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Abstract

The special relativity principle presupposes that the states of the physical sys-
tem concerned can be meaningfully characterized, at least locally, as such in which
the system is at rest or in motion with some velocity relative to an arbitrary frame
of reference. In the first part of the paper we show that electrodynamic systems,
in general, do not satisfy this condition. In the second part of the paper we argue
that exatly the same condition serves as a necessary condition for the persistence
of an extended physical object. As a consequence, we argue, electromagnetic field
strengths cannot be the individuating properties of electromagnetic field—contrary
to the standard realistic interpretation of CED. In other words, CED is ontologi-
cally incomplete.

1 Introduction
The problem we address in this paper is on the border-line between physics and meta-
physics. We begin with the observation that the special relativity principle (RP) is
about the comparison of the behaviors of physical systems in different states of inertial
motion relative to an arbitrary inertial frame of reference. Therefore, it is a minimal
requirement for the RP to be a meaningful statement that the states of the system in
question must be meaningfully characterized as such in which the system as a whole
is at rest or in motion with some velocity relative to an arbitrary frame of reference.
Thus, to apply the RP to classical electrodynamics (CED), it has to be meaningfully
formulated when an electrodynamic system—charged particles plus electromagnetic
field—is at rest or in motion relative to an inertial frame of reference. In the first part
of the paper we formulate a minimal condition a solution of the Maxwell–Lorentz equa-
tions must satisfy in order to describe such an electrodynamic configuration. Then we
prove that the solutions of the Maxwell–Lorentz equations, in general, do not satisfy
these conditions.

In the second part of the paper, we discuss the conceptual relationship between
the problem of motion and the problem of persistence. We argue that persistence
presupposes—zero or non-zero—velocity. One can formulate a necessary condition
for the persistence of an object, in terms of its individuating properties. This condition
implies that the object must be in motion with some instantaneous velocity; or, in case
of an extended object, its local parts must be in motion with some local and instan-
taneous velocities. At this point the problem of persistence connects to the problem
discussed in the first part of the paper. As it is proved in Section 3, electromagnetic
field does not satisfy this condition. Therefore, we conclude, electromagnetic field
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cannot be regarded as a real physical entity persisting in space and time; or, the field
strengths cannot be regarded as fundamental quantities individuating electromagnetic
field, that is, electrodynamics cannot be regarded as an ontologically complete descrip-
tion of electromagnetic phenomena.

2 The RP Is about the Behaviors of Physical Systems in
Different States of Motion

The RP is one of the fundamental principles which must be satisfied by all laws of
physics describing any physical phenomena. Without entering into the more technical
formulation of the principle (see e.g. Gömöri and Szabó 2013), we would like to focus
on one particular aspect, which is already clearly there in Galileo’s first formulation:

Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other small
flying animals. Have a large bowl of water with some fish in it; hang up
a bottle that empties drop by drop into a wide vessel beneath it. With the
ship standing still, observe carefully how the little animals fly with equal
speed to all sides of the cabin. The fish swim indifferently in all direc-
tions; the drops fall into the vessel beneath; and, in throwing something
to your friend, you need throw it no more strongly in one direction than
another, the distances being equal; jumping with your feet together, you
pass equal spaces in every direction. When you have observed all these
things carefully (though doubtless when the ship is standing still every-
thing must happen in this way), have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this way and
that. You will discover not the least change in all the effects named, nor
could you tell from any of them whether the ship was moving or standing
still. In jumping, you will pass on the floor the same spaces as before, nor
will you make larger jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite the fact that during the
time that you are in the air the floor under you will be going in a direction
opposite to your jump. In throwing something to your companion, you
will need no more force to get it to him whether he is in the direction of
the bow or the stern, with yourself situated opposite. The droplets will
fall as before into the vessel beneath without dropping toward the stern,
although while the drops are in the air the ship runs many spans. The fish
in their water will swim toward the front of their bowl with no more effort
than toward the back, and will go with equal ease to bait placed anywhere
around the edges of the bowl. Finally the butterflies and flies will continue
their flights indifferently toward every side, nor will it ever happen that
they are concentrated toward the stern, as if tired out from keeping up with
the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air. And if smoke is made by
burning some incense, it will be seen going up in the form of a little cloud,
remaining still and moving no more toward one side than the other. The
cause of all these correspondences of effects is the fact that the ship’s mo-
tion is common to all the things contained in it [italics added], and to the
air also. That is why I said you should be below decks; for if this took



place above in the open air, which would not follow the course of the ship,
more or less noticeable differences would be seen in some of the effects
noted. (Galilei 1953, 187)

What is important for our present concern is that the principle is about the comparison
of the behaviors of physical systems—flies, butterflies, fishes, droplets, smoke—in
different states of inertial motion relative to an arbitrary inertial frame of reference. In
Brown’s words:

The principle compares the outcome of relevant processes inside the cabin
under different states of inertial motion of the cabin relative to the shore. It
is simply assumed by Galileo that the same initial conditions in the cabin
can always be reproduced. What gives the relativity principle empirical
content is the fact that the differing states of motion of the cabin are clearly
distinguishable relative to the earth’s rest frame. (Brown 2005, 34)

The RP describes the relationship between two situations: one is in which the system,
as a whole, is at rest relative to one inertial frame, say K, the other is in which the
system shows the similar behavior, but being in a collective motion relative to K, co-
moving with some K′. In other words, the RP assigns to each solution F of the physical
equations, stipulated to describe the situation in which the system is co-moving as a
whole with inertial frame K, another solution MV(F), describing the similar behavior
of the same system when it is, as a whole, co-moving with inertial frame K′, that is,
when it is in a collective motion with velocity V relative to K, where V is the velocity
of K′ relative to K. And it asserts that the solution MV(F), expressed in the primed
variables of K′, has exactly the same form as F in the original variables of K.

Consequently, the following is a minimal requirement for the RP to be a meaningful
statement:

Minimal Requirement for the RP (MR) The states of the system in question—
described by the solutions F—must be meaningfully characterized as such in which
the system as a whole is at rest or in motion with some velocity relative to an arbitrary
frame of reference.

Let us show a well-known electrodynamic example in which a particles + elec-
tromagnetic field system satisfies this condition. Consider one single charged particle
moving with constant velocity V = (V,0,0) relative to K and the coupled stationary



electromagnetic field (Jackson 1999, 661):

MV(F)
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where (x0,y0,z0) is the initial position of the particle at t = 0, X0 = γ (x− (x0 +Vt))

and γ =
(

1− V 2

c2

)− 1
2
. In this case, it is no problem to characterize the particle + electro-

magnetic field system as such which is, as a whole, in motion with velocity V relative to
K; as the electromagnetic field is in collective motion with the point charge of velocity
V (Fig. 1) in the following sense:1

E(r, t) = E(r−Vδ t, t−δ t) (2)
B(r, t) = B(r−Vδ t, t−δ t) (3)

that is,

−∂tE(r, t) = DE(r, t)V (4)
−∂tB(r, t) = DB(r, t)V (5)

where DE(r, t) and DB(r, t) denote the spatial derivative operators (Jacobians for vari-
ables x,y and z); that is, in components:

−∂tEx(r, t) = Vx∂xEx(r, t)+Vy∂yEx(r, t)+Vz∂zEx(r, t) (6)
−∂tEy(r, t) = Vx∂xEy(r, t)+Vy∂yEy(r, t)+Vz∂zEy(r, t) (7)

...
−∂tBz(r, t) = Vx∂xBz(r, t)+Vy∂yBz(r, t)+Vz∂zBz(r, t) (8)

1It must be pointed out that velocity V conceptually differs from the speed of light c. Basically, c is a
constant of nature in the Maxwell–Lorentz equations, which can emerge in the solutions of the equations;
and, in some cases, it can be interpreted as the velocity of propagation of changes in the electromagnetic
field. For example, in our case, the stationary field of a uniformly moving point charge, in collective motion
with velocity V, can be constructed from the superposition of retarded potentials, in which the retardation is
calculated with velocity c; nevertheless, the two velocities are different concepts. To illustrate the difference,
consider the fields of a charge at rest (9), and in motion (1). The speed of light c plays the same role in both
cases. Both fields can be constructed from the superposition of retarded potentials in which the retardation
is calculated with velocity c. Also, in both cases, a small local perturbation in the field configuration would
propagate with velocity c. But still, there is a consensus to say that the system described by (9) is at rest
while the one described by (1) is moving with velocity V (together with K′, relative to K.) A good analogy
would be a Lorentz contracted moving rod: V is the velocity of the rod, which differs from the speed of
sound in the rod.



Figure 1: The stationary field of a uniformly moving point charge is in collective mo-
tion together with the point charge

The uniformly moving point charge + electromagnetic field system not only satis-
fies condition MR, but it satisfies the RP: Formula (1) with V = 0 describes the static
field of the particle when they are at rest in K :

F
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Bx(x,y,z, t) = 0
By(x,y,z, t) = 0
Bz(x,y,z, t) = 0
ρ(x,y,z, t) = qδ (x− x0)δ (y− y0)δ (z− z0)

(9)

By means of the Lorentz transformation rules one can express (1) in terms of the



‘primed’ variables of the co-moving reference frame K′:
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(10)

and we find that the result is indeed of the same form as (9).
So, in this well-known particular textbook example the RP is meaningful and sat-

isfied. This picture is in complete accordance with the standard realistic interpretation
of electromagnetic field:

In the standard interpretation of the formalism, the field strengths B and
E are interpreted realistically: The interaction between charged particles
are mediated by the electromagnetic field, which is ontologically on a par
with charged particles and the state of which is given by the values of the
field strengths. (Frisch 2005, 28)

In this example, the charged particle and the coupled electromagnetic field consti-
tute a physical system which—just like Galileo’s flies, butterflies, fishes, droplets, and
smoke—can be subject to the RP. The states F and MV(F) can be meaningfully char-
acterized as such in which both parts of the physical system, the particle and the elec-
tromagnetic field, are at rest or in motion with some velocity relative to an arbitrary
frame of reference. We will show, however, that this is not the case in general.

3 How to Understand the RP for a General Electrody-
namic System?

What meaning can be attached to the words “a coupled particles + electromagnetic field
system is in collective motion with velocity V” (V = 0 included) relative to a reference
frame K, in general? One might think, we can read off the answer to this question
from the above example. However, focusing on the electromagnetic field, the partial
differential equations (4)–(5) imply that

E(r, t) = E0(r−Vt) (11)
B(r, t) = B0(r−Vt) (12)

with some time-independent E0(r) and B0(r). In other words, the field must be a
stationary one, that is, a translation of a static field with velocity V. But, (11)–(12) is
certainly not the case for a general solution of the equations of CED; the field is not



necessarily translating with a collective velocity. The behavior of the field can be much
more complex. Whatever this complex behavior is, it is quite intuitive to assume that
the following general principle must hold:

Mereological Principle of Motion (MPM) If an extended object as a whole is at
rest or is in motion with some velocity relative to an arbitrary reference frame K, then
all local parts of it are in motion with some local instantaneous velocity v(r, t) relative
to K.

Combining MPM with MR, we obtain the following:

Local Minimal Requirement for the RP (LMR) The states of the extended physical
system in question must be meaningfully characterized as such in which all local parts
of the system are at rest or in motion with some local instantaneous velocity relative to
an arbitrary frame of reference.

Consequently, in case of electrodynamics, a straightforward minimal requirement
for the RP to be a meaningful statement is that (2)–(3) must be satisfied at least locally
with some local and instantaneous velocity v(r, t): it is quite natural to say that the
electromagnetic field at point r and time t is moving with local and instantaneous
velocity v(r, t) if and only if

E(r, t) = E(r−v(r, t)δ t, t−δ t) (13)
B(r, t) = B(r−v(r, t)δ t, t−δ t) (14)

are satisfied locally, in an infinitesimally small space and time region at (r, t), for in-
finitesimally small δ t. In other words, the equations (4)–(5) must be satisfied locally at
point (r, t) with a local and instantaneous velocity v(r, t):

−∂tE(r, t) = DE(r, t)v(r, t) (15)
−∂tB(r, t) = DB(r, t)v(r, t) (16)

In other words, if the RP, as it is believed, applies to all situations in electrodynam-
ics, there must exist a local instantaneous velocity field v(r, t) satisfying (15)–(16) for
all possible solutions of the following system of Maxwell–Lorentz equations:

∇ ·E(r, t) =
n

∑
i=1

qi
δ
(
r− ri (t)

)
(17)

c2
∇×B(r, t)−∂tE(r, t) =

n

∑
i=1

qi
δ
(
r− ri (t)

)
vi (t) (18)

∇ ·B(r, t) = 0 (19)
∇×E(r, t)+∂tB(r, t) = 0 (20)

mi
γ
(
vi (t)

)
ai(t) = qi{E

(
ri (t) , t

)
+vi (t)×B

(
ri (t) , t

)
−c−2vi (t)

(
vi (t) ·E

(
ri (t) , t

))}
(21)

(i = 1,2, . . . ,n)

where, γ(. . .) =
(

1− (...)2

c2

)− 1
2
, qi is the electric charge and mi is the rest mass of the



i-th particle. That is, substituting an arbitrary solution2 of (17)–(21) into (15)–(16), the
overdetermined system of equations must have a solution for v(r, t).

However, one encounters the following difficulty:

Theorem 1. There is a dense subset of solutions of the coupled Maxwell–Lorentz equa-
tions (17)–(21) for which there cannot exist a local instantaneous velocity field v(r, t)
satisfying (15)–(16).

Proof. The proof is almost trivial for a locus (r, t) where there is a charged point par-
ticle. However, in order to avoid the eventual difficulties concerning the physical inter-
pretation, we are providing a proof for a point (r∗, t∗) where there is assumed no source
at all.

Consider a solution
(
r1 (t) ,r2 (t) , . . . ,rn (t) ,E(r, t),B(r, t)

)
of the coupled

Maxwell–Lorentz equations (17)–(21), which satisfies (15)–(16). At point (r∗, t∗), the
following equations hold:

−∂tE(r∗, t∗) = DE(r∗, t∗)v(r∗, t∗) (22)
−∂tB(r∗, t∗) = DB(r∗, t∗)v(r∗, t∗) (23)

∂tE(r∗, t∗) = c2
∇×B(r∗, t∗) (24)

−∂tB(r∗, t∗) = ∇×E(r∗, t∗) (25)
∇ ·E(r∗, t∗) = 0 (26)
∇ ·B(r∗, t∗) = 0 (27)

Without loss of generality we can assume—at point r∗ and time t∗—that operators
DE(r∗, t∗) and DB(r∗, t∗) are invertible and vz(r∗, t∗) 6= 0.

Now, consider a 3×3 matrix J such that

J =

 ∂xEx(r∗, t∗) Jxy Jxz
∂xEy(r∗, t∗) ∂yEy(r∗, t∗) ∂zEy(r∗, t∗)
∂xEz(r∗, t∗) ∂yEz(r∗, t∗) ∂zEz(r∗, t∗)

 (28)

with

Jxy = ∂yEx(r∗, t∗)+λ (29)

Jxz = ∂zEx(r∗, t∗)−λ
vy(r∗, t∗)
vz(r∗, t∗)

(30)

by virtue of which

Jxyvy(r∗, t∗)+ Jxzvz(r∗, t∗) = vy(r∗, t∗)∂yEx(r∗, t∗)
+vz(r∗, t∗)∂zEx(r∗, t∗) (31)

2Without entering into the details, it must be noted that the Maxwell–Lorentz equations (17)–(21), exactly
in this form, have no solution. The reason is that the field is singular at precisely the points where the
coupling happens: on the trajectories of the particles. The generally accepted answer to this problem is
that the real source densities are some “smoothed out” Dirac deltas, determined by the physical laws of the
internal worlds of the particles—which are, supposedly, outside of the scope of CED. With this explanation,
for the sake of simplicity we leave the Dirac deltas in the equations. Since our considerations here focuses
on the electromagnetic field, satisfying the four Maxwell equations, we must only assume that there is a
coupled dynamics—approximately described by equations (17)–(21)—and that it constitutes an initial value
problem. In fact, Theorem 1 could be stated in a weaker form, by leaving the concrete form and dynamics
of the source densities unspecified.



Therefore, Jv(r∗, t∗) = DE(r∗, t∗)v(r∗, t∗). There always exists a vector field E#
λ
(r)

such that its Jacobian matrix at point r∗ is equal to J. Obviously, from (26) and (28),
∇ ·E#

λ
(r∗) = 0. Therefore, there exists a solution of the Maxwell–Lorentz equations,

such that the electric and magnetic fields Eλ (r, t) and Bλ (r, t) satisfy the following
conditions:3

Eλ (r, t∗) = E#
λ
(r) (32)

Bλ (r, t∗) = B(r, t∗) (33)

At (r∗, t∗), such a solution obviously satisfies the following equations:

∂tEλ (r∗, t∗) = c2
∇×B(r∗, t∗) (34)

−∂tBλ (r∗, t∗) = ∇×E#
λ
(r∗) (35)

therefore
∂tEλ (r∗, t∗) = ∂tE(r∗, t∗) (36)

As a little reflection shows, if DE#
λ
(r∗), that is J, happened to be not invertible,

then one can choose a smaller λ such that DE#
λ
(r∗) becomes invertible (due to the fact

that DE(r∗, t∗) is invertible), and, at the same time,

∇×E#
λ
(r∗) 6= ∇×E(r∗, t∗) (37)

Consequently, from (36) , (30) and (22) we have

−∂tEλ (r∗, t∗) = DEλ (r∗, t∗)v(r∗, t∗) = DE#
λ
(r∗)v(r∗, t∗) (38)

and v(r∗, t∗) is uniquely determined by this equation. On the other hand, from (35) and
(37) we have

−∂tBλ (r∗, t∗) 6= DBλ (r∗, t∗)v(r∗, t∗) = DB(r∗, t∗)v(r∗, t∗) (39)

because DB(r∗, t∗) is invertible, too. That is, for Eλ (r, t) and Bλ (r, t) there is no local
and instantaneous velocity at point r∗ and time t∗.

At the same time, λ can be arbitrary small, and

lim
λ→0

Eλ (r, t) = E(r, t) (40)

lim
λ→0

Bλ (r, t) = B(r, t) (41)

Therefore solution
(
r1

λ
(t) ,r2

λ
(t) , . . . ,rn

λ
(t) ,Eλ (r, t),Bλ (r, t)

)
can fall into an arbitrary

small neighborhood of
(
r1 (t) ,r2 (t) , . . . ,rn (t) ,E(r, t),B(r, t)

)
.4

3E#
λ
(r) and Bλ (r, t∗) can be regarded as the initial configurations at time t∗; we do not need to specify a

particular choice of initial values for the sources.
4Notice that our investigation has been concerned with the general laws of Maxwell–Lorentz electrody-

namics of a coupled particles + electromagnetic field system. The proof of the theorem was essentially based
on the presumption that all solutions of the Maxwell–Lorentz equations, determined by any initial state of
the particles + electromagnetic field system, corresponded to physically possible configurations of the elec-
tromagnetic field. It is sometimes claimed, however, that the solutions must be restricted by the so called
retardation condition, according to which all physically admissible field configurations must be generated
from the retarded potentials belonging to some pre-histories of the charged particles (Jánossy 1971, p. 171;
Frisch 2005, p. 145). There is no obvious answer to the question of how Theorem 1 is altered under such
additional condition.



Thus, the meaning of the concept of “electromagnetic field moving with a local in-
stantaneous velocity v(r, t) at point r and time t”, that we obtained by a straightforward
generalization of the example of the stationary field of a uniformly moving charge, is
untenable. We do not see other available rational meaning of this concept. Such a
concept, on the other hand, would be a necessary conceptual plugin to the RP. In any
event, lacking a better suggestion, we must conclude that the RP is a statement which
is meaningless for a general electrodynamic situation.

4 No Persistence without Motion
There is a long debate in contemporary metaphysics whether and in what sense in-
stantaneous velocity can be regarded as an intrinsic property of an object at a given
moment of time (Butterfield 2006; Arntzenius 2000; Tooley 1988; Hawley 2001, 76–
80; Sider 2001, 34–35). There seems to be, however, a consensus that

[. . .] the notion of velocity presupposes the persistence of the object con-
cerned. For average velocity is a quotient, whose numerator must be the
distance traversed by the given persisting object: otherwise you could give
me a superluminal velocity by dividing the distance between me and the
Sun by a time less than eight minutes. So presumably, average velocity’s
limit, instantaneous velocity, also presupposes persistence. (Butterfield
2005, 257)

In this section we argue that the opposite is also true: the notion of persistence requires
the existence of instantaneous velocity.

It is common to all theories of persistence—endurantism vs. perdurantism—that a
persisting entity needs to have some package of individuating properties, in terms of
which one can express that two things in two different spatiotemporal regions are iden-
tical, or at least constitute different spatiotemporal parts of the same entity. Butterfield
writes:

I believe that [the criteria of identity] are largely independent of the
endurantism–perdurantism debate; and in particular, that endurantism and
perdurantism [...] face some common questions about criteria of identity,
and can often give the same, or similar, answers to them. [...] [A]ll parties
need to provide criteria of identity for objects, presumably invoking the
usual notions of qualitative similarity and-or causation (Butterfield 2005,
248–289)

Without loss of generality we may assume that each of these individuating properties
can be characterized as such that a certain quantity fi takes a certain value. Consider
a primitive example: the redness of the ball in Fig. 2 can be characterized as such that
the wavelength of light reflected from the instantaneous surface of the ball is around
650 nm. Or, more abstractly, just imagine a quantity the spatiotemporal distribution
of which takes value 1 in a region where redness is instantiated—for example, on the
locus of the ball—and takes value 0 otherwise.

Now, in order to express the fact of persistence, consider a given n-tuple of indi-
viduating quantities { fi}n

i=1 that is supposed to trace out the trajectory or spacetime
tube along which the entity persists. The different theories of persistence disagree in
the actual content of the package { fi}n

i=1, these differences are not important from the



the world line along which the ball
persists (endures/perdures)

Figure 2: A ball is individuated by its redness, spottedness, etc.

point of view of our present concern. The following necessary condition is however
common to all intuitions:

fi(r, t) = fi(r−v(t)δ t, t−δ t) (42)
(i = 1,2, . . . ,n)

for all (r, t) where the object is present, at least for a small, infinitesimal, interval of
time δ t (Fig. 2), with some instantaneous velocity v(t). Without loss of generality we
may assume that all functions in { fi}n

i=1 are smooth (if not, we can approximate them
by smooth functions). Expressing (42) in a differential form, we have5

−∂t fi(r, t) = D fi(r, t)v(t) (43)
(i = 1,2, . . . ,n)

In other words, the entity is in motion with some instantaneous velocities v(t). Let us
call (43) the equations of persistence.

So far we considered the situation when the persistence can be formulated in terms
of individuating quantities { fi}n

i=1 characterizing the entity in question as a whole.
Generally, however, this is not necessarily the case. An extended object may persist,
even if its holistic properties do not satisfy equations (43). Following however the same
intuition by which we formulated the Mereological Principle of Motion, we propose
the following thesis:

Mereological Principle of Persistence (MPP) If an extended object, as a whole,
persists, then its all local parts persist.

Accordingly, the persistence of an extended object requires the following condition
for the spatial distributions:

fi(r, t) = fi(r−v(r, t)δ t, t−δ t) (44)
(i = 1,2, . . . ,n)

5For the sake of simplicity we may assume that all fi are scalar functions, and D fi is simply grad fi.



Figure 3: Persistence of an extended object requires the persitence of its local parts

or

−∂t fi(r, t) = D fi(r, t)v(r, t) (45)
(i = 1,2, . . . ,n)

for all (r, t) where the extended object is present; where v(r, t) is a local and instanta-
neous velocity field characterizing the motion of the local part of the extended entity at
the spatiotemporal locus (r, t) (Fig 3). Let us call (45) the equations of persistence for
an extended object.

5 The Ontological Incompleteness of CED
As we have seen in Theorem 1, the distributions of the two fundamental electrody-
namic field strengths, E(r, t) and B(r, t), do not satisfy the equations of persistence
(45). Therefore, the electromagnetic field individuated by the field strengths cannot be
regarded as a persisting physical object; in other words, electromagnetic field cannot
be regarded as being a real physical entity existing in space and time. This seems to
contradict to the usual realistic interpretation of CED.

If electromagnetic field is a real entity persisting in space and time, then it cannot
be individuated by the field strengths. That is, there must exist some quantities other
than the field strengths, perhaps outside of the scope of CED, individuating the local
parts of electromagnetic field. This suggests that CED is an ontologically incomplete
theory.

How to conceive properties, different from the field strengths, which are capable of
individuating the electromagnetic field? One might think of them as some “finer”, more
fundamental, properties of the field, not only individuating it as a persisting extended
object, but also determining the values of the field strengths. However, the following
easily verifiable theorem shows that this determination cannot be so simple:

Theorem 2. Let { fi}n
i=1 be a package of quantities for which there exist a local in-

stantaneous velocity field v(r, t) satisfying the equations of persistence (45) in a given



For example:

Figure 4: A non-local form of supervenience

spacetime region. If a quantity Φ is a function of the quantities f1, f2, . . . , fn in the
following form:

Φ(r, t) = Φ( f1(r, t), f2(r, t), ..., fn(r, t))

then Φ also obeys the equation of persistence

−∂tΦ(r, t) = DΦ(r, t)v(r, t)

with the same local instantaneous velocity field v(r, t), within the same spacetime re-
gion.

Therefore, E(r, t) and B(r, t) cannot supervene pointwise upon some more fun-
damental individuating quantities satisfying the persistence equations. However, they
might supervene in some non-local sense. For example, imagine that E(r, t) and B(r, t)
provide only a course-grained characterization of the field, but there exist some more
fundamental fields e(r, t) and b(r, t), such that

E(r, t) =
ˆ

Ω

e
(
r′, t ′

)
d4(r, t)

B(r, t) =
ˆ

Ω

b
(
r′, t
)

d4(r, t)

where Ω is a neighbourhood of (r, t) (Fig. 4). In this case, the more fundamental
quantities e(r, t) and b(r, t) may satisfy the equations of persistence, while E(r, t) and
B(r, t), supervening on e(r, t) and b(r, t), may not.
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