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Abstract. The dispersive wave propagation in a periodic metamaterial
with tetrachiral topology and inertial local resonators is investigated. The
Floquet-Bloch spectrum of the metamaterial is compared with that of
the tetrachiral beam lattice material without resonators. The resonators
can be designed to open and shift frequency band gaps, that is, spectrum
intervals in which harmonic waves do not propagate. Therefore, an opti-
mal passive control of the frequency band structure can be pursued in the
metamaterial. To this aim, a suitable constrained nonlinear optimization
problem on a compact set of admissible geometrical and mechanical pa-
rameters is stated. According to functional requirements, the particular
set of parameters which determines the largest low-frequency band gap
between a pair of consecutive branches of the Floquet-Bloch spectrum is
obtained. The optimization problem is successfully solved by means of
a version of the method of moving asymptotes, combined with a quasi-
Monte Carlo multi-start technique.

Keywords: Metamaterials, wave propagation, passive control, relative band
gap optimization, nonlinear programming.

1 Introduction

An increasing interest has been recently attracted by the analysis of the trans-
mission and dispersion properties of the elastic waves propagating across periodic
materials [1, 2, 4, 5, 13, 14, 17]. In particular, several studies have been developed
to parametrically assess the dispersion curves characterizing the wave frequency
spectrum and, therefrom, the amplitudes and boundaries of frequency band gaps
lying between pairs of consecutive non-intersecting dispersion curves.

In this background, a promising improvement with respect to conventional
beam lattice materials, realized by a regular pattern of stiff disks/rings connected
by flexible ligaments, consists in converting them into inertial metamaterials. To
this aim, intra-ring inertial resonators, elastically coupled to the microstructure
of the beam lattice material are introduced [3, 7, 11, 16]. If properly optimized,
the geometrical and mechanical parameters of the metamaterial may allow the
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adjustment and enhancement of acoustic properties. For instance, challenging
perspectives arise in the tailor-made design of the frequency spectrum for spe-
cific purposes, such as opening, enlarging, closing or shifting band gaps in target
frequency ranges. Once completed, this achievement potentially allow the real-
ization of a novel class of fully customizable mechanical filters.

Among the others, an efficient approach to the metamaterial design can be
based on the formulation of a suited constrained nonlinear optimization problem.
In the paper, focus is made on the filtering properties of the tetrachiral periodic
material and the associated metamaterial, by seeking for optimal combinations
of purely mechanical and geometrical parameters. The relative maximum am-
plitude of band gaps between different pairs of dispersion curves is sought. This
approach strengthens the results already achieved in [6], where similar optimiza-
tion strategies were applied to the passive control of hexachiral beam lattice
metamaterials, while the optimization was restricted to the lowest band gap of
the Floquet-Bloch spectrum [8] (namely, that lying between the second acoustic
branch, and the first optical branch). The resulting optimization problems are
solved numerically by combining one version of the method of moving asymp-
totes [15] with a quasi-Monte Carlo initialization technique.

The paper is organized as follows. Section 2 describes the physical-mathemati-
cal model of the metamaterial. Section 3 states the relative band gap optimiza-
tion problem, describes the solution approach adopted, and reports the related
numerical results. Finally, Section 4 presents some conclusions. Mechanical de-
tails about the physical-mathematical model are reported in the Appendix.

2 Physical-mathematical model

A planar cellular metamaterial, composed of a periodic tesselation of square cells
along two orthogonal periodicity vectors v1 and v2, is considered. In the absence
of an embedding soft matrix, the internal microstructure of each cell, as well as
the elastic coupling between adjacent cells, are determined by a periodic pat-
tern of central rings connected to each other by four elastic ligaments, spatially
organised according to a tetrachiral geometric topology (see Fig. 1a).

Fig. 1. Tetrachiral cellular material equipped with resonators: (a) pattern; (b) details
of the single cell for the case of tangent ligaments, corresponding to β = arcsin

(

2R
ε

)

.



Focusing on the planar microstructure with unit thickness of the generic
cell (Fig. 1b), the central massive and highly-stiff ring is modelled as a rigid
body (in red), characterized by mean radius R and width wan. The light and
highly-flexible ligaments (in black) are modelled as massless, linear, extensible,
unshearable beams, characterized by natural length L (between the ring-beam
joints), transversal width w, and inclination β (with respect to the ε-long line
connecting the centres of adjacent rings). By virtue of the periodic symmetry, the
cell boundary crosses all the ligaments at midspan, halving their natural length.
A heavy internal circular inclusion with external radius r (blue circle in Fig.1b),
is located inside the ring through a soft elastic annulus (in grey). This inclusion,
modelled as a rigid disk, plays the role of a low-frequency resonator. The beam
material is supposed linearly elastic, with Young’s modulus Es, and uniform
mass density, assumed as negligible with respect to the density ρs an of the
highly-stiff ring. Hence, the whole mass of the lattice is assumed to be assigned
to the highly-stiff rings. The soft coating inside the resonator is considered a
homogeneous, linearly elastic and isotropic solid, with Young’s modulus Er and
Poisson’s ratio νr. It is worth noting that the ligament natural length L is a
(ε, β,R)-dependent parameter, obeying to the geometric relation

L = ε

(

cosβ −
√

(2R/ε)2 − (sinβ)2
)

(1)

Specializing the approach proposed in [6] to deal with the case-study under
investigation, in which the tetrachiral cell topology is featured by two periodicity
vectors, the generalized eigenproblem governing the free propagation of harmonic
waves (with frequency ω̄h and wavevector k̄) in the metamaterial reads

(

K̄
(

µ̄, k̄
)

− ω̄2

h

(

µ̄, k̄
)

M̄ (µ̄)
)

ψ̄
(

µ̄, k̄
)

= 0 (2)

where the dimensionless six-by-six matrices K̄
(

µ̄, k̄
)

and M̄ (µ̄) are Hermitian
and diagonal, respectively, and explicitly depend on the minimal dimensionless
vector µ̄ of independent geometrical and mechanical parameters

µ̄ =

(

w

ε
,
wan

w
,
R

ε
, β,

r

ε
,
Er

Es
, νr,

ρr
ρs an

)

∈ R
8 (3)

with components µ̄l, l = 1, . . . , 8.
Fixed a certain dimensionless wave vector k̄ ∈ R2, the eigenproblem solu-

tion is composed by six real-valued eigenvalues ω̄2

h

(

µ̄, k̄
)

(h = 1, . . . , 6), and

the corresponding complex-valued eigenvectors ψ̄h

(

µ̄, k̄
)

∈ C6. Here, ω̄h

(

µ̄, k̄
)

is the h-th normalized angular frequency, which is related to the unnormalized
angular frequency ω through ω̄ = (ωε) / (Es/ρs an)

1/2. The nonlinear disper-
sion relations ω̄h

(

µ̄, k̄
)

are the six roots of the nonlinear equation imposing the
singularity condition on the matrix governing the linear eigenproblem (2).

Introducing a suited partition ψ̄ = (ψ̄s, ψ̄r) of the model degrees-of-freedom,
the matrices K̄

(

µ̄, k̄
)

and M̄ (µ̄) have the form

K̄
(

µ̄, k̄
)

=

[

K̄s
(

µ̄, k̄
)

K̄sr
(

µ̄, k̄
)

K̄rs
(

µ̄, k̄
)

K̄r
(

µ̄, k̄
)

]

, M̄ (µ̄) =

[

M̄s (µ̄) O

O M̄r (µ̄)

]

(4)



where the entries of the three-by-three submatrices are reported in the Appendix.
The submatrices K̄sr

(

µ̄, k̄
)

and K̄rs
(

µ̄, k̄
)

describe the interaction between the
resonator and the rest of the microstructure. In the absence of the resonator
(i.e., when r/ε = 0), the parameter vector reduces to

µ̄s =

(

w

ε
,
wan

w
,
R

ε
, β

)

∈ R
4 (5)

and the generalized eigenvalue problem reduces to
(

K̄s
(

µ̄s, k̄
)

− ω̄2

h

(

µ̄s, k̄
)

M̄s (µ̄s)
)

ψ̄s
h

(

µ̄s, k̄
)

= 0 (6)

where h = 1, . . . , 3, and ψ̄s
h

(

µ̄s, k̄
)

∈ C3.
For any fixed choice of the parameter vector µ̄, the h-th dimensionless angular

frequency locus along the closed boundary ∂B of the Brillouin irreducible zone
B [8], spanned anticlockwise by the dimensionless curvilinear coordinate Ξ (Fig.
1c), is the h-th dispersion curve of the Floquet-Bloch spectrum. In particular,
the B-vertices are k̄0 = (0, 0), k̄1 = (0, π), k̄2 = (π, π), and k̄3 = k̄0. The
segments ∂B1 and ∂B3 of the boundary ∂B join, respectively, k̄0 and k̄1 (i.e.,
Ξ ∈ [Ξ0,Ξ1] (where Ξ0 = 0 and Ξ1 = π), and k̄2 and k̄3 (i.e., Ξ ∈ [Ξ2,Ξ3] (where
Ξ2 = 2π and Ξ3 = 2π +

√
2π). For k = h+ 1, the relative amplitude of the full

band gap between the h-th and k-th dispersion curves is

∆ω̄hk,∂B,rel (µ̄) =
max

k̄∈∂Bω̄h(µ̄, k̄)−min
k̄∈∂Bω̄k(µ̄, k̄)

1

2

[

max
k̄∈∂Bω̄h(µ̄, k̄) + min

k̄∈∂Bω̄k(µ̄, k̄)
] . (7)

Partial relative band gaps ∆ω̄h,∂B1,rel are obtained by replacing ∂B with ∂B1

in (7), and are associated to waves characterized by k̄2 = 0 and variable k̄1. The
relative amplitude of the fluctuation of the h-th dispersion curve is defined

∆Aω̄h,∂B,rel (µ̄) =
max

k̄∈∂Bω̄h(µ̄, k̄)−min
k̄∈∂Bω̄h(µ̄, k̄)

1

2

[

max
k̄∈∂Bω̄h(µ̄, k̄) + min

k̄∈∂Bω̄h(µ̄, k̄)
] . (8)

To preserve the structural meaning of the solution with proper bounds fixed a
priori, the following geometrical constraints on the parameters are introduced

1

10

R

ε
≤

wan

w

w

ε
≤

R

ε
, (9)

β ≤ arcsin

(

2
R

ε

)

, (10)

w

ε
≤

2

3

(

R

ε
+

1

2

wan

w

w

ε

)

, (11)

1

5

(

R

ε
−

1

2

wan

w

w

ε

)

≤
r

ε
≤

9

10

(

R

ε
−

1

2

wan

w

w

ε

)

. (12)

and the related admissible ranges of the parameters are summarized in Table 1.
In the absence of the resonator, the definitions (7), (8) hold with µ̄ replaced by
µ̄s and the constraint (12) is absent.
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5

)

9

50
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5
2

Table 1. Lower and upper bounds on the geometrical and mechanical parameters.

3 Optimization problems

Some optimization problems, imposed on the Floquet-Bloch spectrum ω̄h(µ̄, k̄)
of the material/metamaterial, are considered. They are formulated as constrained
nonlinear optimization problems, solved by using a version of the method of
moving asymptotes [15], combined with a quasi-Monte Carlo multi-start tech-
nique. Loosely speaking, the solution method consists in tackling a sequence of
concave-maximization subproblems, locally approximating the original nonlin-
ear optimization problem1 (a different approximation at each sequence iteration),
whereas the quasi-Monte Carlo multi-start technique increases the probability
of finding a global maximum point through a set of quasi-random initializations
of the sequence. More details about the combined method are reported in [6].

3.1 Band gap between the second and third dispersion curves

Considering that the first two dispersion curves always meet at the origin for
the selected choice of the parameter range (so that the case h = 1 and k = 2 has
no solution), in the absence of the resonator the optimization problem reads

maximize
µ̄s

∆ω̄23,∂B1,rel (µ̄
s)

s.t. µ̄s
l,min ≤ µ̄s

l ≤ µ̄s
l,max, l = 1, ..., 4 , (13)

and the constraints (9), (10), and (11) .

To obtain the numerical results, a quasi-random 100-points Sobol’ sequence [12]
in the parameter unit hypercube was generated, then all the points of the sub-
sequence satisfying all the constraints were used as initial points for the method
of moving asymptotes. Moreover, the partial relative band gap ∆ω̄23,∂B1,rel was
approximated by replacing ∂B1 with its uniform discretization, using 30 points.
After each valid (constrains-compatible) quasi-Monte Carlo initialization, a num-
ber of iterations of the method of moving asymptotes sufficiently large to ob-
tain convergence was performed. The results of the optimization are reported in
Fig.2, and demonstrate the presence of a partial relative band gap (with ampli-
tude approximately equal to 0.337) at the best (higher-valued) objective ∆ω̄∗

23
.

The associated optimal parameter set µ̄∗ is listed in the first row of Table 2.

1 The moving asymptotes are asymptotes of functions (changing when moving from
one optimization subproblem to the successive one), which are used to approximate
the original objective and constraint functions.
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Fig. 2. Optimization of the objective ∆ω̄23,∂B1 ,rel in the absence of resonator: (a)
optimal Floquet-Bloch spectrum; (b) convergent objective functions vs iterations for
different quasi-Monte Carlo initializations.

Then, the problem (13) has been extended to the optimization of the full
relative band gap between the second and third dispersion curves. A uniform 90-
point discretization of the boundary ∂B has been employed, and zero has been
obtained as best value of the objective, corresponding to the absence of full band-
gap. This result has been also confirmed by evaluating the objective function on
a sufficiently fine grid in the parameter space (10 points for each component),
considering only the admissible range of the constrained parameters.

The presence of a partial relative band gap between the second and third
dispersion curves has been also obtained as result of the optimization problem

maximize
µ̄

∆ω̄23,∂B1,rel (µ̄)

s.t. µ̄l,min ≤ µ̄l ≤ µ̄l,max, l = 1, ..., 8 , (14)

and the constraints (9), (10), (11), and (12) ,

which rises up with the introduction of the resonator (see Fig. 3). In this case,
the method of moving asymptotes has converged to various solutions charac-
terized by different objective values, and the best partial relative band gap has
been found approximately equal to ∆ω̄∗

23 = 0.722. This result demonstrates that
the presence of the resonator can increase the optimal band gap amplitude. Two
more partial relative band gaps, between the fourth-fifth and fifth-sixth pairs of
dispersion curves have been obtained (Fig. 3a). The associated optimal param-
eter set µ̄∗ is listed in the second row of Table 2.

Finally, the problem (14) has been extended to the optimization of the full

(with ∂B instead of ∂B1) relative band gap between the second and third dis-
persion curves. Again, the best value of the objective obtained by the combined
method has resulted to be zero, meaning that the presence of the resonator is
unable to open a full band-gap between the second and third dispersion curves.
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Fig. 3. Optimization of the objective ∆ω̄23,∂B1,rel in the presence of resonator: (a)
optimal Floquet-Bloch spectrum; (b) convergent objective functions vs iterations for
different quasi-Monte Carlo initializations.

3.2 Weightedband gap between the third and forth dispersion curves

The full relative band gap between the third and fourth dispersion curves has
been considered in the presence of resonator. To this aim, the optimization prob-
lem is re-formulated to maximize a trade-off (i.e., the product3) between the full
relative band gap, and the band amplitude ∆Aω̄4,∂B = max∂B(ω̄4)−min∂B(ω̄4)
of the fourth dispersion curve

maximize
µ̄

(∆ω̄34,∂B,rel (µ̄) ∆Aω̄4,∂B,rel (µ̄))

s.t. µ̄l,min ≤ µ̄l ≤ µ̄l,max, l = 1, ..., 8 , (15)

and the constraints (9), (10), (11), and (12) .

The reason is that, in the absence of an elastic coupling between the resonator
and the cell structure, three of the dispersion curves are Ξ-independent (null
band amplitude), as they express the fixed frequencies of the free-standing res-
onator. Therefore, a large but definitely not significant relative band gap would
be obtained by separating such curves from the rest of the Floquet-Bloch spec-
trum as much as possible. The relative band amplitude of the fourth disper-
sion curve, acting as a weighting multiplier in the objective function, is ex-
pected to avoid this shortcoming. Indeed, by taking the product, preference is

3 In a preliminary phase, we also considered as objective function a weighted sum,
with positive weights, of the full relative band gap and the fluctuation of the fourth
dispersion curve. However, for various choices of the weights, the obtained solution
was characterized either by a negligible value of the full relative band gap, or by a
negligible value of the fluctuation of the fourth dispersion curve, making an optimal
choice of the weights difficult. For our specific goal, instead, the product of the two
terms was more effective.
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Fig. 4. Optimization of the objective ∆ω̄34,∂B,rel in the presence of resonator: (a)
optimal Floquet-Bloch spectrum; (b) convergent objective functions vs iterations for
different quasi-Monte Carlo initializations.

given to parametric designs of beam-lattice metamaterials for which both factors
∆ω̄34,∂B,rel (µ̄) and ∆Aω̄4,∂B,rel (µ̄) are simultaneously large. The optimization
results are reported in Fig.4. The best solution is associated with a full band gap
with relative amplitude approximately equal to 0.830, whereas the relative band
amplitude of the fourth dispersion curve is about 0.241. The optimal values of
the parameters are listed in the third row of Table 2.

Summing up, the main results show that, for a periodic cell with fixed charac-
teristic size, the presence of resonators is a mandatory condition for the existence
of full band gaps in the low-frequency range. However, only partial band-gap can
be opened between the second and third branches. Full band-gaps can be ob-
tained between the third and forth branches, and – by virtue of the optimization
– the largest amplitude can overcome the maximum frequency of the acoustic
or first optical branches of the spectrum. The optimal results correspond large-
radius rings and highly-slender, non-tangent ligaments with quasi-negligible in-
clination (corresponding to a nearly-vanishing geometric chirality). Accordingly,
the optimized resonators are found to possess about half the radius of the rings
and be embedded in a highly-soft matrix.

Fig. w
ε

wan

w
R
ε

β r
ε

Er

Es
νr

ρr
ρs an

2 0.0600 3.19 0.200 0.295 − − − −

3 0.139 0.143 0.198 0.404 0.0864 0.100 0.200 2.00

4 0.0950 0.439 0.200 0.00163 0.127 0.104 0.218 1.93

Table 2. Best parameters obtained in the optimization reported in Fig. 2, 3, and 4.



4 Conclusions

A parametric model of periodic metamaterial has been formulated, and its wave-
propagation properties have been investigated. Then, some optimization prob-
lems related to such properties have been stated and solved numerically. From
the physical viewpoint, the desirable target is a high-performing material with
marked filtering capacities for low-frequency signals. The optimal results demon-
strate that a partial band gap can be obtained between the second and third
dispersion curves, both in the absence and in the presence of a resonator inside
the periodic cell. However, in both cases, no full relative band gaps are obtain-
able. On the contrary, the resonator allows the opening of a positive full relative
band gap between the third and fourth dispersion curves, associated with a non-
negligible elastic coupling between the resonator and the cell structure. This
achievement implied the optimization of a multiplicative trade-off between the
band gap and the relative band amplitude of the fourth dispersion curve. All the
optimization problems have been solved numerically by combining the method
of moving asymptotes with a quasi-Monte Carlo multi-start technique.

As possible developments, the optimization framework could be extended
to its regularized version, to reduce the sensitivity of the obtained solution with
respect to changes in the nominal parameter values. To this aim, suitable regular-
ization techniques, typical of machine learning problems, could be used [9, 10].
Other nonlinear optimization methods could be also used, such as sequential
linear or quadratic programming. Finally, an electromechanical extension of the
physical-mathematical model would allow the design of smart metamaterials.

Appendix

Adapting to the present tetrachiral context the analysis made in [6] for the
hexachiral case, one can show that the non vanishing components of the three-
by-three positive definite diagonal submatrices M̄s and M̄r, that make up the
six-by-six dimensionless block diagonal matrix M̄, read

M̄ s
11

= 2 π
R

ε

w

ε

wan

w
, M̄ s

22
= 2 π

R

ε

w

ε

wan

w
, (16)

M̄ s
33 =

1

2
π
R

ε

w

ε

wa

w

((w

ε

)2 (wa

w

)2

+ 4
(R

ε

)2)

,

M̄ r
11

= π
(r

ε

)2 ρr
ρs an

, M̄ r
22

= π
(r

ε

)2 ρr
ρs an

, M̄ r
33

=
1

2
π

ρr
ρs an

(r

ε

)4

.

In order to introduce the components of the three-by-three Hermitian subma-
trix K̄s, we need to introduce the dependent parameters kd/Es and kθ/(ε

2Es),
which are functions of the other parameters, respectively, of the form kd

Es
=

fd

(

r
ε

ε
R , Er

Es
, νr

)

and kθ

ε2Es
= fθ

(

r
ε

ε
R , Er

Es
, νr

)

. The definitions of these functions

are reported in [6]. Then, the components of K̄s are expressed as follows:

K̄s
ij =

1

Λ

(

K̄s 3

ij

(w

ε

)3

+ K̄s 1

ij

w

ε
+ K̄s 0

ij

)

, (17)



where i, j = 1, 2, 3, Λ = (cos (β)− Ψ)
3
and Ψ =

√

(cos (β))
2
+ 4

(

R
ε

)2 − 1. More
precisely, one obtains

K̄s 3

11 =
(

2 cos
(

k̄1
)

− 2 cos
(

k̄2
))

(cos (β))
2 − 2 cos

(

k̄1
)

+ 2 (18)
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K̄s 1

33 =
(

−1/2 cos
(

k̄1
)

− 1/2 cos
(

k̄2
)

− 1
)

(cos (β))
4

+
(

cos
(

k̄1
)

Ψ + cos
(

k̄2
)

Ψ + 2Ψ
)

(cos (β))
3

+

(

1/2 cos
(

k̄2
)

+ 1/2 cos
(

k̄1
)

+ 1− Ψ2 − 1/2 cos
(

k̄1
)

Ψ2

− 1/2 cos
(

k̄2
)

Ψ2

)

(cos (β))
2

+
(

− cos
(

k̄1
)

Ψ − cos
(

k̄2
)

Ψ − 2Ψ
)

cos (β)

+ 1/2 cos
(

k̄1
)

Ψ2 + 1/2 cos
(

k̄2
)

Ψ2 + Ψ2 ,

K̄s 0

33
= −3 (cos (β))

2
Ψ

kθ
ε2Es

+ 3 cos (β)Ψ2
kθ

ε2Es
+ (cos (β))

3 kθ
ε2Es

− Ψ3
kθ

ε2Es
,

K̄s 3

12 = 2 cos (β) sin (β)
(

− cos
(

k̄1
)

+ cos
(

k̄2
))

,

K̄s 1

12 = 2 sin (β)
(

cos
(

k̄1
)

− cos
(

k̄2
))

(cos (β))
3

+ 2 sin (β)
(

−2 cos
(

k̄1
)

Ψ + 2 cos
(

k̄2
)

Ψ
)

(cos (β))
2

+ 2 sin (β)
(

cos
(

k̄1
)

Ψ2 − cos
(

k̄2
)

Ψ2
)

cos (β) ,

K̄s 1

12 = 0 ,

K̄s 3

13
= −i sin

(

k̄2
)

(cos (β))
2
+ i sin (β) sin

(

k̄1
)

cos (β) ,

K̄s 1

13
= −i sin

(

k̄2
)

(cos (β))4 − i
(

− sin (β) sin
(

k̄1
)

− 2 sin
(

k̄2
)

Ψ
)

(cos (β))3

− i
(

2 sin
(

k̄1
)

sin (β)Ψ + sin
(

k̄2
)

Ψ2 − sin
(

k̄2
))

(cos (β))
2

− i
(

− sin
(

k̄1
)

sin (β)Ψ2 + 2 sin
(

k̄2
)

Ψ
)

cos (β) + i sin
(

k̄2
)

Ψ2 ,



K̄s 1

13
= 0 ,

K̄s 3

23 = i sin
(

k̄1
)

(cos (β))
2
+ i sin (β) sin

(

k̄2
)

cos (β) ,

K̄s 1

23 = i sin
(

k̄1
)

(cos (β))
4
+ i

(

sin (β) sin
(

k̄2
)

− 2 sin
(

k̄1
)

Ψ
)

(cos (β))
3

+ i
(

−2 sin (β) sin
(

k̄2
)

Ψ + sin
(

k̄1
)

Ψ2 − sin
(

k̄1
))

(cos (β))
2

+ i
(

sin (β) sin
(

k̄2
)

Ψ2 + 2 sin
(

k̄1
)

Ψ
)

cos (β)− i sin
(

k̄1
)

Ψ2 ,

K̄s 1

23 = 0 ,

K̄s
21

= K̄s
12

K̄s
31

= −iIm
(

K̄s
13

)

,

K̄s
32 = −iIm

(

K̄s
23

)

,

where i denotes the imaginary unit and Im(z) denotes the imaginary part of
the complex number z. Finally, the non vanishing components of the diagonal
submatrix K̄r are

K̄r
11

=
kd
Es

, K̄r
22

=
kd
Es

, K̄r
33

=
kθ

ε2Es
(19)

whereas the diagonal submatrices K̄sr and K̄rs satisfy the constraint K̄sr =
(

K̄sr
)T

= −K̄r.
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