ E|ξ1〉 +

1

2
E|η2〉 ⊗ E|ξ2〉 (1)

where the E|ηi〉 and E|ηj〉 are respectively the projectors onto the rays spanned
by the vectors |ηi〉 ∈ H1 and |ξj〉 ∈ H2 chosen from an ON basis {|ηi〉⊗ |ξj〉}
for H1 ⊗H2. This state can be prepared by flipping a fair classical coin and
then preparing the system in the vector state corresponding to |η1〉 ⊗ |ξ1〉 or
(classical or!) to |η2〉⊗ |ξ2〉 according as the coin lands Heads or lands Tails.
On either alternative the state chosen by the coin flip is non-entangled in
sense (E0) and, thus, the entanglement of the mixed state is due entirely to
ignorance about the outcome of the coin flip.
Of course, one might question why mixed states need to be considered.

One answer is that the systems we deal with are rarely isolated from a larger
environment. Interaction with the environment results in entanglement (E0),
and this entanglement results in subsystem states that are mixed. In fact, it
is not hard to establish the following

Proposition: If N1 and N2 are mutually commuting and ω is a
pure normal non-product state on N1 ∨N2, then the subsystem
states obtained by the restrictions ω|N1 and ω|N2 of ω to the
subsystem algebras are both mixed.

So even if we deal only with pure states at the composite system level, mixed
states will out at the subsystem level. This point is made in spades in rela-
tivistic QFT where the issue of quantum entanglement of local algebras arises
only for mixed states, at least insofar as only normal states are physically
realizable.14 Moreover, on the criteria of quantum entanglement considered
in this Section and the next, mixed states can induce genuine quantum en-
tanglement, even of the deepest kind.
Returning to the initial example, the state corresponding to the density

operator (1) might not have resulted from a classical coin flipping mech-
anism. For example, it might arise from restricting the vector state ω|Ξ〉,

with |Ξ〉 =
2∑

m=1

αm|ηm〉 ⊗ |ξm〉 ⊗ |ςm〉, |α1|2 = |α2|2 = 1/2, on the tri-partite
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algebra B(H1) ⊗B(H2) ⊗B(H3) to the bi-partite B(H1) ⊗B(H2), where
{|ηi〉 ⊗ |ξj〉 ⊗ |ςk〉} is an ON basis for H1 ⊗ H2 ⊗ H3.15 However, most of
the extant research on entanglement is focused on finding a formal crite-
rion of quantum entanglement, the implicit presupposition being that, re-
gardless of the actual facts about how the state arises, the mere possibility
of the kind of classically instrumented state preparation illustrated in the
above coin flipping example disqualifies a state as inducing genuine quantum
entanglement.16 This attitude suggests the following definition.

Def. 3. (i) Let N1 and N2 be mutually commuting von Neumann
algebras acting on a common Hilbert space. A normal state ω
on N1⊗N2 is decomposable17 with respect to N1 and N2 iff it
can be approximated by convex linear combinations of normal
product states with respect to N1 and N2, i.e. ω lies in the
norm closure18 of the hull of convex linear combinations of normal
product states.19

(ii) ω induces quantum entanglement with respect to N1 and N2

in the standard sense (E1) iff it is indecomposable.

I have been unable to determine when this definition was first proposed,
but it is certainly around in the late 1980s (see Raggio 1988 and Werner
1989). Dubbing it the standard sense of quantum entanglement seems justi-
fied since, despite the fact that it is not often explicitly enunciated, I believe
that it makes the best sense of pronouncements on quantum entanglement in
the post-Bell physics literature; but establishing this claim would require a
literature review that I cannot undertake here. Since different convex linear
combinations can produce the same mixed state, it is not easy to determine
whether or not a given mixed state is indecomposable.20 (The reader may
wish to try the following exercise: Look ahead to formula (4′) of Section 6
which presents a one-parameter family of density operators. For which values
of the parameter α are the corresponding states decomposable?)
If one of the goals of providing a criterion of quantum entanglement is to

find what distinguishes the quantum from the classical, then the claim that
(E1) fills the bill is buttressed by a result due to Raggio (1988):

Theorem. Let N1 and N2 be mutually commuting von Neumann
algebras acting on a common Hilbert space. Then the following
two conditions are equivalent:
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(R1) At least one of N1 and N2 is abelian

(R2) No normal state on N1⊗N2 is (E1) entangled over N1 and
N2.

Putting the result in the contrapositive mode, the possibility of (E1) en-
tanglement over the subsystem algebras N1 and N2 arises just in case both
algebras are non-classical (= nonabelian).21 With a bit of charity one could
take this as a vindication of Schrödinger’s claim quoted in the Introduction;
a somewhat less charitable view is taken in Section 9.
Do we now know what quantum entanglement is? We know part of the

story. In the next Section we will meet considerations that militate in favor
of setting the bar for quantum entanglement higher than (E1).

5 Stronger Notions of Quantum Entanglement

Part of the motivation for the definition of (E1) was to rule out cases of
states where the entanglement (E0) could be due the ignorance of a classical
mechanism that generates mixture weights over non-entangled states. But if
this is a valid concern then one should also worry about more subtle ways
that the entanglement could be generated by a classical mechanism. Here
is one way. A hidden variable (hv) model of a state ω on N1⊗N2 acting
on H1 ⊗ H2 contains the following ingredients. First, a probability space
(Λ, dµ) where dµ is a countably additive probability measure on a σ-algebra
of subsets of Λ, the hidden variable space. Next, for projections E ∈ N1

and F ∈ N2 there are measurable “response functions”FE : Λ→ [0, 1] and
FF : Λ→ [0, 1], interpreted as giving the probability for a Yes outcome of a
measurement of E and of F respectively when the hidden state takes value
λ ∈ Λ.22 And, finally, the model must recover the quantum probabilities in
that for all projections E ∈ N1 and F ∈ N2

ω(E ⊗ F ) =

∫
Λ

FE (λ)FF (λ)dµ(λ). (2)

If such a model is in operation the entanglement (if any) of ω is due to
ignorance of the value of the hidden state. But whether or not such a model
is actually in operation, the fact that it is mathematically possible and could
be in operation might, in parallel with the motivation for (E1), be taken to
disqualify ω as engendering genuine quantum entanglement. This sentiment
is codified in
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Def. 4 A normal state ω on N1⊗N2 induces quantum entangle-
ment with respect to N1 and N2 in the no hidden variable sense
(E2) iff it does not admit a hv model.

As the reader might guess, (E2) is strictly stronger than (E1). That (E1)
; (E2) is shown by a sub-class of the Werner states (Werner 1989) with
the property that they can give quantum entanglement (E1) even though
they admit a hv model. These states will be considered in more detail in the
following Section. To see that (E2) ⇒ (E1) suppose that ¬ (E1) and show
how to construct a hv model. If the normal state ω violates (E1) then it can
be approximated in the norm by convex linear combinations of normal states
corresponding to density operators on H1 ⊗H2, the Hilbert space on which
N1⊗N2 acts. This means that there is a measure dµ on Λ := D1 X D2, where
D1 and D2 are the spaces of density operators on H1 and H2 respectively,
such that for all projections E ∈ N1 and F ∈ N2

ω(E ⊗ F ) =

∫
Λ

(ϕρ1 ⊗ ϕρ2)(E ⊗ F )dµ(ρ1, ρ2) (3)

=

∫
Λ

ϕρ1(E)ϕρ2(F )dµ(ρ1, ρ2)

where ϕρ1 and ϕρ2 are the normal states corresponding to the density oper-
ators ρ1 and ρ2 respectively. This is a hv model with the response functions
FE (ρ1, ρ2) = ϕρ1(E) and FF (ρ1, ρ2) = ϕρ2(F ).
As is well known, the issue of hidden variable models is closely related

to the Bell inequalities. Bell operators for N1⊗N2 have the form B :=
1
2
[X1⊗ (Y1 +Y2)+X2⊗ (Y1−Y2)] where the Xi ∈ N1 and Yj ∈ N2, i, j = 1, 2,
are self-adjoint and −I ≤ Xi, Yj ≤ I. For a state ω on N1⊗N2 define
β(ω) := supB |ω(B)|. A state ω such that β(ω) > 1 is said to violate the Bell
inequalities, with maximal violation occurring when β(ω) =

√
2.

Now if the Raggio theorem can be used to motivate taking (E1) to be
the correct explication of quantum entanglement, then it can equally well be
taken to motivate the following alternative criterion of quantum entangle-
ment:

Def. 4 A normal state ω on N1⊗N2 induces quantum entan-
glement in the Bell sense (E3) with respect to N1 and N2 iff it
violates the Bell inequalities.

12



For Raggio’s theorem not only showed that (R1) is equivalent to (R2) but
also that (R1) is equivalent to

(R3) No normal state on N1⊗N2 induces (E3) entanglement with
respect to N1 and N2.

So the possibility of (E3) entanglement over N1 and N2 arises just in case
both are non-abelian.
The status of (E3) can be further explored by its relationships to (E1)

and (E2). In fact, (E3) is strictly stronger than (E2). That (E3) ⇒ (E2) is
one version of the many versions of “Bell’s theorem.”That (E2); (E3) was
shown by counterexample by Garg and Mermin (1982).
The upshot is that the conditions for entanglement considered so far form

a strict hierarchy:

(E3) ⇒ (E2) ⇒ (E1) ⇒ (E0)

with none of the arrows being reversible.

6 Is (E1) Suffi cient for Genuine Quantum Entanglement? Is It
Necessary?

Is rising to the level of (E1) in the hierarchy suffi cient to ensure genuine
quantum entanglement? One way to explore this issue is in terms of Werner
states (Werner 1989), which are constructed so that they admit a hv model
and, therefore, satisfy the Bell inequalities. For the algebra B(C2)⊗B(C2)
acting on C2 ⊗ C2 an example of a Werner state is the normal mixed state
corresponding to density operator

1

2

I ⊗ I
4

+
1

2
E|ΨS〉 (4)

where E|ΨS〉 is the projection onto the ray spanned by a “singlet”state vector
|ΨS〉 ∈ C2 ⊗ C2. To construct such a vector, choose an orthonormal basis

|ηi〉 for C2 and set |ΨS〉 :=
1√
2

[|η1〉 ⊗ |η2〉 − |η2〉 ⊗ |η1〉]. The vector state on

B(C2)⊗B(C2) corresponding to |ΨS〉 gives a maximal violation of the Bell
inequalities.
Now the state corresponding to (4) can be produced by flipping a fair

classical coin and preparing the state corresponding to
I ⊗ I

4
or (classical
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or!) to E|ΨS〉 according as the coin lands Heads or lands Tails. 50% of the
time the state prepared is not entangled at all and the other 50% of the
time the state prepared induces entanglement that gives a maximal violation
of the Bell inequalities. In those cases where we don’t know the result of
the coin flip, does the entanglement of the resulting mixed state represent
genuine quantum entanglement? If you were queasy about seeing genuine
quantum entanglement when the entanglement disappears in 100% of the
cases however the classical uncertainty is resolved– as in the case of the
state corresponding to (1) when prepared by a classical coin flip– should you
likewise be queasy when the entanglement could disappear altogether in 50%
of the cases when the classical uncertainty is resolved?23

If you answer Yes then you may want to set the threshold for genuine
quantum entanglement higher than (E1), for the state corresponding to (4)
is indecomposable. One way to do this is to move up in the hierarchy surveyed
in the preceding Section. Moving up to (E2) would do the job here since (4)
admits a hv model. Another way would be to step outside the hierarchy, e.g.
by strengthening Def. 3 to exclude states that are partially decomposable in
that they can be approximated in the norm by convex linear combinations
of normal states some but not necessarily all of which are product states.24

If you answer No on the grounds that, even though a classical mechanism
can set the mixture weights, any mixture involving a non-trivial contribution
from a state giving a maximal violation of the Bell inequalities should be
counted as quantum entangled, then you are committed to saying that for
any value of 0 ≤ α < 1 the state corresponding to

α
I ⊗ I

4
+ (1− α)

1

2
E|ΨS〉 (4′)

is quantum entangled. Consequently, you must abandon indecomposability
as a necessary condition for quantum entanglement since for any value of
α > 2/3 the corresponding Werner state is decomposable. But you need not
answer No on these grounds. You could maintain that a state correspond-
ing to (4′) gives rise to genuine quantum entanglement on the grounds that
this entanglement can be used to perform imperfect but better than classi-
cal teleportation for values of α ≤ 2/3, which is precisely the range where
indecomposability obtains (Popescu 1994).
Perhaps in the end a pragmatic attitude is best: rather than haggle over

which is the correct explication of quantum entanglement, simply recognize
that there are a variety of interrelated ways to think about quantum entan-
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glement, and in investigating some aspect of quantum systems seize on the
explication of quantum entanglement that promotes the most fruitful results.

7 Quantum Discord

Quantum information theorists have noted that some decomposable (and,
therefore, non-(E1)) states can display non-classical features, a phenomenon
they dub “quantum discord.”This discord might be thought to signal a form
of quantum entanglement that lies between simple entanglement (E0) and
the standard sense of quantum entanglement (E1).
The first step to understanding quantum discord is to distinguish a subset

of decomposable states dubbed “classical,” the basic idea being that “clas-
sical”states allow acquisition of information via measurements on the com-
ponent systems without disturbing the composite state whereas “quantum”
states do not make such an allowance (see Ollivier and Zurek 2002, Luo 2008,
and Modi et al. 2010). To explain this idea it is helpful to realize that most
of the quantum information literature assumes that the observable algebra of
composite system has a tensor product structure with the component system
algebras being Type I factors– for a bipartite system, the composite system
algebra is B(H1 ⊗H2) = B(H1) ⊗B(H2) acting on H1 ⊗H2. In addition,
only normal states are ever considered. A resolution of the identity operator
IH1 on H1 (respectively, IH2 on H2) consists of a set of mutually orthogonal
projectors {E1

i } ∈ H1 (respectively, {E2
j } ∈ H2) such that

∑
i

E1
i = IH1 (re-

spectively,
∑
i

E1
j = IH2). (When no confusion results, the subscripts in the

identity operators will be omitted.) Such a resolution is minimal iff all the
projectors in the resolution are minimal, i.e. they are one-dimensional. A
normal state ω onB(H1)⊗B(H2) is said to be classical just in case there are
minimal resolutions of identities {E1

i } and {E2
j } such that the corresponding

complete projective measurement leaves the density operator %ω correspond-
ing to ω invariant in the sense that %ω =

∑
i,j

(E1
i⊗ E2

j )%ω(E1
i ⊗ E2

j ) (Luo

2008).25 As Ollivier and Zurek (2002) put it, when the state is classical one
“can interrogate just one part of a composite system and discover its state
while leaving the overall density matrix (as perceived by observers who do not
have access to the measurement outcome) unaltered”(p. 3). Non-classical
states are deemed “truly quantum”(Luo 2008, p. 2). Note that the set of
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classical states so defined is not closed under convex linear combinations so
that classical mixing of classical states can produce non-classical states, a
somewhat counterintuitive property.
It was shown by Luo (2008) that a normal state ω on B(H1)⊗B(H2) is

classical just in case %ω =
∑
i,j

pijE
1
i ⊗E2

j for some minimal resolutions {E1
i }

and {E2
j } respectively of the identities IH1 and IH2 and some bipartite prob-

ability distribution {pij}. Obviously then, a classical state is decomposable.
But but the converse is not true, for in the density matrix representation of
a general decomposable state the projection operators in the decomposition
do not have to be orthogonal. Concrete examples can be constructed from
the class of Werner states on B(C2) ⊗B(C2) corresponding to the density
operators in (4′). For any value of α < 1 the resulting state is non-classical,
but for α > 2/3 the resulting state is decomposable.
A further clarification of the relation between decomposable and classical

states was given by Li and Luo (2008) who showed that decomposable states
are obtained as reductions of classical states on higher dimensional Hilbert
spaces. More precisely, a normal state ω onB(H1)⊗B(H2) is decomposable
iff there is a classical normal state σ on B(K1 ⊗H1) ⊗B(H2 ⊗ K2), where
K1 and K2 are auxiliary Hilbert spaces, such that ρω = TrK1⊗K2ρσ, where
TrK1⊗K2 denotes the partial trace over K1 ⊗K2.
A non-entangled (i.e. product) normal state ω on B(H1) ⊗ B(H2) is

classical and, thus by contraposition, a non-classical (NC) state is entangled
(E0).26 And since a classical state is necessarily decomposable, we have

(E1) ⇒ (NC) ⇒ (E0)

where the arrows are non-reversible.27 So formally at least quantum discord
can be used to extend the entanglement hierarchy mapped out in the pre-
ceding Section. It remains to ask, however, whether (NC) deserves a place
in the entanglement hierarchy. Granted that (NC) captures an interesting
feature of quantum entanglement, if entanglement there be. But does a non-
(E1) but (NC) state deserve to be called quantum entangled? Evidence for
a positive answer would have to come from a demonstration that non-(E1)
but (NC) states can exhibit features associated with quantum entanglement,
e.g. teleportation. As far as I am aware the evidence is not forthcoming.
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It is also worth noting that the formal definitions and results on quan-
tum discord reported above lose their motivation for more general types of
von Neumann algebras. Non-Type I algebras lack minimal projectors, and
Type III algebras do not contain any finite dimensional projectors. Thus,
a complete projective measurement in the above defined sense may not cor-
respond to a measurement of genuine observables (self-adjoint elements of
the composite system algebra). Nevertheless, the basic idea behind to the
idea that a defining feature of “classical reality”is that it “allows acquisition
of information without perturbation of the underlying state” (Ollivier and
Zurek 2002, p. 3) can, when suitably construed, be applied to general types
of von Neumann algebras. And it can be linked to the other two features of
“classical reality,”as shown by the following result.
Consider a von Neumann algebra N acting on a separable H. The fol-

lowing two conditions of classicality are equivalent:

(Class1) N is abelian

(Class2)N freely allows interrogation without disturbance in that
for any normal state ω on N and any projection E ∈ N, ω is
invariant under a non-selective measurement of E, i.e. ω = ω̃
where ω̃(•) = ω(E • E) + ω((I − E) • (I − E)) is the new state
induced by the non-selective measurement of E (Lüders rule).28

Proof that (Class1) ⇒ (Class2): If N is abelian it follows that for any A ∈
N, ω̃(A) = ω(EAE) + ω((I − E)A(I − E)) = ω(AE2) + ω(A(I − E)2) =
ω(AE) + ω(A(I − E)) = ω(AE + A(I − E)) = ω(A(E + I − E)) = ω(A).

Proof that (Class2) ⇒ (Class1): If N freely allows interrogation without
disturbance then for any normal state ω, any projection E ∈ N and any
A ∈ N, ω(A− (EAE + (I − E)A(I − E))) = 0. Choosing ω to be a faithful
state, it follows that A = EAE + (I −E)A(I −E).29 Collecting terms gives
2EAE = AE + EA. Multiplying on the right by E results in EAE = AE,
while multiplying on the left by E results in EAE = EA. Together these
imply that AE = EA, i.e. every element ofN commutes with every projector
ofN. Since a von Neumann algebra is generated by its projectors, this implies
that N is abelian.

Combining this elementary result with Raggio’s deep theorem, the circle
of the three ways to make the classical/quantum cut can be closed:
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For N = N1⊗N2, both subsystem algebras N1 and N2 are non-
abelian iff neither subsystem freely admits interrogation without
disturbance iffN admits normal states that are quantum entan-
gled in the sense of (E1) over N1 and N2.

And, again by Raggio’s theorem, (E3) can be substituted for (E1).

8 How Ubiquitous Is Quantum Entanglement?

The answer to the question that forms the title of this subsection varies
depending upon whether the setting is ordinary QM or relativistic QFT.
It is known that for the simple bi-partite qubit algebra B(C2) ⊗B(C2)

every pure non-product normal state violates the Bell inequalities (Gisin
1991) and, thus, every pure non-product normal state induces quantum en-
tanglement in all three senses (E1)-(E3) over these tensor product algebras.30

This result generalizes to higher dimensional Hilbert spaces (Gisin and Peres
1992). Thus, for the types of bi-partite algebras encountered in ordinary QM
the only normal entangled states (E0) to escape quantum entanglement are
mixed states. But mixed states on these algebras can also produce quantum
entanglement; indeed, they can violate the Bell inequalities and even give
maximal violations (Braunstein et al. 1992).31

However, within the setting of ordinary QM there is reason to wonder
whether the subsystems that we– qua limited, finite observers– encounter
will exhibit quantum entanglement, either in the standard sense (E1) or
one of the stronger varieties. To make this more precise, suppose that the
algebra of a typical bi-partite system we encounter has a tensor product
structure B(H1) ⊗B(H2) and is a subsystem of a larger multi-partite sys-
tem whose algebra also has the structure B(H1) ⊗ B(H2) ⊗ ... ⊗ B(HN),
N ≥ 3, of a tensor product of Type I factors. How effectively does quan-
tum entanglement at the multi-partite level “trickle down”to the bi-partite
level? More precisely, suppose that the state of the multi-partite system al-
gebra is a pure (equivalently, vector) state with a generating vector |Ψ〉 that
is not a product state over any pair of its subsystem algebras. Then the re-
duced state of any bi-partite subsystem will be a mixed entangled (E0) state.
But will the reduced state typically be quantum entangled? If the multi-
partite system state vector can be written in a generalized Schmidt form, i.e.
|Ψ〉 =

∑
j=1

αj|xj〉1⊗|xj〉2⊗ ...⊗|xj〉N , where the |xj〉1⊗|xj〉2⊗ ...⊗|xj〉N come
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from an ON basis forH1⊗H2⊗...⊗HN , then the reduced bi-partite state will
be decomposable and, indeed, classical in the sense of Section 7.32 However,
not every multi-partite state vector can be written in generalized Schmidt
form. In the bi-partite case B(H1) ⊗B(H2) the Schmidt bi-orthogonal de-
composition theorem shows that for any |Ψ〉 ∈ H1 ⊗H2 there are ON bases

|xi〉1 and |yj〉2 for H1 and H2 respectively such that |Ψ〉 =
r∑
i=1

λi|xi〉1⊗|yi〉2,

where the λi > 0 are real numbers such that
r∑
i=1

λ2
i = 1 (Schmidt 1906). But

in the simplest tri-partite case B(C2) ⊗ B(C2) ⊗ B(C2) there are vectors
in the qubit space C2 ⊗ C2 ⊗ C2 that do not admit a generalized Schmidt
decomposition and, moreover, those that do admit such a decomposition are
highly non-generic (see Peres 1995).
This is not the end of the story, however; for having a generalized Schmidt

decomposition is not necessary for the reduced state of a bi-partite subsystem
to be decomposable. For example, Acin et al. (2000) show that for the tri-
partite qubit systemB(C2)⊗B(C2)⊗B(C2) every state vector can be written
in the form λ1|0〉⊗ |0〉⊗ |0〉+ λ2e

iφ|1〉⊗ |0〉⊗ |0〉+λ3|1〉⊗ |0〉⊗ |1〉+ λ4|1〉⊗
|1〉 ⊗ |0〉+ λ5|1〉 ⊗ |1〉 ⊗ |1〉 where 0 ≤ φ ≤ π, “0s”and “1s”have been used
to label the qubit states, and again the λ’s are real numbers whose squares
sum to unity. The reduced density operator for the left-most bi-partite sub-
system has the form λ2

1E|0〉 ⊗ E|0〉 + (λ2
2 + λ2

3)E|1〉 ⊗ E|0〉 + (λ2
4 + λ2

5)E|1〉 ⊗
E|1〉, which is decomposable and classical. In sum, quantum entanglement
does not trickle down in this case. If this no-trickle-down result extends to
higher dimensional Hilbert spaces in the sense that a generic subset of the
system state vectors has the property that the resultant reduced bi-partite
subsystem states are decomposable then genuine quantum entanglement will
be non-generic in the systems we encounter.33 Or at least this is so if the bi-
partite states we encounter arise by restricting the state on a larger system
to the bi-partite subsystem we encounter. In Section 7 the decision was made
to repress issues about how a state actually arises in forging a criterion of
quantum entanglement; but these issues cannot be repressed when judging
how ubiquitous quantum entanglement is. As far as I am aware the trickle
down question remains open for ordinary QM.
The situation is somewhat different in QFT. As mentioned above, in the

algebraic formulation of relativistic QFT the algebras associated with open
regions of Minkowski spacetime are Type III. The only normal states on
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these algebras are mixed, and typically these mixed states are indecompos-
able. But the latter fact is not happily described as a trickle down effect
in the above sense since the global algebra N(M) associated with all of
Minkowski spacetime M is not a tensor product of the the algebras N(O)
of local regions O ⊂M. Nevertheless, we can inquire whether or not the
restriction of some state on N(M)– say, the vacuum state ωvac– to the sub-
algebraN(O1)∨N(O2) generated by the local algebrasN(O1) andN(O2), for
relatively spacelike O1 and O2, is quantum entangled over the subalgebras.
The answer is affi rmative in the strongest sense since the Bell inequalities
are violated, sometimes maximally. And what is true of the vacuum state is
true of an open dense set of vector states (see, for example, Halvorson and
Clifton 2000). Quantum entanglement in this setting is truly ubiquitous.34

9 Schrödinger Revisited

The distinctions drawn above prompt several questions and comments
about the characterization of entanglement given in the Schrödinger quota-
tion cited in the Introduction. In the first place, what exactly does Schrödinger
mean when he says that after interaction between two subsystems each may
lack a “representative of its own”? If “representative”means state in the al-
gebraic sense then Schrödinger was operating with a false presupposition; for
if ω is any state on the system algebra N and if N1,N2 ⊂ N are subsystem
algebras, then each of the subsystems has its own state, namely the reduced
state ω|Ni , i = 1, 2, obtained by restricting ω to the subalgebra Ni, and this
is so regardless of whether or not ω entangles N1 and N2 and whether or not
the entanglement is genuinely quantum. To be fair to Schrödinger, however,
it is evident from the quoted passage that he took “representative”to mean a
vector state (the phrase he uses is “ψ-function”) or a pure state, the two sets
of states being the same for the Type I factor algebras used in ordinary QM.
And his point was that whereas initially the reduced subsystem states may
be pure/vector states, it can happen that after interaction neither subsystem
state is a pure/vector state.
Although in the quoted passage Schrödinger takes lack of “representa-

tives”for the subsystems as his criterion of entanglement, on the very next
page (1935, p. 558) of the article he says that what “constitutes the entan-
glement”is that the representative of the composite system is not a product
state35; and he evidently took this second criterion to be equivalent to his
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original criterion. If to the assumption that the composite system algebra is
a tensor product of Type I factors is added the further charitable assump-
tion that the state of the composite system is a vector/pure state, then all
is well for Schrödinger’s characterizations of entanglement; for the lack of
subsystem “representatives”(= subsystem states are not vector/pure states)
and simple entanglement (= composite system state is not a product state)
coincide with each other and with and quantum entanglement (= composite
system state is indecomposable).
However, these happy coincidences fall apart when the composite system

state is not pure. And Schrödinger’s initial characterization of entanglement
goes seriously awry when the subsystem algebras are not Type I factors and,
consequently, the coincidence of vector states with pure states does not hold.
For example, the subsystem algebras are typically Type III in relativistic
QFT, and for these algebras all normal states are vector states, whereas
no normal state is pure. Thus, if Schrödinger’s bellyache about entangle-
ment derives from the non-vector character of the subsystem states, then
QFT should cure it since each subsystem does have its own “representative”
(vector state). If, however, the bellyache derives from the mixed character
of these states, then QFT should make the bellyache worse since the sub-
systems cannot possess normal pure states. And in either case Schrödinger’s
no-representatives-of-their own characterization of entanglement yields incor-
rect results for Type III subsystem algebras; namely, either they are never
entangled (since they always have representatives of their own) or they are
always entangled (since they never have representatives of their own).
The aim here is not to unfairly criticize Schrödinger for failure to antici-

pate cases that were well over the horizon when he was writing in 1935 but
rather to note that his initial characterization of entanglement has proven to
be unfruitful. More fruitful is the characterization of entanglement in terms
of indecomposability. In the spirit of charity one could read Schrödinger as
groping towards the latter characterization, but one would be hard pressed
to find textual evidence to support such a reading.

10 The Relativity and Ambiguity of Entanglement

To restate what is obvious from the algebraic approach, talk of entangle-
ment has to be relativized to a specification of subsystems and their associ-
ated subalgebras of observables. In the preceding Sections the obvious did
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not need to be stated since it was simply taken for granted that the “correct”
specification was provided by some higher authority or else that there is a
natural procedure to generate a unique specification. If we do not want to
rely on higher authority (who? what?), we need to get a handle on how the
system algebra and the subsystem algebras are generated. To keep the discus-
sion as simple as possible I will ignore the complexities about entanglement
uncovered in the preceding Sections and will assume that indecomposability
(Def. 3) is both necessary and suffi cient for quantum entanglement.

10.1 Bottom-Up and Top-Down

As the label indicates, the bottom-up approach starts from a delineation
of the von Neumann algebras corresponding to subsystems, and the system
algebra is identified with the von Neumann algebra generated by the sub-
system algebras. This was the approach that was mainly used in preceding
Sections. Again as the label indicates, the top-down approach starts by defin-
ing the system algebra and then decomposes this algebra into subalgebras
corresponding to subsystems. A concrete illustration follows.

Ex. 1. Two spinless particles moving in d-dim Euclidean space Rd. Work-
ing this example in the top-down mode, the configuration space for the two-
particle system is R2d. Quantum lore tells us that the appropriate Hilbert
space to describe the composite system is H = L2

C(R2d), the space of square
integrable complex-valued functions on the configuration space. If each of the
elements of the set of Θ of all self-adjoint operators (not necessarily bounded)
acting on L2

C(R2d) represents a genuine two-particle observable, then the as-
sociated von Neumann composite system algebra is N := Θ′′ = B(L2

C(R2d)).
Now notice that L2

C(R2d) is isomorphic to L2
C(Rd)⊗ L2

C(Rd) and, hence, the
system algebraN is isomorphic toB(L2

C(Rd))⊗B(L2
C(Rd)).36 Thus, there is a

natural decomposition of the composite system algebra into the one-particle
subsystem algebras– in this case the decomposition takes a tensor product
form. The example can be reworked in the bottom-up mode, starting from
the one-particle descriptions, H1 = L2

C(Rd), N1 := Θ
′′
1 = B(H1) for particle

#1 and H2 = L2
C(Rd), N2 := Θ

′′
2 = B(H2) for particle #2, where Θi is the

set of all self-adjoint operators on Hi, i = 1, 2. If it is demanded that N1 and
N2 are mutually commuting then the split property is satisfied and, conse-
quently, the composite system algebra N := N1 ∨N2 = B(H1) ∨B(H2) is
∗-isomorphic to B(L2

C(Rd)) ⊗B(L2
C(Rd)), in agreement with the top-down

approach.
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This example– the very one Schrödinger had in mind– is misleading in
suggesting that there will always be a unique “natural”or “proper”decompo-
sition of the system algebra. Of course, everything rides on what counts as a
“natural”or “proper”decomposition, but before confronting this issue it will
be helpful to have another example to give a sense of how the non-uniqueness
of decompositions can arise.

Ex. 2: Two-spins system (Zanardi et al. 2004, Harshman and Wichra-
masekara 2007, and de la Torre et al. 2010). Again starting in the top-down
mode, the system algebra N acting on H = C4 is generated by the Pauli spin
operators Θ = {σxj , σ

y
j , σ

z
j , j = 1, 2}, resulting in N := Θ′′ = B(C4).37 The

most obvious decomposition ofN into subsystem algebras isN1(C2)⊗N2(C2)
where Nk = Θ

′′
k with Θk := {σxk, σ

y
k, σ

z
k}, k = 1, 2. But other decompo-

sitions are possible, e.g. N̂1(C2) ⊗ N̂2(C2) where N̂1 and N̂2 are the von
Neumann algebras generated respectively by Θ̂1 = {σx1 , σ

y
1σ

z
2, σ

z
1σ

z
2} and

Θ̂2 = {σz2, σx1σ
y
2, σ

x
1σ

x
2}. It is left to the reader to rework the example in

the bottom-up mode.

It should be evident that the very same state on the system algebra of Ex.
2 that is entangled with respect to one of the given decompositions may not
be entangled with respect to the other. The moral is that unless constraints
are placed on what counts as a subsystem algebra, the notion of entanglement
ambiguous. Just how radical the threatened ambiguity is can be illustrated
by reflecting on how the bottom-up approach can be mathematically general-
ized. Start with some Hilbert spaceH, and choose setsΘ1 andΘ2 of mutually
commuting self-adjoint operators acting on H such that the von Neumann
algebras they generate, viz. N1 := Θ′′1 and N2 := Θ′′2, are non-abelian as well
as being mutually commuting. Then declare that N1 and N2 are subsystem
algebras, generating the composite system algebraN := N1∨N2. (One might
want to require that, in addition to mutual commutativity, N1 andN2 satisfy
some stronger of the other separability/independence requirements, e.g. that
N1∨N2 has a tensor product structure. But decisions on this matter will not
affect the main points that follow.) There will always be alternative choices
of observables Θ̂1 and Θ̂2 generating non-abelian but mutually commuting
N̂1 := (Θ̂1)′′ and N̂2 := (Θ̂2)′′, which together generate the same system al-
gebra, i.e. N̂1 ∨ N̂2 ' N1 ∨N2. If such constructions are unconstrained then
entanglement becomes ambiguous since different choices for subalgebras can
make entanglement appear or disappear. For if each of the hatted subalge-
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bras “mixes”elements from both of the unhatted subalgebras then a state
on the composite system algebra that is unentangled over N1 and N2 may
be entangled over N̂1 and N̂2 or vice versa.
The scope of the threat of the ambiguity of entanglement as it arises in

the top-down mode is also dire. Call a von Neumann algebra N quantum
entanglement ready just in case it admits a quantum entanglement ready
decomposition in the form of a pair of non-abelian but mutually commuting
subalgebras N1 and N2 such that N = N1 ∨N2. If it is required in addition
that the decomposition take the form of tensor product then some algebras
are not entanglement ready. Suppose that N ' N1⊗N2 acting on H ' H1⊗
H2. If dim(H) is a prime number then either dim(H1) = 1 or dim(H2) = 1
and, thus, either N1 or N2 is abelian, making quantum entanglement over
N1 or N2 impossible. Setting aside such cases, I conjecture the following:

(C) Let N be any entanglement ready von Neumann algebra and
let ω be any normal state on N; if there is an entanglement ready
decomposition of N such that ω is not quantum entangled for
that decomposition then there is another entanglement ready de-
composition for which ω is quantum entangled.

If (C) is true it follows that whenever quantum entanglement is possible, it is
possible to consider any normal state to be quantum entangled, i.e. for any
entanglement readyN and any normal ω state onN there is an entanglement
ready decomposition for which ω is quantum entangled. Even if (C) fails,
it should be evident from the examples above and those that follow at the
mathematical level there is ambiguity aplenty for entanglement. The physical
significance of this mathematical ambiguity is far from evident.

10.2 Realism vs. Pragmatism

Many different reactions to the threatened rampant ambiguity of entangle-
ment are possible, but to keep the discussion simple I will focus on two broad
categories.

Realism. The Realist claims that the kind of entanglement we should
be concerned with is entanglement over subalgebras that correspond to real
as opposed to virtual or fictitious subsystems. Obviously, this distinction
cannot be drawn in terms of purely formal conditions on the algebras but
must come from background physics. The background information might,
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for example, provide grounds for thinking that the system at issue should
satisfy a fundamental symmetry, and this in turn would preference decompo-
sitions of the system algebra into subalgebras that are invariant under said
symmetry (see Harshman and Wickramasekara 2007). The background in-
formation may not be suffi cient to draw a bright red line between real vs.
virtual or fictitious subsystems, but the Realist hopes it is serves to rein in
the threatened rampant ambiguity of entanglement. But where the hope is
utterly dashed and there is no principled way to draw the distinction, the
Realist holds that entanglement ought to be regarded as a moot topic.

Pragmatism. The Pragmatist asserts that there is no metaphysically valid
way to draw a line between subsystems that are “real”and those that are
“fictitious”or “virtual.”Any decomposition of the system algebra into sub-
algebras meeting appropriate formal criteria is as good a way as any other for
defining subsystems. Thus, contrary to Realism, there is no metaphysically
valid distinction to be drawn between “real”entanglement (i.e. entanglement
over “real” subsystems) and “faux” entanglement (i.e. entanglement over
“fictitious”or “virtual”subsystems). For the Pragmatist the only valid dis-
tinctions are the ones that can be drawn in terms of considerations of utility.
For example, the distinction between decompositions where the observables
of the subalgebras are experimentally accessible and those where they are
not, a matter that obviously varies with the experimental context. And one
might want to further subdivide the experimentally accessible entanglements
into those that are useful for, say, performing quantum computations and
those that are not, again a distinction that depends on the context.

The way the debate between Realism and Pragmatism plays out can be
illustrated in terms of various examples. Revisiting the two-spins example
(Ex. 2), the Pragmatist would say both decompositions of the system algebra
are equally valid, but that the first mentioned decomposition is favored in
contexts where the individual spins are experimentally accessible while the
second is favored where spin-spin interactions are accessible.38 The Realist
would respond to the two-spins example by claiming that we know from a
wider context that spin is not a self-subsistent property but a property of
particles– the Pauli spin operators σx1 , σ

y
1, σ

z
1 go together because they are

attached to particle #1 and the operators σx2 , σ
y
2, σ

z
2 go together because

they are attached to particle #2. From this wider perspective the sets of
observables {σx1 , σ

y
1σ

z
2, σ

z
1σ

z
2} and {σz2, σx1σ

y
2, σ

x
1σ

x
2} used to generate the non-

standard subalgebras are seen to be gerrymandered and do not correspond
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to genuine subsystems identified by independent means.

Ex. 3: The hydrogen atom. In addition to the obvious way of construing
the atom as composed of an electron and a proton, one can also think of it
as composed of a particle of mass M = mp +me moving freely in the center
of mass coordinates and another particle of reduced mass m−1

r = m−1
p +m−1

e

moving in a fixed Coulomb field. The ground state of the hydrogen atom is
entangled with respect to the proton’s position and electron’s position but
is unentangled with respect to the to the center of mass coordinates and the
relative proton-electron coordinates (see Tommasini and Timmermans 1998).

The Pragmatist will opine that whether or not to see entanglement in the
ground state of the hydrogen atom depends on which position observables are
experimentally accessible– the proton and electron positions or the center
of mass and relative particle positions. The Realist will respond in much
the same fashion as in the previous case; viz. knowledge gained from a
wider context informs us that electrons and protons are real particles while
center of mass and relative particles are merely calculational devices. Hence,
correlations, or the lack of them, between observables attached to the latter
“particles”cannot be trusted in gauging entanglement.

Ex. 4: A single particle moving in Rd. If there were any case where
it makes no sense to talk about entanglement it would seem to be this one
since it takes two to do the tango of entanglement. But do not be too
hasty! Following quantum lore take the Hilbert space for the system to be
H := L2

C(Rd) and the system algebra to be N := B(L2
C(Rd)). This is not the

end of the story, however. All infinite dimensional separable Hilbert spaces
are isomorphic and, in particular, L2

C(Rd) ' L2
C(Rd)⊗L2

C(Rd). Consequently,
the system algebra is isomorphic to B(L2

C(Rd) ⊗ L2
C(Rd)) ' B(L2

C(Rd)) ⊗
B(L2

C(Rd)). The choice of a particular isomorphism between the system
algebraB(L2

C(Rd)) andB(L2
C(Rd))⊗B(L2

C(Rd)) specifies how the component
algebras in the tensor product are to be identified as subalgebras of N.39 In
the present case there does not seem to be any choice of isomorphism that
is more natural than any other. But no matter– let the choice be made by
whatever means. We now have a tensor product decomposition of the system
algebra into mutually commuting non-abelian subalgebras.

A suffi ciently clever experimentalist will be able to specify a possible
experimental setup to access the component subalgebra observables qua their
identifications with system (one-particle) observables. Thus, if a system state
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fails to be a product state over the component subalgebras, the Pragmatist
(if she is consistent) should declare a case of entanglement. The Realist
will gleefully claim that this declaration is a reductio ad absurdum of the
Pragmatic position; for (the Realist will claim) it is patently obvious that
in the present example there are no genuine subsystems to be entangled,
and the entanglement the Pragmatist claims to see is nothing other than
the correlations between gerrymandered observables of an undivided unary
system. Of course, the Realist concedes that new physics might change the
situation, e.g. evidence might emerge indicating that the seemingly humble
spinless particle is not structureless but is composed of subparticles over
which real entanglement can take place. But failing such a discovery, the
Realist sees no reason to treat the present example as anything other than
empty mathematical conjuring.
The Realist need not tie his account to a particle ontology, as the above

examples might erroneously be taken to indicate. Indeed, the Realist should
tailor his account to the ontology that is compatible with the best available
physical theories. In QFT local quantum fields on spacetime arguably take
over from particles the role of the basic ontological furniture. Cluing in to
this field ontology, the algebraic formulation of relativistic QFT posits a net
of von Neumann algebras N(O) associated with open bounded regions O of
Minkowski spacetime M. These local algebras are the natural candidates
for subsystem algebras, and in bottom-up fashion the quasi-local global al-
gebra N(M) is identified with the von Neumann algebra generated by the
subsystem algebras N(O) as O ranges over all open bounded regions. There
is no imminent threat here of ambiguity of entanglement since there are no
are natural candidates for alternative decompositions of the system algebra.
I confess that I vacillate between Pragmatism and Realism. I feel the

tug of some of the considerations the Realist puts forward. But I am also
sensitive to the Pragmatist’s retort to the Realist: ‘You may want to label as
faux entanglement those cases of entanglement over subalgebras you regard
as not corresponding to genuine subsystems. But suppose I can describe
possible experimental arrangements that access the observables of these sub-
algebras and also show how entanglement between these subalgebras can be
put to work in quantum computing and information processing tasks. That
entanglement may not be real enough for you, but it is real enough for me!’
I am equally sensitive to the Realist’s retort: ‘I admit that in the situa-
tions you describe you are on to something real. But that something should
not be called entanglement because entanglement is correlations between the
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observables of real subsystems.’
At this point the Realist-Pragmatist debate has ceased to be productive.

But the debate has served its purpose in illustrating the possible reactions to
the threat of rampant ambiguity of entanglement that results from the many
different mathematically possible ways to decompose the system algebra into
subalgebras. One can wonder how Schrödinger and the other pioneers of
the new quantum theory would have situated themselves in the debate. In
particular, how would Schrödinger’s seminal 1935 paper on entanglement
have been changed by an explicit recognition of the issues that underlie the
debate?

11. Entanglement for Indistinguishable Subsystems

There is a sizable physics literature on entanglement for indistinguishable
particles, containing different proposals for how to quantify entanglement for
bosons and fermions. From the point of view on entanglement taken above it
is hard to understand how to make sense of the debate over which proposal
is correct.40 I begin with a quick primer on indistinguishability in quantum
physics.

11.1 Indistinguishability

I follow the usage that takes “identical (sub)systems”to mean (sub)systems
with the same intrinsic or state-independent properties, such as mass. Thus,
identical systems need not be indistinguishable. Further, the subsystems
may or may not be plausibly described as particles, but I will follow the
practice in referring to them as such. It suffi ces to illustrate the issues that
arise from indistinguishability in terms of two-particle systems. The system
Hilbert space is H = H1⊗H2, where H1 and H2 are the one-particle Hilbert
spaces and, since the particles are supposed to be identical, H1 ' H2 ' h.
The system algebra for the two identical particle system is Nid := Θ′′id, where
Θ is the set of all self-adjoint operators on h⊗ h that correspond to genuine
observables. When Θ contains all self-adjoint operators Nid = B(h)⊗B(h).
To say that the particles are quantum mechanically indistinguishable is

to say that are subject to permutation invariance. In the algebraic approach
we will want to say what this invariance comes to in terms of the structure
of the algebra of observables. In the widely accepted Messiah and Green-
berg (1964) treatment of permutation invariance, the composite system von
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Neumann algebra of observables Nindist := Θ′′indist is derived not by taking
Θindist to be the set of all self-adjoint operators acting on h⊗ h but rather
to be the subset of self-adjoint operators that commute with the natural
unitary representation of the permutation group s2. The result is a super-
selection rule: the observable algebra Nindist is now the proper subalgebra
B(HS)⊕B(HA) of B(h)⊗B(h) where HS and HA are respectively the sub-
spaces of h⊗ h spanned by symmetrized and antisymmetrized vectors. In
the direct sum decomposition induced by imposing permutation invariance
there are two types of indistinguishable particles, bosons described by the
symmetric sector (HS ,B(HS)) and fermions described by the antisymmetric
sector (HA,B(HA)). Note that at this level of analysis there is no spin-
statistics connection, so it is not a misnomer to speak of spinless fermions.
The composite system algebra is now a Type I non-factor, and as a result
the coincidence of vector states and pure states, holding in ordinary QM sans
superselection rules, fails; e.g. a vector state that corresponds to a vector
that superposes over different selection sectors is a mixed state.41

For three or more particles there is an additional superselection sector
for “paraparticles”; the algebra for this sector is not a Type I factor. While
this complication is important for understanding quantum statistics, it can
be ignored for present purposes, and the discussion will continue in terms
of the two particle case.42

11.2 Measures of Entanglement for Indistinguishable Particles

The physics literature contains attempts to provide a criterion for when and
to what degree vector states encode entanglement for indistinguishable parti-
cles. I will illustrate for a two-fermion system one widely discussed criterion,
which piggybacks on the Schmidt decomposition for distinguishable particles.
Recall from Section 8 the Schmidt bi-orthogonal decomposition for |Ψ〉 ∈

H1 ⊗H2: |Ψ〉 =
r∑
i=1

λi|xi〉1 ⊗ |yi〉2, where λi > 0 and the |xi〉1 and |yj〉2 are

ON bases for H1 and H2 respectively. The number r of terms in the sum is
called the Schmidt rank. The Schmidt decomposition is unique up to choice
relative phases, unless two (or more) of the λis are equal, in which case the
corresponding |xi〉1 ⊗ |yi〉2 can be replaced by linear combinations of each
other. For the most well known EPR states all the λi in the Schmidt bi-
orthogonal decomposition are the same, but whether or not this is essential
to the EPR set up is arguable.43 In any case, non-uniqueness of the decom-
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position does not affect the Schmidt rank r, which takes values from 1 to
min{dim(H1), dim(H2)}. If r = 1 the state is a product state and there is
no entanglement. For r ≥ 2 the Schmidt rank can be used as a measure of
the depth of entanglement.
The approach to entanglement of vector states for fermions to be de-

scribed here is driven by the idea that since the anti-symmetric subspace
HA of the fermion sector was formed by antisymmetrizing vectors from
H = H1 ⊗H2, an analysis of entanglement for fermions must start by writ-
ing the state vector in an explicitly antisymmetric form (see, for example,
Ghirardi and Marinatto 2004a, 2004b, 2005). Any vector |Φ〉 ∈ HA of a two
fermion system can be written as

|Φ〉 =
∑
i,j

Ωij|xi〉1 ⊗ |yj〉2 (5)

where |xi〉1 and |yj〉2 are ON bases respectively forH1andH2 and Ωij is an an-
tisymmetric complex matrix satisfying the normalization condition tr(Ω∗Ω) =

−1

2
. In case dim(H1) = dim(H2) = n, the Ωij are the components of a com-

plex n x n matrix. For any such matrix there is a unitary W such that
Z = WΩW T , where Z is a block diagonal matrix

Z = diag[Z0Z1...ZR], Z0 = 0, Zi =

[
0 zi
−zi 0

]
(6)

with zi > 0, i ∈ {1, 2, ..., R}. The Zi are called elementary Slater determi-
nants. It follows that when |Φ〉 is written using the new component bases
|x′i〉1 =

∑
k

Wik|xk〉1 and |y′j〉2 =
∑
k

Wik|yk〉 it becomes the sum of elemen-

tary Slater determinants:

|Φ〉 =
R∑
i=1

zi
1√
2

[|x′i〉1 ⊗ |y′i〉2 − |y′i〉1 ⊗ |x′i〉2] (7)

The number R of elementary Slater determinants in the sum is called the
Slater rank.44

The Slater decomposition is analogized to the Schmidt decomposition
for distinguishable particles, and the analogy is used to motivate using the
Slater rank R of a measure of the entanglement for fermions just as the
Schmidt rank was used as a measure of entanglement for the distinguishable
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particles. Schmidt rank r = 1 for distinguishable particles corresponds to
no entanglement, so the argument from analogy says that Slater rank R =
1 corresponds to no entanglement for fermions while Slater rank R > 1
supposedly indicates entanglement for the fermions.
A similar analysis is applied to a boson state vector |Υ〉 ∈ HS . Again,

the idea is that since HS was originally formed by symmetrizing vectors from
H = H1⊗H2, an analysis of entanglement for bosons must start from writing
the state vector in an explicitly symmetric form. Thus, |Υ〉 is written as

|Υ〉 =
∑
i,j

Πij|xi〉1 ⊗ |yj〉2 (8)

where the Πij are the components of an n x n symmetric matrix when
dim(H1) = dim(H2) = n. Any such matrix can be diagonalized by a unitary
transformation, resulting in the symmetric Schmidt form

|Υ〉 =
Rs∑
i=1

bi|x′i〉1 ⊗ |x′i〉2 (9)

where the bi are positive real numbers. The number Rs of terms on the
sum gives the symmetric Schmidt rank. The argument at this juncture is
more complicated than a simple appeal to analogy, but it concludes that
a symmetric Schmidt rank of Rs ≥ 3 is necessary as well as suffi cient for
entanglement of bosons.

11.3 What are They Talking About?

The mathematics described in the preceding subsection is intrinsically inter-
esting, but one wonders what it has to do with entanglement as analyzed
in the algebraic approach. The challenge can be posed by repeating once
again the mantra of the algebraic approach: a system state is an expecta-
tion value functional on the system algebra, and entanglement of this state
is entanglement with respect to a decomposition of the system algebra into
subsystem algebras. Note that in some instances there may be no pertinent
decomposition for the fermion sector (HS ,B(HS)) or for the boson sector
(HA,B(HA)). For example, if dim(HS) is a prime number then (as noted
above) there is no quantum entanglement ready tensor product decomposi-
tion for (HS ,B(HS)). But generally when there is one entanglement ready
decomposition for one or both sectors then there are many. Which are the
relevant decompositions for discussing entanglement?
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One response to the challenge would be to avoid it by refusing to specify
the relevant decompositions and, thereby, acknowledging that the sense of
entanglement being measured by symmetric Schmidt rank and Slater rank
is not continuous with the sense of entanglement developed above for dis-
tinguishable particles. Much of the literature on entanglement of indistin-
guishable particles is written with an eye to applications to quantum infor-
mation processing and quantum computing. The goal, sometimes explicit
and sometimes implicit, is to identify and quantify the (so-called) entangle-
ment of indistinguishable particles that is useful for information processing
and computing.45 The claim on behalf of the Slater rank and the symmetric
Schmidt rank measures, or alternative measures that have been proposed,
would be that they do serve to identify situations useful for quantum infor-
mation processing and computation, and they do so independently of the
tensor product decompositions or more general ways of specifying physically
relevant subalgebras of observables. I am skeptical about such claims since I
don’t understand how quantum computation and information processing can
be analyzed without at least implicit reference to relevant subalgebras of ob-
servables and, thus without responding to the challenge. But if the claims do
prove to be correct, I would still insist that Slater rank, symmetric Schmidt
rank, etc. should be called measures of the usefulness for information process-
ing, not a measure of entanglement. This is partly a terminological matter,
but getting the right terminology is important in avoiding confusions and
pseudo-issues.
A non-evasive direct response to the challenge would take us back to

the Realist vs. Pragmatist debate initially posed in terms of distinguish-
able particles. In the present case the Realist might seem to have the upper
hand since, pending the arrival of new physics (about sub-fermions and sub-
bosons?), there does not seem to be any good physical basis on which to
define decompositions of (HS ,B(HS)) and (HA,B(HA)) corresponding to
real subsystems and over which real entanglement can obtain. But for the
Pragmatist the collapse of the distinction between real vs. virtual or ficti-
tious subsystems is not surprising– it was always a suspect distinction. Nor is
the collapse any impediment to discussing entanglement for indistinguishable
particles since the same pragmatic factors that operate for distinguishable
particles also operate in the present case. But the Realist and Pragmatist
should agree on this much: however the decompositions of (HS ,B(HS)) and
(HA,B(HA) are chosen, whether on Realist or Pragmatist grounds, the stan-
dard measures of entanglement can be applied to the chosen decomposition;
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there is no need to resort to Slater rank or the like.
Furthermore, the Realist and Pragmatist can find some neutral ground in

a nearby setting; as described in the next subsection, the ground involves not
indistinguishable particles per se but systems that employ indistinguishable
particles.

11.4 State Entanglement for a System Employing Indistinguishable Particles

The following example is summarized from Zanardi (2002).

Ex. 5 : Entanglement for fermionic lattices. Consider N spinless fermions
that may be localized at L sites of a lattice. The single-particle Hilbert space
is HL := span{|ψl〉}, where the |ψl〉, l ∈ NL := {1, ..., L}, are the single-
particle wave functions describing localized states. The Hilbert space for the
system is then the totally antisymmetric subspace HA(L,N) of H⊗NL . It is
spanned by the ON vectors

|A〉 :=
1√
N !

∑
P∈sN

(−1)|P | ⊗Nl=1 |ψjP (l)〉 (10)

where A := {j1, ..., jN} ∈ PNL the family of N -element subsets of NL.
In the abstract there is apparently no natural way to even get started on

choosing a tensor product decomposition for HA(L,N). However, this in-
tractable problem can be exchanged for a more tractable one by noting that
an experimentalist interested in quantum information processing or compu-
tation is not concerned with the Hilbert space HA(L,N) but with another
Hilbert space that throws away information about the details of the single
particle wave functions; namely, the associated Fock space where the fermion
number ranges from 0 to L, i.e. HA(L) := ⊕LN=0HA(L,N). This space is
2L-dimensional and, thus, it admits a tensor product decomposition that is
natural from the experimental point of view; namely, the 2L-dimensional Q-
bit space (C2)⊗L which has basis states |m1〉⊗|m2〉⊗ ...⊗|mL〉, where thems
take the values 0 or 1 with a 0 (respectively, 1) in the kth place indicating
that the kth site is unoccupied (respectively, occupied). An isomorphism
between HA(L) and (C2)⊗L is given by

Λ : HA(L)→ (C2)⊗L : |A〉 → ⊗Ll=1|χA(l)〉 (11)

where χA : NL → {0, 1} is the characteristic function of A. The implicit as-
sumption here is that the experimentally accessible observables are not those
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belonging toB(HA(L,N)) but rather those belonging toB(HA(L)) which is
isomorphic to the occupation number algebra B(C2)⊗L, a not unreasonable
assumption for realistic experiments.46

The Pragmatist is certainly happy with this example since considerations
of experimental accessibility play the leading role in determining the tensor
product decomposition. And the Realist can be happy also since no claims
are being made about entanglement of fermions per se, for which the Realist
sees no principled basis. The entanglement, if there is such, is over the
occupation number observables for the lattice sites, which by any measure
count as real subsystems of the experimental system.

12 Conclusions (and Diatribe)

Whether or not the reader agrees with my claims on fine grained matters, I
hope that I have made the case that there is still philosophical juice remaining
in the much squeezed topic of quantum entanglement and that the algebraic
formulation of quantum physics provides the appropriate tools to do the
squeezing. The algebraic apparatus allows entanglement to be discussed for
non-Type I factor algebras and thereby it provides for a uniform treatment
of entanglement in ordinary QM and relativistic QFT, and it reveals a host
of subtleties about entanglement that go unrecognized in treatments that
ignore algebraic structure.
In the algebraic approach the discussion of entanglement naturally di-

vides into two parts. The first part assumes that a choice of a decomposition
of the system algebra into subsystem algebras has been made. Here a num-
ber of distinct but closely related criteria are available to discern whether or
not there is genuine quantum entanglement over the chosen decomposition.
That these criteria do not square with all intuitions is no embarrassment
since there is rarely, if ever, a complete squaring between a formal explica-
tion and pre-analytic intuitions. Nor is multiplicity of distinct explications an
embarrassment since they can seen as capturing different aspects of quantum
entanglement. The second part of the discussion grapples with the problem
of how to choose the decomposition into subsystem algebras. I framed the
problem in terms of Realism vs. Pragmatism. There may be a better fram-
ing, but I picked the one I thought would resonate with the philosophical
literature, hoping to engage the interest of philosophers who, for the most
part, are seemingly oblivious to an issue on which they are well equipped
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to contribute. And I illustrated how the problem of choosing subsystem
algebras is especially acute in defining entanglement for indistinguishable
particles. Indeed, the proponents of various measures of entanglement for
indistinguishable particles simply avoid the problem by failing to specify the
relevant subsystem algebras, leading one to wonder whether they are talk-
ing about entanglement in some sense quite different from the standard ones
developed for distinguishable particles.
One large issue I have touched on only tangentially is the relation between

entanglement and the separability/independence of subsystems. Philoso-
phers have much to say on these matters, some of it ill-advised and/or
confused.47 I refer specifically to the line which, following Einstein’s reassess-
ment of the EPR paradox, holds that quantum entanglement somehow com-
promises the separability/independence (the “being thus”to use Einstein’s
phrase) of subsystems.48 On the contrary, separability/independence for sub-
systems is best discussed in terms of requirements on the subsystem algebras;
and all such requirements that have been formulated in algebraic quantum
theory, from mutual commutativity, to strict locality, the Schlieder property,
W ∗-independence, etc. through the split property, are satisfied in ordinary
QM, which is the locus of much of the philosophical literature. And this is
so even though deep quantum entanglement– as signaled by maximal vio-
lations of Bell’s inequalities– is endemic among normal states. These sepa-
rability/independence requirements have also been shown to hold in models
of algebraic QFT for the algebras associated with relatively spacelike open
and bounded regions of Minkowski spacetime, although again violations of
the Bell inequalities are endemic. For algebras associated with unbounded
spacetime regions higher-order separability/independence properties can fail,
e.g. the algebras associated with relatively spacelike Rindler regions violate
the split property. Here there may be something to the line that entan-
glement compromises separability/independence, but if so it is not due to
entanglement per se but to the vicious nature of the entanglement– in the
Rindler wedge example there are no normal product states. But surely this
esoteric example is not what Einstein had in mind when he worried about
separability.
Perhaps what Einstein, and those who follow his lead, have in mind when

they think entanglement compromises separability/independence of subsys-
tems is some sense of separability/independence that escapes the standard
algebraic requirements. But apart from the trivial sense on which the very
existence of quantum entangled states means ipso facto that the subsystems
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are not separable or independent, I have not seen any clear articulation of
such a sense or why it would provide more illumination of the mysteries of
quantum physics than saying: ‘Here’s one thing that is remarkable about
quantum physics; namely, although subsystems of a composite quantum sys-
tem can be separable/independent in every reasonable sense that can be
formulated in terms of requirements on the subsystem algebras, states of
the system can be entangled over the subsystems in a way that is impos-
sible for classical systems. The mysteries of the quantum are then to be
explored by understanding the nature of quantum entanglement, not by try-
ing to blur the line between entanglement and separability/independence of
physical systems.49 The difference between classical and quantum physics
is not that subsystems cease to be separable/independent in moving from
the former to the latter; the difference lies in the non-abelian character of
the quantum observables, which goes hand-in-hand with the quantum na-
ture of entanglement (Raggio’s theorem). If you want to obsess about com-
promises to separability/independence (“being thus”) of subsystems, worry
about models of quantum phenomena where the subsystems show unmis-
takable signs of being joined at the hip because the subsystem algebras are
not mutually commuting (such as violation of micro-causality in QFT) so
that observables of the subsystems are not simultaneously measurable; or
where the intersection of the subsystem algebras is non-trivial (violation of
strict locality); or where normal states on the subsystem algebras cannot
be extended to a joint normal state (violation of W ∗-independence) so that
subsystem states cannot be independently prepared; or where the system
algebra is a not a tensor product of subsystem algebras, etc. But note that
such nightmares do not haunt the actual world since successful quantum
theories, whether set in classical or relativistic spacetime, do not display any
of these non-separability/non-independence pathologies despite the fact that
quantum entanglement of the deepest form is endemic among the normal
states.’50

I have a similar reaction to philosophical discussions of holism in quantum
physics, where entanglement is often seen to promote holism.51 Once again
I think that the holism/anti-holism distinction is best drawn in terms of
requirements on algebras of observables. In relativistic QFT the axiom of
strong additivity requires that the algebraN(∪jOj) of observables associated
with the union of any family of open bounded spacetime regions Oj coincides
with the algebra ∨jN(Oj) generated by the subalgebras N(Oj) associated
with each of the individual regions– a precise way of capturing in algebraic
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terms the idea that the whole is not greater than the sum of its parts. If you
want to worry about holism in QFT, worry about failures of Additivity. But
note that such a worry doesn’t arise because of entanglement since Additivity
is compatible with quantum state entanglement in even the deepest form.
Of course, to be more than flag waving these remarks about separability

and holism which go against the tide of philosophical commentary would
need to be to be supported by detailed argumentation. But that is another
project.
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1. With the rise of quantum computing and quantum information theory
there has been a sea change in attitude towards entanglement: it is not
something to be feared but rather is a resource to be exploited.
2. Only separable Hilbert spaces will be considered here.
3. For a classification of the types of von Neumann algebras, see Sunder

(1986). An algebraN is a factor just in case its center Z(N) := N ∩N′ = CI.
Superselection rules involve algebras with non-trivial centers; see Section 10.
4. See Hamhalter (2003) for details.
5. There is also a more abstract version of the algebraic approach using

C∗-algebras instead of von Neumann algebras. Each version has its own
advantages. For the present topic the von Neumann algebra version seems
the most illuminating.
6. Silently because texts on ordinary QM only rarely talk explicitly about

algebras of observables. The case of indistinguishable particles will be treated
in Section 11.
7. Product states are called “factorizable”in the philosophical literature,

although this term is used specifically in the case where N1∨N2 has a tensor
product structure; see below.
8. See Bratteli and Robinson (1987, Corr. 2.3.21).
9. Let (x, y, z, t) be an inertial coordinate system for Minkowski space-

time. Then the right Rindler wedge with vertex at the origin consists of those
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points ∞ > x > 0, x2 − t2 > 0. Reflecting about the origin gives the left
Rindler wedge.
10. This fact was apparently first noted by Araki; see Buchholz (1974, p.

292).
11. For an overview of these requirements, see Summers (1990, 2009).
12. To make sure that the tensor product algebra is a von Neumann

algebra the overbar is added, i.e. N1⊗N2 := (N1 ⊗N2)′′. For Type I factors
(N1 ⊗N2)′′ = (N1 ⊗N2).
13. A double cone region is the interior of the intersection of the forward

light cone of a spacetime point p with the backward light cone of a point q
where q lies to the chronological future of p.
14. See the following Section for substantiation of this last point.
15. In d’Espagnat’s terminology, the mixture would then be “improper.”

For a discussion of the distinction between “proper”and “improper”mixtures
see d’Espagnat (1971, Sec. 6.3).
16. Or, more cynically, one simply demands a criterion that will lend

itself to formal proofs.
17. Much of the literature uses “separable”where I use “decomposable.”

The former term has become so loaded with (sometimes misleading) associ-
ations I prefer to use the latter.
18. The norm topology is the appropriate topology to use in taking limits

since the set of normal states is closed in this topology. If non-normal states
are considered then the appropriate topology is the w∗-topology. The set
of all states, normal and non-normal, on a von Neumann algebra is the w∗-
closure of convex linear combinations of pure states.
19. Note that, contrary to what formula (1) might suggest, decompos-

ability does not require that in the density operator representation of the
state the projectors in the decomposition must be orthogonal. The impor-
tance of this point will become apparent in Section 7 where the notion of
“classicality”of states is introduced; this notion does require orthogonality.
20. See Bruß(2001) for a survey of various operational and non-operational

criteria of entanglement.
21. Not quite so fast! What one would like is the result that (R1) is

equivalent to

(R2′) no normal state on N1 ∨N2 is (E1) entangled over N1 and N2.

(R2′) entails (R2) and, thus, (R1). But it is not obvious that (R1) entails
(R2′) when N1 ∨N2 is not ∗-isomorphic to N1⊗N2.
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22. So for any resolution of the identity IH1 by a family Ej of mutually
orthogonal projectors in N1, it must be the case that

∑
j

FEj (λ) = 1 for all

λ ∈ Λ; and similarly for FF .
23. The percentage of cases where the entanglement disappears can be

upped to 66.6% but not above; see below.
24. Alternatively, reflecting on (3) may prompt revisiting the decision to

develop a purely formal criterion of quantum entanglement that doesn’t take
into account the way in which a state is actually prepared.
25. What is being (implicitly) used here is the Lüders conditonalization

rule for a non-selective projective measurement; see below.
26. A normal state ω on B(H1) ⊗B(H2) is non-entangled iff its corre-

sponding density operator can be written as ρ1 ⊗ ρ2. Taking spectral de-
compostions, ρ1 =

∑
i

λ1
i E

1
i and ρ

2 =
∑
j

λ2
j E

2
j , where the E

1
i and E

2
j are

respectively one-dimensional projectors on H1 and H2 and 0 ≤ λ1
i , λ

2
j ≤ 1,

it follows that ρ1 ⊗ ρ2 =
∑
i,j

λ1
iλ

2
j E

1
i ⊗ E2

j , which is obviously classical. This

argument comes from Li and Luo (2008).

27. Perhaps then it is proper to denote “non-classical”by (E
1

2
) to indicate

that it lies between (E1) and (E0).
28. Needless to say, a selective measurement will generally result in a

change of state, the post measurement state being either ω(E • E)/ω(•)
or ω((I − E) • (I − E))/ω(I − E) depending upon whether the outcome
is respectively Yes or No. Since it is not clear what, if any, information is
gained in a non-selective measurement I have changed “allows acquisition of
information”to “allows interrogation.”
29. That ω is faithful to N means that ω(A) = 0 ⇒ A = 0 for all A ∈ N.

If, as assumed, N acts on a separable Hilbert space then it admits a faithful
normal state. This is not necessarily so if N acts on a non-separable H.
30. And “vector state”can be substituted for “pure state”since in the

case at hand the normal pure states coincide with the vector states.
31. Since the function β(ω) that determines a violation of the Bell in-

equalities is linear, for a mixed state ω =
∑
j

λjϕj, β(ω) =
∑
j

λjβ(ϕj). So if

each of the ϕj gives a maximal violation of the Bell inequalities then so does
the mixed state ω.
32. The converse is not true. What is true is that if the restriction of a
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vector state on B(H1) ⊗B(H2) ⊗ ... ⊗B(HN) to any bi-partite subsystem
algebra B(Hm)⊗B(Hn), m 6= n, is not only a classical state but also takes
the special form

∑
i

piE
m
i ⊗En

j , where the E
m
i and E

n
j are minimal resolutions

of the identities of Hm and Hm respectively, then the state vector of the N -
partite state admits a generalized Schmidt decomposition.
33. Of course, how strong this result is will depend on what technical

explication is given for “generic.”The decoherence approach to resolving the
measurement problem would presumably welcome (or even require?) a strong
no-trickle down result. For an overview of decoherence and its consequences,
see Schlosshauer (2007).
34. Does this present a problem for the decoherence program?
35. For the composite system Hilbert space Schrödinger used the space of

L2
C functions ψ(x, y) where x and y are the coordinates of the two subsystems.
Then the condition for a product state is that ψ(x, y) is a product of a
function of x and a function of y.
36. In order to identify the component algebras in the tensor product

algebra as subalgebras of the system algebra B(L2
C(R2d)) it is necessary to

choose a particular isomorphism between the system algebra and the tensor
product algebra. A natural choice is dictated if the position and momentum
operators Q and P of the two-particle system are identified respectively with
q1 ⊗ q2 and p1 ⊗ p2 where the q’s and p’s are the one-particle position and
momentum operators. See also Ex. 4 below, where there is no natural choice
of isomorphism.
37. Each of σx1 , σ

y
1, σ

z
1 commutes with each of σ

x
2 , σ

y
2, σ

z
2. The other

defining properties of the Pauli operators are that (σxj )
2 = (σyj )

2 = (σzj)
2 = I,

and σxjσ
y
j = −σyjσxj = iσzj , σ

y
jσ

z
j = −σzjσ

y
j = iσxj , σ

z
jσ

x
j = −σxjσzj = iσyj for

j = 1, 2.
38. Zanardi et al. (2004) use this example to motivate the slogan that

“[E]ntanglement is always relative to a particular set of experimental capa-
bilities” (p. 1; italics in the original); see also Zanardi (2001, 2002). It
is unclear, however, whether they mean to fully endorse what I am calling
Pragmatism.
39. If I : N1⊗N2 → N is a ∗-isomorphism, then A ∈ N1 (respectively,

B ∈ R2) is identified with I(A ⊗ I) (respectively, I(I ⊗ B)). Without
such an identification the entanglement of a composite system state over the
components of the tensor product algebra becomes inscrutable.
40. The reader interested in getting a sense of the recent physics literature
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on how to define and quantify entanglement for indistinguishable particles
can start with the following sample: Amico et al. (2008), Bañuls et al.
(2007), Dowling et al (2006), Eckert et al. (2002), Ghirardi et al. (2002),
Ghirardi and Marinatto (2003, 2004a, 2004b, 2005), Giddings and Fisher
(2002), Horodecki et al. (2009), Kaplan (2005), Li at al. (2001), Paškauskas
and You (2001), Plastino et al. (2009), Schliemann et al. (2001), Shi (2003,
2004), Wang et al. (2006), Wiseman and Vaccaro (2003), Zanardi (2001,
2002), Zanardi and Wang (2002), and Zanardi et al. (2004).
41. It is sometimes said that superselection rules place limitations on the

superposition principle. Strictly speaking this is false: a vector space is a
vector space, is a vector space, ... , i.e. the linear combination of any two
vectors belongs to the space. What is true that some linear combinations do
not produce coherent superpositions, i.e. the linear combination is a vector
that generates a mixed algebraic state. See Earman (2008).
42. The postulate of the commutativity of superselection rules asserts

the commutativity of all unitary operators that commute with the set of
Θ of all self-adjoint operators corresponding to genuine observables. This
postulate fails for a system of three or more indistinguishable particles since
the unitaries representing pair interchanges do not commute. For a discussion
of these matters, see Earman (2008).
43. Without citing Schmidt (1906), Schrödinger (1935) states a version

of the bi-orthogonal decomposition theorem, and he takes the equality of all
of the λi of the bi-orthogonal decomposition to be a necessary condition for
the “Einstein-Podolsky-Rosen case”(p. 558).
44. Note that this procedure does not generalize beyond the two-fermion

case, which should already arouse suspicion about whether it captures some-
thing fundamental.
45. Such entanglement is sometimes dubbed “accessible entanglement”

(Wiseman and Vaccaro 2003) and sometimes “quantum entanglement”(Eck-
ert at al. 2002)– which should not be confused with the sense of quantum
entanglement discussed above.
46. The full story can be more complicated. For example, if the fermions

are charged then charge superselection limits the genuine observables to a
subalgebra B(HA(L)), namely the von Neumann algebra generated by all
self-adjoint operators on HA(L) that commute with the number operator.
47. I realize that in saying this I am waving a red flag in front of the

thundering herd of philosophers who pronounce on these matters. So be it.
These bulls can only succeed in goring themselves more than they already
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have.
48. The EPR paradox is first presented in Einstein et al. (1935). A

number of years later in “Quantum Mechanics and Reality”(1948) Einstein
made it clear his real worry was what he perceived as the challenge that
quantum physics poses to the “independent existence (the ‘being-thus’)”of
(sub)systems. For attempts to clarify Einstein’s worry, see Howard (1989)
and Fine (1996).
49. Those who want to blur the line between separability/independence

and entanglement end up not doing justice to either. An example of what I
have in mind comes from Howard’s (1989), which is concerned with a sepa-
rability principle that is “a fundamental ontological principle governing the
individuation of physical systems and their associated states”(p. 225). This
principle requires that

(H) The joint state of the two systems is wholly determined by
the separate states of the two component systems.

In a footnote Howard explains:

How the joint state is determined by the separate states depends
on the details of a theory’s mathematical formulation. At a min-
imum, the idea is that no information is contained in the joint
state that is not already contained in the separate states ... (fn
2, p. 226)

None of the extant mathematical formulations of quantum physics gives a
prescription for going from states on subsystems to a state on the composite
system. But in the present context (H) can be taken to require that for any
pair of subsystem states there must be a unique extension to a joint state–
otherwise there is a loss of information in passing from the composite system
state to the component system states. This condition is indeed violated for
entangled states. But this information loss criterion does not capture the
difference between simple entanglement (E0) and genuine quantum entan-
glement ((E1), (E2), or (E3)) since information loss can occur for both types
of states on N1⊗N2 when the subsystem algebras are non-abelian. When
both subsystem algebras N1 and N2 are classical (= abelian) we know that
there are no states (normal or non-normal) on N1⊗N2 that are (E1) entan-
gled overN1 andN2. Nevertheless, even for abelian subsystem algebras there
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are normal entangled states on N1⊗N2 for which there is information loss
in passing to the reduced subsystem states. But no one thinks that sepa-
rability/independence of classical systems is threatened by such information
loss.
Howard (1989) has been criticized by Fogel (2007) and Winsberg and

Fine (2003) but on rather different grounds than the ones offered here.
50. One might also worry that in relativistic QFT the entanglement be-

tween relatively spacelike regions cannot be destroyed by local operations
(see Clifton and Halvorson 2001). Here I have three comments. First, Va-
lente (2013) argues that the Clifton-Halvorson no-go result rests on a overly
restrictive notion of local operation. Second, the point at issue seems to
me to relate less to the question of separability/independence of subsystems
than to the question of how entrenched entanglement is in QFT. Third, if
(contrary to what I am suggesting) there is a defensible no-go result here and
if that result can be shown to compromise the “being thus”of subsystems,
so be it. That is what would create a problem for separability/independence,
not the existence or even ubiquity of entanglement per se.
51. For an authoritative overview, see Healey (2008).
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