
Distributed solution of stochastic optimal control problems on GPUs

Ajay K. Sampathiraoa, Pantelis Sopasakisa, Alberto Bemporada and Panagiotis Patrinosb

Abstract— Stochastic optimal control problems arise in many
applications and are, in principle, large-scale involving up to
millions of decision variables. Their applicability in control
applications is often limited by the availability of algorithms
that can solve them efficiently and within the sampling time of
the controlled system.

In this paper we propose a dual accelerated proximal
gradient algorithm which is amenable to parallelization and
demonstrate that its GPU implementation affords high speed-
up values (with respect to a CPU implementation) and greatly
outperforms well-established commercial optimizers such as
Gurobi.

Index Terms— Stochastic optimal control, accelerated proxi-
mal gradient, graphics processing unit (GPU).

I. INTRODUCTION

A. Background

Stochastic optimal control problems typically give rise to
large-scale optimization problems involving up to tens of
millions of constrained decision variables. Such problems
arise in stochastic model predictive control of Markovian
switching systems [1], stochastic control of networked sys-
tems [2] and of large-scale uncertain systems [3], portfo-
lio optimization under uncertainty [4], inventory manage-
ment [5], management of supply chain systems [6] and in
many other applications of stochastic optimal control.

Despite their popularity, control engineering practice has
taken little initiative towards adopting the theoretical results
of stochastic optimal control theory, and this is mainly due to
the prohibitive computational footprint that accompanies it.
The increasing need for computational power gives the floor
to graphics processing units (GPUs) and field programmable
gate arrays (FPGAs) which are gaining momentum in control
applications [7]–[9]. Since one’s ability to apply stochastic
control methodologies is conditioned by the system’s sam-
pling rate, the need for algorithms and hardware that can
solve such problems fast is becoming imperative.

Recently, Constantinides authored a tutorial paper in which
he outlines the potential advantages of the use of FPGAs
and GPUs for (deterministic) model predictive control (MPC)
applications [10]. Rogers and Slegers demonstrated the po-
tential of in situ GPU-aided controllers for the guidance of

a IMT Institute for Advanced Studies Lucca, Piazza S. Fransesco
19, 55100 Lucca, Italy. Emails: {a.sampathirao, p.sopasakis,
a.bemporad}@imtlucca.it.
b KU Leuven, Department of Electrical Engineering (ESAT), STA-

DIUS Center for Dynamical Systems, Signal Processing and Data
Analytics, Kasteelpark Arenberg 10, 3001 Leuven, Belgium. Email:
panos.patrinos@esat.kuleuven.be

This work was financially supported by the EU FP7 research project
EFFINET “Efficient Integrated Real-time monitoring and Control of Drink-
ing Water Networks,” grant agreement no. 318556.

a parafoil where Monte-Carlo simulations are performed in
real-time to counteract the wind uncertainty [9]. Although,
there have been efforts to parallelize algorithms for the
solution of MPC-related optimization problems (see [11]–
[13]), there is no approach that exploits the structure of
stochastic optimal control problems to achieve high compu-
tational throughput. For example, the approach of Di Cairano
et al. [12] treats the MPC optimization problem as a general
quadratic programming problem and, as a result, cannot
scale up with the problem size. A GPU-based framework to
solve large scale two-stage stochastic optimization problems
with applications to uncertain energy dispatch systems is
presented in [13].

In this paper we propose a scalable parallelizable al-
gorithm for solving multi-stage stochastic optimal control
problems. We use an accelerated proximal gradient method
applied to the Fenchel dual optimization problem and we
exploit the problem’s structure to further accelerate com-
putations. The dual gradient is calculated as the solution
of an unconstrained minimization problem which we solve
by dynamic programming. This problem can be properly
decomposed and solved in a parallelized way.

This boils down to an algorithm that requires only matrix-
vector products, it is highly parallelizable and can be readily
implemented on a GPU or FPGA architecture. The algorithm
is well-suited the control for linear dynamical systems with
additive and multiplicative uncertain components assuming
that these are driven by a stochastic process that can be
modeled as an evolution along a scenario tree. The proposed
algorithm is division-free and therefore, as O’Donoghue et
al. accentuate in [14], it is suitable for embedded applications
using fixed-point arithmetic. Moreover, we allow the cost
function of the optimization problem to have a nonsmooth
part which can be used to encode hard or soft constraints,
or terms involving ‖ · ‖1.

B. Notation and Mathematical Preliminaries

Let R, N, Rn, Rm×n, Sn+, Sn++ denote the sets of real
numbers, non-negative integers, column real vectors of length
n, real matrices of dimensions m-by-n, symmetric positive
semidefinite and positive definite n-by-n matrices respec-
tively. Let R̄ = R ∪ {±∞} denote the set of extended-real
numbers. The transpose of a matrix A is denoted by A′. The
set of of nonnegative numbers {k1, k1 + 1, . . . , k2}, k2 ≥ k1
is denoted by N[k1,k2].

Given a norm ‖ · ‖ on Rn we define the conjugate norm
‖ · ‖∗ defined as ‖y‖∗ = sup‖x‖≤1〈x, y〉, where 〈x, y〉 is
the standard inner product on Rn. For a matrix A ∈ Rm×n
we define its norm as ‖A‖ = supx{‖Ax‖∗; ‖x‖ ≤ 1}. We
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denote by ‖ · ‖1 and ‖ · ‖2 the 1-norm and Euclidean norm
on Rn.

The indicator function of a set C ⊆ Rn is the extended-
real valued function δ(·|C) : Rn → R̄ and for x ∈
C it is δ(x|C) = 0 and δ(x|C) = +∞ otherwise. A
function f : Rn → R̄ is called lower semi-continuous or
closed if for every x ∈ Rn, f(x) = lim infz→x f(z). A
f : Rn → R̄ is called proper if there is a x ∈ Rn so
that f(x) < ∞ and f(x) > −∞ for all x ∈ Rn. For
a closed convex function f : Rn → R̄, we define its
conjugate as f∗(x∗) = supx{〈x, x∗〉 − f(x)}. A mapping
F : Rn → Rm is called β-Lipschitz continuous, with β ≥ 0,
if ‖F (x1)− F (x2)‖∗ ≤ β‖x1 − x2‖ for every x1, x2 ∈ Rn.
We call f σ-strongly convex if f(x) − σ

2 ‖x‖
2
2 is a convex

function. Unless otherwise stated ‖ · ‖ stands for ‖ · ‖2.
Every nonempty closed convex set C ⊆ Rn defines the

convex function Π(x|C) = argminc∈C ‖x − c‖2, which is
called the (Euclidean) projection of x onto C. The Euclidean
distance of a x ∈ Rn from C is defined as d(x|C) =
minc∈C ‖x− c‖2.

II. PROBLEM STATEMENT

In this section we present the general stochastic optimal
control problem and the algorithm to solve it.

A. Stochastic optimal control

Consider the following discrete-time stochastic linear sys-
tem with additive disturbance

xk+1 = Aξkxk +Bξkuk + wξk , (1)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the
input, and wξk is an additive disturbance term. Let Ωk be
the sample space of the random variable ξk. In what follows
we shall consider that each Ωi, i ∈ N is a nonempty finite
set. We define the product space Ω =

∏
i∈N Rnx ×Rnu ×Ωi

and the probability space (Ω,F, {Fk}k∈N,P), where F is the
Borel σ-algebra on Ω and {Fk}k∈N is a filtration on Ω where
Fk is the Borel σ-algebra on

∏k
i=0 Rnx ×Rnu ×Ωi. Finally,

P is the product probability measure on Ω.
For system (1) we formulate the following stochastic

optimal control problem of horizon N ∈ N with decision
variable π = {uk}N−1k=0

V ?(p) = min
π

E

[
Vf (xN , ξN ) +

N−1∑
k=0

`(xk, uk, ξk)

]
, (2)

where E is the conditional expectation with respect to the
above product measure P, while the states follow the dynam-
ics in (1) with given initial condition x0=p. The decision
variables uk in (2) are functions uk = ψk(p,ξξξk−1) with
ξξξk = (ξ0, ξ1, . . . , ξk). This means that decisions at time k are
taken using only prior knowledge, i.e., in a causal fashion.
As we are about to explain, problem (2) encompasses a
very wide class of optimization problems by allowing the
stage cost ` and the terminal cost Vf to be extended-real
valued functions. In what follows the stage cost can be
readily taken to be a function of both k and ξξξk, i.e., it

can be `(xk, uk, ξξξk, k), but for the sake of simplicity of
presentation we will consider the simpler, yet quite general,
case of Equation (2).

In (2) the stage cost function ` is written as `(x, u, ξ) =
φ(x, u, ξ)+ φ̄(Fξx+Gξu, ξ) where φ is real-valued, smooth
in (x, u), and strongly convex over the manifold that defines
the system dynamics, while φ̄ is an extended-real valued
function, lower semi-continuous, proper, convex and possibly
nonsmooth. Likewise, Vf can be decomposed as Vf (x, ξ) =
φN (x, ξ) + φ̄N (FN,ξx, ξ).

Function φ̄ can be chosen to be any nonsmooth function
as dictated by the problem we need to solve. We can use φ̄
to encode arbitrary hard constraints on states and inputs of
the form Fξkxk +Gξkuk ∈ Yξk by choosing

φ̄(·, ξk) = δ(·|Yξk), (3)

where Yξk are nonempty convex closed sets for which
projections Π(·|Yξk) can be easily computed. Soft constraints
can be encoded by choosing

φ̄(·, ξk) = ηξkd(·|Yξk), (4)

where ηξk > 0 is a scaling factor, while one may also choose

φ̄(·, ξk) = ‖ · ‖1 (5)

to force the optimizer to be sparse.
The smooth part of the stage cost ` is a quadratic function

of the form φ(xk, uk, ξk) = x′kQξkxk + u′kRξkuk, where
Rξk ∈ Snu

++ and QξkS
nx
+ . The smooth part of the terminal

cost function Vf is a quadratic function φN (xN , ξN ) =
x′NPξNxN , with PξN ∈ Snx

++. The function φ̄N can be
selected in the same way as we have explained for φ̄, e.g.,
terminal constraints of the form FN,ξxN ∈ Xf can be en-
coded using φ̄N (·, ξ) = δ(·|Xf ), where Xf is assumed to be
such that Π(·|Xf ) can be easily evaluated computationally.

B. Proximal gradient algorithms

In this section we briefly present how a dual proximal
gradient algorithm can be used to solve the optimization
problem presented in the previous section. The proximal
operator proxγf : Rn → Rn of a closed, convex, proper
extended-real valued function f : Rn → R̄ is defined as

proxγf (v) = argmin
x∈Rn

{
f(x) +

1

2γ
‖x− v‖22

}
, (6)

for γ>0, and has interesting properties outlined in [15].
The optimization problem presented in Section II-A (as

we will discuss in detail in Section III-A) can be compactly
written in the form

P ? = min
z=Hx

f(x) + g(z), (7)

where f : Rn → R̄ is strongly convex and g : Rm → R̄ is
closed, proper and convex. The Fenchel dual of (7) is written
as [16, Corol. 31.2.1]:

D? = min
y
f∗(−H ′y) + g∗(y), (8)



and since f is assumed to be σ-strongly convex, f∗ has
Lipschitz-continuous gradient with constant 1/σ because
of [17, Prop. 12.60]. Under the prescribed assumptions,
strong duality holds, thus P ? = D?.

The proximal gradient algorithm applied to the dual prob-
lem is then defined as the recursion on dual variables yν [18]

yν+1 = proxλg∗(yν + λH∇f∗(−H ′yν)), (9)

starting from a dual-feasible vector y0, e.g., y0 = 0. In light
of the conjugate subgradient theorem [16, Thm. 23.5], the
gradient in (9) can be written as

xν , ∇f∗(−H ′yν) = argmin
z
{〈z,H ′yν〉+ f(z)}, (10)

where the last problem is an unconstrained minimization
problem which can be solved very efficiently as we will
explain in the next section. The proximal operator in (9)
can be evaluated as follows

zν = proxλ−1g(λ
−1yν +Hxν), (11)

yν+1 = yν + λ(Hxν − zν). (12)

The above is easily derived using the Moreau decomposition
property v = proxγf (v) + γ proxγ−1f∗(γ−1v).

The proximal operator in (11) can be easily evaluated for
a great variety of functions such as the ones discussed in the
previous section [19]. For example for g(x) = δ(x|C) it is
proxλg(v) = Π(v|C). The proximal operator of d(·|C) can
also be easily computed provided that C is simple enough
so that both d(·|C) and Π(·|C) can be computed easily [19].

The proximal gradient method, given by (10)–(12), pro-
duces a sequence yν which, for properly small λ, converges
to a dual optimal solution y?, while the corresponding primal
sequences xν and zν converge to the (unique) primal optimal
solution (x?, z?).

Accelerated Proximal Gradient (APG) Algorithm: Nes-
terov proposed an accelerated version of the above algorithm
to achieve a convergence rate of O(1/ν2) [20], according to
which the dual gradient in (10) is calculated at an extrap-
olated dual vector of the form vν = yν + βν(yν − yν−1).
Nesterov’s algorithm is summarized as follows:

vν = yν + θν(θ−1ν−1 − 1)(yν − yν−1), (13a)
xν = argminz{〈z,H ′vν〉+ f(z)}, (13b)

zν = proxλ−1g(λ
−1vν +Hxν), (13c)

yν+1 = vν + λ(Hxν − zν), (13d)

θν+1 = 1/2(
√
θ4ν + 4θ2ν − θ2ν), (13e)

starting with y0 = y−1, θ0 = θ−1 = 1. Note that the
values of the sequence θν(θ−1ν−1 − 1) can be precomputed
in a floating point machine so that the above algorithm
is division-free. The fast convergence results for the dual
iterates do not translate to equally fast convergence for the
primal iterate [21], but an ergodic iterate defined through
the recursion z̄ν = (1 − θν)z̄ν−1 + θνz

ν , z̄−1 = 0, i.e.,
a weighed average of the primal iterates, converges at rate
O(1/ν2) [22].

Fig. 1: Example of a scenario tree structure.

Choice of λ: APG converges to a primal-dual solution
given that λ ∈ (0, 1/L], where L is a Lipschitz constant
of the function f̂(y) = ∇f∗(−H ′y), which can be easily
evaluated as ‖H‖

2

σ as in [21]. When f is of the form f(x) =
x′Qx+ δ(x|E), where E is an affine space and f is strictly
convex, then f∗ is quadratic and its Lipschitz constant can
be computed directly and, in particular, we can compute a
tight Lipschitz constant.

Termination criteria: We need to terminate the algorithm
so that the produced primal solution (x, z) is εV –suboptimal,
i.e., f(x)+g(z)−P ? ≤ εV and εg–infeasible in the sense that
‖x −Hz‖ ≤ εg . Such a solution is called (εg, εV )-optimal.
Computationally tractable termination criteria to achieve
this avoiding computationally expensive operations at every
iteration are provided by Patrinos and Bemporad [22].

Preconditioning: As all first order methods, the proposed
algorithm is sensitive to scaling. Preconditioning can consid-
erably improve the performance of the algorithm. A simple
preconditioning that works well in practice is to compute a
diagonal approximation H̃ of the dual Hessian and perform
a change of coordinates in the dual variable y with scaling
matrix H̃−

1
2 [23, Sec. 2.3.1]. More elaborate preconditioning

schemata have been proposed such as [24].

III. PARALLELIZABLE APG FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS

In this section we explain how the structure of a stochastic
optimal control problem can be exploited in the context of
APG to obtain a parallelizable implementation which will be
facilitated by structuring the uncertainty as a scenario tree.

A. Scenario trees and scenario-based optimization

A scenario tree is exactly the structure dictated by the
filtration of our probability space. This is illustrated in Fig. 1.
In practice, such scenario trees can be generated, inter alia,
from real data by the algorithm proposed by Heitsch and
Römisch [25].



The node at time 0 is called root and nodes at stage N
are called the leaves of the tree. Scenarios are sequences of
admissible events spanning from the root node. The number
of nodes at time k is denoted by µ(k), while the total number
of nodes of the tree is µ. Non-leaf nodes have a set of
children; for i ∈ N[1,µ(k)] we denote the children nodes of
the i-th node at stage k by child(k, i) ⊆ N[1,µ(k+1)]. The
probability that we visit node i at stage k starting from the
root node is denoted by pik and clearly for all k ∈ N[0,N ]

it is
∑µ(k)
i=1 p

i
k = 1 and for k ∈ N[0,N−1] and i ∈ N[1,µ(k)]∑

j∈child(k,i) p
j
k+1 = pik.

The system dynamics along the tree, according to (1), is
described by the recursion xjk+1 = Ajkx

i
k+Bjku

i
k+wjk, with

j ∈ child(k, i).
Taking into account the tree structure of the stochas-

tic process ξk, the stochastic optimal control problem (2)
can be restated in terms of the decision variable x =
{{xik}k,i, {uik}k,i} as

V ?(p)= min
x∈X (p)

N−1∑
k=0

µ(k)∑
i=0

pik`(x
i
k,u

i
k,i)+

µ(N)∑
i=0

piNV
i
f (xiN , i)

where X (p) = {x|xjk+1 = Ajkx
i
k + Bjku

i
k + wjk,∀k ∈

N[0,N−1], i ∈ N[1,µ(k)], j ∈ child(i, k)} describes the system
dynamics. The splitting we introduced in (7) now becomes

f(x)=

µ(k)∑
i=0

pikφ(xik,u
i
k,i)

+

µ(N)∑
i=0

piNφN (xiN , i)+δ(x|X (p)),

g(Hx)=

µ(k)∑
i=0

pikφ̄(F ikx
i
k+Giku

i
k,i)+

µ(N)∑
i=0

piN φ̄N (F iNx
i
N , i),

where F ik ∈ Rn
i
c,k×nx , Gik ∈ Rn

i
c,k×nu and F iN ∈ Rn

i
f×nx .

With this choice of f and g the stochastic optimal control
problem is equivalent to (7).

There is an alternative formulation where the scenario
tree is decomposed as a collection of independent scenar-
ios on which one imposes the so called non-anticipativity
constraints that enforce the tree structure we described
above [26]. That formulation, however, would lead to a
significantly higher number of decision variables without
facilitating the solution of the problem and was, therefore,
not further pursued.

B. Dual gradient computation

The efficient computation of the dual gradient in (13b)
is of crucial importance for the performance of the algo-
rithm. The solution of the unconstrained optimization prob-
lem (13b) is done by dynamic programming and the solution
is separated in two steps: the factor step (Algorithm 1) and
the solution step (Algorithm 2). Having performed the factor
step, the solution can be obtained at a very low computational
cost. In case we have only one scenario as in deterministic
optimal control these algorithms are the factor and solve

steps described in [22]. Notice that both algorithms are
parallelizable across all nodes at every stage of the scenario
tree (nodal decomposition).

Algorithm 1 Factor step
for k = N−1, . . . , 0 do

for i ∈ µ(k) do {in parallel}
P̄ ik+1 ←

∑
j∈child(k,i)B

j′
k P

j
k+1B

j
k

R̄ik ← 2(pikR
i
k + P̄ ik+1), Φik = −(R̄ik)−1Gi′k

Ki
k ← −2(R̄ik)−1 ∑

j∈child(k,i)B
j′
k P

j
k+1A

j
k

σik ← −2(R̄ik)−1 ∑
j∈child(k,i)B

j′
k P

j
k+1w

j
k

Ājk ← Ajk+BjkK
i
k, Dj

k = F jk +GjkK
i
k, ∀j ∈ child(k, i)

cik ← 2
∑
j∈child(k,i) Ā

j′
k P

j
k+1w

j
k

if k = N−1 then
Θj
N−1 ← −(R̄jN−1)−1Bj′N−1F

j′
N , ∀j ∈ child(N−1, i)

ΛjN−1 ← F jN Ā
j′
N−1, ∀j ∈ child(N−1, i)

else
Θj
k ← −(R̄jk)−1Bj′k , ∀j ∈ child(k, i)

Λjk ← Āj′k , ∀j ∈ child(k, i)
end if
P ik ← pik(Qik +Ki′

kRK
i
k) +

∑
j∈child(k,i) Ā

j′
k P

j
k+1Ā

j
k

end for
end for

The factor step is performed once before the execution
of the APG algorithm, and produces the matrices Φik, Θi

k,
Λik, Di

k, Ki
k and vectors σik and cik which are then used in

Algorithm 2 to calculate the dual gradient at a given vector
y. Given that the factor step can be executed on GPU and the
involved computations can be parallelized to a good extent,
its contribution to the overall computation time is negligible.
The sequences {xik}k,i and {uik}k,i that are produced by
Algorithm 2 define the primal iterate xν in (13b).

Notice that in Algorithm 1 we do not need to compute the
inverse of R̄ik; this matrix is symmetric and positive definite,
so various methods can be used to solve the corresponding
linear systems (e.g., Cholesky factorization).

Algorithm 2 Solve step

qiN ← yiN , ∀i ∈ N[1,µ(N)], %Backward substitution
for k = N − 1, . . . , 0 do

for i ∈ µ(k) do {in parallel}
uik ← Φiky

i
k +

∑
j∈child(k,i) Θj

kq
j
k+1 + σik

qik ← Di′
k y

i
k +

∑
j∈child(k,i) Λj′k q

j
k+1 + cik

end for
end for
x10 = p, %Forward substitution
for k = 0, . . . , N − 1 do

for i ∈ µ(k) do {in parallel}
uik ← Ki

kx
i
k + uik

for j ∈ child(k, i) do {in parallel}
xjk+1 ← Ajkx

i
k +Bjku

i
k + wjk

end for
end for

end for

Assuming that the row-dimension of all F ik is constant and
equal to nc, the backward substitution step of Algorithm 2
involves roughly O(Nµ(nx(nu +nc) +nu(nx +nc))) flops
and the forward step counts O(Nµ(n2x + 2nxnu)) flops –



both depend linearly on the prediction horizon. For a q-ary
tree, that is a scenario tree with constant branching factor q,
and assuming perfect parallelization, Algorithm 2 is equiva-
lent to a flop count of O(Nq(n2x +nxnc +nunc + 4nxnu)).

IV. SIMULATION RESULTS

To evaluate the proposed algorithm we formulate the
stochastic optimal control problem which corresponds to
the stochastic model predictive control problem for a linear
discrete-time system with additive and parametric uncertainty
as in (1). We consider a system of m aligned interconnected
masses by m− 1 linear spring-dampers of stiffness constant
κ = 1 and damping ratio β = 0.1. The manipulated variables
are the forces we may exercise on each spring along their
principal axes and the state variables are the positions and
speeds of the masses. We assume that the system dynamics
is obtained by discretizing the continuous-time dynamics
with sampling time Ts = 0.5 and is written as in (1) with
nx = 2m, and nu = m − 1. On the system state and input
variables we impose the constraints −5 ≤ xik ≤ 5 and
−1 ≤ uik ≤ 1 for all k ∈ N[0,1] and i ∈ N[1,µ(k)]. The
stage cost was chosen to be `(x, u, ξ) = x′Qx+ u′Ru with
Q = Inx

and R = Inu
.

APG was implemented in CUDA-C [27] as presented in
the previous section and matrix-vector multiplications were
performed using cuBLAS. We compared the GPU-based
implementation of APG with the interior point solver of
Gurobi which runs on a dual-core environment. The active set
algorithm of Gurobi, as well as qpOASES [28] and QPC [29]
give computation times that are not very competent, and will
therefore be omitted.

Computations on CPU were performed on a 4×2.60 GHz
Intel i5 machine with 8 GB RAM running 64-bit Ubuntu
14.04 and GPU-based computations were carried out on a
NVIDIA Tesla C2075 using the CUDA-6.0 API.

The dependence of the computation time on the size of
the scenario tree is shown in Fig. 2; trees considered in
this experiment had a fixed horizon N = 14 and in their
first stages were binary, i.e., had branching factor 2 and
eventually evolved without branching until the end of the
horizon. Notice that for a case of 8192 leaf nodes, Gurobi
takes 32.6 s on average (max. 46.8 s), whereas APG with
εg = εV = 0.005 requires just 1.3 s (max. 5.92 s). This
problem counts 6.39 · 105 primal variables, and 1.75 · 106

dual variables.
In Fig. 3 we show how the computation times scale with

the increase of the horizon of the problem. The problem that
corresponds to N = 60 counts 0.92 ·106 primal and 2.0 ·106

dual variables and notice that APG with εg = εV = 0.005
can solve it 17.6 times faster than Gurobi on average (6.43
times faster for the maximum time).

Compared to a MATLAB implementation, a very high
speedup is achieved on GPU for the same algorithm which
can be up to ×85 and scales with the problem size as shown
in Fig. 4. On average, the GPU implementation of APG for
a scenario tree of 8192 leaf nodes is as high as ×83.
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Fig. 2: Dependence of the computation time on the number of
scenarios for a system of 10 masses (20 states, 9 inputs, bound
constraints) with a fixed prediction horizon N = 14. Average
and maximum computation times reported here are for a random
sampling of 100 initial states x0 = p.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a dual accelerated proximal gra-
dient algorithm tailored for the solution of stochastic optimal
control problems. The computation of the dual gradient at
every iteration of the algorithm can be parallelized to offer a
significant benefit in terms of speed-up. In particular compu-
tations are executed in parallel across all nodes at every stage
of the scenario tree. As a result, for the special case of a tree
with branching only at the root node (known as a scenario
fan) stochastic MPC can be solved at the computational cost
of deterministic MPC provided that the GPU has adequate
computational capacity to accommodate the problem size.
A CUDA-C implementation of the algorithm that runs on a
GPU was found to outperform most state-of-the-art solvers
that run on a multi-core CPU.

Additional speedup can be obtained by using advanced
parallelization techniques for the computation of matrix-
vector products such as [30]. In CUDA, fine tuning can play a
crucial role for the overall performance, therefore the results
presented here are only indicative and can be improved.
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