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Abstract 

Focusing on Shannon information, this article shows that, even on the basis of the same 

formalism, there may be different interpretations of the concept of information, and that 

disagreements may be deep enough to lead to very different conclusions about the 

informational characterization of certain physical situations. On this basis, a pluralist view 

is argued for, according to which the concept of information is primarily a formal concept 

that can adopt different interpretations that are not mutually exclusive, but each useful in a 

different specific context. 

1. Introduction 

In the Book 11 of his Confessions, St. Augustine asks himself: “What, then, is time? If no one asks me, 

I know what it is. But if I wish to explain it to one that asketh, I know not.” Something similar happens 

today with information. Both in everyday life and in science, the word ‘information’ is so pervasive 

that we all believe we know what we mean by it. However, as soon as we are asked for its precise 

meaning, the opinions substantially diverge. 

As many recognize, information is a polysemantic concept that can be associated with different 

phenomena (Floridi 2010). In this conceptual tangle, the first distinction to be introduced is between a 

semantic and a non-semantic view of information. According to the first view, information is 

something that carries semantic content (Bar-Hillel and Carnap 1953; Bar-Hillel 1964), and which is 

therefore strongly related with semantic notions such as reference, meaning and representation. In 

general, semantic information is carried by propositions that intend to represent states of affairs; so, it 

has “aboutness”, that is, it is directed to other things. And although it is still controversial whether false 

factual content may qualify as information, semantic information is strongly linked with the notion of 

truth.  
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Non-semantic information, also called ‘mathematical’ or ‘statistical’, is concerned with the 

statistical properties of a given system and/or the correlations between the states of two systems, 

independently of the meanings of those states. The classical locus of mathematical information is the 

paper where Shannon (1948) introduces a precise formalism designed to solve certain specific 

technological problems. Shannon’s theory is purely quantitative, it ignores any issue related to 

informational content: “[the] semantic aspects of communication are irrelevant to the engineering 

problem. The significant aspect is that the actual message is one selected from a set of possible 

messages” (Shannon 1948, 379). 

Although Shannon’s theory is the traditional formalism to quantify information, it is not the only 

one. For instance, Fisher information measures the dependence of a random variable X on an unknown 

parameter θ upon which the probability of X depends (Fisher 1925), and algorithmic information 

measures the length of the shortest program that produces a string on a universal Turing machine 

(Chaitin 1987). In quantum information theory, von Neumann entropy gives a measure of the quantum 

resources necessary to faithfully encode the state of the source-system (Schumacher 1995). 

It might be supposed that, when confined to a formal framework, the meaning of ‘information’ is 

clear: given the mathematical theory, information is what this theory describes. However, this is not the 

case. Even on the basis of the same formalism, there may be different interpretations of the concept of 

information, and disagreements may be deep enough to lead to different conclusions in certain physical 

situations. Although disagreements may arise regarding any formalism, we will focus on Shannon’s 

theory since it is the most widespread formalism, even applicable in the quantum context (Rovelli 1996; 

Timpson 2003). Finally, we will argue for a pluralist view according to which, once mathematically 

characterized, the concept of information is a formal concept that can adopt different interpretations not 

mutually exclusive, each useful in a different context. 

2. Shannon’s Theory 

According to Shannon’s theory (Shannon 1948), transmission of information requires a source S, a 

receiver R and a channel CH. If S has a range of possible states 
1
,...,

n
s s  –letters–, whose respective 

probabilities of occurrence are 
1

( ),..., ( )
n

p s p s , the amount of information generated at the source by 

the occurrence of 
i
s  is defined as ( ) log(1 ( ))

i i
I s p s= . When ‘log’ is the logarithm to the base 2, the 

resulting unit of measurement is called ‘bit’ (if the natural logarithm is used, the unit is the nat, and in 
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the case of the logarithm to the base 10, the unit is the Hartley). Since S produces long sequences of 

states –messages–, the average amount of information generated at the source is defined as: 

1

( ) ( ) log(1 ( ))
n

i i

i

I S p s p s
=

=∑  

Analogously, if the possible states of R are 
1
,...,

m
r r , with respective probabilities 

1
( ),..., ( )

m
p r p r , the 

amount of information received at the receiver by the occurrence of jr  is ( ) log(1 ( ))j jI r p r= , and the 

average amount of information received at the receiver is: 

1

( ) ( ) log(1 ( ))
m

j j

j

I R p r p r
=

=∑  

The relationship between ( )I S  and ( )I R  can be represented as: 

       ( ; )I S R : mutual information 

       E : equivocation 

       N : noise 

where ( ; ) ( ) ( )I S R I S E I R N= − = − is the information generated at S and received at R, E is the 

information generated at S but not received at R, and N is the information received at R but not 

generated at S (always average amounts). E and N are measures of the dependence between S and R 

and, therefore, are functions not only of S and R, but also of the channel CH, defined by the matrix 

( )j ip r s   , where ( )j ip r s  is the conditional probability of the occurrence of jr  given the occurrence 

of 
i
s , and the elements in any row must sum to 1. Thus, N and E are computed as: 

1 1

( ) ( ) log(1 ( ))
n m

i j i j i

i j

N p s p r s p r s
= =

=∑ ∑         
1 1

( ) ( ) log(1 ( ))
m n

j i j i j

j i

E p r p s r p s r
= =

=∑ ∑  

where ( ) ( ) ( ) ( )i j j i i jp s r p r s p s p r= . 

One of the most relevant results in Shannon’s theory is the noiseless coding theorem, according 

to which the value of ( )I S  is equal to the average number of bits necessary to code a letter of the 

source using an ideal code: ( )I S  measures the optimal compression of the source messages. In fact, the 

messages of N letters produced by S fall into two classes: one of approximately ( )
2
NI S  typical messages, 

and the other of atypical messages. When N →∞ , the probability of an atypical message becomes 

negligible; so, the source can be conceived as producing only ( )
2
NI S  possible messages. This suggests a 

I(S)  I(R) 

I(S,R) E N 
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natural strategy for coding: each typical message is coded by a binary sequence of length ( )NI S , in 

general shorter than the length N  of the original message. 

Given this formalism, it seems that there is nothing controversial in the concept of Shannon 

information: it would be what Shannon’s theory describes. However, matters are not so simple. 

During the last years, it has been usual to hear in the philosophy of physics (not in the physics) 

community that the problem of the interpretation of information is dissolved because the word 

‘information’ is an abstract noun. Timpson (2004, 2008) insists that what is produced at the source and 

that we desire to transmit is not a token-sequence but a type-sequence; but types are abstract and, so, 

they are not part of the spatio-temporal content of the world. Therefore, according to this view 

information is not a substance, not even a physical entity, because it is not an entity at all: there is 

nothing the word ‘information’ refers to. 

Despite the diffusion of this position, one may suspect that information is even more abstract than 

a type. In fact, types are not items to be measured in bits. Moreover, the information of very different 

types may be the same, since the only relevant aspect in Shannon information is that the actual 

sequence is one selected from a set of possible sequences. And it is not even the case that we always 

want to transmit the same type-sequence: the states of the receiver may be completely different, even in 

a type sense, than the states of the source: the success of information transmission depends on the 

decision about the expected correlations, embodied in the fidelity function, between the source states 

and the receiver states. In brief, Timpson unwittingly reintroduces semantic issues −analogous to those 

related with the difference between proposition, sentence and utterance− in the discussion about 

Shannon information, a field where semantics plays no role at all.  

Of course, these briefs comments are not a full analysis of Timpson’s very articulated position, 

which deserves a specific article. Nevertheless, they open the way to focus on the different views about 

Shannon information that are still present in philosophical and physical discussions. 

3. Epistemic and Physical Interpretations of Information 

A concept usually connected with the notion of information is that of knowledge: information provides 

knowledge, modifies the state of knowledge of those who receive it. Some believe that the link between 

information and knowledge is a feature of the everyday notion of information, which must be carefully 

distinguished from the Shannon’s technical concept (Timpson 2004). However, the idea of knowledge 

is present also in the philosophical and the physical discourse about information. 
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In fact, it is common to find authors who even define information in terms of knowledge. For 

instance, on the basis of Shannon’s theory as the underlying formalism for his proposal, Dretske says: 

“information is a commodity that, given the right recipient, is capable of yielding knowledge.” (1981, 

47). According to MacKay, information is linked to an increase in knowledge on the receiver’s side: 

“Suppose we begin by asking ourselves what we mean by information. Roughly speaking, we say that 

we have gained information when we know something now that we didn't know before; when ‘what we 

know’ has changed.” (1969, 10). 

This presence of the notion of knowledge is not confined to authors who try to supply a semantic 

content to statistical information. Some philosophers of physics are also persuaded that the core 

meaning of the concept of information, even in its technical sense, is linked to the concept of 

knowledge (Myrvold, personal communication). And physicists frequently speak about what we know 

or may know when dealing with information. For instance, Rovelli (1997) insists that quantum 

mechanics is a theory about information because it talks about the relations between what different 

observers “know” about a quantum system. Zeilinger even equates information and knowledge when 

he says that “We have knowledge, i.e., information, of an object only through observation” (1999, 633) 

or, with Bruckner, “For convenience we will use here not a measure of information or knowledge, but 

rather its opposite, a measure of uncertainty or entropy” (2009, 681-82). Even in a traditional textbook 

about Shannon’s theory one can read that information “is measured as a difference between the state of 

knowledge of the recipient before and after the communication of information.” (Bell 1957, 7), and that 

it must be relativized with respect to the background knowledge available before the transmission: “the 

datum point of information is then the whole body of knowledge possessed at the receiving end before 

the communication.” (Bell 1957, 7). 

It is worth stressing that, from the epistemic perspective, the possibility of acquiring knowledge 

about a source by consulting the state of a receiver is rooted in the nomic character of the regularities 

underlying the whole situation. In fact, the conditional probabilities that define the channel do not 

represent merely de facto correlations; they are determined by a network of lawful connections between 

the states of the source and the states of the receiver. 

A different view about information is the one that detaches the concept from the notion of 

knowledge and considers information as a physical magnitude. This is the position of many physicists 

and most engineers, for whom the essential feature of information is its capacity to be generated at one 

point of the physical space and transmitted to another point; it can also be accumulated, stored and 
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converted from one form to another, like other physical magnitudes such as energy. In this case, the 

capability of providing knowledge is not a central issue, since the transmission of information can be 

used only for control purposes, such as controlling a device at the receiver end by modifying the state 

of the source. According to this view, it is precisely because of the physical nature of information that 

the dynamics of its flow is constrained by physical laws and facts: “Information handling is limited by 

the laws of physics and the number of parts available in the universe” (Landauer 1991, 29; see also 

Bennett and Landauer 1985). 

In general, the physical interpretation of information comes strongly linked with the idea 

expressed by the well-known dictum ‘no information without representation’: the transmission of 

information between two points of physical space necessarily requires an information-bearing signal, 

that is, a physical process propagating from one point to the other. Landauer is an explicit defender of 

this position when he claims that “Information is not a disembodied abstract entity; it is always tied to 

a physical representation. It is represented by engraving on a stone tablet, a spin, a charge, a hole in a 

punched card, a mark on a paper, or some other equivalent.” (1996, 188). This view is also adopted by 

some philosophers of science; for instance, Kosso states that “information is transferred between states 

through interaction.” (1989, 37). The need of a carrier signal is natural in the light of the generic idea 

that physical influences can only be transferred through interactions. 

In the context of this physical interpretation, information tends to be compared with energy, 

which was born in the specific field of mechanics as a pragmatic notion related with the resources we 

can draw from a mechanical system, but ended up being conceived as a highly wide reaching concept: 

at present the word ‘energy’ refers to an item that pervades the whole world of physics. On this basis, 

information is conceived by many physicists as a physical entity with the same ontological status as 

energy; it has also been claimed that its essential property is the power to manifest itself as structure 

when added to matter (Stonier 1990, 1996). 

4. Epistemic versus Physical Interpretations of Information 

If the difference between the epistemic and the physical interpretations of information is clear from a 

conceptual viewpoint, it turns out to be even more clear when the concept of information is applied to 

particular situations. 

Let us consider a source S that transmits information to two physically isolated receivers RA and 

RB via a certain physical link. In this case, the correlations between the states of the two receivers are 



 7 

not accidental, but functions of the physical dependence of RA and RB on S. Nevertheless, there is no 

physical interaction between the receivers. The informational description of this situation is completely 

different from the viewpoints given by the two interpretations of the concept of information. According 

to the physical interpretation, it is clear that no information is being transferred between RA and RB 

since there is no physical signal traveling between them. However, from an epistemic interpretation, 

nothing prevents us from admitting the existence of an informational link between the two receivers. In 

fact, we can define a communication channel between RA and RB because it is possible to learn 

something about RB by looking at RA and vice versa: “from a theoretical point of view [. . .] the 

communication channel may be thought of as simply the set of depending relations between [a system] 

S and [a system] R. If the statistical relations defining equivocation and noise between S and R are 

appropriate, then there is a channel between these two points, and information passes between them, 

even if there is no direct physical link joining S with R.” (Dretske 1981, 38). The receiver RB may even 

be farther from the source S than RA, so that the events at RB may occur later than those at RA. 

Nevertheless, this is irrelevant from the epistemic view of information: although the events at RB occur 

later, RA carries information about what will happen at RB. 

Somebody might consider that the difference in the informational characterization of the situation 

described above is a mere curiosity with no philosophical interest. However, this kind of disagreements 

has also relevant consequences in the characterization of central notions in the philosophy of science. 

For instance, there is an important philosophical tradition that explains scientific observation in terms 

of information. In order to elucidate the notion of observation without resorting to perceptual matters, 

Shapere proposes that x is directly observed if information is received by an appropriate receptor and 

that information is transmitted from the entity x to the receptor without interference (Shapere 1982). 

Brown agrees with Shapere in stressing that observing an item I consists in gaining information about I 

by examining another item I* (Brown 1987). Kosso (1989) also adheres to this tradition with his 

“interaction-information” account of scientific observation. 

In general (with the exception of Kosso, who relies on Shannon’s theory), in the discussions 

about scientific observation the concept of information is not sufficiently specified in formal terms, so 

the interpretation of the concept is even less considered. However, the way in which information is 

conceived leads to very different consequences regarding the view about observation. This turns out to 

be particularly clear in the so-called ‘negative experiments’, which were originally devised as a 

theoretical tool for analyzing the quantum measurement problem (see Jammer 1974). Nevertheless, 
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they can be regarded independently from quantum mechanics: in a negative experiment it is assumed 

that an event has been observed by noting the absence of some other event. This is the case of neutral 

weak currents, which are observed by noticing the absence of charged muons. But the conceptual core 

of negative experiments can be understood by means of a very simple example. Let us consider a tube 

in whose middle point a classical particle is emitted towards one of the ends of the tube; a detection 

device is placed at one of the ends, say A, in order to know in which direction the particle was emitted. 

Since there is a perfect anticorrelation between both ends of the tube, by looking at the right end A, we 

can know the state at the left end B. Nevertheless, the instantaneous propagation of a signal between A 

and B is physically impossible. If after an appropriate time –depending on the velocity of the particle 

and the length of the tube– the device at A indicates no detection, we can conclude that the particle was 

emitted toward the left end B. But, have we observed the direction of the emitted particle? From an 

informational account of scientific observation, the answer depends on the interpretation of the concept 

of information adopted. On the basis of an epistemic interpretation, a communication channel between 

the two ends of the tube can be defined, which allows us to observe the presence of the particle at B, 

even though there is no signal between B to A. The physical view leads us to a concept of observation 

narrower than the previous one: by looking at the detector we observe the state at A, but we do not 

observe the state at B; such a state is inferred. 

As it has been repeatedly noticed, Shannon information is not tied to classical physics: any type 

of physical system can be used to design the informational situation (Timpson 2003, 2004; Dwell 2003). 

Therefore, Shannon’s theory can in principle be applied to the quantum domain, in particular, to EPR-

type experiments, characterized by theoretically well-founded correlations between two spatially 

separated particles. During many years it was repeated that information cannot be sent between both 

particles because the propagation of a superluminal signal from one particle to the other is impossible: 

there is no information-bearing signal that can be modified at one point of space in order to carry 

information to the other spatially separated point. But the fact that the physical interpretation of 

information underlies that claim was usually not noticed. On the contrary, the epistemic interpretation, 

which only requires correlations, would face no problem in defining an informational channel between 

the two EPR-particles. 

Disagreements increase when quantum information comes into play. Teleportation is one of the 

paradigmatic phenomena in this field. Broadly speaking, an unknown quantum state is transferred from 

Alice to Bob with the assistance of a shared pair prepared in an entangled state and of two classical bits 
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sent from Alice to Bob (the description of the protocol can be found in any text on the matter). 

Although the situation is usually not strictly described in informational terms (not Shannon’s nor 

quantum informational terms), the idea is that the very large (strictly infinite) amount of information 

required to specify the teletransported state is transferred from Alice to Bob by sending only two bits. 

When addressing this problem, many physicists try to find a physical link between Alice and Bob that 

could play the role of carrier of information. For instance, Penrose (1998) and Jozsa (1998, 2004) claim 

that information may travel backwards in time: “How is it that the continuous ‘information’ of the spin 

direction of the state that she wishes to transmit […] can be transmitted to Bob when she actually sends 

him only two bits of discrete information? The only other link between Alice and Bob is the quantum 

link that the entangled pair provides. In spacetime terms this link extends back into the past from Alice 

to the event at which the entangled pair was produced, and then it extends forward into the future to 

the event where Bob performs his.” (Penrose 1998, 1928). According to Deutsch and Hayden (2000), 

the information travels hidden in the classical bits. These physicists do not explicitly acknowledge that 

the problem derives from the physical interpretation of information to which they strongly adhere, and 

that an epistemic view would not commit them to find a physical channel between Alice and Bob. 

Of course, an elucidation of the concept of information does not dissolve all the conundrums 

involved in teleportation (see Timpson 2006), or in the phenomenon of entanglement that underlies it. 

Nevertheless, such elucidation would help us to find a way out of the problems derived from the 

informational characterization of teleportation. One may wonder how essential the need of a spatio-

temporal link is in the physical interpretation of information. Or one may reconstruct the situation in 

Shannon terms to conclude that the information effectively transmitted (the mutual information) is 

really not very large, to the extent that the receiver cannot retrieve the whole information generated at 

the source. Or one may even decide to leave aside the physical interpretation in favor of an epistemic 

view that recovers the relation between information and knowledge. 

5. A Pluralist Approach to Information 

Up to this point, the epistemic and the physical interpretations of Shannon information were presented 

as rival; nevertheless, this is not necessarily the case. 

Although the physical interpretation has been the most usual in the traditional textbooks used in 

engineer’s training, this has changed in recent times: in general, present-day textbooks explain 

information theory in a formal way, with no mention of sources, receivers or signals, and the basic 
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concepts are introduced in terms of random variables and probability distributions over their possible 

values. Only when the formalism has been presented, is the theory applied to the traditional case of 

communication. For instance, in their extensively used book Cover and Thomas emphasize that: 

“Information theory answers two fundamental questions in communication theory […]. For this reason 

some consider information theory to be a subset of communication theory. We will argue that it is much 

more. Indeed, it has fundamental contributions to make in statistical physics […], computer sciences 

[…], statistical inference […] and to probability and statistics.” (1991, 1) 

The idea that the concept of information is completely formal is not new. Already Khinchin 

(1957) and Reza (1961) conceived information theory as a new chapter of the theory of probability. 

From this perspective, Shannon information not only is not a physical magnitude, but it also loses its 

nomic ingredient: the mutual information between two random variables can be defined even if there is 

no lawful relationship between them and their conditional probabilities express only de facto 

correlations.  

If the concept of information is purely formal and belongs to a mathematical theory, the word 

‘information’ does not belong to the language of empirical sciences −or to ordinary language−: it has 

no extralinguistic reference in itself. Its “meaning” has only a syntactic dimension. According to this 

view, the generality of the concept of Shannon information derives from its exclusively formal nature; 

this generality is what makes it a powerful formal tool for empirical science, applicable to a variety of 

fields.  

From this formal perspective, the relationship between the word ‘information’ and the different 

views of information is the logical relationship between a mathematical object and its interpretations, 

each one of which endows the term with a specific referential content. The epistemic view, then, is only 

one of the different possible interpretations, which may be applied in psychology and in cognitive 

sciences by using the concept of information to conceptualize the human abilities of acquiring 

knowledge (see e.g. Hoel, Albantakis and Tononi 2013). The epistemic interpretation might also serve 

as a basis for the philosophically motivated attempts to add a semantic dimension to a formal theory of 

information (MacKay 1969; Nauta 1972; Dretske 1981) 

In turn, the physical view, which makes information a physical magnitude carried by signals, is 

clearly the appropriate interpretation in communication theory, in which the main problem consists in 

optimizing the transmission of information by means of physical carriers whose energy and bandwidth 

is constrained by technological and economic limitations. But this is not the only possible physical 
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interpretation: if S is not interpreted as a source with states but a macrostate compatible with many 

equiprobable microstates, ( )I S  represents the Boltzmann thermodynamic entropy of S. Furthermore, in 

computer sciences a communicational information may be defined, such that, if S is interpreted as a 

binary string of finite length, ( )I S  can be related with the algorithmic complexity of S. The 

understanding of the relationship between the formal concept of information and its interpretations 

serves for assessing the usually obscure extrapolations from communication theory to thermodynamics 

or computing. 

Summing up, this pluralist view about information rejects the question about “the” meaning of 

information: “The word ‘information’ has been given different meanings by various writers in the 

general field of information theory. [...] It is hardly to be expected that a single concept of information 

would satisfactorily account for the numerous possible applications of this general field.” (Shannon 

1993, 180). 
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