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Based on the misleading expectation that weighted network properties always offer a more com-
plete description than purely topological ones, current economic models of the International Trade
Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here
we complement our analysis of the binary projections of the ITN by considering its weighted repre-
sentations. We show that, unlike the binary case, all possible weighted representations of the ITN
(directed/undirected, aggregated/disaggregated) cannot be traced back to local country-specific
properties, which are therefore of limited informativeness. Our two papers show that traditional
macroeconomic approaches systematically fail to capture the key properties of the ITN. In the bi-
nary case, they do not focus on the degree sequence and hence cannot characterize or replicate
higher-order properties. In the weighted case, they generally focus on the strength sequence, but
the knowledge of the latter is not enough in order to understand or reproduce indirect effects.

PACS numbers: 89.65.Gh; 89.70.Cf; 89.75.-k; 02.70.Rr

I. INTRODUCTION

In this paper we extend our analysis of the binary
projection of the International Trade Network (ITN) re-
ported in the previous paper [1] to the weighted repre-
sentation of the same network. As in the binary case,
we employ a recently-proposed randomization method [2]
to assess in detail the role that local properties have in
shaping higher-order patterns of the weighted ITN in all
its possible representations (directed/undirected, aggre-
gated/disaggregated) and across several years. In the
weighted case, we employ a null model that preserves on
average the strengths of the vertices only. More specif-
ically, when the network is undirected, node strength is
preserved on average, whereas when the network is di-
rected in- and out-strengths are conserved separately on
average. From a trade perspective, this means that the
null model controls for country total trade in the undi-
rected case, and for country total imports and exports (as
a share of total world yearly trade) in the directed case.
This implies that degrees are not preserved on average in
either case. For example, in the undirected case, a coun-
try preserves on average (over all graphs accounted for
by the null model) its total observed trade flow, but not
its observed number of partners. Preserving total trade
and number of partners simultaneously for each country
is a more severe constraint which goes beyond the scope
of this paper, since it would not allow us to compare our
results with well established international-economics ap-
proaches which only take total trade, and not the number

of partners, into account.

We find that, unlike the binary case, higher-order pat-
terns of weighted (either directed or undirected, either
aggregated or disaggregated) representations of the ITN
cannot be merely traced back to local properties alone
(i.e., node strength sequences). In particular, when com-
pared to its randomized variants, the observed weighted
ITN displays a different and sparser topology (despite
the ITN is usually considered denser than most studied
networks), stronger disassortativity, and larger cluster-
ing. As sparser and less aggregated commodity-specific
representations are considered, the accordance between
the real and randomized networks gets even worse. All
these results hold for both undirected and directed pro-
jections, and are robust throughout the time interval we
consider (from year 1992 to 2002).

From an international-trade perspective, our results in-
dicate that a weighted network description of trade flows,
by focusing on higher-order properties in addition to local
ones, captures novel and fresh evidence. Therefore, tra-
ditional analyses of country trade profiles focusing only
on local properties and country-specific statistics convey
a partial description of the richness and details of the
ITN architecture. Moreover, economic models and the-
ories that only aim at explaining the local properties of
the weighted ITN (i.e. the total values of imports and
exports of world countries) are limited, as such proper-
ties have no predictive power on the rest of the structure
of the network.

We refer the reader to the companion paper [1] for a
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description of the data, the notation used, the meaning
and economic importance of local topological properties,
and the randomization method that we have adopted.

II. THE ITN AS A WEIGHTED UNDIRECTED
NETWORK

The weighted representation of the ITN takes into ac-
count the intensity (dollar value) of trade relationships,
and can be either directed or undirected. The structure
of the network is completely specified by the weight ma-
trix W, whose entries {wij} have been defined in Ref.
[1] in the directed and undirected case. In the weighted
undirected case, an edge between vertices i and j repre-
sents the presence of at least one of the two possible trade
relationships between the two countries i and j, and the
weight wij represents the average trade value (or equiva-
lently half the total bilateral trade value) [1]. Clearly, if
no trade occurs in either direction, then wij = 0 and no
link exists. The weight matrix W is therefore symmet-
ric: wij = wji. One can still define an adjacency matrix
A, describing the purely binary topology of the network,
with entries aij = Θ(wij) where Θ(x) = 1 if x > 0 and
Θ(x) = 0 otherwise. Clearly, the symmetry of W implies
the symmetry of A.

In the case considered, the local constraints {Ca}
are the strengths of all vertices, i.e. the strength se-
quence {si} [1]. The randomization method we adopted
[2] proceeds in this case by specifying the constraints
{Ca} ≡ {si} (see Appendix A), and yields the ensem-
ble probability of any weighted graph G, which now is
uniquely specified by its generic weight matrix W. For
any weighted topological property X, it is therefore pos-
sible to easily obtain the expectation value 〈X〉 across
the ensemble of weighted undirected graphs with spec-
ified strength sequence. By construction, the expected
strength 〈si〉 across the randomized ensemble is equal to
the empirical value si, therefore in the weighted undi-
rected case the strength values {si} are the natural inde-
pendent variables in terms of which other weighted prop-
erties X can be visualized. By contrast, other properties
such as the degree of vertices, and consequently the total
number of links, are not preserved on average.

In our analyis, we first use the matrix W, and the
strength sequence {si} obtained from it, as the starting
point for the randomization method. However, as we
mentioned in the companion paper [1], in order to allow
a consistent temporal analysis we need to focus on the
rescaled weights w̃ij ≡ wij/wtot, where where wtot =∑
i

∑
j<i wij is the total yearly weight. Consistently, we

define the rescaled strength

s̃i ≡
∑
j 6=i

w̃ij =
si
wtot

(1)

and we similarly use w̃ij instead of wij in the defini-
tion of all other weighted topological quantities. This
procedure allows for homogeneous comparisons between

real and randomized webs, and across different years and
commodities. In particular, it filters out the increase of
world trade in nominal terms. Note that, across the ran-
domized ensemble, wtot is a random variable, since so are
the weights wij . However, we can rewrite wtot =

∑
i si/2,

and since 〈si〉 = si we have

〈wtot〉 =

∑
i〈si〉
2

=

∑
i si
2

= wtot (2)

The above result shows that the expectation value of
the total weight across the randomized ensemble is con-
strained by the method to be strictly equal to the ob-
served value wtot. In other words, the constraint on the
strengths is automatically reflected also in a constraint
on the total weight, and we can therefore use the the lat-
ter to rescale all weights, both in the real network and in
its randomized variants.

In economic terms, specifying the strength sequence
amounts to investigate the properties of the trade net-
work once total trade of all countries is controlled for.
It must be noticed that, by controlling for the strength
of vertices, one automatically takes at least partially on
board considerations related to country-size effects. In-
deed, it is common wisdom that bilateral trade flows, and
therefore weighted network statistics, should depend on
(at the very least) country-specific variables like coun-
try gross-domestic product (GDP) and some additional
pairwise factors like geographical distance [3, 4]. Since
total trade (and total imports or exports) are known to
be positively and strongly correlated with country GDP,
our analysis already controls for some size effect. As we
discuss in the concluding remarks, a further exercise to
be carried out may concern understanding the extent to
which other determinants of trade (like distance) may
explain the observed properties of the ITN, i.e. build-
ing more economically-meaningful models of trade that
start explaining ITN properties rather than statistically
reproducing them only.

A. Edge weights

We start with the analysis of the completely aggre-
gated network (i.e. c = 0 according to our notation de-
scribed in Ref. [1]). Therefore, in the following formulas,
we set W ≡ W0 and drop the superscript for brevity.
Our aim is to understand how specifying the strength
sequence affects higher-order network properties. There-
fore we will consider the weighted counterparts of the
topological properties we have already studied in the bi-
nary case [1]. However, due to the larger number of
degrees of freedom, in the weighted case there are also
additional quantities to study which have no binary ana-
logue. In particular, it is important to understand the
effect that the enforcement of local constraints (strength
sequence) has on the weights of the network, as well as
on its purely binary topology. It is useful to perform this
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FIG. 1: (Color online) Edge weights in the weighted undi-
rected ITN. a) cumulative distributions of edge weights, for
all years from 1992 (top) to 2002 (bottom). Orange (upper
curves): real network; blue (lower curves): expectation for
the maximum-entropy null model with specified strengths. b)
same as the previous panel, but excluding zero weights (miss-
ing links). Orange (dark grey): real network; green (light
grey): null model. c) percentage of missing links as a func-
tion of time. Red (upper points): real network; blue (lower
points): null model.

analysis as a preliminary step, before discussing other
results.

To this end, we start by comparing the empirical
weight distribution with the expected one. Importantly,
one should not confuse the expected weight distribution
with the distribution of expected weights. In the spirit of
our analysis, the empirical network (and so its weight dis-
tribution) is regarded as a particular possible realization
of the null model with given strengths, and the compar-
ison with the expected properties aims at assessing how
unlikely that particular realization is. Therefore the ob-
served number of edges with weight equal to w (i.e. the
empirical weight distribution) should be compared with
the expected number of such edges in a single realization
(the expected weight distribution), rather than with the
number of edges whose expected weight across realiza-
tions is equal to w (the distribution of expected weights).
The difference between the two expected quantities is evi-
denced by the fact that the expected edge weight between
vertices is always positive (see Appendix A), whereas in a
single realization there are a number of zero-weight edges
(i.e. missing links).

In Fig. 1a we therefore compare the cumulative dis-
tribution of observed weights P<(w) (the fraction of
edge weights smaller than w) with the expected number
〈P<(w)〉 (see Appendix A), both including missing links
(w = 0) and therefore normalized to the number of pairs
of vertices. As an alternative, in Fig. 1b we also compare
the cumulative distribution of positive weights P+

< (w)
(which excludes missing links and is therefore normalized
to the total number of links) with the expected number

〈P+
< (w)〉 (see Appendix A). We find that, for all years in

our time window, the real distributions are always dif-
ferent from the expected ones. To rigorously confirm
this, we have performed Kolmogorov-Smirnov and Lil-
liefors tests and for all years we always had to reject the
hypothesis that real and expected distributions are the
same (5% significance level). For the positive weight dis-
tributions P+

< (w) and 〈P+
< (w)〉 we also separately tested

the hypothesis of the log-normality of the distributions,
and again we always had to reject it (5% significance
level).

The above results, besides highlighting large differ-
ences in the weighted structure of real and randomized
networks, also convey important information about re-
markable deviations in their topology. The largest differ-
ence between the curves P<(w) and 〈P<(w)〉 is found
at w = 0, and the corresponding points P<(0) and
〈P<(0)〉 represent the fractions %zeros and 〈%zeros〉 of
zero weights (missing links) in the network. In Fig. 1c
we show the evolution of these fractions over time. We
find that the fraction of missing links in the real network
decreases in time over the time interval considered (i.e.
the link density increases), but its value is always much
larger than the corresponding expected value. Thus, de-
spite it is usually considered a very dense graph, with
more links per node than most other real-world networks,
we find that the ITN turns out to be surprisingly sparser
than random weighted networks with the same strength
sequence. This fixes a previously unavailable benchmark
for the density of the empirical ITN, and implies that the
high percentage of missing trade relations among world
countries is not explained by size effects (i.e. the to-
tal trade value of all countries). Note that this result
would be trivial if we were considering trade magnitudes
as real-valued, rather than integer-valued, weights. For
real-valued weights, the volume of the configuration space
(the number of networks in the ensemble) would be in-
finite, and the probability of networks with zero-valued
weights would be zero. So, topologically, almost all net-
works in the random ensemble would be complete graphs,
making every real network sparser than (or at most as
sparse as) its randomized counterpart. Instead, in our
analysis we consider integer-valued weights (as discussed
in detail when presenting our data and methods in the
companion paper [1]) reflecting more correctly the fact
that money has indivisible units. This always gives a
positive probability qij(0) > 0 (see Appendix) to miss-
ing links, and as a result the expected density of links is
always smaller than one.

In what follows, we study the effects of the strength se-
quence on higher-order topological properties, in analogy
with our binary analysis [1]. We first report detailed re-
sults for the 2002 snapshot of the commodity-aggregated
network (Sections II B and II C), then consider the tem-
poral evolution of the aggregated network (Section II D),
and finally perform a commodity-specific analysis (Sec-
tion II E).
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FIG. 2: (Color online) Average nearest neighbor strength s̃nn
i

versus strength s̃i in the 2002 snapshot of the real weighted
undirected ITN (red points), and corresponding average over
the maximum-entropy ensemble with specified strengths (blue
solid curve).

B. Average nearest neighbor strength

We start with the weighted counterpart of the average
nearest neighbor degree (ANND), i.e. the average nearest
neighbor strength (ANNS) of vertex i, defined as

s̃nni ≡
∑
j 6=i aij s̃j

ki
=

∑
j 6=i
∑
k 6=j aijw̃jk∑
j 6=i aij

(3)

The ANNS measures the average strength of the neigh-
bors of a given vertex. Similarly to the ANND, the
ANNS involves indirect interactions of length 2, however
(as happens for most weighted quantities) mixing both
weighted and purely topological information: in particu-
lar, terms of the type aijw̃jk appear in the definition.

The correlations between the strength of neighboring
countries can be inspected by plotting s̃nni versus s̃i. This
is shown in Fig. 2. Even if the points are now significantly
more scattered, we find a decreasing trend as previously
observed for the corresponding binary quantities [1]. This
trend signals that highly trading countries trade typically
with poorly trading ones (and vice versa), confirming on
a weighted basis the disassortative character observed at
the binary level. However, in this case the null model be-
haves in a completely different way: over the randomized
ensemble with specified strength sequence, the expecta-
tion value 〈s̃nni 〉 of the ANNS (see Appendix A) decreases
over a much narrower range (see Fig. 2), and is always
different from the observed value.

This important results implies that, even if we observe
disassortativity in both cases (binary and weighted), we
find that in the binary case this property is completely ex-
plained by the degree sequence, whereas in the weighted
case it is not explained by the strength sequence. This
has implications for economic models of international
trade: while no theoretical explanation is required in or-
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FIG. 3: (Color online) Weighted clustering coefficient c̃i ver-
sus strength s̃i in the 2002 snapshot of the real weighted
undirected ITN (red points), and corresponding average over
the maximum-entropy ensemble with specified strengths (blue
solid curve).

der to explain why poorly connected countries trade with
highly connected ones on a binary basis (once the number
of trade partners is specified), additional explanations are
required in order to explain the same phenomenon at a
weighted level, even after controlling for the total trade
volumes of all countries. This result could look counter-
intuitive, as a simple visual inspection would suggest that
in the binary case the disassortative behavior is in abso-
lute terms less noisy, and sometimes more pronounced,
than in the weighted one.

C. Weighted clustering coefficient

We now consider the weighted version of the cluster-
ing coefficient. In particular, we choose the definition
proposed in Ref. [5], which has a more direct extension
to the directed case [6]. According to that definition, the
(rescaled) weighted clustering coefficient c̃i represents the
intensity of the triangles in which vertex i participates:

c̃i ≡
∑
j 6=i
∑
k 6=i,j(w̃ijw̃jkw̃ki)

1/3

ki(ki − 1)

=

∑
j 6=i
∑
k 6=i,j(w̃ijw̃jkw̃ki)

1/3∑
j 6=i
∑
k 6=i,j aijaik

(4)

Note that c̃i takes into account indirect interactions
of length 3, corresponding to products of the type
w̃ijw̃jkw̃ki appearing in the above formula. In Fig. 3
we plot c̃i versus s̃i. This time we find an increasing
trend of c̃i as a function of s̃i, indicating that countries
with larger total trade participate in more intense trade
triangles. We also show the trend followed by the ran-
domized quantity 〈c̃i〉 (see Appendix A), which is found
to approximately reproduce the empirical data. Despite
the partial accordance between the clustering profile of
real and randomized networks, the total level of cluster-
ing of the real ITN is however larger than its randomized
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FIG. 4: (Color online) Temporal evolution of the properties
of the (rescaled) average nearest neighbor strength s̃nn

i in the
1992-2002 snapshots of the real weighted undirected ITN and
of the corresponding null model with specified strengths. a)
average of s̃nn

i across all vertices (red, upper symbols: real
data; blue, lower symbols: null model). b) standard devia-
tion of s̃nn

i across all vertices (red, upper symbols: real data;
blue, lower symbols: null model). c) correlation coefficient be-
tween s̃nn

i and s̃i (red, upper symbols: real data; blue, lower
symbols: null model). d) correlation coefficient between s̃nn

i

and 〈s̃nn
i 〉. The 95% confidence intervals of all quantities are

represented as vertical bars.

counterpart, as we show below (Section II D) for all the
years considered.

D. Evolution of weighted undirected properties

The results we have reported above are qualitatively
similar for each of the 11 shapshots of the ITN from year
1992 to 2002. As for our binary analyses [1], we can
therefore compactly describe the temporal evolution of
weighted undirected properties in terms of simple indica-
tors.

We start with the analysis of the ANNS (Fig. 4). In
Fig. 4a we report the average (across vertices) and the
associated 95% confidence interval of both real and ran-
domized values ({s̃nni } and {〈s̃nni 〉}) as a function of time.
We find that the average of s̃nni has been first decreasing
rapidly, and has then remained almost constant. This
behavior is already clean from trends in the total vol-
ume of trade, since all weights have been rescaled and
divided by wtot. By contrast, the average of the random-
ized quantity 〈s̃nni 〉 displays a constant trend throughout
the time interval considered, and its value is always sig-
nificantly smaller than the empirical one. Thus, unlike
the binary case, the null model does not reproduce the
average values of the correlations considered, and does
not capture their temporal evolution. A similar behavior
is observed for the evolution of the standard deviation of
the ANNS across vertices (Fig. 4b). In Fig. 4c we show
the correlation coefficient between the empirical quan-
tities {s̃nni } and {s̃i}, whose value (fluctuating around
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FIG. 5: (Color online) Temporal evolution of the properties
of the (rescaled) weighted clustering coefficient c̃i in the 1992-
2002 snapshots of the real weighted undirected ITN and of the
corresponding null model with specified strengths. a) average
of c̃i across all vertices (red, upper symbols: real data; blue,
lower symbols: null model). b) standard deviation of c̃i across
all vertices (red, upper symbols: real data; blue, lower sym-
bols: null model). c) correlation coefficient between c̃i and s̃i
(red, initially lower symbols: real data; blue, initially upper
symbols: null model). d) correlation coefficient between c̃i
and 〈c̃i〉. The 95% confidence intervals of all quantities are
represented as vertical bars.

−0.4) compactly summarizes the disassortativity of the
noisy scatter plot that we have shown previously in Fig. 2,
and the correlation coefficient between the randomized
quantities {〈s̃nni 〉} and {〈s̃i〉} = {s̃i}, which instead dis-
plays a different value close to −1 (due to the noise-free,
even if much weaker, decrease of the randomized curve in
Fig. 2). The discrepancy between the null model and the
real network is finally confirmed by the small correlation
between {s̃nni } and {〈s̃nni 〉} (Fig. 4d), which is in marked
contrast with the perfect correlation between {knni } and
{〈knni 〉} we found in the binary case.

In Fig. 5 we report a similar analysis for the evolution
of the weighted clustering coefficient. We find that, de-
spite the partial accordance of the real and randomized
clustering profiles shown in Fig. 3, the average level of
clustering of the real network is always higher than its
randomized variant (Fig. 5a), even if the two values have
become closer through time. The same is true for the
standard deviation of the weighted clustering coefficient
(Fig. 5b). We also find that the correlation coefficient be-
tween the empirical quantities {c̃i} and {s̃i} (Fig. 5c) has
rapidly increased between the years 1992 and 1995 (from
about 0.5 to more than 0.95) and has then remained sta-
ble in time. This indicates that the scatter plot shown in
Fig. 3 for the year 2002 becomes noisier in the first snap-
shots of our time window, as we confirmed through an
explicit inspection (not shown). By contrast, the correla-
tion coefficient between the randomized quantities {〈c̃i〉}
and {〈s̃i〉} = {s̃i} displays much smaller variations about
the value 0.85, and is therefore initially larger, and even-
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FIG. 6: (Color online) Average nearest neighbor strength s̃nn
i

versus strength s̃i in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real weighted undi-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified strengths (blue
solid curves). a) commodity 93; b) commodity 09; c) com-
modity 39; d) commodity 90; e) commodity 84; f) aggre-
gation of the top 14 commodities (see Ref. [1] for details).
From a) to f), the intensity of trade and level of aggregation
increases.

tually smaller, than the corresponding empirical value.
Finally, in Fig. 5d we show the correlation coefficient be-
tween {c̃i} and {〈c̃i〉}. The increasing trend confirms
the growing agreement between the real and randomized
clustering coefficients, already suggested by the previous
plots. Note however that even two perfectly correlated
lists of values (correlation coefficient equal to 1) are only
equal if their averages are the same (otherwise they are
simply proportional to each other). Thus large correla-
tion coefficients between two quantities can only be inter-
preted in conjunction with a comparison of the average
values of the same quantities. While in the binary case
we simultaneously found perfect correlation and equal
average values between real and randomized quantities
[1], in this case we find large correlation but different
average values, systematically confirming only a partial
accordance between the real network and the null model.
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FIG. 7: (Color online) Weighted clustering coefficient c̃i
versus strength s̃i in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real weighted undi-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified strengths (blue
solid curves). a) commodity 93; b) commodity 09; c) com-
modity 39; d) commodity 90; e) commodity 84; f) aggre-
gation of the top 14 commodities (see Ref. [1] for details).
From a) to f), the intensity of trade and level of aggregation
increases.

E. Commodity-specific weighted undirected
networks

We now focus on the disaggregated commodity-specific
versions of the weighted undirected ITN, representing the
trade of single classes of products. We therefore repeat
the previous analyses after setting W ≡Wc for various
individual commodities c > 0. As we did for the binary
case [1], we show our results for a subset of 6 commodities
taken from the top 14 categories, namely the two com-
modities with the smallest traded volume (c = 93, 9),
two ones with intermediate volume (c = 39, 90), the one
with the largest volume (c = 84), plus the aggregation of
all the top 14 commodities (similar results hold also for
the other commodities). Together with the completely
aggregated data (c = 0) considered above, this dataset
consists of 7 networks with increasing trade volume and
level of aggregation.

In Fig. 6, we show the scatter plot of the average
nearest neighbor strength as a function of the strength.
Similarly, in Fig. 7, we report the scatter plot for the
weighted clustering coefficient. Both are shown for the
2002 snapshots of the 6 commodity-specific networks.
When compared with the aggregated network (shown



7

previously in Figs. 2 and 3), these results lead to interest-
ing conclusions. In general, as happens in the binary case
[1], we find that commodities with a lower traded volume
feature more dispersed scatter plots, with larger fluctua-
tions of the empirical data around the average trend. The
effect is more pronounced here than in the binary case.
However, while in the latter the real networks are al-
ways well reproduced by the null model, in the weighted
case the disagreement between empirical and random-
ized data remains strong across different levels of com-
modity aggregation. Moreover, the weighted clustering
coefficient is the quantity that displays the largest differ-
ences between aggregated and disaggregated networks.
We see that, for all commodity classes considered, the ob-
served weighted clustering coefficient is generally larger
than its randomized counterpart. However, the devia-
tion is larger for sparser commodities, and decreases as
commodity classes with larger trade volumes and higher
levels of aggregation are considered. This shows that the
partial agreement between real and randomized networks
in the completely aggregated case (see Fig. 3) is not ro-
bust to disaggregation. In other words, the accordance
between empirical data and null model, which according
to our discussion in Section II D is already incomplete
in the aggregated case, becomes even worse for sparser
commodity-specific networks.

The above results confirm that, unlike the binary case,
the properties of the weighted undirected version of the
ITN are not completely reproduced by simply control-
ling for the local properties. The presence of higher-order
mechanisms is required as an explanation for the onset
and evolution of the observed patterns. This result holds
across different years and is enhanced as lower levels of
commodity aggregation are considered. This shows that
a weighted network approach to the analysis of inter-
national trade conveys additional information with re-
spect to traditional economic studies that describe trade
in terms of local properties alone (total trade, openness,
etc.) [7]. Interestingly, a major deviation between the
real network and the null model is in the topology im-
plied by local constraints. This confirms, from a different
point of view, that in order to properly understand the
structure of the international trade system is essential to
reproduce its binary topology, even if one is interested in
a weighted description.

III. THE ITN AS A WEIGHTED DIRECTED
NETWORK

We now turn to the weighted directed analysis of the
ITN. A single graph G in the ensemble of weighted di-
rected networks is completely specified by its generic
weight matrix W which is in general not symmetric, and
whose entry wij represents the intensity of the directed
link from vertex i to vertex j (wij = 0 if no directed
link is there). The binary adjacency A, with entries
aij = Θ(wij), is in general not symmetric as well. The

out-strength sequence {souti } and the in-strength sequence
{sini } represent the local constraints {Ca} in the weighted
directed case [1]. The randomization method [2] yields
the expectation value 〈X〉 of a property X across the
maximally random ensemble of weighted directed graphs
with in-strength and out-strength sequences equal to the
observed ones (see Appendix B). The quantities {souti }
and {sini } (or combinations of them) are now the natural
independent variables against which other properties can
be visualized in both the real and randomized case, since
their expected value coincides with the observed one by
construction.

As for the weighted undirected case, we will consider
the rescaled weights w̃ij = wij/wtot (where wtot =∑
i

∑
j 6=i wij) in order to wash away trends due to an

overall change in the volume of trade across differ-
ent years. Correspondingly we consider the rescaled
strengths

s̃outi ≡
∑
j 6=i

w̃ij =
souti

wtot
(5)

s̃ini ≡
∑
j 6=i

w̃ji =
sini
wtot

(6)

and we analogously use w̃ij instead of wij in the definition
of all quantities. Note that wtot =

∑
i s
in
i =

∑
i s
out
i , and

since 〈sini 〉 = sini and 〈souti 〉 = souti we have

〈wtot〉 =
∑
i

〈sini 〉 =
∑
i

sini = wtot (7)

Therefore, as for the undirected case, the expected value
of wtot coincides with its empirical value, and the total
weight can therefore be safely used to rescale the weights
of both real and randomized networks.

A. Directed edge weights

As we did in Section II A for the weighted undirected
case, we first study the consequences that the specifi-
cation of the in- and out-strength sequences has on the
weights of the network and on its density.

In Fig. 8a we show the cumulative distribution of
observed weights P<(w) (including missing links with
w = 0) and its randomized counterpart 〈P<(w)〉 (see Ap-
pendix B). Similarly, in Fig. 8b we show the cumulative
distribution of observed positive weights P+

< (w) (exclud-
ing missing links) and the randomized one 〈P+

< (w)〉 (see
Appendix B). As in the undirected case, we find that the
empirical distributions are always different from the ran-
domized ones, and we confirmed that the hypothesis of
equality of real and expected distributions is always re-
jected by both Kolmogorov-Smirnov and Lilliefors tests
(5% significance level). Similarly, the hypothesis of log-
normality of the positive weight distributions P+

< (w) and
〈P+
< (w)〉 is always rejected (5% significance level).
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FIG. 8: (Color online) Edge weights in the weighted directed
ITN. Red (light grey, upper curves/points): real network;
blue (dark grey, lower curves/points): expectation for the
maximum-entropy ensemble with specified out-strengths and
in-strengths. a) cumulative distributions of edge weights in
all years from 1992 (top) to 2002 (bottom). b) same as the
previous panel, but excluding zero weights (missing links). c)
percentage of missing links as a function of time.

In this case too, we can monitor the important differ-
ence between the topological density of the real and ran-
domized ITN by plotting the fractions of missing links
%zeros = P<(0) and 〈%zeros〉 = 〈P<(0)〉 as a function
of time (Fig. 8c). Even if the difference is smaller than
in the undirected case, we can confirm on a directed ba-
sis that, despite it is usually considered a dense graph,
the observed ITN is surprisingly sparser than random
directed weighted networks with the same in- and out-
strength sequences. Thus the density of (missing) links
in the real trade network is not accounted for by size
considerations (total imports and total exports of world
countries). Again, our use of integer-valued weights en-
sures that this is not a trivial effect, since the probability
qij(0) of missing links is always positive (see Appendix),
and the expected density of links is always strictly smaller
than one.

As usual, in what follows we compare higher-order
topological properties of the ITN with our null model.
We first consider the aggregated snapshot for year 2002
in more detail, then discuss the temporal evolution of
the results, and finally perform a study of disaggregated
networks.

B. Directed average nearest neighbor strengths

We consider four generalizations of the definition of
the average nearest neighbor strength of a vertex in a

directed weighted network:

s̃
in/in
i ≡

∑
j 6=i ajis̃

in
j

kini
=

∑
j 6=i
∑
k 6=j ajiw̃kj∑
j 6=i aji

(8)

s̃
in/out
i ≡

∑
j 6=i ajis̃

out
j

kini
=

∑
j 6=i
∑
k 6=j ajiw̃jk∑
j 6=i aji

(9)

s̃
out/in
i ≡

∑
j 6=i aij s̃

in
j

kouti

=

∑
j 6=i
∑
k 6=j aijw̃kj∑
j 6=i aij

(10)

s̃
out/out
i ≡

∑
j 6=i aij s̃

out
j

kouti

=

∑
j 6=i
∑
k 6=j aijw̃jk∑
j 6=i aij

(11)

Indirect interactions due to chains of length two (prod-
ucts of the type aijw̃kl) contribute to the above quan-
tities. A fifth aggregated quantity, which is the natu-
ral analogue of the undirected ANNS, is based on the
(rescaled) total strength s̃toti ≡ s̃ini + s̃outi :

s̃
tot/tot
i ≡

∑
j 6=i(aij + aji)s̃

tot
j

ktoti
(12)

As in the binary case [1], it must be noted that the total

(in+out) directed quantities such as s̃toti and s̃
tot/tot
i are

not trivially related to, and carry more information than,
the corresponding undirected properties s̃i and s̃nni . In
this case, the difference between them is given by the
weighted reciprocity structure of the network. Unfor-
tunately, there are no well-established measures of reci-
procity in the weighted case, and introducing a weighted
theory of reciprocity is beyond the scope of the present
paper. However, as in the binary case, it is still possible
for us to assess, by comparing undirected and total di-
rected weighted properties, whether the reciprocity struc-
ture of the directed network changes the results obtained
in the undirected case.

In Fig. 9 we show s̃
tot/tot
i , together with its random-

ized value 〈s̃tot/toti 〉 (obtained as in Appendix B), as a
function of s̃toti in the aggregated snapshot for year 2002.
There are no significant differences with respect to Fig. 2,
apart from a “double” series of randomized values due to
the two possible directions (the terms aij and aji) that

contribute to the definition of s̃
tot/tot
i in Eq. (12). Thus

we still observe a disassortative behavior in the empiri-
cal network, which is not paralleled by the null model.
We now turn to the four directed versions of the ANNS
defined in Eqs.(8)-(11), as well as their randomized val-
ues (see Appendix B). As shown in Fig. 10, we find that
the four empirical quantities all display the same disas-
sortative trend, whereas the four randomized ones are
always approximately flat (and no longer switch between
two trends as in Fig. 9). These results show that, as
in the undirected representation, the correlation prop-
erties of the directed weighted ITN deviate significantly
from the ones displayed by the null model with speci-
fied strength sequences. In particular, the pronounced
disassortativity of the real network is a true signature of
negative correlations between the total trade values (in
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FIG. 9: (Color online) Total average nearest neighbor

strength s̃
tot/tot
i versus total strength s̃toti in the 2002 snap-

shot of the real weighted directed ITN (red, upper points),
and corresponding average over the null model with specified
out-strengths and in-strengths (blue, lower points).

any direction) of neighboring countries, even after con-
trolling for the heterogeneities in the total trade values
themselves. This is in marked contrast with the binary
case, where we showed that the observed disassortativity
is completely explained by controlling for the empirical
degree sequence [1].

C. Directed weighted clustering coefficients

In Figs. 11 and 12 we report a similar analysis for the
clustering coefficient. The four weighted versions of the
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FIG. 10: (Color online) Directed average nearest neighbor
strengths versus vertex strengths in the 2002 snapshot of
the real weighted directed ITN (red points), and correspond-
ing averages over the null model with specified out-strengths

and in-strengths (blue solid curves). a) s̃
in/in
i versus s̃ini ; b)

s̃
in/out
i versus s̃ini ; c) s̃

out/in
i versus s̃outi ; d) s̃

out/out
i versus

s̃outi .
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FIG. 11: (Color online) Total weighted clustering coefficient
c̃toti versus total strength s̃toti in the 2002 snapshot of the real
weighted directed ITN (red, lighter points), and correspond-
ing average over the null model with specified out-strengths
and in-strengths (blue, darker points).

inward, outward, cyclic and middleman directed cluster-
ing coefficients considered in Ref. [1] read [6]

c̃ini ≡
∑
j 6=i
∑
k 6=i,j(w̃kiw̃jiw̃jk)1/3

kini (kini − 1)
(13)

c̃outi ≡
∑
j 6=i
∑
k 6=i,j(w̃ikw̃jkw̃ij)

1/3

kouti (kouti − 1)
(14)

c̃cyci ≡
∑
j 6=i
∑
k 6=i,j(w̃ijw̃jkw̃ki)

1/3

kini k
out
i − k↔i

(15)

c̃midi ≡
∑
j 6=i
∑
k 6=i,j(w̃ikw̃jiw̃jk)1/3

kini k
out
i − k↔i

(16)

The above quantities capture indirect interactions of
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FIG. 12: (Color online) Weighted clustering coefficients ver-
sus vertex strengths in the 2002 snapshot of the real weighted
directed ITN (red points), and corresponding averages over
the null model with specified out-strengths and in-strengths
(blue solid curves). a) c̃ini versus s̃ini ; b) c̃outi versus s̃outi ; c)
c̃cyci versus s̃ini · s̃outi ; d) c̃mid

i versus s̃ini · s̃outi .
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length 3 according to their directionality, appearing as
products of the type w̃ijw̃klw̃mn. A fifth measure aggre-
gates all directions:

c̃toti ≡
∑

j 6=i

∑
k 6=i,j(w̃

1/3
ij +w̃

1/3
ji )(w̃

1/3
jk +w̃

1/3
kj )(w̃

1/3
ki +w̃

1/3
ik )

2
[
ktoti (ktoti −1)−2k↔i

]
We show the latter in Fig. 11, and the four directed

quantities defined in Eqs.(13)-(16) in Fig. 12. All proper-
ties are shown together with their randomized values (see
Appendix B), and plotted against the natural indepen-
dent variables (or combinations of them). Again, there
is no significant difference with respect to the weighted
undirected plot (Fig. 3), apart from the switching behav-
ior of 〈c̃toti 〉 between two trends as already discussed for

〈s̃tot/toti 〉. We find an approximate agreement between
real and randomized clustering profiles.

D. Evolution of weighted directed properties

In Figs.13-16 we show the temporal evolution of the
structural properties considered. Figure 13 reports the
average, standard deviation, and correlation coefficients

for s̃
tot/tot
i as a function of time, and Fig. 14 reports (for

brevity) only the average of the four directed variants

s̃
in/in
i , s̃

in/out
i , s̃

out/in
i , s̃

out/out
i . We find that the de-

tailed description offered by the directed structural prop-
erties portrays a different picture with respect to the
undirected results shown in Fig. 4. In particular, we
find that the empirical trends are not always decreas-
ing and the randomized trends are not always constant,
in contrast with what previously observed for the undi-
rected ANNS. Both the empirical and randomized values

of s̃
tot/tot
i (Fig. 13a) and s̃

out/in
i (Fig. 14c) display de-

creasing averages, whereas s̃
in/in
i (Fig. 14a) and s̃

in/out
i

(Fig. 14b) display constant randomized values and first
increasing, then slightly decreasing empirical values. In

addition, s̃
out/out
i (Fig. 14d) displays a different behavior

where both real and randomized averages first increase
and then decrease. These fine-level differences are all
washed away in the undirected description considered in
Section II, signaling a loss of information like the one we
also observed in the binary case [1]. However, while in
the latter the null model was always in agreement with
the empirical data, here we always observe large devi-
ations. In particular, the averages and standard devia-
tions of all empirical quantities are different from their
randomized counterparts, and the analysis of the correla-
tion coefficients confirms that the disassortative behavior
of the real network is robust in time, and its intensity is
systematically not reproduced by the null model.

Different considerations apply to the evolution of the
weighted directed clustering coefficients c̃toti , c̃ini , c̃outi ,
c̃cyci and c̃midi , shown in Figs. 15 and 16. In this case
we find that the undirected trend we observed in Fig. 5
is still not representative of the individual trends of the

directed coefficients studied here. However, the empiri-
cal and randomized values of the latter are found to be
closer here than in the undirected case, and to follow
similar temporal behaviors. The null model is however
only marginally consistent with the real network, and the
knowledge of the strength sequences remains of limited
informativeness.

E. Commodity-specific weighted directed networks

We finally come to the analysis of disaggregated
commodity-specific representations of the weighted di-
rected ITN. We show results for the usual subset of 6
commodity classes ordered by increasing trade intensity
ad level of commodity aggregation, to which we can add
the completely aggregated case already discussed (again,
we found similar results for all commodities).

Figures 17 and 18 report the total average nearest
neighbor strength and total weighted clustering coeffi-
cient as functions of the total strength, for the 6 selected
commodity classes in year 2002. The corresponding plots
for the aggregated networks were shown previously in
Figs. 9 and 11. We find once again that, as more in-
tensely traded commodities and higher levels of aggre-
gation are considered, the empirical data become less
scattered around their average trend. In this case, the
same effect holds also for the randomized data. As for
the weighted undirected case, and unlike the binary rep-
resentation, there is no agreement between empirical net-
works and the null model. The accordance becomes even
worse as commodity classes with smaller trade volume
and lower level of aggregation are considered.

The above results extend to the directed case what we
found in the analysis of weighted undirected properties.
In particular, unlike the binary case, the knowledge of lo-
cal properties conveys only limited information about the
actual structure of the network. Higher-order properties
are not explained by local constraints, and indirect inter-
actions cannot be decomposed to direct ones. This holds
irrespective of the commodity aggregation level and the
particular year considered. This implies that a weighted
network approach captures more information than sim-
pler analyses focusing on country-specific local proper-
ties. Moreover, simple purely topological properties such
as link density are not reproduced by the null model.
This implies that, even in weighted analyses, the binary
structure is an important property to explain, because it
is responsible of major departures of the empirical net-
work from the null model. Therefore, both binary and
weighted analyses highlight, for completely different rea-
sons, the importance of reproducing the ITN topology
and devoting it more consideration in models of trade.
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FIG. 13: (Color online) Temporal evolution of the proper-
ties of the (rescaled) total average nearest neighbor strength

s̃
tot/tot
i in the 1992-2002 snapshots of the real weighted di-

rected ITN and of the corresponding null model with specified

out-strengths and in-strengths. a) average of s̃
tot/tot
i across

all vertices (red, upper symbols: real data; blue, lower sym-

bols: null model). b) standard deviation of s̃
tot/tot
i across

all vertices (red, upper symbols: real data; blue, lower sym-

bols: null model). c) correlation coefficient between s̃
tot/tot
i

and s̃toti (red: real data; blue: null model, indistinguishable

from real data). d) correlation coefficient between s̃
tot/tot
i and

〈s̃tot/toti 〉. Vertical bars are 95% confidence intervals.

IV. CONCLUSIONS

In this paper and in the preceding one [1] we have de-
rived a series of results about the structure of the ITN
and the role that local topological properties have in con-
straining it. Our findings are a priori unpredictable with-
out a comparison with a null model, and can be summa-
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FIG. 14: (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed average near-
est neighbor strengths in the 1992-2002 snapshots of the real
weighted directed ITN (red, upper symbols), and correspond-
ing averages over the maximum-entropy ensemble with speci-
fied out-strengths and in-strengths (blue, lower symbols). a)

s̃
in/in
i ; b) s̃

in/out
i ; c) s̃

out/in
i ; d) s̃

out/out
i .
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FIG. 15: (Color online) Temporal evolution of the properties
of the (rescaled) total weighted clustering coefficient c̃toti in
the 1992-2002 snapshots of the real weighted directed ITN and
of the corresponding null model with specified out-strengths
and in-strengths. a) average of c̃toti across all vertices (red,
upper symbols: real data; blue, lower symbols: null model).
b) standard deviation of c̃toti across all vertices (red, upper
symbols: real data; blue, lower symbols: null model). c) cor-
relation coefficient between c̃toti and s̃toti (red, upper symbols:
real data; blue, lower symbols: null model). d) correlation co-
efficient between c̃toti and 〈c̃toti 〉. The 95% confidence intervals
of all quantities are represented as vertical bars.

rized as follows.

In the binary description (both in the directed and
undirected cases), we found that specifying the degree
sequence(s) (a first-order topological property) is enough
to explain higher-order properties [1]. This result has
two consequences. First, it implies that all the observed
patterns (disassortativity, clustering, etc.) should not
be interpreted as genuine higher-order stylized facts and
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FIG. 16: (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed weighted cluster-
ing coefficients in the 1992-2002 snapshots of the real weighted
directed ITN (red, upper symbols), and corresponding aver-
ages over the null model with specified out-strengths and in-
strengths (blue, lower symbols). a) c̃ini ; b) c̃outi ; c) c̃cyci ; d)
c̃mid
i .
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FIG. 17: (Color online) Total average nearest neighbor

strength s̃
tot/tot
i versus total strength s̃toti in the 2002 snap-

shots of the commodity-specific (disaggregated) versions of
the real weighted directed ITN (red, upper points), and cor-
responding average over the maximum-entropy ensemble with
specified out-strengths and in-strengths (blue, lower points).
a) commodity 93; b) commodity 09; c) commodity 39; d)
commodity 90; e) commodity 84; f) aggregation of the top
14 commodities (see Ref. [1] for details). From a) to f), the
intensity of trade and level of aggregation increases.

do not require additional explanations besides those ac-
counting for the different specific numbers of trade part-
ners of all countries. Second, it indicates that the degree
sequence encodes virtually all the binary information and
is therefore a key structural property that economic mod-
els of trade should try to explain in detail.

By contrast, in the weighted description (again, both in
the directed and undirected cases) specifying the strength
sequence(s) is not enough in order to reproduce the other
properties of the network. Therefore the knowledge of
total trade volumes of all countries is of limited infor-
mativeness. A weighted network description of trade,
by taking into account indirect interactions besides di-
rect ones, succeeds in conveying additional, nontrivial
information with respect to standard economic analyses
that explain international trade in terms of local country-
specific properties only. In particular, in this case the dis-
assortative character of the network and the high level of
clustering cannot be simply traced back to the observed
local trade volumes and require additional explanations.
Moreover, the purely binary topology of the real trade
network is different and sparser (despite the ITN is tradi-
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FIG. 18: (Color online) Total weighted clustering coeffi-
cient c̃toti versus total strength s̃toti in the 2002 snapshots of
the commodity-specific (disaggregated) versions of the real
weighted directed ITN (red, upper points), and correspond-
ing average over the maximum-entropy ensemble with spec-
ified our-strengths and in-strengths (blue, lower points). a)
commodity 93; b) commodity 09; c) commodity 39; d) com-
modity 90; e) commodity 84; f) aggregation of the top 14
commodities (see Ref. [1] for details). From a) to f), the
intensity of trade and level of aggregation increases.

tionally considered an unusually dense network) than the
one predicted by the null model with the same strength
sequence.

Our results bear important consequences for the theory
of international trade. The most commonly used model-
ing framework, i.e. that of gravity models [3, 4], relies on
the assumption that the intensity of trade between coun-
tries i and j depends only on individual properties of i
and j (e.g., their GDP) and on additional pairwise quan-
tities relevant to i and j alone (the distance between them
plus other factors either favoring or impeding trade). The
irreducibility of weighted indirect interactions to direct
ones, that we have shown above, implies that even if
gravity models succeed in reproducing the magnitude of
isolated interactions, they may fail to capture the com-
plexity of longer chains of relationships in the network.
And in any case, gravity models generally predict a fully
connected network, i.e. no missing links. As we have
shown, much of the deviation between real and random-
ized networks in the weighted case is precisely due to
differences in the bare topology. This means that, in or-
der to successfully reproduce the weighted properties of
the ITN, it is essential to correctly replicate its binary
structure, confirming (from a completely different per-
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spective) the importance of the latter. This explains why
in other studies the weighted properties of the aggregated
ITN have been replicated by specifying the strength and
the degree of all vertices simultaneously [8]. Even if it
is not the focus of the present work, the effects of a si-
multaneous specification of the strength sequence and of
the degree sequence can be studied in more detail apply-
ing the same maximum-likelihood method used here [2]
by exploiting the analytical results available for the corre-
sponding maximum-entropy ensemble of weighted graphs
[9].

In the light of the above considerations, it is interest-
ing to mention a recent interesting analysis [10] where
the weighted properties of the ITN have been related to
the GDP of world countries, in analogy with the similar
study carried out by Garlaschelli and Loffredo [11] in the
binary case. In Ref.[10], it was shown that the empiri-
cal weights of the ITN can be approximately replicated
by a model which exploits the GDP of a country to pre-
dict its strength. Such a model is the continuous limit of
the null model used here, where the fundamental unit of
weight approaches zero and weights become real-valued,
rather than integer-valued. As we discussed above, such
a model predicts fully connected weighted networks and
its structure becomes therefore similar to gravity models.
Taken together, the results we presented here and in the
companion paper [1] clearly suggest that a satisfactory
minimal model relating the properties of the weighted
ITN to the GDP of world countries must not only repli-
cate the strengths (and weights) of vertices, but also the
degree sequence (and topology), and should therefore be
a combination of the models in refs. [10] and [11]. Again,
this suggests the use of a maximum-entropy ensemble of
weighted graphs with fixed strength and degree sequences
[9].

In general, our results indicate that theories and mod-
els of international trade are incomplete if they only focus
on bilateral trade volumes and local weighted properties
as in the case of gravity models, and if they do not in-
clude the binary topology of the ITN among the main
empirical properties to replicate.
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Appendix A: Weighted undirected properties

In the weighted undirected case, each graph G is com-
pletely specified by its (symmetric) non-negative weight

matrix W. The entries wij of this matrix are integer-
valued, since so are the trade values we consider [1]. The
randomization method we are adopting [2] proceeds by

1. specifying the strength sequence as the constraint:
{Ca} = {si}. The Hamiltonian therefore reads

H(W) =
∑
i

θisi(W) =
∑
i

∑
j<i

(θi + θj)wij (A1)

and one can show [9] that this allows to write the
graph probability as

P (W) =
∏
i

∏
j<i

qij(wij) (A2)

where

qij(w) = (xixj)
w(1− xixj) (A3)

(with xi ≡ e−θi) is the probability that a link of
weight w exists between vertices i and j in the
maximum-entropy ensemble of weighted undirected
graphs, subject to specifying a given strength se-
quence as the constraint;

2. solving the maximum-likelihood equations, by set-
ting the parameters {xi} to the values that max-
imize the likelihood P (W∗) [2] to obtain the real
network. These values can be found as the solution
of the following set of N coupled nonlinear equa-
tions [12]:

〈si〉 =
∑
j 6=i

xixj
1− xixj

= si(W
∗) ∀i (A4)

where {si(W∗)} is the empirical strength sequence
of the particular real network W∗. With this
choice, Eq. (A3) yields the exact value of the con-
nection probability in the ensemble of randomized
weighted networks with the same average strength
sequence as the empirical one.

3. computing the probability coefficients qij(w), by in-
serting the Maximum-Likelihood values {xi} into
Eq. (A3) which allows to easily compute the expec-
tation value 〈X〉 of any topological property X an-
alytically, without generating the randomized net-
works explicitly [2]. Equation (A4) shows that, by
construction, the strengths of all vertices are spe-
cial local quantities whose expected and empirical
values are exactly equal: 〈si〉 = si.

4. computing he expectation values of higher-order
topological properties, as in Table I. The expres-
sions are derived exploiting the fact that 〈wij〉 =∑
w wqij(w) = xixj/(1 − xixj), and that differ-

ent pairs of vertices are statistically independent,
which implies 〈wijwkl〉 = 〈wij〉〈wkl〉 if (i − j)
and (k − l) are distinct pairs of vertices, whereas
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Empirical undirected properties Expected undirected properties
wij 〈wij〉 =
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1−xixj
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wij

wtot
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∑
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∑
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∑
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∑
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∑
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TABLE I: Expressions for the empirical and expected properties in the weighted (undirected and directed) representations of
the network.

〈wijwkl〉 = 〈w2
ij〉 if (i− j) and (k− l) are the same

pair of vertices. Note that we calculate the ex-
pected value of the power of the weight between
vertices i and j analytically as follows:

〈wαij〉 ≡
∑
w

wαqij(w) = (1− xixj)Li−α(xixj) (A5)

where Lin(z) denotes the Polylogarithm function

defined as

Lin(z) ≡
∞∑
l=1

zl

ln
(A6)

In this paper, we use the above exact expression
instead of the approximation 〈wαij〉 ≈ 〈wij〉α sug-
gested in the original paper introducing the method
[2]. The adjacency matrix representing the exis-
tence of a link (irrespective of its intensity) between
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vertex i and vertex j is derived from the weight ma-
trix by setting aij = Θ(wij), where Θ(x) = 1 if x >
0 and Θ(x) = 0 otherwise. The probability that
vertices i and j are connected, irrespective of the
edge weight, is now 〈aij〉 = pij ≡ 1− qij(0) = xixj .
In analogy with the expectation values of prod-
ucts of weights, we have 〈aijakl〉 = pijpkl if (i− j)
and (k − l) are distinct pairs of vertices, whereas
〈aijakl〉 = 〈a2ij〉 = 〈aij〉 = pij if (i−j) and (k−l) are
the same pair of vertices. Finally note that we are
interested in studying the quantities obtained using
the rescaled weights w̃ij = wij/wtot. This does not
introduce complications, since 〈wtot〉 = wtot as we
have shown in Eq. (2). However, the parameters
{xi} are computed as in Eq. (A4) before rescaling
the strengths, since the original integer weights wij
are the actual degrees of freedom.

Appendix B: Weighted directed properties

In the weighted directed case, the above results can
be generalized as follows. Each graph G is completely
specified by its non-negative (integer-valued) weight ma-
trix W, which now is in general not symmetric. The
maximum-likelihood randomization method [2] proceeds
in this case by

1. specifying both the in-strength and the out-strength
sequences as the constraints: {Ca} = {sini , souti }.
The Hamiltonian takes the form

H(W) =
∑
i

[
θini s

in
i (W) + θouti souti (W)

]
(B1)

The above choice leads to the graph probability [2]

P (W) =
∏
i

∏
j 6=i

qij(wij) (B2)

where

qij(w) = (xiyj)
w(1− xiyj) (B3)

(with xi ≡ e−θ
out
i and yi ≡ e−θ

in
i ) is the probability

that a link of weight w exists from vertex i to vertex
j in the maximum-entropy ensemble of weighted
directed graphs with specified in- and out-strength
sequences.

2. solving the maximum-likelihood equations, by set-
ting the parameters {xi} and {yi} are to the values
that maximize the likelihood P (W∗) [2] to obtain
the real network. These values are found as the so-
lution of the following set of 2N coupled nonlinear

equations [12]:

〈souti 〉 =
∑
j 6=i

xiyj
1− xiyj

= souti (W∗) ∀i (B4)

〈sini 〉 =
∑
j 6=i

xjyi
1− xjyi

= sini (W∗) ∀i (B5)

where {sini (W∗)} and {souti (W∗)} are the empiri-
cal in- and out-strength sequences of the particular
real directed weighted network W∗. Then Eq. (B3)
yields the exact value of the connection probability
in the ensemble of randomized directed weighted
graphs with the same average strength sequences
as the empirical ones.

3. computing the probability coefficients qij(w), by in-
serting the Maximum-Likelihood values {xi} and
{yi} into Eq. (B3), which allows to obtain the ex-
pectation value 〈X〉 of any topological property X
analytically, avoiding the numerical generation of
the random ensemble [2]. Now, by construction,
the in-strengths and out-strengths of all vertices
are special local quantities whose expected and em-
pirical values are exactly equal: 〈sini 〉 = sini and
〈souti 〉 = souti as shown in Eq. (B5).

4. computing the expectation values of higher-order
topological properties as in Table I, obtained using
the same prescriptions as in the undirected case,
with two differences. The first one is that now

〈wαij〉 ≡
∑
w

wαqij(w) = (1− xiyj)Li−α(xiyj) (B6)

where Lin(z) is still the Polylogarithm function de-
fined in Eq. (A6). Thus 〈wij〉 = xiyj/(1 − xiyj)
and 〈aij〉 = pij ≡ 1 − qij(0) = xiyj , where
aij = Θ(wij). The expectation values of other pow-
ers of the weight change accordingly. Again, these
exact expressions replace the approximation pre-
scribed in the paper introducing the method [2].
The second one is that, as in the binary directed
case, (i−j) and (j−i) are different (and statistically
independent) directed pairs of vertices. Therefore
〈wijwji〉 = 〈wij〉〈wji〉 and 〈aijaji〉 = pijpji. Again,
we have 〈wtot〉 = wtot as we have shown in Eq. (7).
Therefore we can still easily obtain the quantities
built on the rescaled weights w̃ij = wij/wtot. As for
the weighted undirected case, the parameters {xi}
and {yi} are however computed using Eq. (B5) be-
fore rescaling the strengths, preserving the original
integer weights wij as the actual degrees of free-
dom.
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