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Abstract

Since the 1909 work of Carathéodory, formulations of thermodynam-
ics have gained ground which highlight the role of the the binary re-
lation of adiabatic accessibility between equilibrium states. A feature of
Carathédory’s system is that the version therein of the second law contains
an ambiguity about the nature of irreversible adiabatic processes, making
it weaker than the traditional Kelvin-Planck statement of the law. This
paper attempts first to clarify the nature of this ambiguity, by defining
the arrow of time in thermodynamics by way of the Equilibrium Principle
(“Minus First Law”). It then argues that the ambiguity reappears in the
important 1999 axiomatisation due to Lieb and Yngvason.

1 Introduction

A number of attempts in recent decades to put equilibrium thermodynamics
on a rigorous conceptual and mathematical footing have been been influenced
by the 1909 work of Constantin Carathéodory1. A prominent example is that
due to Elliott Lieb and Jacob Yngvason, in a lengthy paper published in 19992.
These authors follow Carathéodory in basing their approach on the notion of
adiabatic accessibility, but do without the machinery of differential forms that
Carathéodory had used in his reasoning. A penetrating analysis of the Lieb-
Yngvason formulation was published by Jos Uffink in 2001, principally with a
view to determining which axioms proposed by these authors were time sym-
metric and which not.3 In the present paper, we are concerned with a related
but distinct issue. It is well known that Carathéodory’s formulation contained
an ambiguity, or incompleteness, which Carathéodory himself highlighted, and
which is connected with the fact that his postulates lead to a version of the sec-
ond law that is weaker than the traditional version due to Kelvin and Planck.
Some Carathéodory-inspired formulations of thermodynamics, whether of the

1Carathéodory (1909).
2Lieb and Yngvason (1999).
3See Uffink (2001), section 11. A critique of this analysis and a related one in Brown and

Uffink (2001) is found in Henderson (2014).
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formal4 or informal variety5, add an extra postulate to remove the ambiguity.
We argue that this is implicitly what Lieb and Yngvason do in their approach.

2 Carathéodory

In his seminal 1909 reformulation of thermodynamics, Carathédory realised that
heat need not be introduced as a primitive notion, and that the theory could
be extended to systems with an arbitrary number of degrees of freedom using
generalised coordinates analogous to those employed in mechanics. In doing
so, he provided the first satisfactory enunciations of what are now called the
zeroth and first laws of thermodynamics.6 In particular, by defining an adiabatic
enclosure in terms of its capacity to isolate the thermodynamic variables of the
system of interest from external disturbances, Carathéodory was the first to base
the first law, and thus the existence of internal energy, on Joule’s experiments
(under the assumption that Joule’s calorimeter was adiabatically isolated). Heat
is then defined as the change in internal energy which is not accounted for by the
work being done on or by the system, the existence of heat being a consequence
of the first law and the conservation of energy.

However, what is of particular relevance for our purposes is that Carathéodory
did to the equilibrium state space something akin to what his ex-teacher Her-
mann Minkowski had done to space-time a year earlier. Assuming that the space
Γ of equilibrium states is an N -dimensional differentiable manifold equipped
with the usual Euclidean topology, Carathéodory introduced the relation of adi-
abatic accessibility between pairs of points, a notion clearly analogous to that
of the causal connectibility relation in Minkowski space-time.7 He famously
postulated that in any neighbourhood of any point p in Γ, there exists at least
one point p′ that is not adiabatically accessible from p, so that every point in Γ
is an “i-point” in the terminology of Landsberg8. An adiabatic process is one
taking place within an adiabatic enclosure.

Carathéodory’s main result concerns “simple” systems, whose states can be
described by a single thermal coordinate along with an arbitrary number of
“deformation” coordinates, sometimes called work or configuration coordinates,
which depend on the external shape of the system and on any applied fields.
This rules out systems comprised of a collection of subsystems adiabatically
isolated from each other. Carathéodory also assumed that simple systems show
no internal friction or hysteresis in sufficiently slow (quasi-static) processes. As
a result of these and other assumptions, he showed that quasi-static processes
involving simple systems can be represented by continuous curves in the state
space, where the external work associated with the process can be determined
solely by the forces required to maintain equilibrium at all times. (Carathéodory
made a point of proving that quasi-static adiabatic processes of a simple sys-

4See for example Boyling (1972), pp. 42-43.
5See for example Turner (1962) and Sears (1966).
6See Uffink (2001), section 9.
7See Uffink (2001). A stronger analogy is with the geometric treatment of the conformal

structure of special relativistic space-time found in Robb (1921); see Uffink (2003), p. 144.
8This is the way the postulate is commonly stated in the literature. Carathéodory’s actual

axiom was “In every arbitrarily close neighbourhood of a given initial state there exist states
that cannot be approached arbitrarily closely by adiabatic processes.” Carathéodory (1909)
p. 236.
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tem are reversible.) By appealing to a result in the theory of Pfaffian forms,
Carathéodory was further able to show that given the i-point principle, the dif-
ferential form for heat for quasi-static processes has an integrating factor. In
other words, there exist functions T and S on the state space such that the heat
form can be expressed as TdS, where dS is an exact differential. Further con-
siderations show that T and S are related to the absolute temperature (which
depends on empirical temperature as defined by way of the zeroth law9) and
entropy of the system.10

3 The ambiguity

In section 9 of his 1909 paper, devoted to irreversible processes, Carathéodory
introduced a terse argument related to simple systems that has often been re-
peated and/or elaborated in the literature.11 The conclusion of the argument is
that, given the i-point postulate and certain continuity assumptions12, then for
any two points p and p′ not connected by a reversible quasi-static path, when
p′ is adiabatically accessible from p, always either S(p′) > S(p) or S(p′) < S(p).
(Quasi-static adiabatic processes involve no change in entropy.) Regarding this
ambiguity, Carathéodory emphasised both that it persists even when the en-
tropy is defined so as to make the absolute temperature positive, and that it
can only be resolved by appeal to experiment:

Experience (which needs to be ascertained in relation to a single
experiment only) then teaches that entropy can never decrease.13

It is important for our purposes to note first that the prior existence of an
entropy function is not in fact intrinsic to the argument, or rather that a related
ambiguity can be derived in a more general way. The single thermal coordinate
for the simple system in question could be chosen instead to be internal en-
ergy (whose existence is a consequence of the first postulate in Carathéodory’s
paper). In this case the i-point postulate and the same continuity assump-
tions can be shown to result in the existence of a foliation of Γ (subject to a
qualification to be clarified below), such that on each hypersurface any con-
tinuous curve represents a reversible, quasi-static adiabatic process involving a
continuous change in the deformation coordinates. In the case of an arbitrary
adiabatic process from p to a distinct state p′, these states will generally not
lie on the same hypersurface associated with the foliation, but it can be shown
from Carathéodory’s postulates that they must all lie on the same side of this
surface. In particular, when p and p′ share the same deformation coordinates,
p′ will either always correspond to greater internal energy than p, or always less
internal energy, independently of the choice of the initial state p. Let us call
this the energy ambiguity for adiabatic processes.

9Turner (1963) has argued that the zeroth law is not strictly necessary in Carathéodory’s
treatment.

10A modern geometric treatment of Carathéodory’s theorem in the context of the Frobenius
theorem and nonholonomic constraints is found in Frankel (2004), sections 6.3d-6.3f, in which
the energy ambiguity is again resolved by appeal to experience (p. 186).

11See, for example, Landsberg (1990), section 5.2., Turner (1960) and Sears (1963).
12For a discussion of these assumptions, see Landsberg (1961).
13Carathéodory (1909), section 9. The recourse to experiment is further justified in

Carathéodory (1925); a discussion of historical responses to this feature of his theory is found
in Uffink (2001).
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A related ambiguity holds when the thermal coordinate is chosen to be
temperature (empirical or absolute in Carathéodory’s terms, but assumed to
be positive). Indeed the underlying ambiguity in Carathéodory’s formulation of
thermodynamics – prior to the performance of the “single experiment” referred
to above, and given the positivity of temperature, can also be stated as: Either
heat always flows from a hot body to a cold body, or the converse. When
considering cyclic processes, the ambiguity can be expressed in two further ways:

1. Either it is always impossible to create a cyclic process that converts heat
entirely into work, or it is always impossible to create a cyclic process that
converts work entirely into heat14; and

2. In relation to a Carnot cycle, any other type of cyclic process either always
has lower efficiency, or always greater efficiency15.

Statement 1 is clearly weaker than the traditional Kelvin-Planck form of the
second law in thermodynamics; indeed Carathéodory’s i-point postulate above
is easily seen to be a consequence of the latter (the first possibility in 1), but
the converse implication does not hold.16

In section 9 of Carathéodory’s paper, the argument presupposes that adia-
batic accessibility is a transitive relation between states. Since it is obviously
reflexive, this implies that the relation is a preorder. The qualification men-
tioned earlier in relation to section 9 is that, as originally noted by Bernstein17,
the argument is of a local, not global nature in the state space; indeed entropy
itself is a local notion in Carathéodory’s approach.18 Hence the adiabatic acces-
sibility for Carathéodory is locally, not globally, a preorder. With that caveat in
mind, we need to digress briefly and discuss the arrow of time in thermodynam-
ics in order to fully understand the nature of the ambiguity in Carathéodory’s
system.

4 The arrow of time

In physical theories generally, time plays a multi-faceted role. There is the
notion of temporal duration between events occurring at the same place (tem-
poral metric, related to the ticking of an ideal inertial clock19), the comparison
of occurrences of events at different places (distant simultaneity, registered by
synchronised clocks) and the directionality, or arrow, of time. Thermodynamics
is of course the only theory, apart from that of the weak interactions, which
incorporates this last element at a fundamental level. But first a word about
the first two aspects of time within thermodynamics.

It is sometimes said that thermodynamics has no clocks, in the sense that
none of its fundamental laws contains derivatives with respect to time. For

14See Landsberg (1956) and Dunning-Davies (1965)
15See Ruark (1925)
16It is remarkable that the connection between the Kelvin-Planck formulation of the second

law and Carathédory’s i-point principle was clarified only in the 1960s (independently) by
Crawford and Oppenheim (1961) and Landsberg (1964); see also Dunning-Davies (1965).

17Bernstein (1960). See also Uffink (2001), pp. 367-368.
18This is related to the local nature of Frobenius’ theorem. See Frankel (2004), pp. 183,

184.
19Accelerating clocks differ from inertial ones in the sense that their behaviour generally

depends on their constitution.
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example, entropy is claimed never to decrease in adiabatic processes, but the
theory gives no information about how quickly changes in entropy, if any, oc-
cur. Now it may be thought that a temporal metric and a privileged notion of
simultaneity both lurk in the background, because thermodynamics always ap-
peals to the mechanical notion of work. Whether this appeal to work introduces
through the back door all the temporal structure of Newtonian time is a moot
point. However that may be, a noteworthy feature of Carathéodory’s 1909 for-
mulation is the fact that time derivatives do appear explicitly in his paper. This
occurs in section 3 of the 1909 paper, where Carathéodory defines quasi-static
adiabatic processes as those in which the thermodynamic parameters change
infinitely slowly.20

Returning now to the ambiguity in Carathéodory’s treatment of the second
law, it may reasonably be asked: with respect to what arrow of time is ex-
periment supposed to resolve the ambiguity? The claim that a certain process
unfolds in such and such a way in time only makes sense in physics if some
independent arrow of time is acting as a reference. What primordial arrow is
being appealed to in determining whether entropy increases or decreases in non-
quasi-static adiabatic processes, or similarly in determining how internal energy
changes in such processes starting and ending with the same deformation coor-
dinates?

The view that the arrow of time in thermodynamics is defined by the tradi-
tional version of the second law has been urged by Hawking:

Entropy increases with time, because we define the direction of time
to be that in which entropy increases (Hawking, 1994, p. 348).

Of course, such a definition would make Carathéodory’s appeal to experiment
pointless. Hawking may well be articulating what is a widespread view, but it
is questionable. Within the traditional approach to thermodynamics, the mere
introduction of a concept like a Carnot cycle presupposes a temporal ordering
as applied to the equilibrium states within the cycle, well before questions con-
cerning the efficiency of such cycles in relation to other kinds of heat engine
are raised, and hence before the second law is postulated. In Carathéodory’s
formulation, even the notion of adiabatic (in)accessibility is well-defined only
in relation to a background temporal ordering. What is it? Appeal to the
psychological arrow of time (according to which we remember the past not the
future), for example, is unattractive; it seems plausible that formation of mem-
ories would be impossible without thermodynamic irreversibility, even if there
is debate about the details.21

Arguably the simplest and perhaps most elegant answer to the question at
hand is not provided by the second law, but is found nonetheless within ther-

20More specifically, quasi-static adiabatic processes are defined as those in which the differ-
ence between the work done externally and the limit of the energy change defined when the
derivatives of the thermodynamic parameters converge uniformly to zero is less than exper-
imental uncertainty. It is noteworthy that Carathéodory does not define quasi-static in the
general case.

21Maroney (2010) has argued that the logical operations involved in computation do not
per se determine an arrow of time. But in a rejoinder, Smith (2014) has claimed that in the
brain computational processes and the formation of long-term memories in fact require the
existence of certain spontaneous diffusion/equilibration processes. From the point of view of
statistical mechanics, these processes correspond to local entropy increase. But from the point
of view of thermodynamics, insofar as they are macroscopic they are arguably as much tied
up with the irreversible Equilibrium Principle (see below) as the Second Law.
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modynamics itself. It has occasionally been noted that a fundamental principle
that underlies all thermodynamic reasoning (including the zeroth law) is this:

An isolated system in an arbitrary initial state within a finite fixed volume will
spontaneously attain a unique state of equilibrium.

This “Equilibrium Principle” is the entry point in thermodynamics of time
asymmetry: an isolated system evolves from non-equilibrium into equilibrium,
but not the reverse.22 So it is suggested now that all references, implicit and
explicit, to the temporal ordering of events in thermodynamics can naturally be
understood in relation to the arrow of time defined by the process of spontaneous
equilibration. In particular, it is suggested that the kind of experiment envisaged
by Carathéodory in order to resolve the ambiguity in his treatment of irreversible
processes would reveal a non-decreasing entropy relative to this arrow of time.

5 Lieb and Yngvason

5.1 Introduction

In 1999, Elliott H. Lieb and Jakob Yngvason proposed a new axiomatization of
thermodynamics, which owed much to the work of Carathéodory and that of
later writers such as Robin Giles.23 The central concept is again the binary re-
lation on the state space associated with adiabatic accessibility, now designated
by ≺, and assumed to be globally a preorder.24 But an attempt is made by
the authors to provide a treatment of entropy and its essential properties based
on “maximum principles instead of equations among derivatives”, so that real
systems where some of these derivatives fail to be well-defined at certain points
pose no special problems for the theory. Another notable and unusual feature
is the attempt to provide a proof of the comparison hypothesis, normally tacitly
assumed to be an essential property of a well-behaved thermodynamic system,
which states that for any states X and Y in the state space, then either X ≺ Y
(Y is adiabatically accessible from X) or Y ≺ X. The Lieb-Yngvason (L-Y)
formulation of thermodynamics is a tour de force of physical and mathematical
reasoning.

It should be noted that two further incentives behind the formulation are
the desire to banish the notion of heat altogether from thermodynamics, and a
shift of emphasis from impossible processes (as in traditional formulations) to
possible ones.25

22As pointed out by Uffink (2001), Planck had already in 1897 emphasised the independence
of this principle from the second law. A detailed account of the Equilibrium Principle, the
emphasis it has received in the literature, and its role in the foundations of thermodynamics, is
found Brown and Uffink (2001), where the principle is called the Minus First Law. In Hemmo
and Shenker (2012), chapter 2, it is called the Law of Approach to Equilibrium.

23Lieb and Yngvason (1999); a shorter more informal version of this paper is found in Lieb
and Yngvason (2000).

24Uffink has argued that the definition of adiabatic accessibility therein is subtly different
from most definitions in the literature – and in particular that of Carathéodory; see Uffink
(2001), pp. 381 ff. We need not dwell on this point.

25The first incentive strikes us as unnecessary, given that Carathéodory had shown that heat
is not fundamental, and that it is perfectly well-defined given his first law and the conservation
of energy, both of which feature in the L-Y approach. Their claim that no one “has ever seen
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5.2 Entropy

Our main concern lies more with energy than entropy, but a word about the L-Y
treatment of the latter is in order. This treatment, remarkably, provides what
is effectively a representation theorem for the preorder ≺ on the state space in
terms of a numerical “entropy” function on the space. It will be recalled that
adiabatic accessibility is a temporally-ordered concept, and the question arises
whether and how the monotonic temporal behaviour of entropy in adiabatic
processes is connected with natural constraints on this preorder, without appeal
to an assumption as strong as Carathéodory’s i-point principle. Lieb and Yng-
vason introduce six plausible axioms governing the ≺ relation holding for single
and compound systems, and assuming (without proof at this stage) the com-
parison hypothesis, show that there exists a real-valued function S on all states
of all systems such that X ≺ Y if and only if S(X) ≤ S(Y ). Furthermore, S
has the properties of additivity and extensivity that one expects of the entropy
function. “In a sense it is amazing”, Lieb and Yngvason write, “that much of
the second law follows from certain abstract properties of the relation among
states, independent of physical details (and hence of concepts such as Carnot
cycles).”26 It should not be overlooked, however, that the very definition of
entropy in this construction requires the existence of at least one pair of states
X0 and X1 such that X0 ≺≺ X1, i.e. X0 ≺ X1 but not the converse. Like
the traditional notion of entropy, the L-Y notion is not meaningful in a world
without irreversibility of some sort.27

The “Entropy Principle” is striking, and its proof is ingenious. But it is
important to note that the temporal monotonicity associated with this nu-
merical representation of ≺ does not resolve the kind of ambiguity found in
Carathéodory’s system. The question, recall, is whether the physical entropy
is non-increasing or non-decreasing relative to the arrow of time determined by
the Equilibrium Principle. In the L-Y formulation, a formal definition of S is
constructed such that, given all the assumptions, S cannot decrease in adiabatic
processes. But the representation theorem of course holds just as well for the
function S̃ ≡ −S, in which case X ≺ Y if and only if S̃(X) ≥ S̃(Y ). There is
nothing in the theorem per se which distinguishes between S and S̃ in terms of
physical import.

5.3 The ambiguity again

The L-Y framework takes on a different, more geometrical tone after the treat-
ment of the Entropy principle. The systematic treatment of irreversibility in
simple systems requires additional axioms in order to derive an analogue of
Carathéodory’s i-point principle and notably the global foliation of the state
space defined by adiabats. Recall now the energy ambiguity in Carathéodory’s
theory outlined in section 3 above for simple systems. Precisely this issue is
addressed in section III.C of the L-Y 1999 paper. The authors first adopt the

heat, nor will it ever be seen, smelled or touched” (Lieb and Yngvason (1999), p. 6) can
also be said to apply to entropy! The second incentive also strikes us as curious, particularly
because the authors themselves stress that if irreversible processes did not exist, “it would
mean that nothing is forbidden, and hence there would be no second law.” (ibid section G).

26Lieb and Yngvason (1999) p. 14.
27Here we part company with Lieb and Yngvason (1999), p. 24, where it is claimed that if

all states are adiabatically equivalent, entropy is constant.
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view that within their framework of axioms, it is “conventional” whether in an
adiabatic process between states with the same deformation (work) coordinates
the internal energy never decreases, or never increases.28 (Unsurprisingly, they
adopt the former convention.) This is a curious stance, difficult to reconcile
with subsequent remarks which take into account the definition of adiabatic
accessibility peculiar to Lieb and Yngvason:

From a physical point of view there is more at stake, however. In
fact, our operational interpretation of adiabatic processes involves
either the raising or lowering of a weight in a gravitational field and
these two cases are physically distinct. Our convention, together
with the usual convention for the sign of energy for mechanical sys-
tems and energy conservation, means that we are concerned with a
world where adiabatic process at fixed work coordinate can never
result in the raising of a weight, only in the lowering of a weight.
The opposite possibility differs from the former in a mathematically
trivial way, namely by an overall sign of the energy, but given the
physical interpretation of the energy direction in terms of raising
and lowering of weights, such a world would be different from the
one we are used to.29

This seems to be an admission that, as Carathéodory claimed (admittedly in the
context of entropy not energy), two distinct physical possibilities are at stake,
and that the issue is not merely one of convention, in the usual sense of the
term. It is noteworthy that Lieb and Yngvason state as a theorem, which they
call Planck’s principle, that:

If two states, X and Y , of a simple system have the same work
coordinates, then X ≺ Y if and only if the energy of Y is no less
than the energy of X.30

The authors make a point of saying that this principle (or rather a consequence
of it), which is explicitly based on their energy “convention”, is “clearly stronger
than Carathéodory’s principle, for it explicitly identifies states that are arbitrar-
ily close to a given state, but not adiabatically accessible from it.”31 But such
extra strength cannot be the result of adopting a convention. Note that Lieb
and Yngvason give as the reason for calling the mentioned theorem “Planck’s
principle” that “Planck emphasized the importance for thermodynamics of the
fact that ’rubbing’ (i.e., increasing the energy at fixed work coordinate) is an
irreversible process”. Indeed the fact that frictional rubbing under fixed defor-
mation coordinates leads to an increase of internal energy is sometimes chosen as

28Lieb and Yngvason (1999) p. 44. There are two notions of universality involved here, and
Lieb and Yngvason are anticipating two theorems. The first is Theorem 3.3, which states that
the forward sectors of all states in the state space of a simple system (i.e. the set of states
adiabatically accessible from the given state) point the same way energy-wise. The second is
Theorem 4.2, which states that the forward sectors of all simple systems point the same way.
It is worth emphasising that the proofs of these theorems depend on several axioms additional
to the set A1-A6 needed for the Entropy Principle. The content of one of these additional
axioms, A7, is discussed in the next section.

29Lieb and Yngvason (1999), p. 44.
30This is theorem 3.4, op cit, p. 45.
31op cit p. 46.
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the extra empirical ingredient needed to resolve the ambiguity in Carathéodory’s
original theory.32

It may be worth emphasising then the somewhat misleading nature of the
claim Lieb and Yngvason make that Planck’s principle, and as a consequence
the standard Kelvin-Planck version of the second law, follow from their first
nine axioms.33 (These include the convex combination axiom A7 to which we
return below.) This is true only when the above positive energy “convention”
is adopted. The next section attempts to further clarify the role of this extra
factual ingredient in recovering variants of the standard second law of thermo-
dynamics within the L-Y scheme.

5.4 The flow of energy (heat)

If the question is whether there is any component of the L-Y scheme that adi-
abatically favours one side of the adiabats from the other, then the answer is
actually yes. A key assumption in the L-Y treatment of simple systems and their
irreversible behaviour is their convex combination axiom A7. This asserts that
for any two states X1 = (U1, V1) and X2 = (U2, V2) of a simple system (U being
the internal energy), a fraction t of X1 can be adiabatically combined with a
fraction (1−t) of X2 to form a new state Y = (tU1+(1−t)U2, tV1+(1−t)V2).34

This axiom leads immediately to the theorem that the in the case of a single
simple system the set of points in the state space adiabatically accessible from
a given point X – the “forward sector” associated with X – must be a convex
set.35 That is, if X1 and X2 as just defined are in the set, then Y is also in
the set. (Indeed, this is the main consequence of A7, although A7 is needed to
derive several of the key geometric properties of the forward sectors.) Consider
then a continuous curve in a U, V diagram corresponding to the boundary of the
set of states adiabatically accessible from a given state, which as expected in the
L-Y scheme turns out to be a curve of constant entropy (see Figure 1 below).36

For a standard thermodynamic system with positive pressure, U decreases on
this curve with increasing deformation coordinate V . The dotted line between
states X1 and X2 represents the locus of all convex combinations of these states
obtained by ranging over the parameter t (0 ≤ t ≤ 1). Both X1 and X2 are
adiabatically accessible from Y ′, and it follows from axiom A7 that Y is too. In
the figure, the adiabat is represented as a convex function, so (∂2U/∂V 2)S ≥ 0.
So the forward sector defined relative to any state X on the adiabatic is “upward
pointing” in Lieb and Yngvason’s terms: the projection on the energy axis of
the normal to the tangent plane at X pointing to the interior of the forward
section is positive.37 This is a necessary condition for the Planck principle to

32See for example Turner (1962) and Sears (1963).
33Lieb and Yngvason (1999) p. 46.
34For many systems the axiom is a direct consequence of the Equilibrium Principle which

implies that for any two samples of a gas in states X1 and X2, when you partition the
samples as just described and then connect the two partitioned regions, the resulting system
will eventually reach an equilibrium state Y . This process can be done adiabatically, and by
conservation of energy state Y will have energy U = tU1 + (1 − t)U2. By assumption, the
state also has volume V = tV1 + (1 − t)V2. Compare with p. 31 in op. cit..

35From section III onwards in op. cit., the state space for a simple system is taken to be a
convex subset of R(n+1), n being the number of deformation coordinates.

36For a discussion of the continuity of such an adiabat, see op. cit. p. 42. Figure 1 is a
special case of Figure 3 in op. cit., pp. 32 and 96.

37Orthogonality is defined with respect to the canonical scalar product on R(n+1).
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Y = tX1 + (1 - t)X2

Figure 1: Constant entropy curve

hold. (Note in the figure that for the state Y there is a state Y ′ on the adiabat
with the same deformation coordinates, and U(Y ) ≥ U(Y ′).) However, if the
adiabat is concave, then the forward sector will be downward pointing. So apart
from the special case of a flat boundary, owing to axiom A7 the shape of the
adiabatic will determine where the forward sector lies unambiguously.38

However, it seems that the shape of the adiabat, and hence the upward or
downward pointing nature of the forward sector, are not determined by the L-
Y axioms. Such independence indeed seems to underlie the view of Lieb and
Yngvason that it is a “convention”.

Nor does the convex combination axiom A7 seem to be required to obtain
important variants of the second law. Consider the simple derivation Lieb and
Yngvason give of the proposition that energy (heat) spontaneously flows from
hot to cold bodies, and not the converse (recall the related ambiguity in section 3
above).39 A body A is defined to be hotter than another body B if the absolute
temperature TA is greater than TB , where temperature TA(B) is defined as(
∂SA(B)/∂UA(B)

)−1
, SA(B) being the entropy of A(B). Note that this definition

of “hotter than” is reasonable only if TA(B) is everywhere positive, and this
constraint is a consequence40 of the upward pointing nature of the forward
sectors and the choice of the function S and not S̃ ≡ −S in defining temperature
in this way (see the end of section 5.2 above). It is easy now for Lieb and
Yngvason to obtain the desired irreversible flow of energy (heat) from A to B,
given the conservation of total energy for the joint system, and the monotonicity
of UA(B) with respect to TA(B). We won’t repeat the details, other than to make
two remarks.

First, note that the spontaneity of this energy flow process (once thermal
contact is achieved) leading to a common temperature is secured by appeal to

38The role of A7 in determining the directionality of processes in the L-Y approach is also
pointed out and explained in Henderson (2014), though in a different way to our own.

39See theorem 5.4, Lieb and Yngvason (1999), pp. 66-67.
40See op.cit .pp. 44 and 62.
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a special case of the Equilibrium Principle.41 Second, and more to the point,
the strict monotonicity condition between UA(B) and TA(B) is a consequence of
the concavity and differentiability of the entropy for simple systems. Concavity
of entropy in general terms is established by Lieb and Yngvason’s theorem 2.8,
which relies on the convex combination axiom A7. However, what is actually
required in the heat flow argument is the weaker claim that entropy is concave
relative to the internal energy, and Lieb and Yngvason had earlier established
that this does not depend on axiom A7.42 It seems then that this axiom is not
crucial to the argument, whereas the upwards pointing condition certainly is.

Axiom A7 may however give us further insight into what an anti-Kelvin
world would be like in the L-Y scheme. Suppose then that the adiabat is strictly
concave (not convex as depicted in Figure 1), the Planck principle is false, and
(∂2U/∂V 2)S < 0. Now pressure P satisfies the equation P = −(∂U/∂V )S .43

Thus (∂P/∂V )S = −(∂2U/∂V 2) > 0. Suppose a weight is placed on top of a
piston with the pressure exactly set to balance the weight. Any bump involving
the least increase of volume would increase the pressure and lead to a runaway
process propelling the weight upwards; conversely a perturbation decreasing the
volume would cause a continual collapse of the piston to zero volume. By Le
Chatelier’s Principle, this means that all the states of the system are unstable
equilibria, analogous to points on the upwards-sloping region of a van der Waals
isotherm.44 This instability argument also holds for negative-pressure systems
with U as an increasing function of V on the adiabats.

6 Conclusions

We have argued that to understand aspects of Carathéodory’s, or indeed any ap-
proach to the second law in thermodynamics, a background arrow of time needs
to be specified, and we suggest defining it by way of the Equilibrium Principle
(Minus First Law). The L-Y approach, compared to Carathéodory’s, requires
weaker assumptions in order to derive a monotonic entropy function, but needs
considerably more axioms in order to establish a recognisable version of the sec-
ond law. In part this reflects an admirable attention to detail and an attempt
to make every step transparent while using less differential structure; one must
also not overlook the ambitious program of deriving the comparison hypothesis.
However, a strict analogue of the energy ambiguity in Carathéodory’s approach
reappears in the L-Y scheme. The upward pointing nature of forward sectors
(and hence the Planck principle) appears not to be a consequence of the L-Y
axioms, and nor is it a mere convention. It plays the role of an appeal to expe-
rience, over and above the axioms, of the kind Carathéodory needed in order to
derive the standard Kelvin-Planck version of the second law.

41Compare the discussion of the axiom T1 of thermal contact in op. cit., p. 52.
42Op. cit., p. 53.
43This equation is a consequence of the definition of pressure and a number of continuity

assumptions in the L-Y formulation; see pp. 40-41 in op. cit.. Note that the minus sign
is omitted in equation (3.6) therein; this is not the case in Lieb and Yngvason (1998): see
equation (14).

44See Reif (1965).
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