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PREFACE 
 
 
 
Complex network theory is an emerging multidisciplinary field of research 
that is spreading to many disciplines such as physics, engineering, biology, 
sociology and economics. The common feature of many systems 
encountered in these different scientific fields is that they can be represented 
as a graph with the nodes representing a set of individual entities and the 
links standing for the interactions between these entities. Regardless of 
their physical nature, complex networks share some common structural 
properties that distinguish them from purely random graphs. Inspired by 
the study of real-world systems rather than by theory and fuelled by the 
availability of large datasets and computing power, research on complex 
networks is booming. The primary goal of this book is to provide an 
overview of the multiple aspects of this fast-growing research area. It 
contains eleven chapters presenting a wide spectrum of recent development 
with emphasis on theory and applications in the field. Although this book 
is a collection of independent studies, it represents a cohesive work that 
provides the reader with an up-to-date picture of the state of the field. 
Collectively, these contributions highlight the impact of complex network 
theory on a variety of scientific disciplines. This book does not solely 
reflect the opinion of the author. Instead, it expresses the views of 25 
researchers working in well-known universities and research institutions 
throughout the world. The readers of this book are expected to be involved 
in a range of interdisciplinary studies. With this aim in mind, care was 
taken to make it as readable as possible to newcomers. I am honored to 
bring you this book, which was generated by the contributions and 
discussions held at the Workshop on Complex Networks and their 
Applications. I would like to thank the contributors of the different 
chapters for their constructive effort. I hope that “Complex Networks and 
their Applications” will be useful to a large audience of experts and 
graduate students and that it will stimulate important developments in this 
exciting research area. 

Hocine Cherifi 
 
 



 



CHAPTER ONE 

DISENTANGLING SPATIAL AND NON-SPATIAL 
EFFECTS IN REAL NETWORKS 

TIZIANO SQUARTINI, FRANCESCO PICCIOLO, 
FRANCO RUZZENENTI, RICCARDO BASOSI 

AND DIEGO GARLASCHELLI 
 
 
 

Over the last fifteen years, Network Science has facilitated the 
identification of universal and unexpected patterns across systems 
belonging to deeply different research fields, such as biology, economics 
and physics (Caldarelli 2007). A fruitful cross-fertilization among these 
disciplines, leading to the introduction of novel multidisciplinary tools, has 
been made possible by the fact that many real complex systems can be 
formally abstracted as networks or graphs, irrespective of their specific 
nature. In so doing, several details of the original system are discarded and 
the emphasis is put on the study of the topological properties of the 
underlying ‘network backbone’ (Caldarelli 2007; Barrat Barthelemy and 
Vespignani 2008; West Brown and Enquist 1997, 1999, 2001). While this 
process facilitates the detection of key structural properties in real complex 
systems, it can also obscure other important levels of organization that 
involve non-topological factors. A key example is the spatial organization 
of networks (Barthelemy 2011). 

Many real networks lie embedded in a metric space, i.e. a space where 
distances between nodes can be properly defined. In such cases, besides 
their connectivity, vertices can be identified by additional parameters, 
definable as coordinates, measuring their position and allowing the 
quantification of their mutual “proximity”. We will refer to these networks 
as embedded networks. Embedded networks represent an important subset 
of real networks: transportation systems, electric power grids, wireless 
communication networks and the Internet (i.e. the net of physical 
connections between servers) are only a few examples of systems embedded 
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in a two-dimensional metric space (Barthelemy 2003, 2011; Emmerich et 
al. 2012; Woolley-Meza et al. 2011). 

Social networks, e.g. those represented by friendship or sexual 
relations among individuals, are also shaped by the proximity of the nodes 
in a two-dimensional space (even if the World Wide Web is challenging 
our traditional way of establishing social relations, it is still far more 
common to have a higher number of friends in the same city or country 
than in a distant one). Other examples, such as neural networks and protein 
networks, can instead be considered as occupying a three-dimensional 
metric space (Emmerich et al. 2012).  

The range of applications can be even further extended to networks 
that are not necessarily embedded in a physical or geographic space, by 
noticing that the concept of metrics allows us to study configurations lying 
in abstract (e.g. cultural, economic or temporal) spaces, where distances 
are defined accordingly (Axelrod 1997; Aiello et al. 2012; Starnini et al. 
2012; Valori et al. 2012). For instance, networks of protein configurations 
linked by saddle-points in a properly defined energy landscape are 
examples of networks embedded in high-dimensional configuration spaces. 
In all these examples, both vertex-specific and global spatial dependencies 
affect the dynamics of the network (Böde 2007). Thus, in order to deepen 
our understanding of the mechanisms shaping real networks and ruling 
their evolution, the unavoidable step to be made is to take into account 
also spatial properties (Bettencour et al. 2007; Bejan and Lorente 2010; 
Emmerich et al. 2012). 

Unfortunately, while many theoretical models have already been 
introduced in order to artificially generate networks shaped by a 
combination of spatial and non-spatial factors, it is still much more 
difficult to disentangle these two effects in real networks (Bradde et al. 
2010; Barthelemy 2011; Picciolo et al. 2012).  

Two main obstacles are encountered. First, most approaches require 
the introduction of a mathematical model where the functional dependence 
of network properties on distances is postulated a priori and thus 
arbitrarily (Duenas and Fagiolo 2011; Anderson and Yotov 2012). Second, 
it is very difficult to filter out a spurious or apparent component of spatial 
effects which is instead due to other non-spatial factors. For instance, hubs 
(vertices with many connections) are generally connected to several other 
nodes irrespective of the positions of the latter, simply because they are 
highly connected. This effect would generally appear as a local lack of 
spatial dependence, spuriously lowering any global measure of spatial 
effects, even if the overall network formation process were instead 
distance-driven. Conversely, pairs of hubs (vertices with many connections) 



Disentangling Spatial and Non-spatial Effects in Real Networks 
 

3 

tend to contribute to an overestimation of spatial factors, since they are 
typically connected to each other even in networks where distances play 
no role. The distance between pairs of hubs would then incorrectly appear 
as a preferred spatial scale for connectivity, biasing again the 
interpretation of the results. 

The above considerations clarify that, in order to disentangle spatial 
and non-spatial effects in real networks, any satisfactory approach should 
be able to control for two potentially misleading factors. First, it should 
control for the mathematical arbitrariness a priori associated to the 
definition of any proxy of spatial dependence. Second, it should control 
for the effects of non-spatial topological constraints inducing a spurious 
spatial dependence a posteriori, given the characteristics of the particular 
real network considered.  

In this chapter, we describe how these two important prescriptions can 
be implemented into the definition of a general method that we have 
recently introduced (Ruzzenenti et al. 2012; Picciolo et al. 2012). 

The method is based on the idea that, given any definition of spatial 
effects, the relevant information is not given by the measured value itself. 
A comparison is needed with the corresponding expected value under a 
suitable null model that preserves the non-spatial properties of the real 
network. This comparison removes the mathematical arbitrariness of the 
adopted definition, and the fact that the null model controls for non-spatial 
effects also removes the undesired effects of the latter. Moreover, by 
focusing on both global (network-wide) and local (vertex-specific) 
quantities, this method allows us to isolate the (potentially conflicting) 
contributions of individual nodes to the overall spatial effects.  

We will describe our method in detail by considering its application to 
a particular embedded network, namely the World Trade Web (WTW) 
defined as the network of international import-export trade relationships 
between world countries. Our choice is driven by the fact that both spatial 
effects (e.g. geographic distances between countries) and non-spatial 
effects (e.g. the countries’ Gross Domestic Products) are known to shape 
the structure of this network (Ruzzenenti et al. 2012; Picciolo et al 2012). 
For this reason, the WTW is the ideal candidate not only to illustrate our 
method, but also to compare the results with a different class of spatial 
models known in the economic literature as Gravity Models (Tinbergen 
1962; Linders Matijn and Van Oort 2008; Fagiolo 2010; Duenas and 
Fagiolo 2012; Squartini and Garlaschelli 2013). 

As the name itself suggests, Gravity Models aim at predicting the 
yearly intensity of the total trade exchanges between any two countries by 
adopting the same functional form of Newton’s gravitational potential. 



Chapter One 
 

4

The predicted intensity is proportional to the countries’ GDPs (calculated 
in the same year as the trade exchanges) and inversely proportional to the 
countries’ geographic distance (Tinbergen 1962; Linders Matijn and Van 
Oort 2008). Our results show that the effects of geographic distances on 
the WTW are much more complicated than what is generally learnt from 
the use of Gravity Models. 

The remainder of the chapter is structured in three main sections and a 
final concluding one. In the first section, we consider the case of binary 
networks, where pairs of vertices are either connected or not connected. 
We initially define some preliminary quantities that will be our “target” 
measures of spatial effects. Then we introduce suitable null models where 
the role of distances is, in some sense, switched off. Finally we calculate 
some “integrated” quantities defined as combinations of observed and 
expected values. This allows us to assess whether spatial effects are 
present or not (both locally and globally), given a target quantity used as a 
proxy. In the second section, we extend our approach to weighted 
networks, where links can have different intensities. Taken together, the 
results of the first two sections reveal that spatial effects are clearly present 
in the WTW but vary considerably over time, for different countries, and 
for different (binary or weighted) representations of the network. In the 
third section, we extend our formalism in order to compare the entity of 
spatial effects with that of other factors shaping the network. We find that 
geographic distances are comparatively much less important than non-
spatial properties such as the reciprocity of the network. We conclude that 
the role of distances in the WTW, in both absolute and relative terms, is 
very different from what is generally thought.  

 
 

Spatial effects in binary networks 
 

In order to disentangle spatial and non-spatial effects in real embedded 
networks, the first step is to define quantities which measure how a 
network “feels” its embedding space. For illustrative purposes, in Fig. 1 
we show two extreme ways in which this can happen. In both panels, 
nodes represent the capitals of the countries adhering to the European 
Union and distances between nodes are proportional to the geographic 
distances between the EU capital cities. In the top panel, links are 
established between the geographically closest pairs of countries, 
originating a “spatially polarized” (or shrunk) configuration. In the bottom 
panel, the same number of links is instead drawn between the most distant  
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Fig. 1. Two examples of a hypothetical EU27 trading network (N=27). The black 
dots correspond to the geographic positions of the capital cities. For a given 
number of links (here arbitrarily chosen to be L=27), the figure represents the 
maximally shrunk network (top) and the maximally stretched network (bottom). 
The filling coefficient ݂ that we introduce later takes the values ݂ = 0 (top) and ݂ = 1 (bottom) for these two extreme configurations, and 0 < ݂ < 1 in 
intermediate cases. 
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pairs of countries, originating a “spatially diluted” (or stretched) configuration. 
In the following subsections, we define quantities that can properly 
distinguish between these extremes and also capture any intermediate 
configuration. 

 
 

A global measure 
 
A binary, directed graph is specified by a ܰ × ܰ adjacency matrix, ܣ, 

where ܰ is the number of nodes and the generic entry ܽ௜௝ is 1 when there 
is a connection from node ݅ to node ݆, and 0 otherwise. The simplest 
definition of a global measure incorporating distances and network 
structure is 

ܨ  = ∑ ∑ ܽ௜௝݀௜௝௝ஷ௜ே௜ୀଵ 					(1)  
 
where	݀௜௝ is the generic entry of the matrix of distances, ܦ, among nodes 
(Ruzzenenti et al. 2012). Since we will consider networks without self-
loops (i.e.	ܽ௜௜ =  ,is a measure of the total distance between different ܨ ,(0
topologically connected pairs of nodes. Equivalently ܨ can be seen as a 
measure of the extent to which the networks “fills” the available space.  

The quantity ܨ reaches its minimum when the links are placed between 
the closest vertices. Formally speaking, if we consider the list ܸ↑ =൫݀ଵ↑,⋯ , ݀௡↑ ,⋯ , ݀ே(ேିଵ)↑ ൯ of all non-diagonal elements of ܦ ordered from 
the smallest to the largest (݀௡↑ 	≤ 	݀௡ାଵ↑ ), the minimum value of ܨ is 
simply given by ܨ୫୧୬ = ∑ ݀௡↑௅௡ୀଵ , where ܮ = ∑ ∑ ܽ௜௝ே௝ୀଵே௜ୀଵ  is the number 
of links in the network. Similarly, the maximum value of ܨ is reached 
when links are placed between the spatially farthest nodes. Considering 
the list ܸ↓ = ൫݀ଵ↓,⋯ , ݀௡↓ ,⋯ , ݀ே(ேିଵ)↓ ൯ of distances in decreasing order 
(݀௡↓ 	≥ 	݀௡ାଵ↓ ), the maximum value of ܨ for a network with ܮ vertices is ܨ୫ୟ୶ = ∑ ݀௡↓௅௡ୀଵ . 

In order to compare, and possibly rank, different networks according to 
their values of ܨ, a normalized quantity should be used. An improved 
global definition, which we will denote as filling coefficient, is 

 ݂ = ܨ − ୫ୟ୶ܨ୫୧୬ܨ − ୫୧୬ܨ = ∑ ∑ ܽ௜௝݀௜௝ − ୫୧୬௝ஷ௜ே௜ୀଵܨ ୫ୟ୶ܨ − ୫୧୬ܨ 					(2) 
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where 0 ≤ ݂ ≤ 1. For the maximally shrunk and maximally stretched 
configurations shown in Fig. 1, the filling coefficient takes the values ݂ = 0 and ݂ = 1 respectively. Depending on the chosen links’ 
disposition, different choices of the two values	ܨ୫୧୬ and ܨ୫ୟ୶ can be 
made. As an example, in Fig. 2 we show how the extreme values of ܨ (or 
equivalently ݂) can change if different or additional constraints, beside the 
total number of links, are enforced on the network topology (e.g. imposing 
only one outgoing link for each vertex). So, in principle, ܨ୫୧୬ and ܨ୫ୟ୶ 
can be arbitrarily tuned to fit the best scenario for the network under 
consideration.  

In the next section we will present a general method to disentangle 
spatial and non-spatial effects concurring to shape embedded networks and 
we will compare them with the existing ones.  

The filling allows us to quantify the tendency of embedded networks to 
fill the metric space they are in. However the interplay between spatial and 
non-spatial effects in shaping a network topology can be unambiguously 
quantified only after having defined a proper reference model with which 
to compare the observed value of ܨ whose aim is to discount as much as 
possible spurious non-spatial effects letting the genuine distances-induced 
ones emerge (Squartini and Garlaschelli 2011).  

The reference models we will define in what follows are probabilistic 
in nature and known as null models. The methodology underlying a null 
model prescribes to choose only a portion of the available observed 
network’s information and test how effective it is in explaining the rest of 
the (unconstrained) topology (Shannon 1948; Jaynes 1957; Holland and 
Leinhardt 1975; Wasserman and Faust 1994; Maslov and Sneppen 2002; 
Park and Newman 2004; Garlaschelli and Loffredo 2008; Squartini and 
Garlaschelli 2011). The effectiveness of the chosen set of constraints will 
be also tested over time, by analyzing different temporal snapshots of the 
same network. In so doing the presence of statistically significant trends 
through time can be highlighted. 

 
 

Non-spatial null models 
 
As previously mentioned, the aim of this comparison is to discount 

apparent or spurious spatial effects due to non-spatial factors. For this 
reason, we need to introduce space-neutral models that play the role of 
null models. 
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Fig. 2. Two more examples of a hypothetical EU27 trading network (N=27). The 
figure represent the maximally shrunk (top) and the maximally stretched (bottom) 
network, under the constraint that each vertex has at most one out-going link. The 
values of the filling coefficient are now ݂ = 0.06 (top) and ݂ = 0.87 (bottom).  

 
The effectiveness of the encoded information can also be tested over 

time, by analyzing different temporal snapshots of the same network, thus 
highlighting the presence of statistically significant trends. 
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Our null models are statistical ensembles of graphs with specified 
properties, or constraints. A graph ensemble, ℵ, is a collection of graphs. 
For our purposes, we identify ℵ as the so-called “grand-canonical” 
ensemble of binary directed networks, i.e. all the networks with a given 
number of nodes, ܰ, and a number of links varying from 0 to ܰ(ܰ − 1). 

We want to construct a probability measure ܲ(ܩ), associated to each 
graph ܩ of this ensemble, that allows us to realize the desired constraints 
(for instance, the average number of links can be set to a given value), 
while leaving the unconstrained properties maximally random. This is 
achieved by maximizing Shannon’s entropy (Shannon 1948) 

 ܵ = −෍ܲ(ܩ)ீ∈ℵ ln  (3)					(ܩ)ܲ
 
subject to the normalization condition ∑ (ܩ)ܲ = 1ீ∈ℵ  and to the condition 
that a set of desired properties {ߨ௔} is realized, i.e. the expected value 

〈௔ߨ〉  ≡෍ܲ(ܩ)ߨ௔(ܩ)ீ∈ℵ 				(4) 
 

can be tuned to any desired value. The result of this constrained entropy 
maximization is an occurrence probability of the form 
 ܲ൫ܩหߠԦ൯ = 	 ݁ିு(ீ,ఏሬሬԦ)ܼ(ߠԦ) 					(5) 
 
where ߠԦ is a vector of unknown Lagrange multipliers, ܪ൫ܩ, Ԧ൯ߠ =∑ ௔(ܩ)௔ߨ௔ߠ 	is the graph Hamiltonian (a linear combination of the chosen 
constraints) and ܼ(ߠԦ) = ∑ ݁ିு(ீ,ఏሬሬԦ)ீ∈ℵ  is the partition function (Park and 
Newman 2004). 

Given an observed graph, ܩ∗, the Lagrange multipliers are set to the 
numerical values ߠԦ∗ that maximize the log-likelihood function defined as L൫ߠԦ൯ ≡ lnܲ(ߠ|∗ܩԦ) (Garlaschelli and Loffredo 2008; Squartini and 
Garlaschelli 2011):  

 ߲L൫ߠԦ൯߲ߠ௔ อఏሬሬԦ∗ = 0		∀	ܽ					(6) 
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This leads to the system of equations 
〈௔ߨ〉  =  (7)					.ܽ	∀		(∗ܩ)௔ߨ

 
In other words, the parameters ߠԦ∗ ensure that the expected values of the 
desired constraints equal the particular values observed in the real 
network. If inserted into ܲ൫ܩหߠԦ൯, these parameters allow us to calculate 
analytically the expected value 〈ܺ〉 of any other (unconstrained) 
topological property ܺ of interest. Comparing 〈ܺ〉 with the observed value ܺ(ܩ∗) finally allows us to conclude whether the enforced constraints are 
(partially) responsible also for other unconstrained properties (Squartini 
and Garlaschelli 2011). 

For our purposes, the above step is the key ingredient we will exploit 
in order to check whether a non-spatial null model (i.e. one where the 
chosen constraints are purely topological and independent of distances) 
can account for (part of) the spatial organization of a real network by 
filtering out spurious spatial effects and highlighting the genuine effects of 
distances. Note that our use of the terms “spatial”, “non-spatial” and 
“topological” is somewhat improper but very practical; we will give a 
complete clarification of our terminology at the end of the chapter. In our 
binary analyses, we will employ three non-spatial null models: the 
Directed Random Graph model (DRG), the Directed Configuration Model 
(DCM) and the Reciprocated Configuration Model (RCM) (Squartini and 
Garlaschelli 2011). These models are of increasing complexity, and are 
briefly described below. 

The DRG is characterized by only one constraint: the total number of 
observed links, ܮ∗. The DRG Hamiltonian is thus ܩ)ܪ, (ߠ =  ,and (ܩ)ܮߠ
for any pair of vertices ݅ and ݆, the probability ݌௜௝ of connection is equal to  

௜௝݌  = 1∗ݔ + ∗ݔ = ܰ)ܰ∗ܮ − 1)					(8) 
 

where ݔ ≡ ݁ିఏ  The DRG .(∗ߠ is the fitted value corresponding to ∗ݔ) 
represents the simplest binary model (Erdös and Renyi 1959; Gilbert 
1959). 

The DCM is a more refined null model, defined by the network’s in-
degree sequence (the vector of the in-degrees of each vertex, i.e. the 
numbers of incoming links defined as ݇௜௜௡ = ∑ ௝ܽ௜ே௜ୀଵ ) and out-degree 
sequence (the vector of the out-degrees of each vertex, i.e. the numbers of 
outgoing links defined as ݇௜௢௨௧ = ∑ ܽ௜௝ே௜ୀଵ ). The DCM is one of the most 
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used null models in network theory and it was shown to replicate many 
properties of the WTW (Squartini and Garlaschelli 2011; Squartini 
Fagiolo and Garlaschelli 2011a). The resolution of the DCM 2ܰ equations 
leads to a probability matrix whose generic entry has the functional form 

௜௝݌  = ௝∗1ݕ∗௜ݔ + ∗௝ݕ∗௜ݔ 					(9) 
 
where ݔ௜ ≡ ݁ିఏ೔೚ೠ೟ and ݕ௜ ≡ ݁ିఏ೔೔೙, ߠ௜௢௨௧ and ߠ௜௜௡ being the Lagrange 
multipliers coupled with the out-degree and in-degree sequences 
respectively (ݔ௜∗ and ݕ௜∗ denote the fitted values). 

Finally, the RCM is characterized by 3ܰ constraints, decomposing the 
in-degree and out-degree sequences into three more detailed sequences 
distinguishing between reciprocated (by a mutual link in the opposite 
direction) and non-reciprocated links. The three sequences are the 
following: the one of reciprocated degrees (the numbers of reciprocated 
links involving each vertex), the one of non-reciprocated out-degrees (the 
numbers of non-reciprocated out-going links from each vertex) and the 
one of non-reciprocated in-degrees (the numbers of non-reciprocated in-
coming links into each vertex) (Garlaschelli and Loffredo 2004; 
Garlaschelli and Loffredo 2006). The equations to be solved are now 3ܰ 
and the connection probability is 

௜௝݌  = ∗௝ݕ∗௜ݔ + ௝∗1ݖ∗௜ݖ + ∗௝ݕ∗௜ݔ + ∗௜ݕ∗௝ݔ + ∗௝ݖ∗௜ݖ 					(10) 
 
where ݔ௜ ≡ ݁ିఏ೔→,	ݕ௜ ≡ ݁ିఏ೔←,	ݖ ≡ ݁ିఏ೔↔, with ߠ௜→, ߠ௜← and ߠ௜↔ being the 
Lagrange multipliers associated with the three types of enforced node 
degrees (Squartini and Garlaschelli 2011). 

 The aforementioned three models are characterized by some kind of 
topological property (such as the link density, the degree sequence and the 
reciprocity) that is a priori independent of any spatial constraint. They 
therefore allow us to improve our definition of filling coefficient by 
filtering out the spurious spatial effects due to the non-spatial constraint 
enforced. In order to achieve this result, a comparison between the 
observed value of f and its expectation is needed. Consider the expected 
value of the filling coefficient under any of the three aforementioned null 
models (NM)  
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〈݂〉ேெ = ∑ ∑ ௜௝ேெ݀௜௝݌ − min௝ஷ௜ே௜ୀଵܨ maxܨ	 − minܨ 					(11) 
 
where ݌௜௝ேெ is given by one of eqs. (9-11). The comparison between 
observation and expectation can be easily carried out by making use of the 
following rescaled version of the filling coefficient, that we denote as 
filtered filling (Ruzzenenti et al. 2012): 
 ߮ேெ ≡ ݂ − 〈݂〉ேெ1 − 〈݂〉ேெ .						(12) 
 
The range of ߮ேெ is [−1, 1]. A positive value of ߮ேெ means that the 
considered network is “more stretched” than its expected counterpart 
defined by imposing a selected set of constraints on the graph ensemble. 
On the other hand, ߮ேெ is negative for networks which are “more shrunk” 
than expected. Thus, the filtered filling combines the model’s prediction 
and the observed information in such a way that their comparison can be 
carried out by simply looking at the sign of ߮ேெ. Note that the 
normalization in eq. (12) also allows for a comparison between networks 
with different topological properties (i.e. number of nodes, number of 
links, degree sequences, etc.), discounting for the different impact of the 
imposed constraints on the considered topologies. We also note that the 
comparison between the observed and expected values of the filling make 
the choice of ܨ୫୧୬ and ܨ୫ୟ୶ irrelevant, in accordance with our previous 
comment about the arbitrariness of the latter. 
 
 

Local Measures 
 
The filling coefficient and the filtered filling are global quantities 

measuring the extent to which spatial effects shape the graph as a whole. 
However, from our introductory remarks it is clear that a vertex-specific 
definition is also necessary in order to isolate potentially conflicting 
contributions of individual nodes. To this end, a local measure is naturally 
induced by the sums 

௜outܨ  ≡෍ ܽ௜௝݀௜௝ே௝ஷ௜ ௜inܨ									 ≡෍ ௝ܽ௜݀௜௝ே௝ஷ௜ .					(13) 
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As before, after rescaling ܨ௜out, we can define the local outward filling 
coefficient (Ruzzenenti et al. 2012) as 

 ݈௜out ≡ ∑ ܽ௜௝݀௜௝	ே௝ஷ௜ − max(௜outܨ)min(௜outܨ) − min(௜outܨ) 					(14) 
 
where the values (ܨ௜out)min and (ܨ௜out)max characterize the extreme local 
values for the maximally shrunk and maximally stretched configurations, 
in a properly-defined scenario. In analogy with the global quantities	ܨ୫୧୬ 
and ܨ୫ୟ୶, we choose the extreme values (ܨ௜out)min and (ܨ௜out)max as the 
sums of the first ܮہ ܰ⁄  smallest and largest distances (now defined locally ۀ
for each vertex ݅) respectively. This number of addenda is chosen to be 
consistent with the choice made at the global level: for a network with a 
given number ܮ of links, the expected number of (either in-coming or out-
going) connections of each node is ܮ ܰ⁄ . Similarly, we can define the local 
inward filling coefficient as 

 ݈௜in ≡ ∑ ௝ܽ௜݀௜௝	ே௝ஷ௜ − max(௜inܨ)min(௜inܨ) − min(௜inܨ) .					(15) 
 
Note that, due to the symmetry of the matrix of distances, ൫ܨ௜in൯max min(௜inܨ) max and(௜outܨ)= =  .min(௜outܨ)

As for the global quantity, the expected value of the local filling 
coefficients can be simply obtained by replacing the term ܽ௜௝ in eqs. (14) 
and (15) with the probability ݌௜௝ேெ under the chosen null model. It is 
already very useful to compare the observed and expected values of the 
local filling coefficients as functions of the corresponding non-spatial 
properties (i.e. the out-degree or in-degree). In this case, we do not 
introduce any rescaled or “filtered” measure for brevity. 

 
 

The effects of distances on the binary WTW 
 

We now come to the application of the above methodology to the 
WTW. We analyzed the yearly binary snapshots of the network from 1948 
to 2000, extracted from a comprehensive dataset (Gleditsch 2002). During 
this temporal interval, the number of nodes (countries) increased from ଵܰଽସ଼ = 86 to ଶܰ଴଴଴ = 186, and the link density, ܿ௬ = ܰ)ܰ/ܮ − 1), 
raised from ܿଵଽସ଼ = 0.39 to ܿଶ଴଴଴ = 0.57. By contrast, the average 
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distance, ߤ௬ = ∑ 2݀௜௝/ܰ(ܰ − 1)௜ழ௝ , remained quite stable from ߤଵଽସ଼ =7516 km to ߤଶ଴଴଴ = 7550 km. This is not surprising, considering that the 
Earth’s surface is a bounded space. 

The global filtered filling ߮ேெ, calculated under the three null models, 
is plotted as a function of time in Fig. 3. In the period under consideration, 
all null models always yield negative values of ߮ேெ. This means that the 
WTW is a systematically “shrunk” network, confirming the naïve 
expectation that geographic distances have a suppressing effect on trade: 
the farthest the countries, the lesser the probability to observe a trade 
exchange between them (remember that we are carrying out a binary 
analysis for the moment). However, the small measured values (−	0.250 ≤ ߮ேெ ≤ 0) seem also to suggest that the role played by 
distances is quite weak, a result that appears to contrast classical economic 
arguments (Linders Martijn and Van Oort 2008). 

While the three models qualitatively agree in classifying the WTW as 
spatially shrunk, we observe important quantitative differences both 
among models and over time. The temporal trends obtained under the 
RCM and the DCM are practically identical, but (from 1960 onwards) they 
are almost inverted with respect to the trend obtained under the DRG.  

 
 

 
 

Fig. 3. The filtered filling coefficient ߮ேெ of the binary WTW from year 1948 to 
2000, under the three null models considered: DRG (diamonds), DCM (circles) 
and RCM (squares). 
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Fig. 4. Local outward filling, defined in eq.(14), versus out-degree (top panel) and 
local inward filling, defined in eq.(15), versus in-degree (bottom panel). The empty 
circles represent the observed values, while the filled circles represent the expected 
values predicted by the DCM. 

 
The first finding means that the introduction of reciprocity as an 

additional constraint is not really necessary in order to filter out the local 
non-spatial effects, which seem to be already effectively discounted by the 
in- and out-degree sequences alone.  

A naïve explanation might be the high symmetry of the WTW, i.e. the 
high number of reciprocated interactions between world countries 
(Ruzzenenti Garlaschelli and Basosi 2010; Garlaschelli and Loffredo 
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2004). This high reciprocal structure, which reduces the WTW almost to 
an undirected network, makes the information carried by the reciprocity 
irrelevant. However, as we show later, this interpretation is incorrect. A 
statistically appropriate procedure to quantify and rank the effectiveness of 
different models in explaining the observed network structure is presented 
in the third section of this chapter. Its application reveals that the 
reciprocity is a key and irreducible structural property of the WTW 
(Picciolo et al. 2012).  

The second finding, i.e. the almost inverted trend of the DRG with 
respect to the other two models, is a result of the intrinsic difference 
between the homogeneity of the DRG (which controls only for the overall 
density of trade) and the heterogeneity of the other models (which control 
for country-specific properties). The continuous appearance of unrealized 
long-distance connections overcompensates the establishment of a few 
new ones, and the overall result is an effective shrinking of the network. 
At this point, it is worth mentioning that the topology of the real WTW is 
very different from that of the DRG, while it is instead accurately 
reproduced by the DCM and especially the RCM (Squartini Fagiolo and 
Garlaschelli 2011a; Squartini and Garlaschelli 2013). This means that the 
non-spatial effects filtered out by the DRG do not represent key structural 
properties shaping the real WTW.  

By contrast, the DCM and RCM filter out the most informative 
properties, i.e. the ones that are sufficient in order to reproduce the 
observed topology of the WTW. The use of the DCM and RCM should 
therefore be strongly preferred to that of the DRG when trying to 
disentangle spatial and non-spatial effects in the WTW. The empirical 
inverted trends shown above warn us about the opposite interpretations 
that can arise from a misuse of homogeneous network benchmarks. 

Focusing on the trend obtained under the heterogeneous models, we 
find that the two periods known in the economic literature as the first and 
second “waves” of globalization (De Benedictis and Helg 2002; Crafts 
2004) turn out to correspond to two opposite phenomena at a topological 
level. During the “first wave”, i.e. the period starting around 1960 during 
which many former colonies became independent states, the topology of 
the WTW actually “shrunk”.  

This result is apparently a paradox, since it is known that the new 
independent states (which gradually appear as new nodes in the network) 
kept a strong trade relationship with their former colonizers, thus 
originating new long-distance links and (in principle) “stretching out” the 
WTW. However, one must also note that the appearance of the new nodes, 
while accompanied by new long-distance links, is also accompanied by 
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many new missing long-distance links: two new (and generally small) 
independent states located at opposite locations on the globe typically do 
not trade with each other.  

By contrast, during the “second wave” of globalization corresponding 
to the fall of the east-west division in Europe and the disintegration of the 
Soviet Union, the WTW stretched out topologically, as indicated by the 
rise of the trend between the late Eighties and the mid Nineties. Since the 
trade relationships linking the formerly Soviet states are short distance the 
overall stretching of the WTW must be the result of the establishment of 
additional long-distance connections. In other words, unlike the previous 
phase, the new states are now really internationally integrated, at least at a 
topological level. 

We now turn to a local analysis of spatial effects. The local spatial 
quantities defined in eqs. (14) and (15) are plotted as a function of the 
corresponding non-spatial properties in Fig. 4. The top panel shows the 
local outward filling plotted versus the out-degree, while the bottom panel 
shows the local inward filling plotted versus the in-degree. We show the 
results for the year 2000 only, but similar results are observed for all the 
considered years. The expected values under the DCM are also plotted; we 
do not show the expected values according to the RCM because they 
overlap to the DCM ones. We find a strong nonlinear correlation between 
node degrees and local filling values (both outward and inward). For 
countries with very small and very large degrees, the accordance with the 
null model is almost perfect, while the largest discrepancy is observed for 
countries with intermediate values of the degree. Our explanation of this 
effect is the following. Countries with degree (almost) equal to the 
maximum value are necessarily connected with (almost) every other 
country, both in the real network and in the null model (because the latter 
preserves the number of links of each node). This generates the accordance 
with the null model for large-degree countries, and also for small-degree 
ones: the latter countries are in turn necessarily connected with the “hubs”, 
irrespective of distances. Only countries in the intermediate range of 
connectivity can have a large degree of freedom. The figure shows that 
these countries have systematically a stronger than predicted tendency to 
trade with geographically closer countries.  

The global spatial effects discussed above, encapsulated in a negative 
value of the filtered filling, come only from these intermediate-degree 
countries, and they are therefore not representative of the behavior of all 
nodes. 
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Spatial effects in weighted networks 
 
The concepts introduced in the previous section can be generalized to 

the weighted case (Ruzzenenti et al. 2012).  
A weighted graph can be unambiguously defined by an adjacency matrix, ܹ, whose generic entry, ݓ௜௝, represents the intensity of the link from node ݅ to node ݆ (we assume again that self-loops are absent, i.e. ݓ௜௜ = 0). In 
this section, we first define the weighted counterparts of the quantities we 
have already introduced (this also include a definition of weighted null 
models). Later on we present the corresponding application to the analysis 
of the WTW as a weighted network. 

 
 

Weighted definitions 
 
By looking at eq. (1), we can define the weighted analogous of ܨ as 
௪ܨ  =෍ ෍ ௜௝݀௜௝௝ஷ௜ே௜ୀଵݓ 					(16) 

 
Similarly, the weighted filling coefficient can be written as 
 ݂௪ = ∑ ∑ ௜௝݀௜௝௝ஷ௜ே௜ୀଵݓ − max௪ܨmin௪ܨ − min௪ܨ .					(17) 
 
Also in the weighted case, the two extreme values of ܨ௪ can be chosen in 
an arbitrary way. For instance, if we fix the total weight ܹ =∑ ∑ ௜௝௝ஷ௜ே௜ୀଵݓ  ௪ reaches its lowest and highest value when ܹ is placedܨ ,
between the two nearest and farthest vertices respectively, i.e. ܨmin௪ = ܹ݀ଵ↑ 
and ܨmax௪ = ܹ݀ଵ↓ (Ruzzenenti et al. 2012). 

As for binary networks, we can introduce null models in order to have 
a benchmark filtering out non-spatial effects. The Weighted Random 
Graph model (WRG) is the analogous of the DRG for binary networks. 
The only constraint we impose is the total weight, ܹ, and the Hamiltonian 
is (ܩ)ܪ =   .(ܩ)ܹߠ

The expected weight of the link from node ݅ to node ݆ is 
〈௜௝ݓ〉  = 1∗ݕ − ∗ݕ = ܹܰ(ܰ − 1)						(18) 
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where now ݕ ≡ ݁ିఏ  By .(∗ߠ is the fitted value corresponding to ∗ݕ) 
imposing this only constraint, we are exclusively making use of the 
average intensity of the links (Garlaschelli 2009). 

The second weighted null model we consider is the Weighted 
Configuration Model (WCM), where the constraints are the in-strength 
and out-strength sequences, defined by the 2ܰ values of the in-strength, ݏ௜௜௡ = ∑ ௝௜ே௜ୀଵݓ , and the out-strength, ݏ௜௢௨௧ = ∑ ௜௝ே௜ୀଵݓ , of vertices. The 
expected link is now 〈ݓ௜௝〉 = ௝∗1ݕ∗௜ݔ − ∗௝ݕ∗௜ݔ 					(19) 
 
where ݔ௜ ≡ ݁ିఏ೔out and ݕ௜ ≡ ݁ିఏ೔in (ݔ௜∗ and ݕ௜∗	indicate the fitted values 
realizing the observed strength sequences) (Squartini and Garlaschelli 
2011).  

Even if a more comprehensive list of null models for weighted 
networks has been defined recently, we will consider only the WRG and 
WCM for brevity (Squartini et al. 2013; Mastrandrea et al., 2013). 

As in the binary case, these models allow us to obtain the expected 
value of the weighted filling coefficient by simply substituting in eq. (17) 
the observed link weight, ݓ௜௝, with the expected one, 〈ݓ௜௝〉ேெ, calculated 
using either eq. (18) or eq. (19). The observed and expected values can be 
combined in the following definition of weighted filtered filling: 

 ߮ேெ௪ ≡ ݂௪ − 〈݂௪〉ேெ1 − 〈݂௪〉ேெ 						(20) 
 

which again ranges between −1 and +1. A positive (negative) value of ߮ேெ௪  means that distances have a stretching (shrinking) effect on the link 
weights of the observed weighted network (Ruzzenenti et al. 2012). 

A final extension concerns the local structure. The sums 
out	௜wܨ  ≡෍ ௜௝݀௜௝ே௝ஷ௜ݓ in	௜wܨ			 ≡෍ ௝௜݀௜௝ே௝ஷ௜ݓ 					(21) 

 
lead us to the following definitions of local outward weighted filling 
(Ruzzenenti et al. 2012) 
 ݈௜w	out ≡ 	∑ ே௝ஷ௜	௜௝݀௜௝ݓ − max(out	௜wܨ)min(out	௜wܨ) − min(out	௜wܨ) 					(22) 
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and local inward weighted filling 
 ݈௜w	in ≡ ∑ ே௝ஷ௜	௝௜݀௜௝ݓ − ൫ܨ௜	w	in൯min(ܨ௜w	in)max − min(in	௜wܨ) 					(23) 
 
where the minimum and maximum values for ܨ௜w	out and ܨ௜w	in characterize 
the maximally stretched and shrunk possibilities for vertex ݅, in a properly 
chosen weighted scenario. In analogy with the choice made for the global 
quantity, we choose a scenario where the total weight ܹ is fixed. The 
resulting expected in-strength and out-strength of every vertex have the 
same value ܹ/ܰ. In a straightforward approach, our choice for the 
extreme values of ܨ௜w	out and ܨ௜w	in is such that vertex ݅ concentrates all its 
out-strength in a single outgoing link of weight ܹ/ܰ directed to the 
spatially closest vertex, and all its in-strength in a single incoming link of 
weight ܹ/ܰ coming from the same vertex. Note that this implies ൫ܨ௜w	in൯max = in൯min	௜wܨmax and ൫(out	௜wܨ) =  min. As above, the(out	௜wܨ)
expected local outward filling is simply obtained by replacing the terms ݓ௜௝ in eqs. (22) and (23) with the expectations 〈ݓ௜௝〉 under the chosen null 
model. 

 
 

The effects of distances in the weighted WTW 
  

We can now perform a new analysis of the WTW, by considering its 
weighted structure rather than its topology. Our weighted analysis spans 
again the years from 1948 to 2000.  

As shown in Fig. 5, the (small) negative values of the global filtered 
filling confirm that the WTW is a (weakly) shrunk network. However, the 
temporal trends are very different from the corresponding binary ones. 

Surprisingly, according to the WCM, the strongest spatial stretching 
occurred during the Fifties, while during the first wave of globalization the 
trend remained approximately constant. The second wave of globalization 
corresponds instead to a decreasing trend, now signaling an unexpected 
spatial shrinking of the network.  

The WRG is instead more in line with the DCM, and identifies a 
shrinking during the first wave and a sudden stretching during the second 
wave. Considering together the binary and weighted results, it appears 
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Fig. 5. The filtered weighted filling for the WTW from year 1948 to 2000, under 
the two null models WRG (diamonds) and WCM (circles). 

 
 

that two tendencies coexist. First, the WTW topology has become more 
and more stretched during the last decade of the sample, with distances 
opposing less and less resistance. Second, the intensity of trade exchanges 
has risen more between countries that are geographically closer, with 
distances opposing more and more resistance.  

In other words, it appears that during the last wave of globalization the 
WTW has, from an “extensive” point of view, tended to stretch out in its 
embedding space by effectively preferring long-distance connections, and, 
from an “intensive” point of view, tended to shrunk in by strengthening 
the existing links between close neighbors. 

However, the above results must be interpreted with particular care, 
since (unlike the DCM) both the WRG and the WCM are known to be 
very poor models of the WTW (Squartini Fagiolo and Garlaschelli 2011b). 
We therefore warn the reader that the WCM does not filter out the 
weighted, non-spatial patterns as satisfactorily as the DCM does. In order 
to reproduce the weighted structure of the WTW, a more refined model 
combining binary and weighted constraints is needed (Mastrandrea et al., 
2013; Squartini and Garlaschelli 2013). Thus, even if from an economic 
point of view the WCM might appear more satisfactory than the DCM, 
because it controls for the total imports and exports of countries, it turns 
out to be uninformative about other properties of the network. 

Counter-intuitively, the number of exporters and importers (which 
defines the DCM), turns out to be a much more informative property. We 
will comment again on this point when discussing Gravity Models at the 
end of the chapter.  
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Keeping the above warning in mind, we finally consider the local 
spatial effects in the weighted WTW. The top panel of Fig. 6 shows both 
the observed and expected local weighted outward filling, plotted versus 
the out-strength sequence, while the bottom panel shows both the observed 
and expected local weighted inward filling, plotted versus the in-strength 
sequence. We only show the results for the year 2000, but similar results 
are observed for all the considered time period. 

 
Fig. 6. Local outward weighted filling versus out-strength (top panel) and local 
inward weighted filling versus in-strength (bottom panel). The empty circles 
represent the observed values, while the filled circles represent the expected values 
predicted by the WCM. 
  


