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Abstract

In many control applications, it is attractive to describe nonlinear (NL) and time-varying (TV) plants by linear parameter-
varying (LPV) models and design controllers based on such representations to regulate the behaviour of the system. The LPV
system class offers the representation of NL and TV phenomena as a linear dynamic relationship between input and output
signals, which relationship is dependent on some measurable signals, e.g., operating conditions, often called as scheduling
variables. For such models, powerful control synthesis tools are available, but the way how to systematically convert available
first principles models to LPV descriptions of the plant, to efficiently identify LPV models for control from data and to
understand how modeling errors affect the control performance are still subject of undergoing research. Therefore, it is
attractive to synthesize the controller directly from data without the need of modeling the plant and addressing the underlying
difficulties. Hence, in this paper, a novel data-driven synthesis scheme is proposed in a stochastic framework to provide a
practically applicable solution for synthesizing LPV controllers directly from data. Both the cases of fixed order controller
tuning and controller structure learning are discussed and two different design approaches are provided. The effectiveness of
the proposed methods is also illustrated by means of an academic example and a real application based simulation case study.
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1 Introduction

The concept of linear parameter-varying (LPV) systems,
introduced in [36], offers a promising framework for mod-
eling and control of a large class of nonlinear (NL) and
time-varying (TV) systems. LPV systems can be seen
as an extension of linear time-invariant (LTI) systems,
with a linear dynamic relation between the input and
the output signals. Unlike in the LTI case, these sig-
nal relations can change over the time and depend on a
measurable time-varying signal, the so-called scheduling
variable. Scheduling variables can be external signals like
space coordinates or parameters used to describe chang-
ing operating conditions. In this way, the nonlinear and
time-varying behavior of the system can be embedded
in the solution set of a linear dynamic input-output rela-

⋆ This work was partially supported by the European Com-
mission under project H2020-SPIRE-636834 “DISIRE - Dis-
tributed In-Situ Sensors Integrated into Raw Material and
Energy Feedstock” and by the Netherlands Organization for
Scientific Research (NWO, grant. no.: 639.021.127). A pre-
liminary version of this work can be found in [19].

tionship which varies with the scheduling variable [43].
The LPV modeling paradigm has evolved rapidly in the
last two decades and has been applied in many appli-
cations like aircrafts [28], automotive systems [31,9,8],
robotic manipulators [23] and induction motors [33].

Accurate and low complexitymodels of LPV systems can
be efficiently derived from data using input-output (IO)
representation based model structures [2,5,26,39,32],
while state-space approaches appear to be affected by
the curse of dimensionality and other approach-specific
problems [48,47,49,12,45]. However, most of the control
synthesis approaches are based on a state-space repre-
sentation of the system dynamics (except a few recent
works [1,7,50]) and state-space realization of complex
IO models is theoretically solved, but difficult to accom-
plish in practice [39]. This transformation results in a
state-minimal representation, which can have rational
dependency on time-shifted versions of the scheduling
signals. Alternative approaches can reduce the complex-
ity of the scheduling-variable dependency, but at the
price of a non state-minimal representation, for which
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efficient model reduction is largely an open issue [41].
Moreover, the way the modeling error affects the control
performance is unknown for most of the design methods
and little work has been done on including informa-
tion about the control objectives into the identification
setting.

In this paper, a method is proposed to design fixed-
order LPV controllers in an IO form using directly the
experimental data. In fact, this corresponds of design-
ing controllers without deriving a model of the system.
This approach permits to avoid the critical (and time-
consuming) approximation steps related to modeling,
identification and state-space realization and it results
in an automatic procedure in which only the desired
closed-loop behavior has to be specified by the user.
The proposed approach is developed for the case when
the parametric structure of the controller is assumed to
be given and also when the structure is needed to be
selected (learnt) from data directly. The recent results
in data-driven LPV model structure selection [42,27]
employing Least-Squares Support Vector Machines (LS-
SVM) [38] are exploited. In both cases, the controller
synthesis problem is formulated as an optimization
problem and instrumental-variable (IV) based identifi-
cation techniques are used to efficiently cope with the
noise affecting the signal measurements. The advantages
of using an IV based approach are twofold: (i) it allows
the design of the controller through convex optimization
based on measured data from the system; (ii) the bias
in the designed controller with respect to the optimal
solution, due to the noise affecting the output measure-
ments, is guaranteed to asymptotically converge to zero
as the number of data samples increases.

Direct controller tuning approaches using a single set of
IO data, also known as non-iterative data-driven control,
have been already studied in the linear time-invariant
(LTI) framework [3]. Well established approaches, like
Virtual Reference Feedback Tuning (VRFT) [6,21] and
Non-iterative Correlation-based Tuning (CbT) [44], have
been widely discussed in the literature, see, e.g., the re-
cent results in [22,15,13,14,18,17]. Other recently intro-
duced approaches are, e.g., [34,16].

The first attempt to extend a data-driven method,
namely the VRFT method, to LPV systems has been
presented in [20], where data-driven gain-scheduled con-
troller design has been proposed to realize a user-defined
LTI closed-loop behavior. Although satisfactory perfor-
mance has been shown for slowly varying scheduling
trajectories, this methodology is far from being gener-
ally applicable to LPV systems. As a matter of fact,
in the method presented in [20], the controller must
be linearly parameterized and the reference behavior
must be LTI. The latter requirement represents a strict
limitation, since an LTI behavior might be difficult to
realize in practice, as it may require too demanding
input signals and dynamic dependence of the controller

on the scheduling signal. On the other hand, the LPV
extension of Non-iterative CbT has been found to be
unfeasible, as the derivation of this approach is based
on the commutation of the plant and the controller in
the tuning scheme [24]. Unfortunately, such a commu-
tation does not generally hold for parameter-varying
transfer operators [43]. The recent work in [30] also
deals with LPV direct data-driven control, but the
framework is completely different from the one pro-
posed herein. Specifically, in [30], the system is given in
state-space form with measurable state vector, the op-
timal controller is assumed to be Lipschitz continuous
and the whole method is developed in a deterministic
set-membership setting. A direct data-driven LPV so-
lution has been presented in a stochastic framework for
feed-forward precompensator tuning in [4]. However,
also in this case, no dynamic dependance is accounted
for and the final objective is constrained to be LTI.

In summary, the main contributions of the paper are
as follows: (i) a novel direct data-driven method is in-
troduced for optimization of LPV controller parameters
without the need of a model of the system to be con-
trolled; themethod is inspired by the VRFT concept, but
it is entirely different from the straightforward LPV ex-
tension of VRFT in [20]; (ii) this is the first data-driven
control method where learning the controller structure
from data is achieved by the use of LS-SVM; (iii) we
also show how inversion of a state-space reference model
can be extended to the LPV case and how inversion up
to a kth-order delay can be achieved in case of no di-
rect feedthrough. Finally, we compare the proposed ap-
proach in detail with other existing direct data-driven
techniques. In this paper, we will focus on the SISO set-
ting only. A non-straightforward MIMO extension of the
results is possible by the use of so-called kernel repre-
sentations, but it is beyond the scope of this work.

The paper is organized as follows. The formulation of the
design problem is provided in Section 2, whereas Section
3 outlines the main idea behind the proposed methodol-
ogy. Then, Section 4 illustrates the technical derivation
of the method in case the structure of the controller is
a-priori fixed (parametric design) and Section 5 deals
with the case where also the controller parameterization
has to be determined from data (nonparametric design).
Section 6 discusses the proposed approach in comparison
with the existing techniques. The effectiveness of the de-
veloped control design methodologies is shown by means
of a numerical example in Section 7 and a real applica-
tion based simulation study inspired by [25] in Section
8. The paper is ended by some concluding remarks.
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2 Problem formulation

Let Gp denote an unknown single-input single-output
(SISO) LPV system described by the difference equation

A(p, t, q−1)yo(t) = B(p, t, q−1)u(t), (1)

where u(t) ∈ R is the input signal, yo(t) ∈ R is the
noise-free output and p(t) ∈ P ⊆ Rnp is a set of np
(exogenous) measurable scheduling variables. Without
the loss of generality, in the sequel, the case of np = 1
will be considered in order to keep the notation simple.
In (1), A(p, t, q−1) and B(p, t, q−1) are polynomials in
the backward time-shift operator q−1 of finite degree na
and nb, respectively, i.e.,

A(p, t, q−1) = 1 +

na∑
i=1

ai(p, t)q
−i, (2a)

B(p, t, q−1) =

nb∑
i=0

bi(p, t)q
−i, (2b)

where the coefficients ai(p, t) and bi(p, t) are allowed to
be nonlinear dynamic mappings of the scheduling se-
quence. In other words, such coefficients are not con-
strained to be (static) functions of p(t), but they may
also depend on p(t−1), p(t−2), . . . , i.e., on finite many
time-shifted values of p(t). The measured output of the
system is supposed to be corrupted by an additive, zero-
mean, stationary colored noise w(t), i.e.,

y(t) = yo(t) + w(t). (3)

The system Gp is assumed to be stable, where the no-
tion of stability is defined as follows.

Definition 1 An LPV system, represented in terms of
(1), is called stable if, for all trajectories {u(t), y(t), p(t)}
satisfying (1), with u(t) = 0 for t ≥ 0 and p(t) ∈ P, it
holds that ∃ δ > 0 s.t. |y(t)| ≤ δ, ∀t ≥ 0.

Remark Notice that, due to linearity, an LPV system
that is stable according to Definition 1 also satisfies that

sup
t≥0

|u(t)| <∞ =⇒ sup
t≥0

|y(t)| <∞,

for all p(t) ∈ P and {u(t), y(t), p(t)} satisfying (1). This
property is known as Bounded-Input Bounded-Output
(BIBO) stability in the L∞ norm [39,11].

The objective of the considered control problem is to
achieve a desired closed-loop behavior Mp, given by a
state-space representation

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t), (4a)

yd(t) = CM (p, t)xM (t) +DM (p, t)r(t), (4b)

where yd denotes the desired closed-loop output for a
given reference signal r. In the following, the operator
M(p, t, q−1) will be used as a shorthand form to indicate
the mapping of r to yd in terms of (4), i.e., yd(t) =
M(p, t, q−1)r(t) for all trajectories of p and r. In case
the reference model is given in an IO form, this can
be realized in a state-space representation using the so
called maximally augmented realization form [40] or the
approaches presented in [41].

Compared to (4), as we will see later, it is advantageous
to express the parameterization of the controller to be
synthesized in IO representation form. The class of con-
trollers Kp(θ) is selected as

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(r(t)− y(t)), (5)

where AK and BK are polynomials in q−1 whose co-
efficients, parameterized with the design parameters
collected in θ, can be any (possibly dynamic) bounded
function of the scheduling variable p.

Remark The controller should be assumed to be dynam-
ically dependent on p in order to have enough flexibility to
achieve the user-defined behavior. As a matter of fact, it
is well-known that a static dependence would be a rather
strong assumption for most real-world systems [39], [43].

Assume that a collection of open-loop data DN =
{u(t), y(t), p(t)}, t ∈ IN

1 = {1, . . . , N}, from (1) is avail-
able. Assume also that the following statements hold:

A1. there exists a value θ◦ such that the controller
Kp(θ

◦) realizes Mp in closed-loop;

A2. (5) is globally identifiable, i.e., for two instances
of the parameter vector θ, namely θ(1) and θ(2), there
exists a trajectory of u and p such that the response of
the feedback interconnection of (1) and (5) is different
if θ(1) ̸= θ(2). This implies that θ◦ is unique;

A3. the datasetDN is persistently exciting with respect
to the used parameterization, i.e., based on DN , θ◦

can be uniquely determined.

Therefore, the model-reference control problem ad-
dressed in this paper can be formally stated as follows.

Problem 1 (Model-reference control) Assume
that a noisy dataset DN = {u(t), y(t), p(t)}Nt=1, a refer-
ence model (4) and a controller class Kp(θ) as defined
in (5) are given. Based on DN , determine the parameter

vector θ̂ defining the controller Kp(θ̂), so that θ̂ asymp-
totically converges to θ◦, as N → ∞.

Remark Notice that, unlike in the LTI case, synthesis
of a controller that achieves a user-defined behavior (i.e.,
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Kp Gp

Mp

r(t) e(t) u(t) ε(t)yo(t)

Fig. 1. The proposed closed-loop behavior matching scheme.
Note that the plant Gp, the controller Kp and the reference
model Mp depend on the scheduling variable p.

model-reference control) is not trivial in the LPV frame-
work even from a model-based perspective. The main rea-
son is that most of the techniques available for closed-
loop model-matching cannot be extended to parameter-
varying systems in the time-domain. Some results are
instead available for H2 −H∞ norm-based loop-shaping
design in the frequency domain, e.g. [37], allowing model
matching only with LTI reference models.

3 Direct design from data

To start with, let the following additional assumption
hold.

A4. M(p, t, q−1) is invertible, where the inverse of a
LPV mapping is defined as follows.

Definition 2 Given a causal LPV map M(p, t, q−1)
with input r, scheduling signal p and output yd. The
causal LPV mappingM†(p, t, q−1) that gives r as output
when fed by yd, for any trajectory of p, is called the left
inverse of M(p), i.e., M†(p, t, q−1)M(p, t, q−1) = 1.

The computation of the left inverse of an LPV map is
not straightforward; this problem will be discussed at
the end of the section. Due to assumption A1, notice
that Problem 1 can be reformulated as the optimization
task (6) over a generic time interval IN

1 , where A(p, t)
andB(p, t) are identified fromDN and the argument q−1

has been dropped for the sake of readability. Notice that
this corresponds to matching the desired dynamical be-
havior with the actual closed-loop system, as graphically
illustrated in Figure 1. If a consistent method is used for
the identification of A(p, t) and B(p, t) (e.g., the PEM
method in [39]), and the polynomials are correctly pa-
rameterized, the estimate of the system asymptotically
converges to the real A(p, t) and B(p, t) and the con-
troller resulting as the solution of (6) makes the closed-
loop system asymptotically converge to (4), thus solving
Problem 1. However, such a model-reference problem is
very hard to solve in the given form. In what follows,
it will be shown that the problem can be further refor-
mulated in a different fashion, which does not require
neither to parameterize nor to identify the system Gp.

The proposed approach is based on two key ideas. The
first one is that, under Assumption A4, the dependence
on the choice of r can be annihilated. As a matter of fact,
by rewriting the first constraint of (6) as

r(t) =M†(p, t, q−1)ε(t) +M†(p, t, q−1)yo(t), (7)

whereM† denotes the left inverse ofM , the optimization
(6) can be reformulated as indicated in (8). Notice that,
unlike in (6), the reference signal (7) is a projection of
yo and ε to reconstruct r. Specifically, such a projection
corresponds to the sum of two terms:

• the reference trajectory that would produce the data
y as an output, in case the closed-loop system is equal
to Mp

• a term compensating the mismatch between Mp and
the actual closed-loop system, parameterized by θ.

In this way, it even becomes indifferent whether r ex-
ists or not in the real system, as (7) corresponds to a
virtual reference signal satisfying the above given con-
ditions. In other words, Problem (8) still corresponds to
a closed-loop model matching task, but now it can be
solved based on the open-loop data DN (together with
model information, since Gp is still needed to compute
the optimal solution).

Now we take another observation. Since the available
data inDN is generated according to the system equations
in the first and second constraints in (8), DN can be used
- under Assumption A3 and w = 0 - as an alternative
way to describe the dynamics of the system.

Consider then the problem illustrated in (9) (under-
neath Equation (8)) where u, y and p are taken from
the available dataset DN . Notice that such a problem
is independent of the analytical description of A(q−1, p)
and B(q−1, p) and therefore no model identification is
needed to solve it. If the data are noiseless, the global
minimizer of (9) coincides with that of (6), providing
the optimal controller achieving Mp in closed-loop and
yielding ε = 0.

Let us now consider the practical situation. In case of
noisy data (i.e., w ̸= 0), the estimate of the optimal
controller is biased. As a matter of fact, the optimization
procedure (9) pushes for ε = 0, whereas the minimizer
of (8) would yield ε such that

M†(p, t)ε(t) =M†(p, t)w(t)− w(t).

Proper stochastic treatment of the noise will be detailed
in the next section based on the above presented idea for
both the cases of known and unknown optimal controller
structure. More specifically, the discrepancy between (8)
and (9) will be dealt with, in order to obtain a solution
of (9) that still asymptotically converges to the solution
of (6).
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min
θ,ε

∥ε∥2ℓ2
s.t. ε(t) = M(p, t)r(t)− yo(t), ∀t ∈ IN

1 ,

A(p, t)yo(t) = B(p, t)u(t), ∀t ∈ IN
1 ,

AK(p, t, θ)u(t) = BK(p, t, θ)(r(t)− yo(t)), ∀t ∈ IN
1 .

(6)

min
θ,ε

∥ε∥2ℓ2
s.t. A(p, t)yo(t) = B(p, t)u(t), ∀t ∈ IN

1 ,

AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)yo(t)− yo(t)), ∀t ∈ IN
1 .

(8)

min
θ,ε

∥ε∥2ℓ2
s.t. AK(p, t, θ)u(t) = BK(p, t, θ)

(
M†(p, t)ε(t) +M†(p, t)y(t)− y(t)

)
, {u(t), y(t), p(t)} ∈ DN .

(9)

Before proceeding, let us analyze the problem of com-
puting M†. For reference maps given in the state-space
form (4), the result of the following Proposition can be
employed.

Proposition 1 Consider (4) and assume that there ex-
ists a D−1

M (p, t) which satisfies D−1
M (p, t)DM (p, t) = 1

and is bounded ∀p ∈ PZ. Then,

xM†(t+ 1) = AM†(p, t)xM†(t) +BM†(p, t)yd(t) (10a)

r(t) = CM†(p, t)xM†(t) +DM†(p, t)yd(t) (10b)

defines the left-inverse of (4), where the matrix functions
are given as

AM†(p, t) = AM (p, t)−BM (p, t)D−1
M (p, t)CM (p, t),

BM†(p, t) = BM (p, t)D−1
M (p, t),

CM†(p, t) = −D−1
M (p, t)CM (p, t),

DM†(p, t) = D−1
M (p, t).

Proof 1 Consider the generic form of the output equa-
tion in (10). Recalling (4), the expression of y becomes

r(t) = CM†(p, t)xM†(t) +DM†(p, t)CM (p, t)xM (t)+

+DM†(p, t)DM (p, t)r(t). (11)

Consider that xM† = xM . Since DM is assumed to be
invertible, it follows that

DM†(p, t) = D−1
M (p, t), CM†(p, t) = −D−1

M (p, t)CM (p, t).

Moreover, since xM† = xM , the state equations of M†

and M can be combined such as

AM†(p, t)xM (t) +BM†(p, t)yd(t) =

AM (p, t)xM (t) +BM (p, t)r(t), (12)

where the left-hand term can be rewritten as

AM†(p, t)xM (t) +BM†(p, t)CM (p, t)xM (t)

+BM†(p, t)DM (p, t)r(t). (13)

Based on the above given equations, the expressions of
AM† and BM† follow as

AM†(p, t) = AM (p, t)−BM†(p)CM (p, t),

BM†(p, t) = BM (p, t)D−1
M (p, t),

which completes the proof. �

Remark In case of DM = 0, DM can be approximated
by D̂M = ϵD where 0 < ϵD ≪ 1 (as it is common in
robust control [51]) to compute the inverse mapping. An-
other, more practical way to overcome the inverse in this
case will be shown in Section 7.

4 Data-driven parametric controller design

Suppose that the controller in (5) is such that

AK(p, t, q−1) = 1 +

naK∑
i=1

aKi (p, t)q−i, (14a)

BK(p, t, q−1) =

nbK∑
i=0

bKi (p, t)q−i, (14b)
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where

aKi (p, t) =

ni∑
j=1

aKi,jfi,j(p, t), (15a)

bKi (p, t) =

mi∑
j=0

bKi,jgi,j(p, t), (15b)

and fi,j(p, t) and gi,j(p, t) are a-priori chosen nonlinear
(possibly dynamic) functions of the scheduling variable
sequence p. The parameters θ, characterizing the con-
troller Kp, are herein the collection of the unknown con-
stant terms aKi,j and bKi,j , i.e.,

θ = [a⊤1 . . . a⊤naK
b⊤0 . . . b⊤nbK

]⊤,

ai = [aKi,1 . . . aKi,ni
]⊤, bi = [bKi,1 . . . bKi,mi

]⊤.
(16)

Remark Notice that, with such a parameterization,
Problem (9) is generally non-convex because of the
product between the optimization variables ε and the
parameters θ characterizing BK(q−1, p, θ). Specifically,
it is convex only if BK(q−1, p, θ) is independent of θ,
whereas it is bi-convex in case of any linear dependance
of BK(q−1, p, θ) on θ.

The controller parameters θ will be estimated on the ba-
sis of an instrumental variable scheme described in the
following. The main reason for using the IV based ap-
proach is to replace the bi-convex optimization problem
(9) with a stochastic considerations based convex prob-
lem, whose solution is guaranteed to asymptotically con-
verge to the solution of (9) as the number of measure-
ments goes to infinity.

Define the regressor ϕ(ξo, t) according to (19) (at the top
of the next page), where the definition of the signal ξo(t)
is

ξo(t) =M†(p, t)yo(t)− yo(t), (17)

and ϕ(ξ, t) similarly, with ξ(t) as

ξ(t) =M†(p, t)y(t)− y(t). (18)

Based on the above notation, the constraint in (9) can
be rewritten as

u(t)− ϕ⊤(ξ, t)θ = BK(p, t, θ)M†(p, t)ε(t). (20)

Consider now the optimization problem

θ̂IV = argmin
θ

∥∥∥∥∥
N∑
t=1

ζ(t)
(
ϕ⊤(ξ, t)θ − u(t)

)︸ ︷︷ ︸
BK(p,t,θ)M†(p,t)ε(t)

∥∥∥∥∥
2

2

, (21)

where ζ(t) is the instrument, a vector that has the di-
mension of ϕ(ξ, t) and is chosen by the user so that

ζ(t) is not correlated with the noise-dependent term
ξ(t)−ξo(t) = (M†(p, t)−1)w(t), i.e., since E {w(t)} = 0,

E
{
ζ(t)(M†(p, t)− 1)w(t)

}
= 0, ∀t ∈ IN

1 . (22)

Notice that (21) aims at the minimization of the projec-
tion (under the instrument ζ(t)) of the colored residual
BK(p, t, θ)M†(p, t)ε(t) in (20). A possible way to con-
struct an instrument with the above property in prac-
tice is to build another version of the regressor ϕ(ξ, t)
by using a second experiment. Such an experiment has
to be performed with the same input of the first exper-
iment such that ζ(t) is correlated with the system dy-
namics, but it will contain a different realization of the
noise, thus guaranteeing that (22) holds. The use of a
solution based on Refined Instrumental Variables (RIV)
[26] which does not require a second data set is currently
under investigation.

By introducing the matrix notation

Υ = [ζ(1) . . . ζ(N)]
⊤
, U = [u(1) . . . u(N)]⊤,

Φ = [ϕ(ξ, 1) . . . ϕ(ξ,N)]
⊤
,

Problem (21) can be also written in the compact form

θ̂IV = argmin
θ

∥∥Υ⊤ (Φθ − U)
∥∥2
2
, (23)

whose solution is given by

θ̂IV =
(
Υ⊤Φ

)−1
Υ⊤U. (24)

Notice that (24) only depends on the data and M†,
whereas no information about the structure of Gp or
the noise model is required. The following result shows
that the solution of (24) asymptotically converges to
the solution of Problem (6), under the assumed noise
conditions.

Proposition 2 If the optimal controller belongs to the
model class specified in (5), then the controller parame-

ters θ̂IV in (24) asymptotically converge with probability
1 (w.p. 1) to the optimal parameters θ◦ in (6), that is

lim
N→∞

θ̂IV = θ◦ w.p. 1. (25)

Proof 2 Rewrite Equation (24) as

θ̂IV =

(
1

N
Υ⊤Φ

)−1
1

N
Υ⊤U. (26)

The solution θ◦ of Problem (8) - or equivalently the so-
lution of Problem (6) - satisfies the following condition
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ϕ(ξo, t) = [ − u(t− 1)f1,0(p, t) −u(t− 1)f1,1(p, t) . . . −u(t− 1)f1,n0(p, t) . . .

− u(t− naK )fnaK
,0(p, t) −u(t− naK )fnaK

,1(p, t) . . . −u(t− naK )fnaK
,nnaK

(p, t)

ξo(t)g0,0(p, t) ξo(t)g0,1(p, t) . . . ξo(t)g0,m1(p, t) . . .

ξo(t− nbK
)gnbK

,0(p, t) ξo(t− nbK
)gnbK

,1(p, t) . . . ξo(t− nbK
)gnbK

,mnbK
(p, t) ]

⊤
(19)

(since, under the given assumptions, ε = 0 if and only if
the optimum is achieved):

U = Φoθ
◦, (27)

with
Φo = [ϕ(ξo, 1) . . . ϕ(ξo, N)]

⊤
. (28)

Rewrite Equation (27) as

U = Φθ◦ +
(
Φ̃− Φ

)
︸ ︷︷ ︸

∆Φ

θ◦. (29)

Note that the tth row ∆ϕt of the matrix ∆Φ is given by

∆ϕt =
[
0 . . . 0 (M†(p)− 1)w(t)g0,0(p)

(M†(p)− 1)w(t)g0,1(p) . . . (M
†(p)− 1)w(t)g0,m1

(p)

. . . (M†(p)− 1)w(t− nbK )gnbK
,0(p)

(M†(p)− 1)w(t− nbK
)gnbK

,1(p) . . .

. . . (M†(p)− 1)w(t− nbK )gnbK
,mnbK

(p) ] . (30)

Substitution of (29) into (26) leads to

θ̂IV =

(
1

N
Υ⊤Φ

)−1
1

N
Υ⊤ (Φθ◦ +∆Φθ◦) = (31a)

= θ◦ +

(
1

N
Υ⊤Φ

)−1
1

N
Υ⊤∆Φθ◦. (31b)

Since the instrument ζ(t) is not correlated with the entries
of the matrix ∆Φ (see Equations (22) and (30)),

lim
N→∞

1

N
Υ⊤∆Φθ◦ = E{Υ⊤∆Φ}θ◦ = 0 (32)

is satisfied w.p. 1. As a consequence, from (31) and (32),
it follows that

lim
N→∞

θ̂IV = θ◦ w.p. 1. (33)

This completes the proof. �

5 Data-driven nonparametric controller design

To select the controller class such that the reference
model is achievable is a hard task, when the model of

the system is unknown. Therefore, in this part of the pa-
per, the p-dependent coefficient functions aKi (p, t) and
bKi (p, t) characterizing the LPV controller (14a)-(14b)
are not a-priori parameterized, i.e., the nonlinear basis
functions fi,j(p, t) and gi,j(p, t) in (15) are not a-priori
specified. In what follows, the problem will be analyzed
in a primal form, whereas its solution will be provided in
the, more suitable, dual form, according to the LS-SVM
framework.

5.1 Primal problem

Let us write the p-dependent functions aKi (p, t) and
bKi (p, t) in (14a) and (14b) as

aKi (p, t) = θ⊤i ψi(p, t) (34a)

bKi (p, t) = θ⊤i+naK
+1ψi+naK

+1(p, t), (34b)

where i ∈ InaK
1 , j ∈ InbK

1 and θi ∈ RnH is a vector of un-

known parameters and ψi(p, t) (with i ∈ InaK
+nbK

+1

1 ) is
a nonlinear map from the original scheduling space P to
an nH-dimensional space, commonly referred to as the
feature space. Unlike the case of parametric controller
design discussed in Section 4, neither the maps ψi nor
the dimension nH of the vectors θi and ψi are specified.
Potentially, θi and ψi(p, t) can be infinite-dimensional
vectors (i.e., nH = ∞).

Let us define the vector x ∈ Rnf (with nf = naK +nbK
+

1) as follows:

x(ξ, t)=[−u(t−1) . . .− u(t−naK ) ξ(t) . . . ξ(t−nbK
)]
⊤
.

(35)
and let xi(ξ, t) be the i-th component of the vector
x(ξ, t).

Based on the introduced notation, the constraint in (9)
can be rewritten in the regression form:

u(t) =

nf∑
i=1

θ⊤i ψi(p, t)xi(ξ, t)+BK(p, t, q−1)M†(p, t)ε(t)︸ ︷︷ ︸
εu(t)

.

(36)
Synthesis of the controller based on a data record DN =
{u(t), y(t), p(t)}Nt=1 is formulated in the LS-SVM frame-
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work [38] as the following convex optimization problem:

min
θi,εu

1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥∥∥
N∑
t=1

zi(t)εu(t)

∥∥∥∥∥
2

2

(37a)

s.t. εu(t) = u(t)−
nf∑
i=1

θ⊤i ψi(p, t)xi(ξ, t), ∀t ∈ IN
1 ,

(37b)

where the instrument zi(t) ∈ RnH has the dimension of
ψi(p, t) (thus zi(t) can be an infinite-dimensional vector)
and it has to be constructed to be uncorrelated with the
noise term ξo(t)− ξ(t) = (M†(p, t)− 1)w(t), i.e.,

E{zi(t)(M†(p, t)− 1)w(t)} = 0, ∀t ∈ IN
1 , i = 1, . . . , nf .

Note that, since the map ψi(p, t) does not depend on the
noise w(t), the instrument zi(t) is constructed as follows:

zi(t) = ψi(p, t)xi(ξ̂, t), (38)
where

x(ξ̂, t)=
[
−u(t−1) . . .−u(t−naK ) ξ̂(t) . . . ξ̂(t−nbK

)
]⊤
,

(39)

with ξ̂(t) being an approximation of the noise-free signal
ξo(t) independent of the noise w(t). This choice of the
instrument is inspired by the LTI framework, where the
instrument leading to the minimum variance estimate
is given by the noise-free signal. For further details, see
[26].

Note that two criteria are considered in problem (37).
Specifically, the second term in the objective function
of (37) aims at minimizing the (projection) of the resid-
uals εu(t), while the regularization term

∑nf

i=1 θ
⊤
i θi is

included to prevent overfitting. In fact, since the dimen-
sion nH of the parameter vector θi is not specified and
it can be potentially infinite, penalizing the 2-norm of θi
is essential to achieve an accurate estimate of the func-
tions aKi (p, t) and bKi (p, t) in terms of the bias/variance
trade-off. The regularization parameter γ is tuned by
the user, e.g., by using cross-validation to balance this
trade-off. Let us introduce the matrix notation:

Ψi =


ψ⊤
i (p, 1)

...

ψ⊤
i (p,N),

 , E =


εu(1)
...

εu(N)

 , (40a)

Xi(ξ) =


xi(ξ, 1) 0 · · · 0

0 xi(ξ, 2)
...

...
. . . 0

0 · · · 0 xi(ξ,N)

 . (40b)

Then, Problem (37) can be written in the compact form:

min
θi,εu

1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥Ψ⊤
i Xi(ξ̂)E

∥∥∥2
2

(41a)

s.t. E = U −
nf∑
i=1

Xi(ξ)Ψiθi. (41b)

Proposition 3 The controller parameters θ̂NP,IV, ob-
tained by minimizing Problem (41), asymptotically con-
verge (w.p. 1) to:

lim
N→∞

θ̂NP,IV = θ◦ −R−1γ−1θ◦,

where

R = lim
N→∞

γ−1I +
1

N2
Ψ⊤ZZ⊤Ψ.

Proof 3 Note that Problem (37) can also be written as:

min
θ

1

2
θ⊤θ +

γ

2N2

∥∥Z⊤ (U −Ψθ)
∥∥2
2
, (42a)

with

θ =
[
θ⊤1 . . . θ⊤nf

]⊤
, (43a)

Ψ =


ψ⊤
1 (p, 1)x1(ξ̃, 1) . . . ψ⊤

nf
(p, 1)xnf

(ξ̃, 1)

. . . . . . . . .

ψ⊤
1 (p,N)x1(ξ̃, N) . . . ψ⊤

nf
(p,N)xnf

(ξ̃, N)

 ,
(43b)

Z =


z⊤1 (1) . . . z⊤nf

(1)

. . . . . . . . .

z⊤1 (N) . . . z⊤nf
(N)

 . (43c)

The solution of Problem (42) is achieved for:

θ̂NP,IV =

(
γ−1I +

1

N2
Ψ⊤ZZ⊤Ψ

)−1
1

N2

(
Ψ⊤ZZ⊤U

)
.

(44)
As already discussed in the proof of Proposition 2, the
following condition holds:

U = Ψoθ
◦ = Ψθ◦ + (Ψo −Ψ)︸ ︷︷ ︸

∆Ψ

θ◦, (45)

where θ◦ is the solution of Problem 6 and Ψo is defined
as:

Ψo =


ψ⊤
1 (p, 1)x1(ξo, 1) . . . ψ⊤

nf
(p, 1)xnf

(ξo, 1)

. . . . . . . . .

ψ⊤
1 (p,N)x1(ξo, N) . . . ψ⊤

nf
(p,N)xnf

(ξo, N)

 .
(46)
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Substitution of (45) in (44) leads to:

θ̂NP,IV = θ◦+(
γ−1I +

1

N2
Ψ⊤ZZ⊤Ψ

)−1(
1

N2
Ψ⊤ZZ⊤∆Φθ◦ − γ−1θ◦

)
.

As discussed in the proof of Proposition 2, the term
1
NZ

⊤∆Φ converges to 0 w.p. 1 as N goes to infinity, thus

lim
N→∞

θ̂NP,IV = θ◦ −R−1γ−1θ◦.

�

Note that the bias term R−1γ−1θ◦ in the estimate of

the controller parameters θ̂NP,IV does not depend on the
realization of the noise w(t), and it is only due to the
regularization term 1

2

∑nf

i=1 θ
⊤
i θi used in Problem (41).

However, the controller parameters θ̂NP,IV minimizing
(41) cannot be computed since an explicit representa-
tion of the feature maps ψi(p, t) and of the instruments
zi(t) would be needed. In order to compute both the pa-
rameters θi and the feature maps ψi(p, t), the dual for-
mulation of Problem (41) is considered next.

5.2 Dual problem

Let us define the Lagrangian L(α, θ, e) associated with
Problem (41):

L(α, θ,E) =
1

2

nf∑
i=1

θ⊤i θi +
γ

2N2

nf∑
i=1

∥∥∥Ψ⊤
i Xi(ξ̂)E

∥∥∥2
2
+

−α⊤

(
E − U +

nf∑
i=1

Xi(ξ)Ψiθi

)
,

where α ∈ RN is the collection of the Lagrange multi-
pliers. Due to the affine nature of the constraints and
convexity of the cost function, the global optimum of
(41) is obtained when the Karush-Kuhn-Tucker (KKT)
conditions reported in the following are fulfilled for all
i = 1, . . . , nf :

∂L
∂θi

= 0 → θi = Ψ⊤
i Xi(ξ)α, (47a)

∂L
∂E

= 0 → α =
γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)E, (47b)

∂L
∂α

= 0 → E = U −
nf∑
i=1

Xi(ξ)Ψiθi. (47c)

By substituting (47a) into (47c), we obtain:

E = U −
nf∑
i=1

Xi(ξ)ΨiΨ
⊤
i Xi(ξ)α. (48)

Then, substitution of (48) into (47b) leads to:

α =
γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)U+

− γ

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)

nf∑
j=1

Xj(ξ)ΨjΨ
⊤
j Xj(ξ)α,

which has the solution

α =R−1
D (Ψi)

1

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)U, (49)

with

RD(Ψi) = γ−1I +
1

N2

nf∑
i=1

Xi(ξ̂)ΨiΨ
⊤
i Xi(ξ̂)×

×
nf∑
j=1

Xj(ξ)ΨjΨ
⊤
j Xj(ξ). (50)

The importance of the LS-SVM approach lies in the fact
that the Lagrangianmultipliersα can be computed with-
out the proper knowledge of the feature maps ψi(p, t)
characterizing the matrix Ψi, as discussed in the fol-
lowing. Define the so-called Grammian matrix as Ωi =
ΨiΨ

⊤
i . According to the Mercer’s theorem [29,10], the

Grammian matrices Ωi (with i = 1, . . . , nf), can be de-
fined in terms of kernel functions without the explicit
knowledge of Ψi. More specifically, the generic (t, k)-th
entry of Ωi, which is given by the inner product:

[Ωi]t,k =
⟨
ψi(p, t), ψi(p, k)

⟩
, (51)

can be described by a positive definite kernel function
κi(p, t, k), i.e.,

[Ωi]t,k =
⟨
ψi(p, t), ψi(p, k)

⟩
= κi(p, t, k). (52)

Specification of the kernels instead of the maps ψi is
called the kernel trick [46] and it provides the solution
for (49) in terms of:

α = R−1
D (Ωi)

1

N2

nf∑
i=1

Xi(ξ̂)ΩiXi(ξ̂)U (53)

with

RD(Ωi) = γ−1I+
1

N2

nf∑
i=1

Xi(ξ̂)ΩiXi(ξ̂)

nf∑
j=1

Xj(ξ)ΩiXj(ξ).

A typical choice of kernel, which provides uniformly ef-
fective representation of a large class of smooth func-
tions, is the Radial Basis Function (RBF) kernel:

κi(p, t, k)=exp
(
−∥p(t)−p(k)∥2

2

σ2
i

)
, (54)
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where σi > 0 is a so-called hyper-parameter character-
izing the width of the RBF and it is tuned by the user
(e.g., through cross-validation). It is worth remarking
that other positive definite kernels like linear, polyno-
mial, rational, spline or wavelet kernels, can also be used
to define the inner product between the feature maps ψi.
Choosing the most appropriate kernel highly depends
on the problem at hand. However, the analysis of the
properties enjoyed by different types of kernels is out of
the scope of the paper, therefore the reader is referred
to [35] for further discussions on this issue.

Once the Lagrangian multipliers α are computed
through (53), the p-dependent coefficient functions
aKi (p, t) and bKi (p, t) characterizing the LPV controller
(14a)-(14b) are obtained from (34) and (47a), i.e.,

aKi (�) = ψ⊤
i (�)θi =

= ψ⊤
i (�)Ψ⊤

i Xi(ξ)α =

=
N∑
t=1

ψ⊤
i (�)ψi(p, t)︸ ︷︷ ︸
κi(p,t,�)

xi(ξ, t)αt, (55a)

bKi (�) = ψ⊤
i+naK

+1(�)θi+naK
+1 =

= ψ⊤
i+naK

+1(�)Ψ⊤
i+naK

+1Xi+naK
+1(ξ)α =

=

N∑
t=1

ψ⊤
i+naK

+1(�)ψi+naK
+1(p, t)︸ ︷︷ ︸

κi+naK
+1(p,t,�)

xi+naK
+1(ξ, t)αt.

(55b)

Note that the resulting controller coefficient functions
only depend on the available observations inDN and the
specified kernel functions κi(p, t, �). On the other hand,
the knowledge of the system dynamics and the feature
maps ψi(p, t) is not required.

6 Comparison with the existing techniques

As mentioned in the introduction, non-iterative data-
driven methods already exist in the scientific literature
and therefore a comparison with them is necessary to
better clarify the novelty and the potential of the pro-
posed approach. Specifically, the most well-known non-
iterative methods: the VRFT [6] and the Non-iterative
CbT [44] approaches are considered here.

The VRFT design scheme corresponds, in the noiseless
LTI case, to the optimization problem

θ̂vr = argmin
θ,εvr

∥εvr∥2ℓ2 , (56)

where

εvr(t) = u(t)−K(q−1, θ)ev(t), t ∈ IN
1 ,

K(q−1, θ) is the controller transfer function, ev(t) =
M−1(q−1)yo(t)−yo(t) andM(q−1) represents the trans-
fer function of the LTI reference behavior. Such a signal
can be seen as the error that would feed the controller in
a “virtual” loop where the input u of the identification
experiment is the output of the controller and the com-
plementary sensitivity function is M(q−1). As a matter
of fact, ev is the difference between the “virtual” refer-
ence signal feeding the closed-loop system

rv(t) =M−1(q−1)yo(t), (57)

and the noiseless output of the experiment yo(t). Al-
though such a formulation might seem similar to the
proposed approach in case of fixed p, there are a few sig-
nificant differences:

• although in the strategy presented in this paper a “fic-
titious” reference signal, i.e., (7), is computed to build
a closed-loop optimization problem, such a reference
is structurally different from the virtual reference sig-
nal (57) computed in VRFT (which is independent of
the matching error);

• as indicated by the authors in [6], minimizing ∥εvr∥2ℓ2 is
not exactly the same as minimizing ∥ε∥2ℓ2 , with ε(t) =
yo(t) − M(q−1)r(t), in the original model-matching
problem;

• in standard VRFT, the denominator of the controller
is a-priori fixed to guarantee a global solution, unlike
in the proposed approach.

Moreover, in the LPV extension of VRFT [20],

• controllers are still linear in the parameters with a
fixed denominator;

• no dynamic dependence on p is taken into account,
thus yielding a less general approach;

• the reference model needs to be LTI.

Regarding Non-iterative CbT, the differences with the
proposed approach are even more evident. First of all, as
indicated in [24], CbT cannot be extended to nonlinear
systems, since the tuning scheme is based on the com-
mutation of the plant and the controller (not allowed in
the LPV setting). Moreover, the treatment of noise is
based on extended instrumental variables minimizing a
measure of the correlation between u and ε.

However, it should be remarked that, in the LTI case,
both VRFT and CbT consider also the case where A1
does not hold. To handle this case, an asymptotical sta-
bility constraint and a bias-shaping prefilter are intro-
duced. The analysis of this situation is obviously of great
interest also in the LPV framework and therefore it is a
critical objective of future research.

As far as the authors are aware, the study of this paper
is the first in the field of non-iterative direct data-driven
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tuning where also the controller structure can be derived
from data, whereas in VRFT and Non-iterative CbT the
parameterization is a-priori fixed.

7 Numerical example

In this Section, the effectiveness of the proposed data-
driven approach is demonstrated via a numerical exam-
ple. The example is such that A1 holds. In this way, not
only the effectiveness of both the parametric and the
nonparametric methods can be shown, but also a fair
comparison between them can be carried out.

7.1 Plant description

Consider the SISO LPV system Gp defined as

xG(t+ 1) = p(t)xG(t) + u(t)

yo(t) = xG(t)

y(t) = yo(t) + w(t),

(58)

where p is an exogenous parameter taking values in
P = [−0.4, 0.4]. According to Definition 1, it can be eas-
ily shown that the system is stable for all possible tra-
jectories of p.

7.2 Desired closed-loop behavior

Let the desired behavior for the closed-loop system Mp

be given by the second order plant model

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t)

yM (t) = CM (p, t)xM (t) +DM (p, t)r(t).
(59)

where yM is the desired closed-loop trajectory for y(t),
∆p(t) = p(t)− p(t− 1) and

AM (p, t) =

[
−1 1

−1−∆p(t) 1

]
, BM (p, t) =

[
1 + p(t)

1 + ∆p(t)

]
,

CM = [1 0] , DM = 0,

This reference model is selected as it is achievable by
using the simple controller parametrization defined in
the next subsection.

7.3 Parametric controller design

Assume now that an LPV PI controller Kp of the form

xK(t+ 1) = xK(t) + (θ0(p, t) + θ1(p, t)) (r(t)− y(t))

u(t) = xK(t) + θ0(p, t) (r(t)− y(t))

where
θ0(p, t) = θ00 + θ01p(t), (60)

θ1(p, t) = θ10 + θ11p(t− 1), (61)

can be used for model reference control of Gp. The closed-
loop dynamics can be written as a function of the con-
troller parameters as:

xF (t+ 1) = AF (p, t)xF (t) +BF (p, t)r(t), (62a)

y(t) = CF (p, t)xF (t) +DF (p, t)r(t). (62b)

where

AF (p, t) =

[
p(t)− θ0(p(t)) 1

−θ0(p(t))− θ1(p(t)) 1

]
,

BF (p, t) =

[
θ0(p(t))

θ0(p(t)) + θ1(p(t))

]
,

CF = [1 0] , DF = [0] .

By comparingAF , BF , CF , DF andAM , BM , CM , DM ,
it appears that there exists a controller in the consid-
ered class which is able to achieve a closed-loop behavior
equal toMp, i.e.,A1 holds. Specifically, the parameters
of the optimal controller are such that

θ◦0(p, t) = θ◦00 + θ◦01p(t) = 1 + p(t), (63a)

θ◦1(p, t) = θ◦10 + θ◦11p(t− 1) = −p(t− 1). (63b)

This fact can be verified by substituting (63a) and (63b)
into AF and BF , which results in AM and BM .

A parametric controller is computed through the ap-
proach proposed in Section 4, without deriving a model
of Gp, so as to directly design from data the control law
in its IO form (straightforwardly derivable from (60)):

u(t) =u(t− 1) + θ0(p, t) (r(t)− y(t))+

+ θ1(p, t) (r(t− 1)− y(t− 1)) . (64)

For this purpose, a data set DN of N = 1000 mea-
surements are collected, by performing an experi-
ment on (58), where u(t) is selected as a white noise
sequence with uniform distribution U (−1, 1) and
p(t) = 0.4 sin(0.06πt). The output measurements are
corrupted by a white noise sequence w(t) with normal
distribution N (0, σ2) and standard deviation σ = 0.2.
Under this experimental setting, the resulting Signal to
Noise Ratio (SNR) is 9.8 dB. A second dataset with the
same input has been generated for the construction of
the instrument ζ as indicated in Section 4.

As a preliminary step, recall that M† is needed to com-
pute (18). Since DM is zero, the result of Proposition
1 cannot be used as it is. However, Proposition 1 can
still become useful as follows. Suppose that there is no
desired direct feedthrough (DM = 0) between r(t) and

11



yM (t+ k) = CM (qkp)
k−1∏
i=0

AM (qk−i−1p)xM (t) + CM (qkp)
k−2∑
j=0

j∏
i=0

AM (qk−i−1p)BM (qk−j−2p)r(t+ j)

+ CM (qkp)BM (qk−1p)r(t+ k − 1). (65)

yM (t), like in this example. However, similar to the con-
cept of relative degree, it is possible to find a finite k such
that yM (t+ k) directly depends on u(t) for all p(t) ∈ P.
For k > 0, using straightforward calculations, Equation
(65) holds. Now let us define k to be the first value for
which the left-hand-side (65) does depend on r(t). Then,
if follows that

yM (t+ k) = CM (qkp)
k−1∏
i=0

AM (qk−i−1p)xM (t)

+ CM (qkp)
k−2∏
i=0

AM (qk−i−1p)BM (p)r(t). (66)

Hence, it is possible to redefine the reference system as
M′

p with

AM ′(p, t) = AM (p, t),

BM ′(p, t) = BM (p, t),

CM ′(p, t) = CM (qkp)
∏k−1

i=0 AM (qk−i−1p),

DM ′(p, t) = CM (qkp)
∏k−2

i=0 AM (qk−i−1p)BM (p),

According to the above definition for the system matri-
ces, yM ′(t) = yM (t + k). If now DM ′ ̸= 0, ∀p ∈ P, the
inverse M′†

p of M′
p can be computed using Proposition

1 and, as a consequence, (18) is given by filtering y with
M′†

p and shifting the data in time as

ξ̃(t) =M ′†(p, t)y(t+ k)− y(t), t ∈ IN−1
1 . (67)

It should be underlined here that, by doing so, the sam-
ples available for controller identification become N −k.
This procedure is feasible because filtering is applied off-
line.

The controller parameters can now be computed us-
ing the direct data-driven method proposed in Section
4, i.e., the IV estimation formula (24) using an instru-
ment built with a second experiment (where the input
sequence is the same as in the first test). The resulting
values of the controller parameters are:

θ0(p, t) =0.9852 + 1.0166p(t), (68a)

θ1(p, t) =− 0.0153− 0.9860p(t− 1), (68b)

where small discrepancies with respect to (63a)-(63b)
are due to the noise and the fact that N is finite.
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Fig. 2. Parametric controller design: (a) closed-loop out-
put response y (blue solid) and desired output response yM
(black dashed), (b) scheduling signal p.

Despite these small variations, the controller appears to
be effective in terms of matching of the desired closed-
loop behavior. As an example, Fig. 2 illustrates a refer-
ence tracking (validation) experiment using a piecewise
linear p, which is different from the trajectory of the es-
timation dataset DN . Note that in this closed-loop sim-
ulation, y available for the synthesized controller is af-
fected by measurement noise with the same characteris-
tics as in the identification dataset.

7.4 Nonparametric controller design

A nonparametric controller is now designed through the
approach proposed in Section 5. The controller to be
designed is given in the IO form:

u(t) = aK1 (p(t), p(t− 1))u(t− 1)+

+ bK0 (p(t), p(t− 1)) (r(t)− y(t))+

+ bK1 (p(t), p(t− 1)) (r(t− 1)− y(t− 1)) ,

12



where the dependence of aK1 , bK0 and bK1 on p(t) and
p(t − 1) is not a-priori specified (notice that neither
the integral action is a-priori fixed). The functions aK1 ,
bK0 and bK1 are estimated based on the same dataset
used to design the parametric controller in Section 7.3.
The values of the hyper-parameters γ (eq. (37)) and σi
(characterizing the RBF κi in (54)) are chosen through
cross-validation. We remind that also the validation
dataset is noisy. The obtained values of γ and σi are:
γ = 77844 and σi = 2.9 for all i = 1, 2, 3. The real-
ized closed-loop trajectory y is plotted in Fig. 3. The
obtained results show that, although no a-priori infor-
mation on the dependence of the controller parameters
aK1 , bK0 and bK1 on the scheduling signal p is used, the
designed controller achieves similar performance to the
parametric controller of Section 7.3. We should remark
here that, no integral action has been directly enforced
in the parametrization of the controller. Since, due to
the data-driven nature of the approach, the matching of
the closed-loop behavior is not perfect, which leads to a
nonzero steady-state error of the response, see Fig. 3.

Obviously, the corresponding mean squared error com-
puted for the dataset with Ncl = 400 closed-loop sam-
ples, i.e.,

MSE =
1

Ncl

Ncl∑
t=1

(y(t)− yM (t))
2
, (69)

is a bit larger than in the parametric case, as shown in
Table 1. This fact quantitatively illustrates the obvious
correlation between the available preliminary knowledge
and the achievable accuracy. It can be concluded that:

• the parametric approach gives the best performance
provided that the structure of the optimal controller
is a-priori available;

• the nonparametric approach should be preferred when
the structure of the controller needs to be identified
directly from data.

Table 1
Achieved MSE of the proposed approaches in the considered
numerical example.

parametric non-parametric

MSE 0.0407 0.1565

8 Servo-positioning system

As amore realistic case study, we investigate data-driven
LPV control synthesis for the servo positioning system
in Fig. 4, representing a voltage-controlled DC motor.
The same example has already been used in other con-
tributions, e.g., [25]. The system has viscous friction and
an additional mass is mounted on the disc connected to
the rotor to make the mass distribution inhomogeneous.
Note that in practical utilization of this application, an
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Fig. 3. Nonparametric controller design: closed-loop out-
put response y (blue solid) and desired output response yM
(black dashed).

Fig. 4. The servo positioning system with unbalanced disk.

important control objective is to attenuate the load dis-
turbance caused by the unbalanced disc and realize an
LTI behavior of the closed-loop system, i.e., hide the po-
sition dependent/nonlinear nature of the system from
the user. Furthermore, unlike the previous numerical ex-
ample, we will enforce a pure integral action in the con-
troller parametrization in order to ensure zero steady
state error.

8.1 System description

The mathematical model of the considered servo-
positioning system, used to simulate its dynamics
behavior, is represented by the continuous-time state-
space equation:
θ̇(τ)

ω̇(τ)

İ(τ)

=


0 1 0

0 − b
J

K
J

0 −K
L −R

L

+


0 1 0
mgl
J 0 0

0 0 0

 sin(θ(τ))θ(τ)



θ(τ)

ω(τ)

I(τ)



+


0

0

1
L

V (τ), (70)

with an output equation y(τ) = θ(τ). V (τ) [V] is the
control input voltage over the armature, I(τ) [mA] is
the current, θ(τ) [rad] is the angular position and ω(τ)
[rad/s] is the angular velocity of the disc. The param-
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Table 2
Physical parameters of the DC motor [25].

Description Value

R Motor resistance 9.5 Ω

L Motor inductance 0.84·10−3 H

K Motor torque constant 53.6·10−3 Nm/A

J Complete disk inertia 2.2·10−4 Nm2

b Friction coefficient 6.6·10−5 Nms/rad

M Additional mass 0.07 kg

l Mass distance from the center 0.042 m

eters characterizing the DC motor are reported in Ta-
ble 2. In terms of data acquisition, an ideal zero-order-
hold (ZOH) setting is assumed where the actuation and
output sampling is synchronized with a sampling period
Ts = 0.01 s and ideal anti-aliasing filter is assumed on
the output measurements.

Note that, by choosing the output θ(τ) as scheduling
variable (i.e., p(τ) = θ(τ)), the DC motor model (70)
becomes an LPV model. Strictly speaking, it is a quasi-
LPV model, as the scheduling variable is not an exoge-
nous signal, but a state of the system. This indeed com-
plicates the data-driven design control problem, as the
scheduling signal in the dataset is also affected by the
noise, and such noise is correlated with the noise on the
output. However, we will show that in this application,
where the SNR is typically high, the above fact does not
affect the performance in a significant way.

8.2 Desired closed-loop behavior

The desired closed-loop behaviorMp is described by the
difference equations

xM (t+ 1) = AMxM (t) +BMr(t),

θM (t) = CMxM (t) +DMr(t).
(71)

where AM = 0.99, BM = 0.01, CM = 1 and DM =
0. Namely, it is selected as a discrete-time linear time-
invariant first-order plant, under the sampling time Ts
and a pole at (about) 0.15Hz. Fromnow on, we denote by
θM (t) the desired closed-loop trajectory for the angular
position of the disc θ(t).

8.3 Controller synthesis

We inject into the plant (70) a filtered white noise volt-
age signal with Gaussian distribution and standard de-
viation of 16 V and collect a data set DN of N = 1500
input and output measurements (the input filter is se-
lected as a first order digital filter with a cutoff frequency
of 1.6Hz). Notice that, unlike the previous example, the
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Fig. 5. Servo-positioning example: desired closed-loop re-
sponse of the disc position θM (black dashed) and achieved
closed-loop response with the synthesized controller (blue
solid).

trajectory of the scheduling parameter cannot be arbi-
trarily selected here, as it corresponds to the achieved
output signal. The output measurements are corrupted
by a white noise sequence w(t) with normal distribution
and variance such that the SNR is 43 dB, which is re-
alistic in terms of the considered encoder resolution. A
second independent experiment with the same input is
also performed, in order to build suitable instruments.

The controller is parametrized in the following form:

u(t) =
4∑

i=1

aKi (Π(t))u(t− i) +
4∑

j=0

bKj (Π(t))eint(t− j)

eint(t) = eint(t− 1) + (r(t)− y(t)) ,

where

Π(t) = [p(t− 1) p(t− 2) p(t− 3) p(t− 4)]⊤.

This means that we aim to design a fourth-order con-
troller with integral action and nonparametric schedul-
ing signal dependence. We remark that the use of the
integrator is mandatory here as we need to achieve a
closed-loop system with unitary gain.

By using the proposed non-parametric control synthe-
sis approach with the gathered data, the values of the
hyper-parameters γ (see (37)) and σi (see (54)) are found
through cross-validation as γ = 64163 and σi = 2.4 for
all i = 1, 2, 3. With the resulting controller, the response
of the angular disc position θ to a multi-step excitation
is compared to θM (computed for the same reference ex-
citation) in Fig. 5.

Notice that, although in a realistic scenario an LTI
closed-loop system is barely achievable (in fact, the per-
formance is not the same for any step change in Fig. 5),
the quality of the matching obtained with the proposed
data-driven approach is satisfactory.
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9 Concluding remarks

In this paper, a novel data-drivenmethod has been intro-
duced to directly design LPVmodel-reference controllers
from IO data without the need of parameterizing, identi-
fying and/or accomplishing state-space realization of an
LPV model of the system. The method guarantees that
the optimal controller achieving the reference closed-
loop behavior is asymptotically obtained in case a feasi-
ble parameterization of the controller, which can realize
the desired closed-loop behavior is a-priori known. It is
worth remarking that commonly in practice, the model
structure needed to include the optimal controller is not
known. In such scenarios, the proposed non-parametric
version of the approach can be employed, which allows
to determine the controller structure directly from data.
In both cases, the whole design procedure turns out to
be equivalent to a single convex optimization problem.

The aim of this paper is to lay the basic foundations
for future research in direct data-driven control of LPV
plants, therefore much work still needs to be done, in
order to make such an approach competitive with clas-
sical model-based design. Future activities will be es-
pecially devoted to the theoretical analysis of the cases
where A1 does not hold (the servo-positioning example
presented in this paper has already shown inspiring re-
sults), variance analysis of the obtained control law and
further studies of the proposed approach on real-world
applications.
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