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Abstrat

The aim of this paper is to give a sharp de�nition of Bell's notion of loal ausality. To this end,

�rst we unfold a framework, alled loal physial theory, integrating probabilisti and spatiotemporal

onepts. Formulating loal ausality within this framework and lassifying loal physial theories by

whether they obey loal primitive ausality�a property rendering the dynamis of the theory ausal,

we then investigate what is needed for a loal physial theory, with or without loal primitive ausality,

to be loally ausal. Finally, omparing Bell's loal ausality with the Common Cause Priniples and

relating both to the Bell inequalities we �nd a nie parallelism: Bell inequalities annot be derived

neither from loal ausality nor from a ommon ause unless the loal physial theory is lassial or

the ommon ause is ommuting, respetively.
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1 Introdution

In the history of ausation spatiotemporal onsiderations always played an eminent role: they governed

the general disourse in philosophy and informed the onrete theory onstrutions in physis. Just reall

Hume's ideas on the ontiguity of ause and e�et, Newton's struggling with the ation at a distane in

his theory of gravitation, or Faraday's �eld theoretial program in eletromagnetism. There is, however,

an important milestone in the history of loal ausality, namely John Stewart Bell. Bell's merit is

that he was able to translate the philosophial intuitions lying behind loal ausality into easily tratable

mathematial terms whih then set the sene for a whole researh program in the foundations of quantum

theory.

What are these philosophial intuitions? In a 1988 interview Bell formulates them as follows:

�[Loal ausality℄ is the idea that what you do has onsequenes only nearby, and that any

onsequenes at a distant plae will be weaker and will arrive there only after the time per-

mitted by the veloity of light. Loality is the idea that onsequenes propagate ontinuously,

that they don't leap over distanes.� (Mann and Crease, 1988)

Bell has returned to this intuitive notion of loal ausality from time to time and presented a more

and more re�ned formulation of it. His line of reasoning, however, remained the same. Loal ausality

exludes ausal proesses propagating faster than the speed of light but does not exlude orrelations

between spatially separated events. Suh orrelations, namely, an be brought about by a ommon ause

operating in the past of the events in question. However, �xing the past of an event in a detailed enough

manner, the state of this event in a loally ausal theory will be �xed one and for all, and no other

spatially separated event an ontribute to it.
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Looking at purely the logial struture of Bell's formulation of loal ausality, one an well see that it is

an inferene pattern from spatiotemporal to probabilisti relations : if events are loalized in the spaetime

in a ertain way, then they are to satisfy ertain probabilisti independenies. Be these inferenes as

intuitive and appliable in the onrete physial praxis as they are, for a lear treatment something

more is needed: a oneptual-formal framework integrating spatiotemporal and probabilisti onepts in

a ommon shema. Without suh a framework, one ould not aount for the inferenes from relations

between spaetime regions to probabilisti independenies between, say, random variables. Where to �nd

suh a framework?

The most elaborate formalism used in physis o�ering a general method to onnet spatiotemporal

and probabilisti entities is quantum �eld theory, or its algebrai-axiomati form, algebrai quantum �eld

theory (AQFT) aka loal quantum physis (Haag, 1992). AQFT is a mathematially transparent theory

ideal for analyzing various onepts related to loal ausality, suh as the Bell inequalities (Summers,

1987a,b; Summers and Werner, 1988; Halvorson 2007); relativisti ausality (Butter�eld 1995, 2007;

Earman 2014; Earman and Valente, 2014); or the losely related (see below) Common Cause Priniple

(Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and Vesernyés 2012a, 2013a). To our ends, however,

the full formalism of AQFT would be too muh. Our intention is simply to provide a minimal framework

whih is needed to formulate Bell's notion of loal ausality in a strit fashion. We will all suh a

framework a loal physial theory. A loal physial theory is a formal struture integrating the two most

important omponents of a general physial theory: a spaetime struture and an algebrai-probabilisti

struture. By using only few axioms in haratering loal physial theories, our ambition is to over

as many onrete physial theories with spatiotemporal onnotations as possible. Having a �rm formal

framework in hand, we an aomplish our primary goal whih is to de�ne Bell's notion of loal ausality

in a lear-ut way and to relate it to other ausality and loality onepts.

The paper is strutured as follows. In Setion 2 we set the mathematial framework of a loal physial

theory and spend some time to motivate the appliation of von Neumann algebras in this framework.

Setion 3 is devoted to the important onepts leading to ausal dynamis of the observables in loal

physial theories, namely primitive ausality and loal primitive ausality. In Setion 4 we list and analyze

further relativisti ausality priniples used in a loal physial theory, suh as parameter and outome

independene, loal determinism and stohasti Einstein loality. In Setion 5 we present Bell's own

formulation of loal ausality and rede�ne it in the framework of loal lassial or quantum theories.

In the same setion we prove that loal primitive ausality makes a loal physial theory to be loally

ausal. In Setion 6 we relate loal ausality to ausal stohasti dynamis in loal lassial theories

without primitive ausality. In Setion 7 we ompare loal ausality with the Common Cause Priniple

and relate both onepts to the Bell inequalities. We sum up in Setion 8.

Our paper is �tting into a reent researh line on a deeper oneptual and formal understanding of

Bell's notion of loal ausality. Travis Norsen illuminating paper on loal ausality (Norsen, 2011) or

its relation to Jarrett's ompleteness riterion (Norsen, 2009); the paper of Seevink and U�nk (2011)

aiming at providing a 'sharp and lean' formulation of loal ausality; or Henson's (2013b) paper on the

relation between separability and the Bell inequalities all attest this renewed interest in loal ausality.

We will omment on the points of ontat with these papers underway. For a more philosopher-friendly

and less tehnial version of our paper see (Hofer-Szabó and Vesernyés 2014).

2 What is a loal physial theory?

Let us start our projet by de�ning a general framework, alled loal physial theory, whih enables us

to treat spatiotemporal and probabilisti entities in a ommon formalism. Instead of jumping diretly to

the full-�edged de�nition, we will proeed here 'indutively' by unfolding the notion of a loal physial

theory and speifying its di�erent harateristi features step by step. Having listed these features we

formulate the exat de�nition only at the end of the setion.

The entral idea of a loal physial theory is the assoiation of loal operator algebras to spaetime
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regions regulated by the following physially motivated requirements (Haag, 1992):

1. Isotony. Let M be a globally hyperboli spaetime

1

and let K be a overing olletion

2

of bounded,

globally hyperboli subspaetime regions of M suh that (K,⊆) is a direted poset under inlusion

⊆. The net of loal observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasiloal algebra A is

de�ned to be the indutive limit C∗
-algebra of the net {A(V ), V ∈ K} of loal C∗

-algebras.

3

Sometimes additivity, whih is a stronger property than isotony, is also required for the net of

observables: A(V1) ∨ A(V2) = A(V1 ∪ V2);V1, V2, V1 ∪ V2 ∈ K, where ∨ refers to the generated

algebra in A.

2. Miroausality (also alled as Einstein ausality) is the requirement that A(V ′)′∩A ⊇ A(V ), V ∈ K,
where primes denote spaelike omplement and algebra ommutant, respetively.

3. PK-ovariane. Let PK be the subgroup of the group P of global isometries of M leaving the ol-

letion K invariant. A group homomorphism α : PK → AutA is given suh that the automorphisms

αg, g ∈ PK of A at ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.

Here the possible spaetimes spread from Minkowski spaetime through stationary spaetimes to generi

globally hyperboli ones where no global Killing vetor �eld exists. Choosing the olletion K in a way

that every V ∈ K ontains only a �nite number of elements of K, one an onsider loal theories with

loally �nite degrees of freedom when the loal algebras are �nite dimensional. Otherwise the loal

algebras themselves are in�nite dimensional.

We would like to treat lassial and quantum theories on an equal footing as far as possible. The

di�erene between the two is that the quasiloal algebra of a loal lassial theory is required to be om-

mutative while that of a loal quantum theory is required to be nonommutative. Thus, miroausality

ful�ls trivially in loal lassial theories. On the other hand, in loal quantum theories it is usually

required that the quasiloal algebra is `highly nonommutative' and the loal algebras are `fat enough'.

This is assured by algebrai Haag duality whih is a stronger requirement than miroausality:

4.Q Algebrai Haag duality. A(V ′)′ ∩ A = A(V ), V ∈ K.

Clearly, Haag duality is inherently onneted to the nonommutativity of the observable algebra. In ase

of ommutative loal algebras Haag duality would imply that A(V ) = A for any V ∈ K, that is the net
struture of loal algebras would be ompletely lost. To avoid this trivial net struture in loal lassial

theories, one requires less than Haag duality:

4.C Intersetion property for spaelike separated regions. The intersetion property

A(V1) ∩ A(V2) = A(V1 ∩ V2); V1, V2, V1 ∩ V2 ∈ K (1)

holds for spaelike separated regions V1, V2 ∈ K, that is A(V1) ∩ A(V2) = A(∅) := C1A for them.

In ase of loal quantum theories this property follows from Haag duality and primitive ausality (see

below) if the net is additive and the quasiloal algebra is a fator, that is its enter is trivial: A′ ∩ A =

1

By a spaetime we mean a onneted time-oriented Lorentzian manifold. A spaetime M is alled globally hyperboli

if M ontains a Cauhy hypersurfae, whih is by de�nition a subset S ⊂ M suh that eah inextendible timelike urve in

M meets S at exatly one point. (See (Pfä�e, 2009) and referenes therein.)

2

For all x ∈ M there exists V ∈ K suh that x ∈ V .

3

This formulation is a speial ase of the general ategory theoretial formulation of AQFTs in urved bakgrounds

(Brunetti and Fredenhagen, 2009). Namely, the funtor from globally hyperboli spaetimes to unital C∗
-algebras is

restrited to the full subategory indued by the objet M and the (sub)olletion K of its subobjets.
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C1A.
4

We note that the intersetion property (1) is not required for all pairs V1, V2 ∈ K, sine it would
ontradit to primitive ausality whih, as we will see, makes the dynamis to be deterministi.

Di�erent physial realizations of a single loal theory are given by unitary inequivalent representations

π : A → B(H) of the quasiloal C∗
-algebra A by bounded operators B(H) on a (separable) Hilbert spae

H. Inequivalent representations an be produed from essentially di�erent states φ : A → C through

GNS�onstrution. Representations are required to be loally faithful not to loose loal observables.

One a partiular representation is hosen, one an onsider the natural von Neumann algebra extension

of the loal algebras by taking weak losures N (V ) := π(A(V ))′′, V ∈ K.

5. Representation. A loally faithful representation π : A → B(H) is hosen where a (strongly ontinu-

ous) unitary representation U : PK → B(H) implements α : PK → AutA. The loal and quasiloal

observables are extended as N (V ) := π(A(V ))′′, V ∈ K and AH := ∪V ∈KN (V ) ⊂ B(H), respe-
tively.

It is easy to see that the net {N (V ), V ∈ K} of loal von Neumann algebras given above also obeys

isotony, miroausality in the sense that π(A(V ′))′∩B(H) ⊇ N (V ), V ∈ K, and PK-ovariane. Sine we

onentrate on loal and ausal properties we do not onsider further requirements on the representation π,
e.g. how a vauum representation an be haraterized and be hosen among the allowed representations.

5

Here we would like to brie�y omment on the use of von Neumann algebras as loal algebras in loal

lassial theories. The ruial point is the link between von Neumann algebras and σ-algebras. Every

element S ⊂ Ω of a σ-algebra (Ω,Σ) determines a projetion χS in the abelian

∗
-algebra F(Ω,C) of

omplex funtions on Ω, namely, χS is the harateristi funtion of the subset S ∈ Σ. In general,

we would like to translate loal σ-algebras (Ω,Σ) to loal ommutative operator algebras generated by

projetions χS , S ∈ Σ in the funtion algebra F(Ω,C). This abundane of projetions is, however, the

reason why the loal operator algebras annot be represented by ommutative C∗
-algebras in a loal

lassial theory. Namely, a ommutative unital (nonunital) C∗
-algebra, aording to the Gelfand duality,

is isomorphi to the algebra of omplex valued ontinuous funtions (vanishing at in�nity) on a (loally)

ompat Hausdor� topologial spae. However, unless the topology is disrete, suh algebras generally do

not ontain nontrivial projetions at all. Therefore one is to onsider ommutative von Neumann algebras

in loal lassial theories as loal operator algebras whih are not only rih enough in projetions, but

also are generated by them.

The paradigmati ase of a ommutative von Neumann algebras is the spae of omplex-valued essen-

tially bounded measurable funtions L∞(Ω,Σ, µ) on the σ-�nite measure spae (Ω,Σ, µ). This Neumann

algebra is generated by the sublass {χS, S ∈ Σ} of harateristi funtions on Ω, and ats on the separa-

ble Hilbert spae L2(Ω,Σ, µ) by multipliation. This sublass of harateristi funtions, or equivalently,

the sets of their supports form the σ-algebra (Ω,Σ) of lassial events. The lattie operations and the

algebra operations relate to one another as follows: χSχT = χS∧T , χS + χT − χSχT = χS∨T . This

σ-algebra, however, is not the most general σ-algebra one an imagine, sine not every σ-algebra an be

equipped by a σ-�nite measure µ. Nevertheless, they give us a rih enough set of examples for lassial

theories. The probability measure p on the orresponding σ-algebra (Ω,Σ) an be provided by any normal

state ω on the von Neumann algebra L∞(Ω,Σ, µ) by pω(S) := ω(χS), S ∈ Σ.
It is a further question as to what kind of loal σ-algebras an orrespond to loal lassial theories,

e.g. to lassial �eld theories with on�guration spae FM := {Φ: M → F} with �eld values F = Rn,Cn
,

for example. The maximal σ-algebra of lassial events one an imagine is (FM,P(FM)) given by the

4

Let V1, V2 ∈ K be spaelike separated regions. Due to Haag duality and additivity of the net

A(V1) ∩ A(V2) = A(V ′
1 )

′ ∩A(V ′
2 )

′ = (A(V ′
1 ) ∨ A(V ′

2 ))
′ = A(V ′

1 ∪ V ′
2)

′. (2)

Sine V ′
1
∪ V ′

2
always ontains a Cauhy surfae if V1 and V2 are spaelike separated bounded spaetime regions, we arrive

at A(V ′
1
∪ V ′

2
) = A due to primitive ausality. Therefore A(V1) ∩ A(V2) = A(V ′

1
∪ V ′

2
)′ = A′ ∩ A =: CenterA.

5

However, to stay within the quasi-equivalene lass of the representation π one onsiders only states in the folium of π
(Haag, 1992), that is normal states of π(A)′′ whih lead to loally normal states, that is normal states by restriting them

to the loal von Neumann algebras N (V ), V ∈ K.
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power set P(FM) of the set of �eld on�gurations. One needs also narrower σ-algebras in tune with the

net struture of the theory. This is done by taking loal equivalene lasses of those on�gurations whih

have the same �eld values on a given region V ∈ K. Two �eld on�gurations Φ,Ψ ∈ FM
are said to be

loally V -equivalent, Φ ∼V Ψ, if Φ|V = Ψ|V . The isotone net struture {(FM,Σ(V )), V ∈ K} of unital

σ-subalgebras Σ(V ) ⊂ P(FM) an be given by the `ylindrial subsets' of FM
orresponding to the

image sets of anonial projetions ZV : P(FM) → P(FM), V ∈ K, whih map a set S of on�gurations

onto the orresponding union of V -equivalene lasses of on�gurations in S:

P(FM) ∋ S 7→ ZV (S) := {Φ ∈ FM |∃Ψ ∈ S : Φ|V = Ψ|V } ∈ Σ(V ) := ZV (P(FM)). (3)

Clearly, the net {(FM,Σ(V )), V ∈ K} � or {Σ(V ), V ∈ K}, for short � is PK-ovariant. The hard and

unsolved problem is to give a probability measure on the σ-algebra (FM,P(FM)) or on a meaningful σ-
subalgebra of it. We an avoid this onundrum by hoosing a loally �nite overing of M, that is hoosing

a subnet Km ⊂ K in a way that every V ∈ Km
ontains only a �nite number of elements of Km

, and

restriting the �eld on�gurations to be pieewise onstant on regions orresponding to minimal elements

in Km
. The power set of this on�guration spae FSm

, where Sm
denotes the set of minimal elements

in Km
, an also be mapped into loal σ-algebras (FSm

,Σm(V )), V ∈ Km
as before in (3). Although the

maximal loal σ-algebra Σm(V m) of a minimal region V m ∈ Sm
is isomorphi to the power set P(F )

of �eld values, one an restrit them to the Borel σ-subalgebra of P(F ). Then a generi loal σ-algebra
Σm(V ), V ∈ Km

is isomorphi to a �nite produt of the opies of orresponding Borel σ-subalgebras,
beause V is overed by a �nite subset of Sm

. We an simplify further the situation by restriting

the �eld values F to a �nite set. In our example used below F = Z2, the group with two elements,

represented by the integers ±1. In that ase the loal σ-algebra of a minimal region V m ∈ Sm
is �nite,

Σm(V m) = P(Z2), hene the orresponding loal von Neumann algebra is �nite (two) dimensional, the

two nontrivial projetions orrespond to the two nontrivial subsets of Z2.

Last but not least, we would like to stress that the projetions χS , S ∈ Σ(V ) in the loal von Neumann

algebras do not possess a diret spaetime loalization: they projet to subsets of FM
and not to those

of M.

Inspired by the above onsiderations, we de�ne a loal physial theory as follows:

De�nition 1. A loal physial theory (LPT) is a net {N (V ), V ∈ K} of loal von Neumann algebras

assoiated to a direted poset K of globally hyperboli bounded regions of a globally hyperboli spaetime

M. The net satis�es isotony, miroausality, PK-ovariane, and intersetion property for spaelike

separated regions. If the loal von Neumann algebras are ommutative, we speak about a loal lassial

theory (LCT), if they are nonommutative, we speak about a loal quantum theory (LQT).

Our aim is to interpret and formulate Bell's notion of loal ausality in the framework of LPTs.

Before turning to loal ausality, however, we need to understand what is a ausal dynamis in a LPT

and whether its existene is ensured by the very properties of a LPT. To this we turn in the next setion.

3 Causal dynamis

The motivation for ausal dynamis (or ausal time evolution) omes from lassial �eld theory on a

globally hyperboli spaetime, where a global time parameter an be hosen. If the �eld equations of

the theory are symmetri hyperboli partial di�erential equations (see Geroh, 2010), then there exists

an initial value formulation of the theory in the following form: given the initial values on (a piee of)

a Cauhy surfae, the time evolution equation provides a unique solution in the domain of dependene

6

of (that piee of) the Cauhy surfae. This restrition of the omplete in�uenes of the initial values to

6

The domain of dependene D(S) of a (piee of) a Cauhy surfae S onsists of those points in M for whih any ausal

urve ontaining them intersets S.
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the domain of dependene is that makes the dynamis of the theory ausal, sine it forbids superluminal

propagation (see Earman, 2014).

This ausal dynamis has two basi properties: it is de�ned within a lassial theory, and it is

deterministi in the sense that �xing the (expetation) values of the observables at a ertain time, the

dynamis provides unique (expetation) values of the observables in the future or in the past (within

the domain of dependene of the initial values). We will see that the properties of a LPT, lassial or

quantum, are not strong enough to provide us suh a ausal dynamis. An additional property, alled

primitive ausality, will ensure the dynamis in a LPT to be deterministi in the above sense; and another,

more restritive property, alled loal primitive ausality, will ensure the dynamis in a LPT to be ausal.

It will turn out that in the absene of primitive ausality not only the ausality of the dynamis (on

the observables) is meaningless but also the notion of an initial state on the observables is missing. In

this ase a state on the quasiloal algebra involves that one should presribe the state on the proper

Cauhy surfae subalgebras for all time slies t ∈ R. Expetation values in a generi state of suh LPTs

are hardly expeted to show any ausal properties. However, at least in LCTs, one an restrit the set

of possible states by stiking to states obtained by a speial state extension proedure from an initial

state on a single Cauhy surfae subalgebra. This extension is speial in the sense that it an be de�ned

by a stohasti proess obeying ausal features. Hene, the extension proedure an be onsidered as

a `dynamis on the states', and the ausality of this dynamis, re�eted in the ausal properties of the

expetation values, will arise from the ausal properties of the underlying stohasti proess. The rest

of the setion is devoted to what we mean by a ausal dynamis on the observables or, in the absene of

primitive ausality, on the states, and how to ensure their existene in the framework of LPTs.

In ase of stationary spaetimes, i.e. when a global timelike Killing vetor �eld exists, a natural dynamis

exists in LPTs on the observables, the ovariant dynamis : The one parameter isometry group T ≃ (R,+)
of M generated by the global timelike Killing vetor �eld leads to a one parameter automorphism group

{αt, t ∈ T } of the quasiloal observable algebra A ating ovariantly on the net (Requirement 3). In ase

of a generi globally hyperboli spaetime M no global timelike Killing vetor �eld exists, therefore there

is no natural dynamis on the observables in LPTs. However, a foliation {St, t ∈ R} of M by Cauhy

surfaes exists, whih is indexed by a global time parameter. Suh a foliation will lead to a dynamis on

the observables if the observable algebra orresponding to any of the Cauhy surfaes already exhausts

the quasiloal observable algebra, that is primitive ausality holds:

6. Primitive ausality. For any overing olletion K(S) ⊆ K of any Cauhy surfae S, one has

AK(S) = A.

The overing olletion K(St) ⊆ K of the Cauhy surfae St determines a subalgebraAK(St) of AH. Let us

de�ne the Cauhy surfae algebraASt
of St by the injetive limit algebra of a dereasing net of subalgebras

orresponding to dereasing overings (see (Brunetti and Fredenhagen, 2009) for details). Thus, in ase

of primitive ausality any subalgebra AK(S), hene any Cauhy surfae subalgebra AS is equal to the

whole quasiloal algebra A. Therefore, the injetive algebra morphisms orresponding to embeddings of

globally hyperboli Cauhy surfae overings into M beome isomorphisms and one obtains also algebra

isomorphisms ιt : ASt
→ A, t ∈ R between the Cauhy surfae algebras and the quasiloal algebra. Then

the isomorphism αt′,t := ι−1
t′ ◦ ιt : ASt

→ ASt′
provides the Cauhy time evolution isomorphism, that

is the dynamis on the observables, between the Cauhy surfae algebras orresponding to time slies

t and t′ in the hosen foliation. In the presene of a ovariant dynamis the two dynamis oinide,

αt′,t = αt′−t if the hosen foliation of M by Cauhy surfaes is ompatible with the ation of the global

time translation isometry group of M.

But this is not the only role of primitive ausality. It makes the (ovariant) dynamis on the observ-

ables deterministi. Sine a state on a single Cauhy surfae algebra AS , i.e. a presription of `initial

(expetation) values', �xes already the state on the whole quasiloal algebra A the expetation values

of the observables at arbitrary times an be given uniquely in terms of the (ovariant) time evolution

automorphisms of the observable algebra A and the `initial' state.
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Although the dynamis {αt′,t, t, t ∈ R} is deterministi, it is not neessarily ausal. That is the

deterministi dynamis per se does not ensure that

(ι−1
t′ ◦ ιt)(A(Vt)) ⊂ A(Vt′ ), Vt′ := St′ ∩ (J+(Vt) ∪ J−(Vt)), Vt ⊂ St; t, t

′ ∈ R, (4)

where Vt := V ∩ St for some V ∈ K and J+(Vt) ∪ J−(Vt) is the ausal one of Vt, that is the union of its

ausal future and ausal past. The (deterministi) dynamis on the observables meeting the requirement

(4) is alled ausal dynamis on the observables. It means that the `propagation' of loal observable

algebras under the dynamis respets the ausal one struture of the underlying spaetime. It ensures

also that the state on a loal algebra ιt′(A(Vt‘)) �xes the state on a loal algebra ιt(A(Vt)), if Vt is in the

domain of dependene of Vt′ .

The loal and stronger version of primitive ausality is

7. Loal primitive ausality. For any globally hyperboli bounded subspaetime regions V ∈ K,
A(V ′′) = A(V ).7

Loal primitive ausality entails not only primitive ausality but also the ausality requirement (4) of

the dynamis: given Vt and Vt′ as in (4) loal primitive ausality and isotony (Requirement 1) leads to

A ⊃ ιt′ (A(Vt′ )) = ιt′(A(V ′′
t′ )) ⊃ ιt(A(Vt)).

We note that if a net satis�es Haag duality for all bounded globally hyperboli subspaetime regions

V ∈ K, then it also satis�es loal primitive ausality for them:

A(V ) = A(V ′)′ ∩ A = A(V ′′′)′ ∩ A = A((V ′′)′)′ ∩A = A(V ′′), V ∈ K. (5)

Conversely, requiring Haag duality only for ausally omplete regions (that is for regions V ∈ K satisfying

V ′′ = V ) and loal primitive ausality for all V ∈ K Haag duality follows for all V ∈ K:

A(V ) = A(V ′′) = A((V ′′)′)′ ∩A = A(V ′′′)′ ∩ A = A(V ′)′ ∩ A. (6)

What an we say in the absene of primitive ausality? In ase of a generi globally hyperboli

spaetime there is no Cauhy dynamis {αt,t′ , t, t
′ ∈ R} on the observables and the Cauhy surfae

proper subalgebras ASt
, t ∈ R are not neessarily isomorphi. In ase of stationary spaetimes a ovariant

dynamis {αt, t ∈ R} ⊂ AutA does exist, however, the isomorphi Cauhy surfae subalgebras ASt
, t ∈ R

remain proper subalgebras of A. Their intersetion an be even trivial. Therefore there is no point in

speaking about ausality of the ovariant dynamis, beause loal subalgebras `propagate' into ompletely

new loal subalgebras of A. Moreover, the ovariant dynamis is not deterministi in this ase, that is

the ovariant dynamis and the `initial' state φs : ASs
→ C does not �x for t 6= s the expetation values

of the isomorphi but not idential proper subalgebras ASt
of A. Hene, either one presribes the state

for the whole quasiloal algebra A or an extension of the initial state φs from ASs
to A is needed. In

the �rst ase no property forbids a generi state to reveal aausal properties. However, in the latter

ase properly hosen ausal restritions on the state extension proedure may lead to a sublass of states

obeying ausal properties. Unfortunately, we do not know how to do suh a state extension in ase of

a LQT. However, in LCTs, where onditional probabilities of loal observables have a meaning and they

provide loal extensions of a state, a state extension proedure an be interpreted in terms of a stohasti

dynamis, where the mentioned onditional probabilities are given by the transition probabilities of the

underlying stohasti proess. To this end there is no need for a ovariant dynamis on the lassial

observables either. Of ourse, this would ensure the isomorphisms of the image σ-algebras of the random
variables on the di�erent Cauhy surfaes in the underlying stohasti proess, however a stohasti

proess an be de�ned without suh isomorphisms.

7

If V ′′ /∈ K this requirement would mean that extending K by the globally hyperboli bounded subspaetime regions

V ′′, V ∈ K and de�ning A(V ′′) := A(V ) one obtains an extended net of loal algebras satisfying isotony, miroausality,

and ovariane.
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Clearly, any requirement on the state extension proedure in LCTs oming from ausality beomes a

restrition on the stohasti dynamis. Stohasti dynamis is an existing and well-established researh

�eld in general (that is not neessarily loal) lassial theories (Karlin and Taylor, 1975). In ase of LQTs

we do not know how to do a ausal state extension proess, therefore we annot know about its possible

(stohasti) interpretation either.

8

Hene, all of our attempts and examples for establishing a ausal

stohasti dynamis interpretation of the state extension in the absene of primitive ausality are within

the frame of LCTs. In the rest of this setion we de�ne what is meant by ausal stohasti dynamis in

LCTs. We use the language of random variables and stohasti dynamis here beause ertain notions will

have a meaning in terms of loal σ-algebras or loal abelian von Neumann algebras only if the stohasti

proess obeys ertain loal ausality requirements.

Let {Xt, t ∈ R} be random variables indexed by the global time parameter of a foliation {St, t ∈ R}
of M by Cauhy surfaes. The image σ-algebra (Ct,Σt) of the measurable map Xt, i.e. the random

variable is thought to be the (sub-)σ-algebra of the power set of lassial �eld on�gurations Ct on the

Cauhy surfae St. In ase of a ovariant dynamis the image σ-algebras (Ct,Σt) of Xt are isomorphi

for all t ∈ R. The map Xt is given only for the initial time, Xs : (Ω, σ, p) → (Cs,Σs), that is only the

probabilities of the elements C ∈ Σs are known, they are given by the probabilities of the inverse images

p(X−1
s (C)). It is the stohasti dynamis whih provides the expliit maps Xt, that is the probabilities

of sets of on�gurations, for t 6= s. The stohasti dynamis is given in terms of transition probabilities

Pr{Xt ∈ CV (t)|Xti = xi ∈ Cti , i = 1, . . . , n}, t1 < t2 < · · · < tn < t, (7)

where CV (t) ∈ Σt is loal, namely, it is a ylindrial set of �eld on�gurations on the bounded piee

V (t) := V ∩ St, V ∈ K of a Cauhy surfae St. Observe that, in fae of the denotation, the transition

probabilities are not neessarily onditional probabilities on loal σ-algebras sine the set {xi} ontaining
a single �eld on�guration on the whole Cauhy surfae Sti is not loal, even it is not neessarily in Σti .

The subsequent requirements are introdued just to make (7) to be a onditional probability on loal

σ-algebras, whih allows the stohasti dynamis to be interpreted as a state extension proedure from

the initial Cauhy surfae algebra ASs
to the whole quasiloal algebra A.

The stohasti dynamis will be alled ausal if the transition probability of a onditioned loal

on�guration set depends only on on�gurations on its ausal past:

Pr{Xt ∈ CV (t)|Xti = xi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|(Xti = xi)|J−(V (t)), i = 1, . . . , n}, (8)

where J−(V (t)) is the ausal past of V (t) and the subsript |J−(V (t)) means that the presription of

the values of the random variables Xti is restrited to the Cauhy surfae piee Sti ∩ J−(V (t)). Note,

that the right hand side of (8) is the same for any hoie of on�gurations from the ylindrial sets

CJ−(V (t))∩Sti
(xi) ∈ Σti , i = 1, . . . , n obtained by the images of the mapping ZV in (3) of the single

on�guration {xi} with V = CJ−(V (t))∩Sti
, i = 1, . . . , n. Therefore in ase of a ausal proess it is

meaningful to onsider the transition probabilities as depending only on the intersetion of the ylindrial

sets CJ−(V (t))∩Sti
(xi) ∈ Σti of the on�gurations xi ∈ Cti , i = 1, . . . , n.

In the presene of a ovariant dynamis on the observables we assume that (7) are stationary transition

probabilities, i.e. they depend only on the di�erenes t1 − t, . . . , tn − t. We will examine only Markov

proesses, where only the `losest' onditioning ounts, that is

Pr{Xt ∈ CV (t)|Xti = xi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|Xtn = xn} (9)

holds whenever t1 < t2 < · · · < tn < t. In ase of a ausal Markov proess the transition probabilities (7)

are alled independent with respet to spaelike separation if the following property holds: Let V (t) be a
�nite union of disjoint regions Vk(t) := Vk ∩ St, Vk ∈ K, k = 1, . . . , r on the Cauhy surfae St suh that

8

There exist quantum mehanial models with presribed stohasti and not unitary time evolution (Károlyházy, 1966;

Ghirardi, Rimini and Weber, 1986; Diósi 1989). However, they are not loal theories in our sense, and `primitive ausality'

holds there in the sense that the `observable algebra' is the same for all time slies.
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their `ausal shadows' J−(Vk(t))∩Ss are also disjoint regions in the Cauhy surfae Ss, i.e. they are also

spaelike separated. Then the transition probability beomes a produt of transition probabilities

Pr{Xt ∈ CV (t)|Xs = xs} =
r
∏

k=1

Pr{Xt ∈ CVk(t)|Xs = xs} (10)

orresponding to the spaelike separable regions.

The important role of ausality property (8) is that the transition probabilities (9) of the Markov

proess depend only on the equivalene lass, the ylindrial set, CJ−(V (t))∩Stn
(xtn) ∈ Σtn of the on�g-

uration xtn ∈ Ctn thus they an be interpreted as onditional probabilities. Hene, they an serve as a

state (probability measure) extension proedure of the initial state

9 φs := p ◦X−1
s on Σs to the state φ

on the σ-algebra generated by Σt, t ≥ s:

φ(CV (t) ∩ CJ−(V (t))∩Ss
(xs)) := Pr{Xt ∈ CV (t)|Xs = xs}φs(CJ−(V (t))∩Ss

(xs)). (11)

Therefore a fortiori the equality (11) implies that the the transition probability is equal to the onditional

probability

Pr{Xt ∈ CV (t)|Xs = xs} =
φ(CV (t) ∩ CJ−(V (t))∩Ss

(xs))

φs(CJ−(V (t))∩Ss
(xs))

=
φ(CV (t) ∩ CJ−(V (t))∩Ss

(xs))

φ(CJ−(V (t))∩Ss
(xs))

=: φ(CV (t) ∩ CJ−(V (t))∩Ss
(xs)|CJ−(V (t))∩Ss

(xs)), (12)

whih is possible only in ase of a ausal proess.

We do not know whether Bell's loal ausality holds in an arbitrary LCT equipped with a state ob-

tained by a ausal Markov proess with stationary transition probabilities obeying independene with

respet to spaelike separation. Nevertheless, this impliation holds in LCTs with loally �nite dimen-

sional Neumann algebras, whih we prove in Setion 6.

4 Further relativisti ausality priniples

Before turning to Bell's loal ausality priniple and its relation to (loal) primitive ausality in this setion

we brie�y review some other relativisti ausality priniples present in the literature and their relations

to (loal) primitive ausality. These priniples are formulated in a quasiloal algebra AH generated by

an isotone (Requirement 1) net {N (V ), V ∈ K} of loal von Neumann algebras.

Let {Ak}k∈K ⊂ N (VA) be a deomposition of the unit, that is a set of mutually orthogonal proje-

tions in the loal von Neumann algebra N (VA) suh that

∑

k Ak = 1. The orresponding non-seletive

projetive measurement is de�ned as a map T{Ak} : AH → AH

T{Ak}(X) :=
∑

k∈K

AkXAk, X ∈ AH. (13)

Being a unit preserving ompletely positive map (even a onditional expetation) T{Ak} maps states to

states via

φ 7→ φ{Ak} := φ ◦ T{Ak}. (14)

The following ausality priniple requires that projetions (quantum events) loated in spatially separated

regions should be insensitive of suh a hange of states:

8. No-signaling (also alled as parameter independene). (Shimony, 1986) Let VA, VB ∈ K be spaelike

separated. For any deomposition of the unit {Ak}k∈K ⊂ N (VA) and projetion B ∈ N (VB), and
for any loally faithful and normal state φ : AH → C, we have

φ{Ak}(B) = φ(B) (15)

9

The random variable Xs is a measurable map from the probability spae (Ω,Σ, p) into the σ-algebra (Cs,Σs).
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No-signaling follows from miroausality (Requirement 2). Shlieder (1969) showed that the onverse also

holds: if no-signaling holds for a deomposition of the unit {Ak}k∈K and a projetion B for all normal

states of a von Neumann algebra, then [Ak, B] = 0 for all k ∈ K. Being equivalent to miroausality

no-signaling trivially ful�ls in LCTs. Although it is formulated as a requirement for states, it gives a

restrition for the struture of the loal algebras.

Instead of non-seletive projetive measurements (13) one an also onsider seletive projetive mea-

surements using a single loal projetion A ∈ N (A):

TA(X) := AXA, X ∈ AH, (16)

whih de�nes a ompletely positive but not unit preserving map TA : AH → AH. The generated state

transition

φ 7→ φA :=
φ ◦ TA
φ(A)

=
φ ◦ TA

(φ ◦ TA)(1)
(17)

sometimes alled Lüders projetion (Lüders 1950), provides another ausality requirement:

9. Outome independene. (Shimony, 1986) For any projetions A ∈ N (VA) and B ∈ N (VB) suh
that VA, VB ∈ K are spaelike separated regions, and for any loally faithful and normal state φ,
we have

φA(B) = φ(B) (18)

In ase of miroausality (Requirement 2), outome independene implies that φ(AB) = φ(A)φ(B), that
is φ beomes a produt state by restriting it to the subalgebra generated by N (VA) and N (VB). Hene,
it is a too strong assumption, whih is violated in LQTs, for example, by any entangled state. Of ourse,

it is violated also in ase of superluminal orrelations.

In general, (ompletely) positive maps T : A → A on a C∗
-algebra A with the property 0 < T (1) 6 1

an be onsidered as generalized measurements or operations. They are alled inner if T has the form

T :=
∑

i AdKi with Ki ∈ A. If the Ki-s are mutually orthogonal projetions one speaks about projetive

(inner) operations. Operations with T (1) = 1 and T (1) < 1 are alled non-seletive and seletive

operations, respetively. If A is a von Neumann algebra one usually requires T to be normal. If A = B(H)
this means that T is σ-weakly ontinuous. See e.g. (Werner, 1987) and referenes therein.

A net satisfying loal primitive ausality (Requirement 7) also satis�es:

10. Loal determinism. (Earman and Valente, 2014) For any two states φ and φ′
and for any globally

hyperboli spaetime region V ∈ K, if φ|A(V ) = φ′|A(V ) then φ|A(V ′′) = φ′|A(V ′′)

and onsequently it also satis�es

11. Stohasti Einstein loality. Let VA, VC ∈ K suh that VC ⊂ J−(VA) and VA ⊂ V ′′
C . If φ|A(VC ) =

φ′|A(VC) holds for any two states φ and φ′
on A then φ(A) = φ′(A) for any projetion A ∈ A(VA).

Miroausality alone does not entail loal primitive ausality. Sine miroausality is equivalent to

no-signaling and loal primitive ausality represents no-superluminal propagation (Earman and Valente,

2014), therefore it is an interesting question whether there exist nets whih satisfy loal primitive ausality

but violate miroausality. Usually the translation ovariant �eld algebra extension of the observablesF ⊃
A, in whih the loalized and transportable endomorphisms� the Dopliher�Haag�Roberts morphisms�

of the observables an be implemented, serve suh examples: Although loal �eld algebras are de�ned to

be relatively loal to observables

F(V ) := A(V ′)′ ∩ F , V ∈ K, (19)

loal �eld algebras orresponding to spaelike separated regions do not ommute in general, hene mi-

roausality fails. (For example, in the �eld algebra of the loal quantum Ising model there are �eld

10



operators with spaelike separated supports that antiommute.) However, loal primitive ausality does

hold in the net of �eld algebras, beause V ′ = V ′′′
and hene

F(V ) := A(V ′)′ ∩ F = A(V ′′′)′ ∩ F = A((V ′′)′)′ ∩ F =: F(V ′′), V ∈ K. (20)

Thus, for suh a net of loal (�eld) algebras no-signaling is violated whereas no-superluminal propagation

holds.

In the following we will work within the framework of a LPT. When speaking about deterministi

dynamis, we will also assume Requirements 6-7.

5 Bell's notion of loal ausality

Loal ausality has been one of the entral notions in Bell's writings on the foundations of quantum

mehanis. Still, interestingly the notion of loal ausality gets an expliit formulation only in few

of his papers; to our knowledge only in (Bell, 1975/2004, p. 54), (Bell, 1986/2004, p. 200), and (Bell,

1990/2004, p. 239-240). In this latter posthumously published paper, �La nouvelle uisine�, loal ausality

is formulated as follows:

10

�A theory will be said to be loally ausal if the probabilities attahed to values of loal beables

in a spae-time region VA are unaltered by spei�ation of values of loal beables in a spae-

like separated region VB, when what happens in the bakward light one of VA is already

su�iently spei�ed, for example by a full spei�ation of loal beables in a spae-time region

VC . � (Bell, 1990/2004, p. 239-240)

V

V V

C

A B

Figure 1: Full spei�ation of what happens in VC makes events in VB irrelevant for preditions about

VA in a loally ausal theory.

The �gure Bell is attahing to this formulation is reprodued in Fig. 1 with the original aption. Bell

elaborates on his formulation as follows:

�It is important that region VC ompletely shields o� from VA the overlap of the bakward

light ones of VA and VB. And it is important that events in VC be spei�ed ompletely.

Otherwise the traes in region VB of auses of events in VA ould well supplement whatever

else was being used for alulating probabilities about VA. The hypothesis is that any suh

information about VB beomes redundant when VC is spei�ed ompletely.� (Bell, 1990/2004,

p. 240)

10

For the sake of uniformity throughout the paper we slightly hanged Bell's denotation and �gures.
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The notions featuring in Bell's formulation has been target of intensive disussion in philosophy of siene

(see Norsen 2009, 2011). Here we would like to onentrate only on three terms, namely loal beables,

omplete spei�ation and shielding-o�.

Loal beables. The notion �beable� is Bell's neologism and is ontrasted to the term �observable� used

in quantum theory. �The beables of the theory are those entities in it whih are, at least tentatively,

to be taken seriously, as orresponding to something real� (Bell, 1990/2004, p. 234). The lari�ation

of what the �beables� of a theory are, is indispensable in order to de�ne loal ausality sine �there are

things whih do go faster than light. British sovereignty is the lassial example. When the Queen dies

in London (long may it be delayed) the Prine of Wales, leturing on modern arhiteture in Australia,

beomes instantaneously King� (p. 236).

Beables are to be loal: �Loal beables are those whih are de�nitely assoiated with partiular spae-

time regions. The eletri and magneti �elds of lassial eletromagnetism, E(t, x) and B(t, x) are again
examples.� (p. 234).

Complete spei�ation. Loal beables are to �speify ompletely� region VC in order to blok ausal

in�uenes arriving at VA from the ommon past of VA and VB . (For the question of omplete vs. su�ient

spei�ation see (Norsen, 2011; Seevink and U�nk 2011; Hofer-Szabó 2015a).)

Shielding-o�. �It is important that region VC ompletely shields o� from VA the overlap of the bakward

light ones of VA and VB .� Why is that so? Why loal ausality is not required for suh regions VC as

depited in Fig. 2, for example? The reason for that is the following. If VC is loalized as in Fig. 2,

VA B

C

V

V

Figure 2: A not ompletely shielding-o� region VC .

then the spaetime region above VC in the ommon past of the orrelating events may ontain stohasti

events (with determined probabilities by the omplete spei�ation on the region VC) whih an establish

a orrelation between A and B in a lassial stohasti theory. The �shielding-o�� ondition is required

just to exlude this ase.

But if this is the reason, then why not to allow also for regions VC as depited in Fig. 3? Allowing for

shielding-o� regions whih interset with the ommon past is indeed a possible interpretation of Bell's

term �shielding-o��. We will return to this point below. (For the relation between the loalization of the

region VC and the Causal Markov Condition see (Hofer-Szabó 2015b).)

How to translate Bell's three above terms into the framework of LPT? Let us see them again in turn.

Loal beables. In a lassial �eld theory beables are haraterized by sets of �eld on�gurations. In our

loal algebrai framework loal equivalene lasses of �eld on�gurations, namely, on�gurations having

the same �eld values on a given spaetime region, generate loal σ-algebras, as explained in Setion 2.

The elements of loal σ-algebras apture all the beables of the theory, moreover they also provide a

loalization for them. Translating σ-algebras into abelian von Neumann algebras one an use a ommon

12



VA B

C

V

V

Figure 3: An interseting and ompletely shielding-o� region VC .

language for lassial and quantum theories: �loal beables� in a region V ∈ K are elements of the loal

von Neumann algebra N (V ), whih is abelian for a lassial and non-abelian for a quantum theory.

Complete spei�ation. Complete spei�ation of �eld on�gurations in a given spaetime region means

that one spei�es the �eld values to a presribed value in the given spaetime region, that is one spei�es

the orresponding loal equivalene lass (a ylindrial set) of a single on�guration. In probabilisti

language omplete spei�ation is translated to a probability measure having support on this loal equiv-

alene lass of the single spei�ed on�guration. More preisely, omplete spei�ation is suh a hange

of the probability measure on the whole σ-algebra that the resulted probability measure restrited to

the loal σ-algebra in question will have support on the loal equivalene lass of the single spei�ed

on�guration. In the abelian von Neumann language this orresponds to a hange of the original state

that results in a pure state on the loal von Neumann algebra in question with value 1 on the projetion

orresponding to the loal equivalene lass of the single spei�ed on�guration. However, we would like

also this hange of states to be as loal as possible. Therefore we translate a �omplete spei�ation of

beables in a region V ∈ K� as a hange of state

φ(X) 7→ φT (X) :=
φ ◦ T

(φ ◦ T )(1)
(21)

by a ompletely positive map T on the quasiloal observables obeying the following properties:

P1 : the restrition of φT to the loal algebra N (V ) is pure,

P2 : BT (1) = T (B) = T (1)B hold for loal observables B supported in V ′
.

Conerning property P1 we note that von Neumann algebras in B(H) whih have a separating vetor in

H, irrespetively of being abelian or non-abelian algebras, do not possess a pure normal state (Clifton

and Halvorson, 2001). This is the ase, for example, in AQFTs with type III loal von Neumann algebras.

Thus starting from a (loally) normal state φ on them a normal operation T leads to a (loally) normal

state φT whih annot be pure. There are two ways to irumvent this problem (none of them being

fully satisfatory): 1. One an use a non-normal operation to get a pure state for the loal von Neumann

algebra. In this ase, however, one jumps into a di�erent quasi-equivalene lass of representations of

observables whih we just wanted to avoid by onsidering only (loally) normal states for the loal von

Neumann algebras. 2. In ase of type III (hene non-abelian) loal von Neumann algebras one an also

assume the split property (see e.g. (Werner, 1987) and referenes therein) and use the (atomi) type I

intermediate von Neumann algebra to provide a pure state, hene a `full spei�ation', for a somewhat

larger loal observable algebra supported in a somewhat larger loal region.

11

11

The authors thank to Yuihiro Kitajima for drawing their attention to these points.
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Conerning property P2 we note that weakly loalized operations in V (Werner, 1987) obey property

P2 for all elements B ∈ N (V )′ ⊇ AH(V ′) by de�nition. Moreover, if T is normal and AH = B(H) then
every weakly loalized operation T with respet to V ∈ K is inner in N (V ), that is T =

∑

i AdKi with

Ki ∈ N (V ).
In a general LPT, we do not know how to haraterize the operations that result in a state obeying

properties P1 and P2, but in ase of atomi (type I) loal von Neumann algebras it is almost trivial: one

has to do a seletive projetive measurement de�ned in (16) by an atom (a minimal projetion) C in the

loal algebra N (V ) whih indues the hange of states φ 7→ φC de�ned in (17).

Shielding-o�. Finally, a shielding-o� region in a LQT (see Fig. 1) an be de�ned as VC ∈ K satisfying

the following three loalization requirements:

L1 : VC ⊂ J−(VA),

L2 : VA ⊂ V ′′
C ,

L

Q
3 : VC ⊂ V ′

B.

In a LCT a shielding-o� region interseting with the ommon past (see Fig. 3) is allowed, and requirement

LQ
3 an be replaed by the weaker requirement:

L

C
3 : J−(VC) ⊃ J−(VA) ∩ J−(VB).

In ase of a Cauhy algebra of an in�nitely thin Cauhy surfae, requirement LC
3 oinides with require-

ment LQ
3 .

Given the above translations of the terms �loal beables�, �omplete spei�ation� and �shielding-o�,� now

we are in the position to formulate Bell's notion of loal ausality in the framework of LPTs:

De�nition 2. Let an LPT represented by a net {N (V ), V ∈ K} of von Neumann algebras. Let A ∈
N (VA) and B ∈ N (VB) be a pair of projetions supported in spaelike separated regions VA, VB ∈ K. Let
φ be a loally normal and loally faithful state on the quasiloal observables establishing a orrelation

φ(AB) 6= φ(A)φ(B) between A and B. Let T be an operation on the quasiloal observables obeying

properties P1 and P2. Finally, let VC ∈ K be a spaetime region de�ned by requirements L1, L2 and

LQ
3 /L

C
3 . The LPT is alled (Bell) loally ausal if for any suh quintuple (A,B, φ, T , VC) the following

sreening property holds:

φT (AB) = φT (A)φT (B). (22)

Remarks:

1. If the loal algebras of the net are atomi,

12

the states φT in De�nition 2 an be replaed by the

state φC given by (16�17), where C ∈ A(VC) is an arbitrary atomi event, i.e. a minimal projetion.

This onverts (22) into the sreening-o� property:

φ(CABC)

φ(C)
=

φ(CAC)

φ(C)

φ(CBC)

φ(C)
. (23)

In LCTs this an be written into the well-known onditional form

p(AB|C) = p(A|C)p(B|C), (24)

or into the equivalent asymmetri form

p(A|BC) = p(A|C) (25)

sometimes used in the literature (for example in (Bell, 1975/2004, p. 54)).

12

Whih is typially not the ase in a general AQFT.
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2. Here we would like to brie�y omment on a de�nition of loal ausality reently given by Joe

Henson (2013b). Henson's de�nition di�ers from ours in three respets: First, Henson formulates

loal ausality in terms of σ-algebras. Using the reipe given in Setion 2 to onvert σ-algebras into
abelian von Neumann algebras this di�erene an be easily dissolved. Seond, Henson de�nition

applies only to atomi σ-algebras: his sreening-o� ondition is equivalent to (23). Our more general

sreening ondition (22) applies both to nonommutative and to nonatomi loal algebras. Third,

in Henson's de�nition the sreener-o� region VC is not loalized aording to requirements L1, L2

and LQ
3 /L

C
3 . It is an unbounded region, a �suitable past� of VA and VB .

13

In our opinion, Henson

follows here Bell's �rst formulation of loal ausality given in (Bell, 1975/2004, p. 54), where the

sreener-o� regions are identi�ed with the omplete, unbounded ausal past of the orrelating events.

Our de�nition, on the other hand, is based on Bell's last, operationally more desirable de�nition

provided in (Bell, 1990/2004, p. 239-240), where the sreener-o� regions are only bounded Cauhy

segments of the unbounded past regions.

14

(For a omparison of Bell's di�erent versions of loal

ausality see (Hofer-Szabó 2015b).)

In his paper Henson shows that the lak of separability (additivity, in our language, see Setion

2) does not blok the derivation of the Bell inequalities. As we will see, this result is in omplete

agreement with ours: additivity is not required in our paper, hene it plays no role in the derivation

of the Bell inequalities in LCTs.

Coming bak to De�nition 2 of loal ausality, the main question is that when a LPT is loally ausal?

We answer this question by the following

Proposition 1. Let the loal von Neumann algebras of a LPT be atomi. Then Bell's loal ausality

holds if the LPT obeys loal primitive ausality.

Proof. If A is a projetion and C is a minimal projetion in an atomi von Neumann algebra then

CAC = r(C,A)C with r(C,A) ∈ {0, 1} in ase of abelian and r(C,A) ∈ [0, 1] ⊂ R in ase of non-abelian

algebras. Hene, using notations of De�nition 2, A is a projetion in the atomi von Neumann algebra

N (VC) due to loal primitive ausality. Thus if C ∈ N (VC) is a minimal projetion then

φC(AB) :=
φ(CABC)

φ(C)
=

φ(CACB)

φ(C)
= r(C,A)

φ(CB)

φ(C)
=

φ(CAC)

φ(C)

φ(CBC)

φ(C)

=: φC(A)φC(B). (26)

Here we used that CB = BC due to ommutativity in ase of a LCT and due to the spaelike separation

of VB and VC (ensured by requirement LQ
3 ) and miroausality in a LQT.

In the light of this proposition the reader may ask how a loal quantum theory an be loally ausal if

loal ausality implies various Bell inequalities whih are known to be violated for ertain set of quantum

orrelations. We ome bak to this point in Setion 7.

In ase of LPTs with loal primitive ausality but with non-atomi von Neumann algebras we do

not know how to haraterize the loal manipulation on the state desribed in De�nition 2, therefore a

similar proof annot be applied. In ase of LPTs without loal primitive ausality the dynamis is not

deterministi, hene an initial state on a Cauhy surfae algebra does not determine the state on the

whole quasiloal algebra A. States an be fored by a properly hosen state extension proedure to show

suitable ausality properties. We will not investigate suh state extensions in LQTs but only in LCTs

where the extension proedure an be interpreted as a ausal stohasti dynamis on the states. LCTs

13

Where the term �suitable past� �has been left open deliberately.� �It ould be . . . the 'mutual past' . . . the 'joint past'

or the past of one of the regions but not the other.� (Henson, 2013b, p. 1015) For an argument for, against and again for

not speifying the sreener-o� region see (Henson, 2005), (Rédei and San Pedro, 2012) and (Henson, 2013a), respetively.

14

Cf. also (Bell, 1986/2004, p. 200): �The notion of loal ausality presented in this referene [namely in (Bell, 1975/2004)℄

involves omplete spei�ation of the beables in an in�nite spae-time region. The following oneption is more attrative

in this respet.� And then omes the new de�nition based on bounded regions.

15



equipped by suh states will be alled stohasti LCTs for short. In the next setion we onsider their

relation to Bell's loal ausality and a simple prototype of them, the ausal stohasti Ising model will

be onstruted.

6 Bell's loal ausality in stohasti LCTs

We start the setion by a

Proposition 2. Let the stohasti dynamis in a LCT (without primitive ausality) be given by a

stationary ausal Markov proess with transition probabilities independent with respet to spaelike

separation de�ned in Setion 3. Let the loal von Neumann algebras of the LCT be �nite dimensional.

Then Bell's loal ausality holds for any region VC allowed by De�nition 2.

Proof. Let φ : A(s, s′) → C be the state on a time interval quasiloal observable algebra extended

from a state φs on the Cauhy surfae algebra As by the stohasti proess. Let A,B ∈ A(s, s′) and
C = CtC̃ ∈ A(s, s′) be given as in De�nition 2 suh that Ct is a minimal projetion in a Cauhy surfae

algebra At obeying V ′′
Ct

⊃ VA, and J−(VCt
) ⊃ VC̃ . Let {D

k
t } ⊂ A(St ∩ J−(VB)) be the (�nite) partition

of unit into minimal projetions. Then using (12), Markov property, and the independene of transition

probabilities with respet to spaelike separation one obtains

φC(AB) :=
φ(ABC)

φ(C)
=

∑

k

φ(ABCDk
t )

φ(C)
=

∑

k

φ(ABCDk
t )

φ(CDk
t )

φ(CDk
t )

φ(C)
=

∑

k

Pr{AB|CtC̃Dk
t }

φ(CDk
t )

φ(C)

=
∑

k

Pr{AB|CtD
k
t }

φ(CDk
t )

φ(C)
=

∑

k

Pr{A|Ct}Pr{B|Dk
t }

φ(CDk
t )

φ(C)

=
∑

k

Pr{A|C}Pr{B|Dk
t }

φ(CDk
t )

φ(C)
= φC(A)

∑

k

Pr{B|Dk
t }φC(D

k
t ) = φC(A)φC(B), (27)

whih is the sreening ondition (23) required by Bell's loal ausality.

In the following we present a simple stohasti LCT in M2
with �nite dimensional loal algebras. Sine

the dynamis is given by a stationary ausal Markov proess with transition probabilities independent

with respet to spaelike separations and sine the loal algebras on minimal elements of K are two

dimensional we all it ausal stohasti Ising model. We show that due to the presribed properties of

the proess the model an be haraterized by eight parameters, whih are loal transition probabilities.

Consider a loally �nite overing of the two dimensional Minkowski spaetime M2
given by minimal

double ones V m(t, i) of unit diameter with their enter in (t, i) for t, i ∈ Z or t, i ∈ Z+ 1/2. This set of
minimal double ones is denoted by Sm

. A generi double one V in this disretization is a �nite subset

of Sm
generated by two of its elements: V ≡ V (t, i; s, j) := V m(t, i) ∨ V m(s, j) is the smallest double

one in M2
ontaining both V m(t, i) and V m(s, j). The direted poset of suh double ones in M2

is

denoted by Km
.

Let Sm
t ⊂ Sm

be the subset of minimal double ones with time oordinate t ∈ 1
2Z. Minimal double

ones with time oordinates t and t+ 1
2 form a `thikened' Cauhy surfae St := Sm

t ∪Sm
t+ 1

2

in this loally

�nite overing of M2
(see Fig. 4). A double one V ∈ Km

is stiked to the Cauhy surfae St if it is

generated by two minimal double ones in St. The direted poset of double ones stiked to St is denoted

by Km
t , it is ontained in Km

. Obviously, Km
t is left invariant by integer spae translations and Km

is

left invariant by integer spae and time translations.

Let Z2 be the group with two elements represented by the multipliative group of the integers {1,−1}.
A Z2-valued �eld on�guration on this overing of M2

is a map c : Sm → Z2. Using the identi�ation

F = Z2 for �eld values and M = Sm
for the underlying spaetime we will follow not only the general

onstrution of a LCT from a lassial �eld theory but also the de�nition of a ausal Markov proess with

16



Figure 4: Loally �nite overing of the two dimensional Minkowski spaetime with a `thikened' Cauhy

surfae.

stationary transition probabilities obeying independene with respet to spaelike separation desribed

in Setion 3. As a result we arrive at a LCT with a very simple loal rule of a stohasti dynamis.

Let C := {c : Sm → Z2} ≡ ZSm

2 be the set of �eld on�gurations. The maximal σ-algebra of lassial

events one an imagine in this model is (C,P(C)) given by the power set P(C) of the set of �eld on�gu-

rations. An isotone net struture {(C,Σ(V )), V ∈ Km} of unital σ-subalgebras Σ(V ) ⊂ P(C) labeled by

double ones in Km
(or even by elements of Lm

being �nite subsets of Sm
) an be given by the `ylindrial

subsets' of C orresponding to the image sets of the mappings ZV : P(C) → P(C), V ∈ Km
de�ned in (3)

P(C) ∋ C 7→ ZV (C) := {c′ ∈ C |∃c ∈ C : c|V = c′|V } ∈ Σ(V ) := ZV (P(C)). (28)

Sine Km
is a subset of Lm

, that is every V ∈ Km
is a �nite subset of Sm

, the loal σ-algebras are
�nite. Namely, Σ(V ) is isomorphi to the power set P(CV ) of CV , the set of loal equivalene lasses

of single on�gurations, where the loal, i.e. V -dependent equivalene relation introdued in Setion 2

is given by the restrition to V : c ∼V c′ if c|V = c′|V . Clearly, CV ontains 2|V |
elements, where |V | is

the number of minimal double ones in V . Note, that the loal V -equivalene lass C ≡ [c]V ∈ CV of

a single on�guration c ∈ C is a minimal ylindrial subset of C orresponding to V by the map (28):

[c]V = ZV ({c}), i.e it is an atom in Σ(V ). Hene, the 2|V |
dimensional abelian loal von Neumann

algebra N (V ) orresponding to the loal σ-algebra Σ(V ) is (C-linearly) spanned by the set of mutually

orthogonal minimal projetions PC
V , C ∈ CV . They orrespond to harateristi funtions χC

V : C → C

whih are 1 on the ylindrial subset C ∈ CV , i.e. on a V -equivalene lass of a single on�guration in C,
and 0 otherwise. The loal σ-algebras obey the intersetion property

Σ(V1) ∩Σ(V2) = Σ(V1 ∩ V2), V1, V2 ∈ Lm, (29)

espeially Σ(V1) ∩ Σ(V2) = {∅, C} if V1 ∩ V2 = ∅. Of ourse, the loal von Neumann algebras inherit this

intersetion property. First and last, {N (V ), V ∈ Km} ⊂ {N (V ), V ∈ Lm} is an isotone net of �nite

dimensional, hene atomi, abelian von Neumann algebras obeying the intersetion property not only for

spaelike separated regions; that is they de�ne a LCT without loal primitive ausality.

The quasiloal C∗
-algebra A is given by the indutive limit of the loal von Neumann algebras

N (V ), V ∈ Km
. The unital C∗

-subalgebras At, t ∈
1
2Z of A orrespond to the thikened Cauhy surfaes

St ⊂ Sm
. Clearly, A is an integer time and spae translation ovariant net, i.e. PKm = Z×Z. Moreover,

it is also ovariant with respet to the `half shift' of oordinates of the minimal double ones: (t, i) 7→

17



(t + 1
2 , i +

1
2 ).

15

The ovariant dynamis, that is image automorphisms α(n, 0), n ∈ Z of the mapping

α : PKm → AutA, maps the Cauhy subalgebra At onto At+n, hene, they are isomorphi subalgebras

of A for n ∈ Z. However, their intersetion is trivial for n 6= 0. Therefore primitive ausality does not

hold in this LCT and the ovariant dynamis {α(n, 0), n ∈ Z} ⊂ AutA does not arry any further ausal

property. Causality will reappear in the state extension proedure from a state φs : As → C on a proper

Cauhy subalgebra to a state φ on the whole quasiloal algebra A. The extension will be given in terms

of a ausal stohasti dynamis desribed in Setion 3.

The set of �eld on�gurations on the subset Sm
t ⊂ Sm

of minimal double ones on the time slie t ∈ 1
2Z

is denoted by Ct. The image σ-algebras of the orresponding Ct-valued random variables Xt, t ∈
1
2Z will

be (Ct,P(Ct)) in this model. As an artifat of the loally �nite overing of M2
a (thikened) Cauhy

surfae St will ontain a pair (Xt, Xt+ 1

2

) of random variables. The disrete stohasti dynamis on the

random variables is given by transition probabilities (7) spei�ed to this ase as

Pr{Xt ∈ CV (t)|(Xti , Xti+
1

2

) = (xi, x
′
i) ∈ Cti × Cti+ 1

2

, i = 1, . . . , n}, ti+1 − ti ≥ 1, t− tn ≥ 1, (30)

where the pairs (Xti , Xti+
1

2

) orrespond to random variables on the Cauhy surfae Sti and V (t) ⊂ Sm
t

is a �nite set of minimal double ones on the time slie t, that is V (t) ∈ Lm
t . The Z×Z-ovariane of the

model allows us to require the transition probabilities to be stationary (time translation invariant) and

spae translation invariant. Using the notations Yt ≡ (Xt, Xt+ 1

2

) and y ≡ (x, x′) the Markov ondition

(9) for the transition probabilities (30) requires that

Pr{Xt ∈ CV (t)|Yti = yi, i = 1, . . . , n} = Pr{Xt ∈ CV (t)|Ytn = yn}, (31)

whenever ti+1 − ti ≥ 1 and t − tn ≥ 1 hold. Therefore the `nearest time slie' transition probabilities

Pr{X1 ∈ CV (1)|Y0 = y} ompletely speify the proess if we require invariane of transition probabilities

also with respet to the half shift (t, i) 7→ (t + 1
2 , i +

1
2 ) of oordinates of the minimal double ones

mentioned before. The proess is required to be ausal (8) that is

Pr{X1 ∈ CV (1)|Y0 = y} = Pr{X1 ∈ CV (1)|(Y0 = y)|J−(V (1))}, (32)

where J−(V (1)) is the ausal past of V (1) and the subsript |J−(V (1)) means that the presription of

the values of the random variable Y0 is restrited to the `ausal shadow' P0(V (1)) ≡ S0∩ (S0 \J−(V (1)))′

of V (1) on the Cauhy surfae S0.
16

We onsider only transition probabilities that are independent with

respet to spaelike separation, that is they will satisfy (10).

17

Sine on a single time slie any �nite set

V (t) ∈ Lm
t onsists of (�nite number of) mutually spaelike separated minimal double ones V m

t ∈ V (t),
we have

Pr{X1 ∈ CV (1)|(Y0 = y)|J−(V (1))} =
∏

V m
1

∈V (1)

Pr{X1 ∈ CV m
1
|(Y0 = y)|J−(V m

1
)}. (33)

Therefore it is enough to give the transition probabilities Pr{X1 ∈ CV m
1
|(Y0 = y)|J−(V m

1
)} for a single

minimal double one V m
1 ∈ Sm

1 to speify the proess ompletely. Sine the ausal shadow P0(V
m
1 ) of

V m
1 on the Cauhy surfae S0 onsists of three minimal double ones (see Fig. 5), whih arry 23 di�erent

on�gurations, we need to speify eight transition probabilities, for example those with CV m
1

= {+1}.
However, the requirement of the existene of unique state extension bakward in time restrits not only

the possible eight transition probabilities but also the possible `�nal' states, that is the stohasti proess

15

This transformation orresponds to the Kramers�Wannier duality in the loal quantum Ising model.

16

It is the artifat of the thikened Cauhy surfae that the intersetion S0 ∩ J−(V (1)) ontains two plus two minimal

double ones at the boundary of J−(V (1)) for V (1) ∈ Km
1
. However, the �eld on�guration on the `older' minimal double

ones is not needed for a ausal transition probability, the relevant double ones are ontained in S0 ∩ (S0 \ J−(V (1)))′.
17

As an artifat of the thikened Cauhy surfae one an hoose among di�erent presriptions whih lead to the same

ondition in ase of a `true' (in�nitely thin) Cauhy surfae. Namely, the ondition that spaelike separated regions

V1, V2 ∈ K have spaelike separated shadows Pt(V1),Pt(V2) on the Cauhy surfae St an be formulated as J−(V1) ∩
J−(V2) ⊂ J−(Pt(V1) ∪ Pt(V2)). This presription is used in (33).

18
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Figure 5: Three minimal double ones adjaent to V m
1 from below, the on�guration on whih spei�es

the transition probabilities.

shrinks the possible states that an our on future Cauhy surfae subalgebras: Let c ∈ Σt be the set

of on�gurations whih is �xed on V ⊂ Sm
t onsisting of two neighboring minimal double ones in Sm

t .

The on�guration sets c± and c± will mean the subset of c where the on�gurations is �xed to ± on a

third minimal double one in the future and past domain of dependene region of V , respetively. Then

the loal extension of a state φ on the Cauhy surfae algebra At− 1

2

to the Cauhy surfae algebra At is

given by two dimensional linear mappings:

(

φ(c+)
φ(c−)

)

:=

(

p(c+) p(c−)
1− p(c+) 1− p(c−)

)(

φ(c+)
φ(c−)

)

(34)

where p(c±) are the loal transition probabilities orresponding to �xed on�gurations c± on three neigh-

boring minimal double ones on the Cauhy surfae St− 1

2

and with on�guration value +1 on the fourth

minimal double one in their (future) domain of dependene. Hene, the state extension bakward in

time, that is from the Cauhy surfae algebra At to the Cauhy surfae algebra At− 1

2

is de�ned uniquely

by the inverse mappings

1

p(c+)− p(c−)

(

1− p(c−) −p(c−)
−1 + p(c+) p(c+)

)(

φ(c+)
φ(c−)

)

=

(

p(c+) p(c−)
1− p(c+) 1− p(c−)

)−1 (
φ(c+)
φ(c−)

)

=:

(

φ(c+)
φ(c−)

)

i� the four matries are invertible, that is p(c+) 6= p(c−) for the four possible hoies of on�gurations

of two neighboring minimal double ones in Sm
t . However, one has to ensure also the inequalities 0 ≤

φ(c+), φ(c−) ≤ 1, whih in ase of φ(c+)+φ(c−) > 0 lead to restritions for the ratio ρ(c) := φ(c+)/φ(c−):

p(c+) ≥ (1− p(c+))ρ(c), (1 − p(c−))ρ(c) ≥ p(c+), p(c+) > p(c−),

p(c−) ≥ (1− p(c+))ρ(c), (1 − p(c−))ρ(c) ≥ p(c), p(c−) > p(c+). (35)

Forgetting the di�ulties of state extensions bakward in time one a state φs : As → C on the Cauhy

surfae subalgebra As of the ausal stohasti Ising model is given then the eight determining loal

transition probabilities {p(c±)} as onditional probabilities give rise to the extension of φs to a state on

time interval quasiloal algebras A(s.t), t > s. Having performed this extension Bell's loal ausality will

hold in the time interval quasiloal algebras for any values of the eight determining transition probabilities

due to Proposition 2.
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Having established the validity of loal ausality in LPTs with loal primitive ausality and in stohas-

ti LCTs without loal primitive ausality, in the next setion we will review how Bell's notion of loal

ausality relates to the Common Cause Priniple and the Bell inequalities.

7 Loal ausality, Common Cause Priniple and the Bell inequal-

ities

Loal ausality is losely related to Reihenbah's (1956) Common Cause Priniple. The Common Cause

Priniple (CCP) states that if there is a orrelation between two events A and B and there is no diret

ausal (or logial) onnetion between the orrelating events, then there always exists a ommon ause

C of the orrelation. Reihenbah's original de�nition is formulated in a purely lassial probabilisti

setting laking any spatiotemporal onsiderations; however, it an readily be generalized to the LPT

framework. (For the steps of the generalization see (Rédei 1997, 1998), (Rédei and Summers 2002, 2007),

(Hofer-Szabó and Vesernyés 2012, 2013) and (Hofer-Szabó, Rédei and Szabó 2013).)

Let {N (V ), V ∈ K} be a net representing a LPT. Let A ∈ N (VA) and B ∈ N (VB) be two events

(projetions) supported in spaelike separated regions VA, VB ∈ K, whih orrelate in a loally normal

and faithful state φ. The ommon ause of a the orrelation is an event C whih (together with its

omplement) sreens o� the orrelating events from one another, and whih is loalized in the ausal

past of A and B. For the preise hoie of this past one has (at least) three options. One an loalize

C either (i) in the union or (ii) in the intersetion of the ausal past of the regions VA and VB; or (iii)

more restritively, in the spaetime region whih lies in the intersetion of ausal pasts of every point of

VA ∪ VB , formally ∩x∈VA∪VB
J−(x); see (Rédei, Summers 2007). We will refer to the above three pasts

in turn as the weak past, ommon past, and strong past of A and B, respetively.

Now, we an de�ne various CCPs in a LPT:

De�nition 3. A LPT represented by a net {N (V ), V ∈ K} is said to satisfy the (Weak/Strong) CCP, if for

any pair A ∈ N (VA) and B ∈ N (VB) of projetions supported in spaelike separated regions VA, VB ∈ K
and for every loally faithful state φ establishing a orrelation between A and B, there exists a nontrivial

ommon ause system that is a set of mutually orthogonal projetions {Ck}k∈K ⊂ N (VC), VC ∈ K
loalized in the (weak/strong) ommon past of VA and VB, whih deompose the unit and satisfy

φCk
(AB) = φCk

(A)φCk
(B), k ∈ K, (36)

where the state φCk
is given by (17).

A ommon ause is alled trivial if Ck ≤ X with X = A,A⊥, B or B⊥
for all k ∈ K. If Ck ommutes

with both A and B for all k ∈ K, then we all it a ommuting ommon ause system, otherwise a

nonommuting one, and the appropriate CCP a Commutative/Nonommutative CCP.

Trivial ommon ause systems provide solutions of (36) independently of the state φ. Therefore they
are onsidered as purely `kinemati' or `algebrai' solutions that are insensitive to the atual physial

environment provided by a partiular state φ. If at least one of the algebras N (VA) and N (VB) is �nite
dimensional, then even a more trivial ommon ause system an be given whih is not sensitive even to

the given algebra elements A and B. Namely, any deomposition of the unit into minimal projetions

of the orresponding �nite dimensional algebra

18

, i.e. any maximal (atomi) deomposition of the unit,

provides a weak ommon ause system solution of (36) irrespetively of the hosen events in N (VA)
and N (VB), and irrespetively of the orrelating state φ on them (Cavalanti and Lal, 2013). Therefore

these trivial, maximal size solutions re�et more the struture of the underlying �nite dimensional loal

algebras, N (VA) or N (VB) or both, whih ontain them. For example, in this ase φCk
, k ∈ K beome

18

Of ourse the ardinality |K| of these (ommuting or nonommuting) ommon ause systems is uniquely determined

by the �nite dimensional algebra: |K| =
∑

r
nr if the �nite dimensional algebra is isomorphi to �nite diret sum of full

matrix algebras, ⊕rMnr
.
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always pure states by restrition to the orresponding �nite dimensional algebra. Sine Ck, k ∈ K are

spaelike separated to the other loal algebra, (36) should hold in a loally ausal theory for any hoie

of A ∈ N (VA), B ∈ N (VB) and any loally faithful state φ on the quasiloal observables aording to

De�nition 1.

To reveal the similarities and the di�erenes between Bell's loal ausality and the CCPs we note that

the ore mathematial requirement of both properties is the sreening-o� onditions (22) or equivalently

(36). However, the subjets of these onditions are very di�erent: In the �rst ase the sreening-o�

should hold for all pairs of algebra elements supported in the spaelike regions VA, VB ∈ K. On the

ontrary, di�erent ommon ause systems are not only allowed for di�erent triples (A,B, φ) but also a

nontrivial dependene is expeted on physial grounds. Moreover, in ase of loal ausality the sreening-

o� ondition (22) is required for every atomi event (satisfying ertain loalization onditions). In ase

of the CCP the sreening-o� ondition (36) should be satis�ed only by a single subset of events, by a

deomposition of unit, whih, apart from the `kinemati' maximal size solution, is typially not given by

atomi events.

However, there is an exiting similarity: there exist derivations of the Bell inequalities from both ondi-

tions (together with some additional requirements). In (Hofer-Szabó and Vesernyés, 2013b, Proposition

2) we have proven a proposition whih lari�es the relation between the CCPs and the Bell inequalities.

It asserts that the Bell inequalities an be derived from the existene of a ommon ause system for a set

of orrelations if ommon auses are understood as ommuting ommon auses. However, if we also allow

for nonommuting ommon auses, the Bell inequalities an be derived only for another state whih is

not idential to the original one. And indeed in (Hofer-Szabó and Vesernyés, 2013a,b) a nonommuting

ommon ause was onstruted for a set of orrelations violating the Clauser�Horne inequality. Moreover,

this ommon ause was loalized in the strong past of the orrelating events.

Now, an analogous proposition holds for the relation between loal ausality and the Bell inequalities.

We assert here only the proposition without the proof sine the proof is step-by-step the same as that of

the proposition mentioned above.

Proposition 3. Let {N (V ), V ∈ K} be a loally ausal LPT with atomi (type I) loal von Neumann

algebras. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four projetions loalized in spaelike separated

spaetime regions VA and VB, respetively, whih pairwise orrelate in the loally faithful state φ that is

φ(AmBn) 6= φ(Am)φ(Bn) (37)

for any m,n = 1, 2. Let VC ∈ K be a region satisfying requirements L1, L2 and LQ
3 /L

C
3 in De�nition 2 of

loal ausality and let {Ck}k∈K ⊂ N (VC) be a maximal partition of unit ontaining mutually orthogonal

atomi projetions. Then the Clauser�Horne inequality

−1 6 (φ ◦ T{Ck})(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (38)

holds for the state φ ◦ T{Ck}. If {Ck} ommutes with A1, A2, B1 and B2, then the Clauser�Horne

inequality holds for the original state φ:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 − A1 −B1) 6 0. (39)

The moral is the same as in the ase of the CCPs: the Bell inequalities an be derived in a loally ausal

LPT only for a modi�ed state φ ◦ T{Ck} in general. It an be derived for the original state φ if the set

of atomi projetions {Ck} loalized in VC ommutes with A1, A2, B1 and B2. Clearly, if the LPT is

lassial, the elements taken from any loal algebra will ommute, therefore Bell inequalities hold for the

original state φ in LCTs. However, going over to loally ausal LQTs, ommutation of {Ck} with the

orrelating events is not guaranteed. If VC is spatially separated from VB (ensured by requirement LQ
3 but

not LC
3 ), then {Ck} will ommute with B1 and B2 due to miroausality, hene (22) will be satis�ed, even
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if the B1 and B2 do not ommute. However, in ase of loal primitive ausality one annot pik a maximal

partition of unit {Ck} in N (VC) (whih is needed for the states φCk
to be pure on N (VC)) suh that {Ck}

ommutes also with projetions A1 and A2, if [A1, A2] 6= 0. Namely, N (VA) ⊂ N (V ′′
C ) = N (VC) due to

isotony and loal primitive ausality, and the image T{Ck}(N (VC )) is a maximal abelian subalgebra of

N (VC) ontaining exatly those elements that ommute with {Ck}. Hene, in order to ommute with

{Ck}, both A1 and A2 should be ontained in T{Ck}(N (VC )), whih annot be the ase, if [A1, A2] 6= 0.
The onlusion is that in ase of nonommuting projetionsA1 and A2 the theorem of total probability,

∑

k φ(CkAmCk) = φ(Am), will not hold for the original state

19 φ at least for one of the projetions A1

and A2. This fat bloks the derivation of Bell inequalities for the original state φ. (For the details see
(Hofer-Szabó and Vesernyés, 2013b, p. 410).) In short, the Bell inequalities an be derived in a loally

primitive ausal LQT with atomi von Neumann algebras, hene in a loally ausal LQT, only if the

projetions supported on both of the orrelating regions ommute.

20

Coming bak to the question posed at the end of the previous setion, namely how a loal quantum

theory an be loally ausal in the fae of the Bell inequalities, we already know the answer: the Bell

inequalities an be derived from loal ausality if the 'beables' of the loal theory are represented by

ommutative loal algebras. This fat is ompletely analogous with the relation shown in (Hofer-Szabó

and Vesernyés, 2013b): Bell inequalities an be derived from a (joint, nononpiratorial, loal) ommon

ause system if it is a ommuting ommon ause system. Thus, both ommon ausal explanation and

loal ausality are more general notions than what is aptured by the Bell inequalities.

8 Summary

In this paper we aimed to give a lear-ut de�nition of Bell's notion of loal ausality. To this end, �rst

we unfolded a framework, alled loal physial theory, whih integrates probabilisti and spatiotemporal

onepts in a ommon oneptual shema. We have lari�ed how primitive ausality and loal primitive

ausality lead to deterministi and ausal dynamis, respetively. We have introdued the notion of

ausal Markov proess with independent transition probabilities with respet to spaelike separation and

showed that they lead to a ausal stohasti dynamis interpretation of the state extension proedure

in LCTs without primitive ausality. Having formulated Bell's loal ausality within the framework of

LPTs we have given su�ient onditions for a LPT to be loally ausal: 1. loal primitive ausality holds

and the loal von Neumann algebras are atomi, 2. primitive ausality does not hold but the state on

the quasiloal algebra arises from the mentioned ausal stohasti proess and the loal von Neumann

algebras are �nite dimensional. We have onstruted an expliit model for the latter ase, alled stohasti

ausal Ising model. We ompared Bell's loal ausality with the various Common Cause Priniples and

related both to the Bell inequalities. We found a nie parallelism: Bell inequalities annot be derived

neither from loal ausality nor from a ommon ause unless the loal physial theory is lassial or the

ommon ause is ommuting, respetively.
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