
The Logic of Identity: Distinguishability and Indistinguishability

in Classical and Quantum Physicsa

Dennis Dieks1

1Institute for the History and Foundations of Science, Utrecht University

P.O.Box 80.010, 3508 TA Utrecht, The Netherlands

Abstract

The suggestion that particles of the same kind may be indistinguishable in a fundamental sense,

even so that challenges to traditional notions of individuality and identity may arise, has first

come up in the context of classical statistical mechanics. In particular, the Gibbs paradox has

sometimes been interpreted as a sign of the untenability of the classical concept of a particle and

as a premonition that quantum theory is needed. This idea of a ‘quantum connection’ stubbornly

persists in the literature, even though it has also been criticized frequently. Here we shall argue

that although this criticism is justified, the proposed alternative solutions have often been wrong

and have not put the paradox in its right perspective. In fact, the Gibbs paradox is unrelated to

fundamental issues of particle identity; only distinguishability in a pragmatic sense plays a role

(in this we develop ideas of van Kampen10), and in principle the paradox always is there as long

as the concept of a particle applies at all. In line with this we show that the paradox survives

even in quantum mechanics, in spite of the quantum mechanical (anti-)symmetrization postulates.

03.65+b

a Dedicated to the memory of N.G. van Kampen (1921-2013)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/33752412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I. INTRODUCTION

Questions about identity and distinguishability in modern physics have their origin in

thermodynamics and statistical physics. In particular, the notorious Gibbs paradox raises

the question of exactly when two gases can be considered as being of the same kind, and what

consequences this sameness has for thermodynamical properties, in particular entropy values.

There is a persistent, though controversial and contested, claim in the literature that a fully

satisfactory solution of the Gibbs paradox can only be achieved in quantum mechanics, via

the way quantum mechanics deals with ‘identical particles’. Evidently, the background of

this claim is the conviction that there exists a relation between quantum indistinguishability

and ‘lack of particle identity’ on the one hand, and the thermodynamical mixing with which

the Gibbs paradox is concerned on the other (see for a sketch of the general background of

these ideas, e.g.,8).

In this article we shall first look at the definition of the entropy of mixing, in order to

emphasize the essential role of pragmatic considerations in the Gibbs paradox (in contradis-

tinction to fundamental considerations about particle identity). We also aim to show that

existing discussions of the Gibbs paradox have usually not gone to the heart of the matter

or are simply wrong. Finally, we demonstrate that the Gibbs paradox can be formulated

even in the context of quantum mechanical systems consisting of ‘identical particles’.

II. IDENTITY AND DISTINGUISHABILITY IN THERMODYNAMICS: THE

GIBBS PARADOX

Traditional thermodynamics deals with macro systems in thermal equilibrium—a paradig-

matic case is a gas in a container, whose volume V can be changed by means of a piston

and to which heat can be supplied by contact with a heat bath. The thermodynamic state

of the gas (which we here will write as a function of its pressure P and temperature T )

will be changed when we vary the volume and/or supply heat. If this is done in such

a gradual way that the gas can be considered to be in equilibrium at each instant, the

change is called reversible. It is now borne out by experience that the quantity
∫ 2

1
dQ/T ,

i.e. the supplied heat divided by the temperature, integrated along a reversible path from

state 1 to state 2 in the macroscopic state space parametrized by P and T , is independent
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of the path between 1 and 2. This means that a state function, the entropy S, can be

defined such that S(P2, T2) − S(P1, T1) =
∫ 2

1
dQ/T . Further, energy conservation implies

dQ − PdV = dE. Given that the energy E of an ideal classical gas consisting of N atoms

is given by E = 3
2
NkT + const, we find

dQ

T
=

5

2
Nkd(lnT )−Nkd(lnP ).

So the entropy of an ideal gas is determined as

S(P, T ) =
5

2
Nk lnT −Nk lnP + C. (1)

The above derivation, starting from experimental facts, does not completely fix the number

C: C does not depend on the values of P and T of our system, but may depend on anything

else, and may in principle be taken as different when we go from one system to another, as

van Kampen (10) emphasizes. Nevertheless, there exist natural choices for C: it is eminently

reasonable and convenient to take the same value of C for all systems that consist of equal

amounts of the same gas, and also to take the entropy of a system that is formed by

juxtaposing (without thermal contact or other interaction) two thermodynamical systems

as the sum of the individual entropies, so that the entropy becomes additive (10 (p. 305)).

This goes beyond direct empirical regularities, since these only show additivity of entropy

differences.

Combining two volumes of the same ideal gas into one volume can be done by a reversible

process in which no heat is exchanged (namely, by slowly removing a partition). This, plus

the just-mentioned conventions about the constants in the entropy expressions, implies the

extensivity of the entropy of ideal gases: before the removal of the partition the total entropy

is double the entropy of each of the individual systems (by virtue of additivity) and this

value does not change during the reversible removal of the partition, since dQ = 0 during

this process.? So the consideration of reversible processes in which N changes makes it

possible to say more about the N -dependence of S than what is already contained in (1).

The formula for the entropy of an ideal gas now becomes

S(P, T,N) =
5

2
Nk lnT −Nk lnP + cN (2)

in which the new constant c does not depend on P , T or N but may still depend on other

things, like the kind of gas that is being considered (10 (p. 306)).
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This derivation of the extensivity of the entropy of ideal gases highlights that in order

to apply the formula dS =
∫
dQ/T it is necessary to consider processes by means of which

the number of particles can be varied in a reversible way: it would be impossible to derive

an N -dependence of the entropy from merely studying the thermodynamical properties of

closed systems. Further, as we have seen, the full dependence of the entropy on N does

not follow immediately from experimental results (which give us only entropy differences)

but needs a choice of constants. This warns us that if we are going to seek a microscopic

counterpart of the thermodynamical entropy expression, we should focus on 4S rather than

on S itself. It is not to be expected that in statistical mechanics there exists a fundamental

and unique justification for the absolute value of S, if the task of statistical mechanics is to

reproduce empirical results; the freedom in S that we encounter in thermodynamics should

also be present in statistical mechanics.

A further comment is that obviously even the slowest removal of a partition between two

ideal gases of the same kind will lead to violent processes on the micro-scale: atoms will

suddenly have more space available to them and will escape from their original volume. If

the two gases are not of the same chemical sort, the resulting mixing of particles from the

two volumes will show itself by changes that count as thermodynamically observable and

the process will count as irreversible. Such an irreversible process will increase the entropy

even if dQ = 0. But if the two gases are chemically speaking the same, the mixing will

not be detectable by looking at the usual thermodynamical quantities. This is so because

in thermodynamics we restrict ourselves to the consideration of coarse-grained macroscopic

quantities, and this entitles us to describe the mixing of two volumes of gases of the same

kind, with equal P and T , as reversible with no increase in entropy. But if we think of what

happens in terms of the motions of individual atoms or molecules, the two processes (irre-

versible and reversible mixing) are completely similar. In other words, the qualification of

the mixing process as irreversible or reversible, and the verdict that the entropy does or does

not change, possesses a pragmatic dimension. It depends on what we accept as legitimate

methods of discrimination (10): chemical differences lead to acknowledged thermodynamical

entropy differences in a process of mixing, whereas mere differences in where particles come

from do not.

Indeed, in the case of two chemically different ideal gases, the description on the level

of thermodynamics permits that the gases can be effectively distinguished: it is assumed,
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as part of the thermodynamical framework, that semi-permeable membranes exist that are

transparent to one gas but stop the particles of the other. A reversible mixing process can

now be defined via the familiar procedure in which such membranes are slowly moved, while

the gas whose atoms or molecules cannot pass is exerting a pressure on the membrane.

Calculation of the work that is done and the heat that has to flow in in order to keep the

temperature constant leads to the familiar result that the mixing results in an increase in

entropy. The value of this ‘entropy of mixing’ is independent of the difference between the

two gases, and remains the same when (in thought) we make the gases more and more

similar. For two equal initial volumes V of ideal gases, each with the same P and T and

each with N atoms, which are mixed so that they are both contained in one volume 2V , the

increase of entropy is given by

Smix = 2kN ln 2. (3)

That (3) does not gradually vanish when the gases become more and more similar is one

form of the Gibbs paradox.

The reason that the entropy of mixing does not diminish when two gases become more

and more similar is readily understandable from the above. The derivation of Eq. (3) as

we sketched it has as its premise that the two gases can be reversibly mixed and sepa-

rated by some device, for example a set of semi-permeable membranes. If this premise is

granted, the outcome (3) follows from calculating
∫
dQ/T during the process. However, as

soon as this premise is dropped, i.e. as soon as we no longer assume the availability of an

effective discrimination technique, no increase of thermodynamical entropy will be found.

The discontinuous transition from 2kN ln 2 to 0 thus reflects the discontinuous step from

considering two things as distinguishable to considering them as indistinguishable—there is

nothing mysterious about this.

Continuing our earlier comment about the difference between irreversible and reversible,

we stress again that this Gibbs discontinuity contains a pragmatic element. If we decided to

follow individual particles on their trajectories, we could in principle build semi-permeable

membranes that could distinguish between particles coming from the two initial volumes,

even if the gases are chemically equal. With the help of such devices we could verify the

presence of an entropy of mixing Smix = 2kN ln 2 (4) even in this case. Such devices

would have to make use of a kind of Maxwellian demons: little instruments that should

calculate for each approaching atom or molecule whether it initially came from volume 1
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or 2. Depending on the result of this calculation, the atom/molecule should be stopped

or not. Of course, the consideration of membranes equipped with such microscopic tools

or Maxwellian demons falls outside the area of competence of traditional thermodynamics.

But this is exactly the point: it is our decision to confine ourselves to the consideration of

traditional thermodynamical quantities that is responsible for the disappearance of effects

of mixing in the case of gases of the same chemical kind.

The discontinuous vanishing of the entropy of mixing in thermodynamics therefore does

not correspond to some indistinguishability in principle, on the level of the particles de-

scribed by fundamental microscopic physics. Indeed, if we transcend the boundaries of

thermodynamics it is possible, within the conceptual framework of classical physics, to re-

cover an analogue of the entropy of mixing even when thermodynamics tells us that there

is no such entropy. It follows that the presence or absence of a thermodynamical entropy

of mixing does not teach us anything definitive about microscopic distinguishability and

identity. These simple considerations, which in principle are well known, already indicate

that attempts to connect the Gibbs paradox to issues of fundamental distinguishability and

identity, perhaps relating to quantum mechanics, are misguided.

III. IDENTITY AND DISTINGUISHABILITY IN STATISTICAL MECHANICS

One of Boltzmann’s seminal ideas was that in statistical mechanics the thermodynamical

entropy relates to the ‘thermodynamical probability’ W of a macro-state, viz. the number

of micro-states compatible with the macro-state in question divided by the total number of

micro-states. Boltzmann used a formula for entropy differences, of the form (5 (p. 176))

S2 − S1 = k ln
W2

W1

, (4)

in accordance with the fact that in thermodynamics only entropy differences have direct

empirical significance—as we have seen, the absolute value of the entropy depends on our

choice of constants. However, in the later literature Eq. (4) has usually been replaced by

the formula

S = k lnW, (5)

with W the number of micro-states. Ehrenfest and Trkal (5 (p. 176)) ascribe the predom-

inance of formula (5) to the influence of Planck’s work. Eq. (5) has the advantage that it

6



is simple and corresponds to a natural choice of constants. However, because it applies to

a closed system, it tends to obscure the fact that also in statistical mechanics we can only

learn something about the entropy’s dependence on any particular quantity if we investigate

processes in which the quantity in question can vary—such processes will tell us how the

entropy changes when the variable changes. In particular, S’s dependence on N must be

studied in situations in which the number of particles can vary.

If we have two equal volumes of ideal gases of the same kind, both in internal thermal

equilibrium at P and T , with a partition between them, application of Eq. (5) leads to

the result that the total entropy is double the value of the individual entropies (since the

total number of microstates is the product of the numbers of microstates of the individ-

ual systems, if there are no microscopic correlations between the systems). Equation (5)

therefore embodies the standard choice of constants that makes the entropy additive. When

we remove the partition, however, Eq. (5) does not produce the expected result that the

combined entropy is double the value of each of the entropies of the single systems. Indeed,

if the number of microstates in each of the single volumes of ideal gas at P and T is W , the

number of microstates in the combined volume is not W 2 but rather

W 2 2N !

N !N !
, (6)

in which the combinatorial factor represents the number of ways the 2N atoms can be

distributed over the two volumes after the partition has been taken out (we assume N to

be very large in this calculation and similar ones, so that the total number of states can be

taken as equal to the number of states of the equilibrium situation).

The presence of this combinatorial factor comes from the fact that we can distinguish and

follow in time each one of the individual particles, so that we can tell whether it originated

in the left or right compartment. Before the partition was removed the total number of

microstates was W 2, but after the removal each configuration can be realized in more ways

because particles from the left can now occupy positions at the right, and vice versa. We see

why the existence of trajectories is important here: by their trajectories we can distinguish

atoms from volume 1 from those originating from volume 2, also after the mixing. In the

case of classical particles this assumption of distinguishability via trajectories is of course

always satisfied. Now, if we use S = k lnW to calculate the entropy of the combined gas
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volumes, this gives us a value of the entropy after mixing of

2k lnW + k ln
2N !

N !N !
= 2k lnW + 2kN ln 2, (7)

where Stirling’s approximation has been used. We see that an entropy of mixing appears,

just as in Eq. (3). This leads to a variation on the original Gibbs paradox: the statistical

treatment, unlike the thermodynamical approach, doesn’t make the entropy of mixing vanish

even when the two gases are of the same chemical kind.

A familiar strategy here is to let this unexpected entropy growth go away by inserting a

factor 1/N ! in the expression for W . This manoeuvre removes the entropy of mixing when

we use formula (5), so that the entropy becomes extensive. Instead of k lnW for each of the

two individual volumes before mixing we now have k lnW/N !, and for the entropy of the

combined system after mixing we find

k ln(W 2.
2N !

N !N !
.

1

2N !
),

which is exactly double the entropy of each of the original volumes. So introducing the

additional factor 1/N ! in all entropy formulas removes the Gibbs paradox in its second

version.

IV. THE FACTOR 1/N !

In order to decide whether, and if so in what respect, we have come closer to a solution

of the paradox, we should first of all pay attention to the objection that the division of the

number of microstates by N ! is ad hoc and mysterious—a criticism that has been discussed

in the literature since Gibbs’s days. There is a traditional reply here, going back to Gibbs

himself and to Planck (see5,8,10 for references to the original literature), in which this division

is defended by an appeal to the fundamental indistinguishability of the atoms (or other

particles) that are involved.?

A recent example of this line of argument is Saunders’s observation that in many-particles

states of particles of the same kind permutations of the particle labels do not lead to a new

physical situation (8). From the viewpoint of what can be ascertained empirically, classical

particles are individuated solely by their physical properties, and it does not make any

difference how we distribute indices over them. We can therefore without any loss of physical
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information go over to the reduced phase space, in which all states that can be transformed

into each other by permutations of indices are identified: the different assignments of particle

labels do not correspond to empirical differences and can therefore be considered to represent

unnecessary surplus theoretical structure. So we can get by with a phase space whose number

of states is a factor N ! smaller than if we count all permuted states as different. According

to Saunders this observation justifies the insertion of a factor 1/N ! in the number of states,

which in turn solves the Gibbs paradox.

It is certainly true that in this sense classical particles with the same intrinsic properties

(mass, charge, etc.) are indistinguishable or permutable (as Saunders calls them); this per-

mutability expresses that labels do not carry physical meaning over and above the physical

properties of the particles. For example, two widely separated electrons, following distinct

trajectories and labeled 1 and 2, still represent exactly the same physical situation after

we have exchanged labels (in the sense that the electron at the first position is now called

electron 2, and vice versa). But this example also immediately demonstrates the physical

insignificance of this type of indistinguishability: in spite of the exchangeability of the labels,

the particles themselves can clearly be distinguished physically—we could easily tell them

apart by a detection device that is sensitive to positions. So it seems that this permutability

argument, and division by N ! on its basis, only relates to our mode of description and does

not possess physical import. This division by N ! cannot possibly lead to different predic-

tions; which makes it highly implausible that it could be relevant for a solution of the Gibbs

paradox. We shall return to this in more detail in a moment, after having discussed another

explanation for 1/N !.

This alternative approach looks more promising from a physical point of view because

it starts from a consideration of open systems. It can thus take into account the argument

that as long as one stays with Eq. (5) and applies it to closed systems, it is impossible to

justify any functional relation between variations in S and variations in N at all (5 (§9)). We

should switch to processes in which N may change (5,10) in order to study entropy changes

that are due to changes in N .

For this purpose we consider an ideal gas in a volume V1 that is brought into contact with

an ideal gas of the same kind in a volume V2. If we assume the kind of randomness that is

at the basis of statistical mechanics, the probability of having N1 particles in subsystem 1

and N2 = N −N1 particles in subsystem 2 (with N the fixed total number of particles) will
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be given by the binomial distribution

P (N1, N2) =
N !

N1!N2!
(
V1
V

)N1(
V2
V

)N2 . (8)

The particle number N1 is now no longer a constant but has become a stochastic variable,

which makes it possible to consider the change in probability and, by taking the logarithm,

the change in entropy when N1 varies. For example, if we let N → ∞, V2 → ∞, while

N/(V1 + V2) is finite and constant, we find for the change of entropy of a system in contact

with an infinite reservoir of particles:

4S = 4 ln
1

N1!
(
V1
V

)N1 . (9)

There thus appears a factor 1/N1! in the probability and entropy, and this time this factor is

derived instead of posited. The factor is due—via the binomial coefficient in the probability

distribution—to the multiplicity of ways in which N1 atoms can be chosen from a total of

N atoms. For this multiplicity to make sense it must be assumed that on the microscopic

level of statistical mechanics the atoms are distinguishable: it must make a difference which

set of atoms is selected from the total number of atoms N .

A typical example of application of Eq. (8) is the case in which a volume V1 with N

ideal gas atoms is brought into contact with a larger volume V2 that is empty. As soon as

the partition is taken away, a situation arises which is not a thermodynamical equilibrium:

since the probability (8) is very sharply peaked around N1 = NV1/(V1 + V2), as a result of

random motion a new equilibrium will be established in which the gas is (approximately)

uniformly distributed over the total volume V1 + V2 (this is the essence of the second law in

its probabilistic version). If V1 = V2, the associated change in entropy is, from Eq. (4):

4S = k ln
N !

(N/2)!2
2−N = kN ln 2. (10)

If we start with a volume V1 filled with NA atoms of ideal gas A, and a volume V2 = V1

with NB = NA atoms of ideal gas B, we find, analogously, for the entropy change when a

partition between the gases is removed: 2kNA ln 2 = 2kNB ln 2. This is exactly the entropy

of mixing (3) that thermodynamics predicts for this case.

If, however, we begin with two volumes with atoms of the same gas, the situation immedi-

ately after the removal of the partition is already a state of maximum probability according

to Eq. (8). In this case there will consequently be no increase in entropy, in accordance with
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the thermodynamical result. So Eq. (8), with its factors 1/N !, appears to take away our

Gibbs worries.

V. DO THE JUSTIFICATIONS FOR 1/N ! REALLY SOLVE THE GIBBS PARA-

DOX?

Although it is a frequent claim in the literature that division of the entropy expression

by N ! because of fundamental indistinguishability or permutability of particles (the first

justification reviewed above) justifies discarding the Gibbs paradox, it is not difficult to see

that this is incorrect. The reason is that transition to the reduced phase space, so that all

insignificant permutations among particles of the same kind are factored out, should involve

a division by N ! in which N stands for all particles of the same kind. For example, in the

initial unmixed Gibbs situation, with the partition in place and with atoms of the same kind

on both sides, N should refer to the total number of atoms on both sides of the partition: it

clearly does not make any physical difference when we exchange labels across the partition.?

But this implies that we correct the multiplicity of states by the same numerical factor, both

before and after the removal of the partition. All entropy changes will therefore be exactly

the same as when we do not make these corrections at all. In other words, division by N !

on the basis of fundamental indistinguishability or permutability of particles of the same

kind only affects the absolute value of the entropy, of which we have already seen that it

is without empirical significance. This division is not sensitive to changes in the situation

like the removal of a partition or other mechanisms of mixing—it is therefore completely

irrelevant to the Gibbs paradox.

The justification of 1/N ! via making N variable, and applying the binomial distribution,

certainly looks more promising in this respect: here the division is not by a constant, but

by the variable number of particles in a given volume. The idea of this derivation of 1/N !

was first proposed by Ehrenfest and Trkal (5), in the early 1920-s. It is not as well known as

it should be (but see the exposition by van Kampen (10); Swendsen has recently proposed a

similar approach (9)). Authors who comment on this justification for the occurrence of 1/N !

in statistical mechanics expressions often create the impression that it provides a definitive

solution of the Gibbs paradox within the framework of classical physics, by deriving the

division by 1/N ! from standard probability theory.? However, as we shall argue, this claim
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rests on a misinterpretation of the significance of the factor 1/N ! that is thus derived.

The examples at the end of the previous section of the application of the Ehrenfest-Trkal

method to the mixing of gases already suffice to make the essence of the situation clear. If

two unequal gases are allowed to mix, there is no equilibrium immediately after the removal

of the partition, because the probability of the particle number is not at its maximum value.

This means that a more probable situation will be established, in accordance with the second

law in its statistical version. However, in the case of two equal gases (at the same pressure

and temperature) there is an equilibrium, and nothing will change. It is this difference that is

responsible for the presence or absence of an entropy of mixing in the examples. Where does

this difference come from? Not from the binomial distribution or the 1/N ! in it, but from

our decision to look only at the number of particles of a particular chemical kind, without

asking the question from where these particles came (from the left or right compartment).

In the case of two chemically equal gases we decide not to follow the atoms from the left

compartment, so that we renounce the possibility to identify them as different from atoms

coming from the right; but this identification is exactly what we took for granted in the

case of unequal gases (in which case the task is easy because of the chemical difference).

There is a good reason for not bothering about the origin of chemically identical particles:

the remaining differences are undetectable by the methods allowed in thermodynamics. As

we discussed in the context of the Gibbs paradox in thermodynamics, we would leave the

domain of thermodynamics if we were going to follow the individual trajectories of particles

in order to detect the effects of mixing chemically equal gases. But this reason for the

disappearance of the mixing entropy has nothing to do with the appearance of 1/N ! in the

binomial distribution.

Indeed, exactly the same situation arises when we work with the formula S = k lnW

without taking into account the 1/N ! factor. As we know, in the case of unequal gases we

find that there is an entropy of mixing, due to the increase in possibilities for the individual

atoms of gases A and B. After the removal of the partition each atom now has twice

the number of available microstates it had before, which leads to an additional entropy

of Smix = k ln 22N = 2Nk ln 2. In the case of equal gases we find this same value if we

still consider all microstates as different—this is what leads to the Gibbs paradox in its

second version. But if we pause and think about what is relevant to thermodynamics,

we recognize that exchanges of atoms between the left and right compartments, although
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physically real, no longer lead to thermodynamically detectable differences in the case of

chemically equal gases. So we can safely diminish the total number of states, dividing by

22N in our calculation—not because there is no additional phase volume made available by

taking the partition out, but because this additional phase volume cannot be made visible

and usable by means of thermodynamical techniques. Fundamental ‘ontological’ identity

and indistinguishability do not play a role here.

Therefore, the Ehrenfest-Trkal binomial factor does not do any work in the solution of

the Gibbs paradox. The crucial step that is responsible for the disappearance of Smix is the

assumption that in the case of the mixing of two gases of the same kind we are not going

to distinguish between atoms coming from V1 and atoms coming from V2. In mathematical

terms, the disappearance of the mixing entropy is not due to the introduction of the coef-

ficient NA!NB!/NA1!NA2!NB1!NB2! in the formula for the probability of the distribution of

the particles of sorts A and B over the compartments 1 and 2, but rather to our decision to

replace this coefficient by (2N)!/(N !)2 in the case of gases A and B of the same kind. From

the point of view of fundamental physics or mathematics there is nothing that compels us

to take this step: the atoms from V1 and V2 are distinguishable entities and (N !)2/(N/2)!2

(the binomial factor appearing in the initial entropy for unequal gases if NA = NB = N) is

simply numerically unequal to (2N)!/(N !)2 (the factor for equal gases). What has happened

here is that we have decided to discard exchanges of atoms between the two volumes. In the

case of unequal gases these exchanges would count as changes of the total thermodynamical

state—but if the gases are of the same kind they are considered irrelevant. So everything

hinges on what we define as the thermodynamical state or changes in this state—and not

on fundamental microscopic considerations about distinguishability and identity.

What, then, is the background of the idea that it is an undeniable fact that the Ehrenfest-

Trkal derivation of 1/N ! solves the Gibbs paradox? This comes from the misconception that

the Ehrenfest-Trkal argument shows that W , in the formula S = klogW , should in all

circumstances be divided by N !—as we have seen in section 3, this division would indeed

remove the entropy of mixing, as a mathematical fact. But for this we need to redefine not

only the entropies of the two mixing gas volumes, but also the entropy of the total system.

Going back to the example at the end of section 3, to define away the entropy of mixing it

is necessary that the entropy of the total system, consisting of 2N particles, is divided by

(2N !). But the Ehrenfest-Trkal argument did not imply anything about the N -dependence
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of this total entropy. Indeed, the total number of particles is constant in the Ehrenfest-Trkal

argument, and not subject to any probability considerations. So there is no justification here

at all for dividing the total number of states by 2N !.?

So we see that the justification of 1/N ! as proposed by Ehrenfest and Trkal does nothing

to solve the Gibbs paradox? ; the conceptual situation remains exactly as it was.

VI. QUANTUM MECHANICS

It is a central principle of quantum mechanics that a many-particles state of ‘identical

particles’ (particles of the same kind) must be completely symmetric or anti-symmetric

under permutations of particle indices. This implies that the state does not change under

permutations (except for a minus sign in the case of fermions), so that all probabilities and

expectation values remain the same. This is what is meant by particle indistinguishability

in the context of quantum mechanics: permutations of labels do not lead to a new physical

situation.

At first sight this symmetry property of quantum states appears important for the Gibbs

paradox, because it provides us with factors 1/N ! at places that seem exactly right.? Instead

of N ! distinct product states, differing from each other by permutations of particle labels,

we now have only one symmetrical or anti-symmetrical state.

But this reasoning based on counting of quantum states is spurious. To see why, note first

that in the case of two different gases the expressions for the thermodynamic probabilities

are multiplied by 1/NA! and 1/NB!—but this is a multiplication by constants, which only

leads to the addition of a constant to the entropy. All entropy differences remain the same in

this case; in particular, the entropy of mixing is exactly the same as in calculations without

consideration of the symmetrization postulates. In the case of gases of the same kind, the

factor that comes from the quantum counting is 1/(2N)! (for simplicity we again consider

the case with equal amounts of gas, with a total number of 2N particles). But as before,

multiplication of W by this constant value only leads to the addition of a constant to the

entropy, and the entropy of mixing is unaffected. So the introduction of factors that come

from counting the number of quantum states does not have consequences for the calculation

of the entropy of mixing, and the Gibbs paradox remains exactly what it was. This argument

exactly mirrors the argument from the previous section about the physical insignificance of
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‘permutability’ in classical mechanics.

What then, is the background of the wide-spread conviction that quantum theory auto-

matically solves the Gibbs paradox? This belief comes from an incorrect application of the

(anti-)symmetrization postulates. According to this flawed reasoning, the number of states

in each of the two compartments before mixing, with the partition in place, is assumed to be

given by XN/N !, with X the number of available one-particle states, whereas for the total

number of states after mixing (2X)2N/(2N)! is taken. In other words, the symmetrization

rule is first applied to each volume separately, and then, after the removal of the partition,

to the complete volume as one whole. But this way of counting is in conflict with what

the symmetrization postulates require! These postulates require (anti-)symmetrization of

the total state of identical particles, even when the partition is still present. So what made

the entropy of mixing go away in the criticized argument was not the quantum counting of

states, but the different ways of applying the symmetrization postulates before and after

the removal of the partition. If we apply the symmetrization postulates correctly, it is im-

mediately clear that they cannot have consequences for the entropy of mixing as long as the

total number of particles of the same kind is constant.

The often made mistake that we just identified has its origin in the rule of thumb that

we do not need to (anti)symmetrize if particle wave functions do not overlap. The quantum

states on different sides of the partition do not overlap in very good approximation, and our

classical intuition even tells us that they do not overlap at all (which is false because the

wave functions have infinite tails). So it might appear that we do not need to symmetrize

the total wave function of all the particles in the container, as long as the partition is in

place.

But this rule of thumb is indeed precisely a rule of thumb, a pragmatic rule justified

by the fact that for the expectation values of certain (namely local) observables it does

not make a difference whether we symmetrize or not in the case of non-overlapping wave-

packets. From a more fundamental point of view symmetrization is always necessary, and

any failure to symmetrize the complete state would in principle show up in wrong predictions

if expectation vales of arbitrary many-particles observables are considered (see, e.g.,7 (Vol. II,

sec. XIV.8)),1 (Vol. 2, pp. 1406-1408)). Indeed, on second thought it would be miraculous

if the insertion or removal of a partition between two volumes of particles of the same

kind would have instantaneous consequences for the symmetry properties of the total wave
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function! Symmetrization should always involve the total number of particles of the same

kind, and this makes symmetrization completely irrelevant to the Gibbs paradox.

VII. IDENTITY, DISTINGUISHABILITY AND PERMUTABILITY

In the thermodynamical Gibbs paradox the essential point proved to be whether we are

actually able to distinguish the gases coming from two different compartments. If we possess

semi-permeable membranes, or a similar device that responds differently to the two gases,

we will be able to verify experimentally that there is a mixing entropy—and if we do not

discriminate between the gases, we will not encounter this entropy. The latter statement

is true even if in principle it is possible to make a distinction; although in this case more

refined instruments would of course identify an entropy of mixing after all. As we argued,

this remains true if the gases are chemically the same. In this case we have to invoke the help

of very refined instruments, or Maxwellian demons, and this admittedly leads us outside of

thermodynamics. But the point of principle remains that the absence or presence of an

entropy of mixing does not correspond to the presence or absence of fundamental identity or

(in)distinguishability of the gases, but rather to the applicability of a discrimination criterion

chosen by us.

The situation is not different in Ehrenfest’s and Trkal’s treatment of the statistical back-

ground of the N -dependence of the entropy. Also here, the mixing entropy is there if we take

the gases as different, and use a factor N !/NA!NB! in the calculation of the probabilities,

and it is not there if the gases are treated as being of the same kind, in which case we use

a factor N !/(NA + NB)! = N !/N ! = 1. Again, the formulas do not dictate which option to

choose.

The question naturally arises of whether everything is a matter of our choice and Nature

has no say in this at all. Isn’t there some point at which it becomes impossible in principle

to distinguish A and B atoms, whatever tools we use? In this case we could say that there

is no mixing, and no entropy of mixing, in a fully objective sense.

In classical physics we can always find out, in principle, from where a particle came

because of the existence of trajectories. It is therefore plausible to look to quantum mechanics

if we want to find indistinguishability in principle; moreover, folklore teaches us that identical

quantum particles are really fundamentally indistinguishable. In the previous section we
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have seen what this actually means mathematically: the permutation of ‘particle indices’

does not lead to a physically different many-particles state. Take, for example, the case of

two fermions described by two mutually orthogonal one-particle states |ψ〉1 and |φ〉2. The

product state is excluded by the anti-symmetrization postulate, which says that instead the

total state should be

|Ψ〉 =
1√
2

(|φ〉1|ψ〉2 − |ψ〉1|φ〉2), (11)

so that permutation of the indices only entails a change of sign. Does this state tell us that

we are dealing with particles that cannot be distinguished?

That depends on how we assume that particles are represented in Eq. (11). If we think

that the labels 1 and 2 refer to particles, as a kind of particle name, then we find (via partial

tracing) that these particles are in exactly the same state and posses exactly the same

properties in the total state (11). But that is not at all how Eq. (11) is normally interpreted

in the practice of physics! The usual interpretation of Eq. (11) is that it represents a situation

in which we have one particle in state |ψ〉1 and one in state |φ〉2, respectively. In other words,

in practice the concept of a particle is not connected to the indices in the formalism, and the

associated partial trace states, but by the one-particle states occurring in the total state—

this also gives the correct classical particle limit (see for more detail and argument about

this line of thought2,3,6).

This distinction between different ways of implementing the concept of a particle makes a

difference for how the Gibbs situation should be understood in quantum mechanics. Assume

that |ψ〉1 is a state that is localized in the left compartment in a Gibbs experiment, and

|φ〉2 a state localized in the right compartment. If we uncritically follow the tradition of

thinking of the labels as directly referring to particles, we have to accept that particle 1 is

delocalized, spread out over both compartments—and that particle 2 is in exactly the same

predicament. In this case, both particles are in the same mixed state

W =
1

2
(|φ〉〈φ|+ |ψ〉〈ψ|).

These particles will be indistinguishable: there will be no instruments that can tell them

apart and even Maxwellian demons will be powerless to discriminate between 1 and 2.

But as already mentioned, this interpretation of what a particle is fails to make contact

with the practice of physics and the ordinary meaning of ‘particle’. In reality, Eq. (11)

would typically be used to represent the situation in which there is one particle in the left
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compartment, and one in the right compartment—the symmetry of the state indicates that

the label has no physical significance, but this does not imply that the difference between

the one-particle states is physically insignificant. If we accept this alternative way of looking

at the situation, in which particles are associated with one particle states rather than with

indices, the situation with respect to the Gibbs paradox turns out to be not basically different

from what it was in classical mechanics: a Maxwellian demon will be able to distinguish

the state |ψ〉1 from |ψ〉2. Indeed, if these two states are localized in two different disjoint

compartments, like in the initial situation of the Gibbs thought experiment, they will be

orthogonal. Under unitary evolution (as in the case of an ideal gas) this orthogonality will be

preserved in time, and ideal yes-no experiments can in principle always provide a definitive

answer about the origin of the one-particle state we are dealing with. This can be exploited

by a smart demon to build up an entropy of mixing, with the help of an analogue of a

semi-permeable membrane. It is easy to see that the distinguishability that is vital here will

remain the same if we are dealing with a 2N -particles state, describing N particles to the

left and N to the right (before the removal of a partition). It will be possible in this case

to define mutually orthogonal N -particles states in the respective compartments, and these

will remain orthogonal under unitary evolution.

In other words, if we think of particles in the way just sketched, the situation with respect

to distinguishability in principle is not fundamentally different in quantum mechanics from

the one in classical mechanics: even if distinguishing trajectories are not clearly defined,

there is still orthogonality of states and a corresponding distinguishability. The presence or

absence of an entropy of mixing in this case only depends on whether we are actually going

to discriminate.

In the end we can only agree with van Kampen’s statement (10 (p. 311)) that in the case

of ideal gases the Gibbs paradox is not different in quantum mechanics than in classical

mechanics.
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