

RA Computer Science and Applications

On Expressiveness and
Behavioural Theory of
Attribute-based
Communication

Yehia Abd Alrahman
Rocco De Nicola
Michele Loreti

IMT LUCCA CSA TECHNICAL

REPORT SERIES 10

 2015

#10

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/33751346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMT LUCCA CSA TECHNICAL REPORT SERIES #10/2015
© IMT Institute for Advanced Studies Lucca
Piazza San Ponziano 6, 55100 Lucca

Research Area
Computer Science and Applications

On Expressiveness and
Behavioural Theory of
Attribute-based
Communication

Yehia Abd Alrahman
IMT Institute for Advanced Studies Lucca

Rocco De Nicola
IMT Institute for Advanced Studies Lucca

Michele Loreti
Università degli Studi di Firenze

1

On Expressiveness and Behavioural Theory of Attribute-based

Communication

Yehia Abd Alrahman and Rocco De Nicola, IMT Institute for Advanced Studies
Michele Loreti, Università degli Studi di Firenze

Attribute-based communication is an interesting alternative to broadcast and binary communication when providing abstract
models for the so called Collective Adaptive Systems which consist of a large number of interacting components that dynamically
adjust and combine their behavior to achieve specific goals. A basic process calculus, named AbC , is introduced whose primary
primitive for interaction is attribute-based communication. An AbC system consists of a set of parallel components each of
which is equipped with a set of attributes. Communication takes place in an implicit multicast fashion, and interactions among

components are dynamically established by taking into account “connections” as determined by predicates over the attributes
exposed by components. First, the syntax and the semantics of AbC are presented, then expressiveness and effectiveness of the

calculus are demonstrated both in terms of the ability to model scenarios featuring collaboration, reconfiguration, and adaptation
and of the possibility of encoding a process calculus for broadcasting channel-based communication and other communication
paradigms. Behavioral equivalences for AbC are introduced for establishing formal relationships between different descriptions
of the same system.

Categories and Subject Descriptors: D.1.3 [Programming Techniques] Distributed programming; F.1.1 [Theory of Com-

putation] Models of Computation

General Terms: Languages, Theory

Additional Key Words and Phrases: Attribute-based Communication, Process Calculi, Encoding, Distributed Systems

1. INTRODUCTION

In a world of Internet of (every)Things (IoT), of Systems of Systems (SoS), and of Collective Adaptive
Systems (CAS), most of concurrent programming models still rely on communication primitives based on
direct (point-to-point), multicast with explicit addressing (i.e. IP multicast [Holbrook and Cheriton 1999]), or
broadcast communication. In our view, it is important to consider alternative basic interaction primitives and
in this paper we study the impact of a new paradigm that permits selecting groups of partners by considering
the (predicates over the) attributes they expose. The findings we report in this paper have been triggered by
our interest in CAS, see e.g. [Coronato et al. 2012], and the recent attempts to define appropriate abstractions
and linguistic primitives to deal with such systems, see e.g. SCEL [De Nicola et al. 2014] and AbC [Abd
Alrahman et al. 2015].

CAS consist of large numbers of interacting components which exhibit complex behaviors depending on
their attributes, objectives and actions. Decision-making in such systems is complicated and interaction
between components may lead to unexpected behaviors. CAS are open, in that components may enter or
leave the collective at anytime and might have different (potentially conflicting) objectives; so they need to
dynamically adapt to new requirements and contextual conditions. New engineering techniques to address
the challenges of developing, integrating, and deploying such systems are needed [Sommerville et al. 2012].
To move towards this goal, in our view, it is important to develop a theoretical foundation for this class

of systems that would help in understanding their distinctive features. In this paper, we concentrate our
attention on AbC , a calculus inspired by SCEL and focusing on a minimal set of primitives that define
attribute-based communication. AbC systems are represented as sets of parallel components, each is equipped
with a set of attributes whose values can be modified by internal actions. Communication actions (both
send and receive) are decorated with predicates over attributes that partners have to satisfy to make the

1:2 • Y. Abd Alrahman, R. De Nicola and M. Loreti

interaction possible. Thus, communication takes place in an implicit multicast fashion, and communication
partners are selected by relying on predicates over the attributes exposed in their interfaces. In this way, AbC
multicast is different from the usual IP multicast [Holbrook and Cheriton 1999] in the sense that components
are unaware of the existence of each other and they receive messages only if they satisfy senders requirements
while in IP multicast, the address reference of the group is explicitly included in the message. The semantics
for output actions in AbC is non-blocking while input actions are blocking in that they can only take place
through synchronization with an available sent message.
Many communication models addressing distributed systems have been introduced so far. Some of the

most well-known approaches include: channel-based models (e.g., CCS [Milner 1980], CSP [Hoare 1978],
π-calculus [Milner et al. 1992], etc.), group-based models [Agha and Callsen 1993], [Chockler et al. 2001], [Hol-
brook and Cheriton 1999], and publish/subscribe models [Eugster et al. 2003], [Bass and Nguyen 2002]. The
advantage of AbC over channel-based models is that interacting partners are anonymous to each other. They
interact by relying on the satisfaction of predicates over the attributes they expose rather than agreeing on
channels or names. This makes AbC more suitable for modeling scalable distributed systems as anonymity is
a key factor for scalability. Furthermore, the group formation in group-based models like Actorspace [Agha
and Callsen 1993] is static in the sense that spaces (i.e., groups) are explicitly specified in advance. while in
AbC , groups (i.e., collectives) are dynamically formed and destroyed at the time of interaction. There is no
explicit construct for group formation or destruction. On the other hand, the publish/subscribe model is
a special case of AbC where publishers send messages tagged with attributes without predicates and only
subscribers can check the compatibility of the exposed publishers attributes with their subscriptions.
The point we want to make is that the general concept of attribute-based communication can be used to

provide a general unifying framework to encompass such communication models.
Attributes make it easy to encode some interesting aspects; for instance, components localities in CAS can

be naturally modeled as attributes, channel-based interaction is simply modeled by exposing a single attribute
at the time of interaction, the name of the group is modeled as an attribute, and finally, the publish/subscribe
interactions are modeled by having a “tt” predicate (i.e., satisfied by all) at the publisher-side while taking
advantage of the possibility for the subscriber to accept only selected inputs.

The version of AbC presented in [Abd Alrahman et al. 2015] is very basic and has a number of limitations,
see the discussion in Section 6. In this paper, we majorly reconstruct the calculus, enrich it with behavioral
equivalences and assess its expressiveness and effectiveness. More specifically, the main contributions of this
paper are:

(1) The introduction of an extended and polyadic version of AbC calculus including name restriction,
multithreading, a match operator for acquiring knowledge about both the local status and the external
environment, a richer language for defining predicates, and an operator to specify the specific attributes
to be exposed during interaction;

(2) the study of the expressive power of the new version of AbC both in terms of the ability of modeling
scenarios featuring collaboration, reconfiguration, and adaptation and of the possibility of encoding a
process calculus for broadcast channel-based communication (bπ-calculus [Ene and Muntean 2001]) and
other communication paradigms;

(3) the definition of behavioral equivalences for AbC by first introducing a context based reduction barbed
congruence relation and then the corresponding extensional labelled bisimilarity;

(4) the correctness of the encoding of bπ-calculus [Ene and Muntean 2001] into AbC up to the introduced
equivalence.

In the following sections, the main features of the new AbC will be presented in a step-by-step fashion using
a running example from the swarm robotics domain described below. A complete AbC model of this scenario

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:3

Table I. : The syntax of the AbC calculus and the satisfaction relation Γ |= Π

(Components) C ::= Γ :P | C1‖C2 | νxC

(Processes) P ::=

(Inaction) 0

(Input) | Π(x̃).P

(Output) | (Ẽ)@Π ⊢s .P

(Update) | [a := E].P

(New) | new(x)P

(Match) | 〈Π〉P

(Choice) | P1 + P2

(Parallel) | P1|P2

(Call) | K

(Predicate) Π ::= tt | ff | E1 ✶ E2 | Π1 ∧Π2 | . . .

(Expression) E ::= v | x | a | this.a | . . .

(a)

Γ |= tt for all Γ

Γ |= ff for no Γ

Γ |= a ✶ v iff Γ(a) ✶ v

Γ |= Π1 ∧ Π2 iff Γ |= Π1 and Γ |= Π2

Γ |= Π1 ∨Π2 iff Γ |= Π1 or Γ |= Π2

Γ |= ¬Π iff not Γ |= Π

(b)

is given in Section 4.1.

A Swarm Robotics Scenario We consider a scenario where a swarm of robots spreads throughout a
given disaster area. The goal is to locate and rescue possible victims. All robots playing the same role execute
the same code. This code defines the functional behavior and a set of adaptation mechanisms regulating the
interactions among robots and their environments. All robots initially play the explorer role to search for
victims in the environment. Once a robot finds a victim, it changes its role to “rescuer” and communicates
victim’s information to nearby explorers. The collective (i.e., the swarm) starts forming in preparation for the
rescuing procedure. As soon as another robot receives victim’s information, it changes its role to “helping”
and moves to join the rescuers-collective. The rescuing procedure starts only when the collective formation is
complete. During exploration, in case of critical battery level, a robot stops moving and enters the power
saving mode until it is recharged. It is worth mentioning that some of the robot attributes are considered as
the projection of the robot internal state that is monitored by sensors and actuators.

The rest of the paper is organised as follows: Section 2 and Section 3 formally introduce the syntax and the
semantics of AbC calculus respectively. Section 4 provides evidences of the expressive power of AbC both in
terms of the application scenario and of encodings of other communication primitives. Section 5 studies the
behavioral theory of AbC . Finally, Section 6 discusses and surveys related work, while Section 7 concludes by
touching upon directions for future work. Due to space limitations, most proofs have been omitted; they can
be found in the accompanying file.

2. THE ABC CALCULUS

The syntax of the AbC calculus is reported in Table I (a). The top-level entities of the calculus are components
(C), a component consists of either a process P associated with an attribute environment Γ, denoted Γ :P ,
or a parallel composition C1‖C2 of two components. The attribute environment Γ :A 7→ V is a map from
attribute identifiers a ∈ A to values v ∈ V , where values can be also names. No restriction is enforced on the
attributes of different components, in the sense that different components may have equal or different sets of
attributes depending on the system being modeled. It is also possible to restrict the scope of a name say n, by
using the name restriction operator νn. For instance, the name n in C1 ‖ νnC2 is only visible within compo-

1:4 • Y. Abd Alrahman, R. De Nicola and M. Loreti

nent C2. Basically, this operator plays the same role of begin . . . end block in sequential programming languages.

Running example (step 1/6) The robotics scenario can be modeled in AbC as follows:

Robot1‖ . . . ‖Robotn

Each robot is modeled as an AbC component (Roboti) of the following form (Γi :PR). These components
execute in parallel and interact to achieve a specific goal. The attribute environment Γi specifies a set of
attributes for each robot. For instance, attribute role can take different values like “explorer”, “helping”,
“charger”, or “rescuer” according to the current state of the robot.

A process is either the inactive process 0, an action-prefixed process •.P (where “•” is replaced with an
action), a name restricted process new(x)P , a match process 〈Π〉P , a choice between two processes P1 + P2

, a parallel composition between two processes P1|P2, or a recursive call K. We assume that each process
has a unique process definition K , P . The construct new(x) has exactly the same meaning of νx, the only
difference is that the former works at the process level while the latter works at the component level. The
(Match) construct is used to check the status of a component or its environment. It is different from the
one in π-calculus in that it models event-based actions. This construct 〈Π〉P blocks the execution of process
P until the evaluation of the predicate Π under the local environment Γ equals to tt (i.e., JΠKΓ = tt). The
(Parallel) operator allows co-located processes (i.e., residing within the same component) to interact through
message-passing rather than just by sharing information via the local environment. In this way, informations
could be selectively shared rather than offered to all co-located processes. In what follows, We shall use the
notation JΠKΓ (resp. JEKΓ) to indicate the evaluation of a predicate Π (resp. an expression E) under the local
environment Γ.

Running example (step 2/6) The process PR running on a robot has the following form:

PR , (〈Π〉a1.P1 + a2.P2)|P3

This means that the behavior of PR is a parallel composition of two subprocesses where the one on the
left-hand side of “|” can either perform a1 and continue as P1 if the evaluation of Π under the local environment
equals to tt or perform a2 and continue as P2.

There are three kinds of actions. The attribute-based input Π(x̃) binds to the sequence x̃ the corresponding
received values from any process whose attributes satisfy the predicate Π; the attribute-based output (Ẽ)@Π ⊢s

evaluates the sequence of expressions Ẽ under the local environment Γ and then broadcasts the result of
the evaluation JẼKΓ to all processes whose attributes satisfy the predicate Π. Set s specifies the exposed
attributes names for interaction. This means that a process can control the visibility of its attributes while
broadcasting messages to other processes.
The update [a := E] sets the value of an attribute a to the evaluation of the expression E in the local

environment. A predicate Π either checks the value of an attribute by using some binary operator ✶ or is the
propositional combination of predicates. Predicate tt is satisfied by all attributes and is used for full broadcast
while ff is not satisfied by any attribute and in some situations is used to refer to an internal computation.

An Expression E is either a constant value v ∈ V, a variable x, an attribute name a, or a reference to
a local attribute name this.a. The properties of self-awareness and context-awareness that are typical for
CAS are made possible by allowing to read the values of local attributes referenced by a special name this
(i.e., this.a). These values either represent the current status of a component (i.e., self-awareness) or they
represent the external environment (i.e.,context-awareness). It is worth mentioning that the language of
predicates permits evaluating expressions locally. Expressions within predicates contain also variable names
and via predicates it is possible to check not only the attributes of the sender but also whether the sent

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:5

values satisfy specific conditions. For instance, component: Γ:(x > 2 ∧ role = helping)(x) receives a value
from a component with a “helping” role only if it is greater than 2.
We assume that our processes are closed (i.e., no free process variables), and free names can be used

whenever needed. The constructs νx, new(x), and Π(x̃) act as binders for names (i.e., in νxP , new(x)P ,
and Π(x̃).P , x and x̃ are bound). We use the notation bn(P) to denote the set of bound names of P . The
free names of P are those that do not occur in the scope of any binder and are denoted by fn(P). The
set of names of P is denoted by n(P). The notions of bound and free names is applied equally to compo-
nents, but in this case free names also includes all attribute values that do not occur in the scope of any binder.

Running example (step 3/6) By specifying the predicate Π and the actions a1 and a2 respectively, the
process PR becomes:

PR ,

(〈this.victimPerceived = tt〉

[this.state := stop].P1

+

(this.id, qry)@(role = rescuer ∨ role = helping)⊢{role} .P2

) | P3

The subprocess on the left-hand side of “|” allows the robot to recognize the presence of a victim by locally
reading the value of an attribute controlled by its sensors or to help other robots to rescue a victim by
sending queries for information about the victim from robots whose role is either “rescuer” or “helping”. If
the sensors recognize the presence of a victim and the value of “victimPerceived” becomes “tt”, the robot
updates its “state” to “stop” which triggers the actuators to stop movement and the process continues as P1,
otherwise the robot sends an query for information about the victim. This query contains the robot identity
“this.id” and a special name “qry” to indicate the request type. The attribute “role” is the only exposed
attribute for interaction.

3. ABC OPERATIONAL SEMANTICS

In this section, we define the operational semantics of AbC; it is defined in two steps. First, the transition

relation
�

7−−−−→� that describes the behavior of AbC processes is introduced. Second, this relation is used to

define the transition relation
�

−−−−→ that describes the behavior of AbC components.
All these transition relations are defined as a label transition system. A transition system is a triple (N, ℓ,

R) where N is either a process or a component, ℓ is a transition label, and R is a relation that associates
each process or component with another process or component.

3.1 Operational semantics of processes

We use the transition relation 7−−−→ ⊆ Proc × PLAB × Proc to define the behavior of a process where
Proc denotes a process and PLAB is the set of transition labels α which are generated by the following
grammar:

λ ::= νx̃Γ:(ṽ)@Π | Γ:(ṽ)@Π | [a := v] | τ

α ::= λ | ˜Γ:(ṽ)@Π

β ::= [a := v] | τ

The first three λ-labels are used to denote AbC output, input, and update actions respectively while the
τ -label denotes an output action with a false predicate. Both output and input labels include the exposed

1:6 • Y. Abd Alrahman, R. De Nicola and M. Loreti

Table II. : Discarding broadcast

(FBrd) (Ẽ)@Π1 ⊢s .P
˜Γ′:(ṽ)@Π2

7−−−−−−−→Γ (Ẽ)@Π1 ⊢s .P (FRcv)
JΠ1[ṽ/x̃]KΓ = Π′

1 (Γ′ 6|= Π′
1)

Π1(x̃).P
˜Γ′:(ṽ)@Π2

7−−−−−−−→Γ Π1(x̃).P

(FUpd) [a := E].P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ [a := E].P (FZero) 0
˜Γ′:(ṽ)@Π

7−−−−−−→Γ 0

(FSum)
P1

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P1 P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P2

P1 + P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P1 + P2

(FMatch1)
JΠKΓ = tt P

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P

〈Π〉P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ 〈Π〉P

(FMatch2)
JΠKΓ = ff

〈Π〉P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ 〈Π〉P
(FRes)

P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ P

new(x)P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ new(x)P

(FInt)
P1

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P1 P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P2

P1|P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P1|P2

Table III. : Process labeled semantics (Part 1)

(Brd)
JẼKΓ = ṽ JΠ1KΓ = Π

(Ẽ)@Π1 ⊢s .P
Γ|s:(ṽ)@Π
7−−−−−−−→Γ P

(Rcv)
JΠ1[ṽ/x̃]KΓ = Π′

1 (Γ′ |= Π′
1)

Π1(x̃).P
Γ′:(ṽ)@Π2
7−−−−−−−→Γ P [ṽ/x̃]

(Upd)
JEKΓ = v

[a := E].P
[a:=v]
7−−−−→Γ P

(Match)
JΠKΓ = tt P

λ
7−→Γ P ′

〈Π〉P
λ
7−→Γ P ′

(Sum)
P1

λ
7−→Γ P ′

1

P1 + P2
λ
7−→Γ P ′

1

(Rec)
P

α
7−→Γ P ′

K
α
7−→Γ P ′

K , P

(PRes)
P [y/x]

λ
7−→Γ P ′

new(x)P
λ
7−→Γ new(y)P ′

y 6∈ n(λ) ∧ y 6∈ fn(P)\{x} (tau) P
νx̃Γ′:(ṽ)@ff
7−−−−−−−−→Γ P ′

P
τ
7−→Γ P ′

(Hide1)
P

νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′ (Π ◮y) = ff

new(y)P
νx̃Γ′:(ṽ)@ff
7−−−−−−−−→Γ new(y)new(x̃)P ′

y ∈ n(Π) (Hide2)
P

νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′ (Π ◮y) 6= ff

new(y)P
νx̃Γ′:(ṽ)@Π◮y
7−−−−−−−−−−→Γ new(y)P ′

y ∈ n(Π)

(Open)
P [y/x]

Γ′:(ṽ)@Π
7−−−−−−→Γ P ′ Π 6= ff

new(x)P
νyΓ′:(ṽ)@Π
7−−−−−−−−→Γ P ′

y ∈ ṽ\n(Π) ∧ y 6∈ fn(C)\{x}

environment of the sending process Γ, the predicate that specifies the communication partners Π, and the
transmitted or received message ṽ. An output is called “bound” if its label contains a bound name (i.e., if
x̃ 6= ∅). The update label includes an attribute name a and the update value v. The α-labels include an

additional label ˜Γ:(ṽ)@Π to denote the case where a process is not able to receive a broadcast. As it will
be shown later in this section, this kind of labels is crucial to handle appropriately dynamic constructs like
Choice and Match. The notion of free names in α proceeds as follows:

— fn(νx̃Γ:(ṽ)@Π) = (fn(Π) ∪ fn(Γ) ∪ ṽ)\x̃

— fn(Γ:(ṽ)@Π) = fn(Π) ∪ fn(Γ) ∪ ṽ

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:7

Table IV. : Process labeled semantics (Part 2)

(PInt1)
P1

Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

1 P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P2

P1|P2
Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

1|P2

(PSyn)
P1

Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

1 P2
Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

2

P1|P2
Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

1|P
′
2

(PCom)
P1

νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′

1 P2
Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

2 Π 6= ff

P1|P2
νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′

1|P
′
2

x̃ ∩ fn(P2) = ∅ (PInt2)
P1

β
7−→Γ P ′

1

P1|P2
β
7−→Γ P ′

1|P2

(FCom)
P1

νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′

1 P2

˜Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

2 Π 6= ff

P1|P2
νx̃Γ′:(ṽ)@Π
7−−−−−−−−→Γ P ′

1|P
′
2

x̃ ∩ fn(P2) = ∅

— fn([a := v]) = {v}

— fn(˜Γ:(ṽ)@Π) = fn(Π) ∪ fn(Γ) ∪ ṽ

— fn(τ) = ∅

where fn(Γ) is the co-domain of Γ. The free names of a predicate depend on the structure of the predicate in
the sense that fn(tt) = fn(ff) = ∅, fn(a = v) = {v}, fn(¬Π) = fn(Π), and if the predicate is a composite
of subpredicates, the free names is the union of the free names of subpredicates. Only the output label has
bound names (i.e., bn(νx̃Γ:(ṽ)@Π) = x̃).
The transition relation 7−−−→Γ is formally defined in Table II, Table III, and Table IV. This relation is

parametrized with respect to the local environment Γ where the process resides. We start with the set of rules

that describes the meaning of the discarding label ˜Γ:(ṽ)@Π in Table II, since the rest sets of rules depend
on it. Rule (FBrd) states that any process that is ready to broadcast can discard broadcasts from other
processes and stay unchanged. Rule (FRcv) models that fact that if the sender does not satisfy the expected
requirements (Γ′ 6|= Π′

1) then the process will discard the broadcasted message and stay unchanged. Rule
(FUpd) models that fact that any process that is busy updating some of its attributes can discard broadcasts
from other processes and stay unchanged. Rule (FZero) states that process 0 always discards broadcasts
from other processes. Rule (FSum) models the fact that process P1 + P2 discards a broadcast if both its
subprocesses P1 and P2 are able to do so. Note that the choice is not dissolved after a broadcast refusal
and this is very important to capture the dynamic nature of Choice. Rule (FMatch1) states that process
〈Π〉P can discard a broadcast even if the evaluation result of its predicate Π under the local environment Γ
equals to (tt) as long as the process P is able to discard the same broadcast. Rule (FMatch2) models the
fact that if the evaluation result of predicate Π in process 〈Π〉P under the local environment Γ equals to ff,
then process 〈Π〉P can discard any broadcast from other processes. Note that the Match does not dissolve
after a broadcast refusal. Rule (FRes) models the fact that process new(x)P discards a broadcast if process
P does the same. Rule (FInt) has exactly the same meaning of Rule (FSum), the Parallel process discards a
broadcast if both its subprocesses do the same.

Running example (step 4/6) Assume that Robot1 whose role is “explorer” is busy searching for a victim
in some arena and that process P3 in our example can only perform Update actions. If a process residing in
Robot2 whose role is “charger” broadcasts information about a nearby charging station then process PR that
resides in Robot1 can evolve as follows:

PR

˜Γ′

2
:(info)@(role=explorer)

7−−−−−−−−−−−−−−−−−→Γ1
PR

1:8 • Y. Abd Alrahman, R. De Nicola and M. Loreti

Where Γ′
2 is the exposed portion of the local environment of Robot2 and Γ1 is the local environment of

Robot1. Process PR applies rule (FInt) and discards the broadcast because both its subprocesses can discard
the message. P3 is not ready for receiving messages, so it applies (FUpd) and stay unchanged. The choice
also discards the message by applying (FSum) because both its subprocesses can discard the message. The
subprocess on the left-hand side of + is not ready for receiving messages, so it applies (FMatch2) and stay
unchanged. The subprocess on the right-hand side of + applies (FBrd) and discards the broadcast, because
it is not ready for receiving messages.

The set of rules in Table III describes the sequential behavior of AbC processes. To simplify the presentation,
we omitted the symmetrical rule for Sum. Rule (Brd) evaluates the sequence of expressions Ẽ and the predicate
Π1 under the local environment Γ, computes the exposed portion of the local environment Γ|s, sends these
information in the broadcast, and continues as P . The exposed portion of Γ in the broadcasted message is
computed as follows:

Γ|s =

{

Γ(a) if a ∈ s

⊥ otherwise
(1)

Rule (Rcv) replaces the free occurrences of the input sequence variables x̃ in the receiving predicate Π1

with the corresponding message values ṽ and evaluates Π1 under the local environment Γ. If the attached
sender environment Γ′ satisfies the evaluated predicate Π′

1, the input action is performed and the substitution
[ṽ/x̃] is applied to the continuation process P . Rule (Upd) evaluates the expression E under the local
environment Γ to compute v, performs the update action and continue as P . Rule (Match) evaluates
the predicate Π under the local environment Γ. If the evaluation equals to tt, process 〈Π〉P proceeds
by performing an action with a λ-label and continues as P ′ if process P can perform the same action.
Rule (Sum) and its symmetric represent the non-deterministic choice between the subprocesses P1 and
P2 in the sense that if any of them say P1 performs an action with a λ-label and becomes P ′

1 then the
overall process continues as P ′

1. Rule (Rec) is standard for process definition. Rule (PRes) models the
fact that process new(x)P with a restricted name x can still perform an action with a λ-label as long
as x does not occur in the names of the label and process P can perform the same action. If necessary,
we allow renaming with conditions that ensure a coherent behavior. Note that name restriction operator
does not dissolve after this transition. Rule (tau) models the fact that if a process broadcasts a message
with a false predicate then the whole message is not exposed and is considered as an internal action.

Table V. : Predicate restriction •◮x

tt◮x = tt

ff◮x = ff

(a = m)◮x =

{

ff if x = m

a = m otherwise

(Π1 ∧Π2)◮x = Π1◮x ∧ Π2◮x

(Π1 ∨Π2)◮x = Π1◮x ∨ Π2◮x

(¬Π)◮x = ¬(Π◮x)

Rules (Hide1) and (Hide2) are unique to AbC and introduce a
new concept that we call predicate restriction “•◮x” as reported in
Table V. In process calculi where broadcasting is the basic primitive
for communication like CSP [Hoare 1978] and bπ-calculus [Milner
et al. 1992], broadcasting on a private channel is equal to performing
an internal action and no other process can observe the broadcast
except the one that performed it. For example in bπ-calculus, assume
that P = νa(P1‖ P2)‖ P3 where P1 = āv.Q, P2 = a(x).R, and P3 =
b(x). Now if P1 broadcasts on a then only P2 can observe it since
P2 is included in the scope of the restriction. P3 and other processes
only observe an internal action, so P

τ
−→ νa(Q‖R[v/x])‖ b(x).

This idea is generalized in the new AbC to what we call predicate
restriction “•◮x” in the sense that we either hide a part or the
whole predicate using the predicate restriction operator “• ◮ x”
where x is a restricted name and the “•” is replaced with a predicate. If the predicate restriction operator
returns ff then we get the usual hiding operator like in CSP and bπ-calculus because the resulting label is not

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:9

exposed according to (tau) rule (i.e., broadcasting with a false predicate). If the predicate restriction operator
returns something different from ff then the message is exposed with a smaller predicate and the restricted
name remains private. Note that any private name in the message (i.e., x̃) remains private if (Π ◮y) = ff

(i.e., the broadcast is not exposed) as in rule (Hide1) otherwise it is not private anymore as in rule (Hide2).
In other words, messages are sent on a channel that is partially exposed. This kind of behavior is very useful
when modeling user-network interaction. The user observes the network as a single node and interacts with it
through a public channel and is not aware of how the messages are propagated through the network. This
transparency comes from the fact that networks propagate messages between their nodes through private
channels while exposing the interesting messages to users through public channels.

For instance, if a network broadcasts a message with the predicate (keyword = this.topic ∨ capability =
fwd) where the name “fwd” is restricted then the message is exposed to the user at every node with
forwarding capability in the network with this predicate (keyword = this.topic). Network nodes observe the
whole predicate but they receive the message only because they satisfy the other part of the predicate (i.e.,
(capability = fwd)). In the following Lemma, we prove that the satisfaction of a restricted predicate Π◮x by
an attribute environment Γ does not depend on the name x that is occurring in Γ.

Lemma 3.1. Γ |= Π◮x iff ∀v. Γ[v/x] |= Π◮x for any environment Γ, predicate Π, and name x.

Proof. The proof is carried out by induction on the structure of Π. See Appendix A, Page 22.

Rule (Open) models the fact that a process has the ability to communicate a private name to other processes
and this name is included in the message itself ṽ. This rule is different from the rule that you find in π-calculus
in the sense that AbC represents multiparty settings. This implies that the scope of the private name x is not
expanded to include a group of other processes but rather the scope is dissolved. In other words, when a
private name is communicated in multiparty settings then the name is not private anymore. Note that, a
process that is broadcasting on a false predicate (i.e., Π = ff) cannot open the scope.

The set of rules in Table IV describes the parallel behavior of AbC processes. To simplify the presentation,
we omitted the symmetrical rules for PInt1, PInt2, PCom, and FCom. Rule (PInt1) models the interleaving
when performing an input action in the sense that process P1 inputs a broadcast and continues as P ′

1 while
P2 discards the broadcast and stays still. Rule (PSyn) states that two processes P1 and P2 that execute in
parallel can synchronize while performing an input action. This models the fact that the same broadcast is
received by the both P1 and P2. Rule (PCom) states that two processes P1 and P2 that execute in parallel
can communicate if P1 can broadcast a message with a predicate that is different from ff and P2 is willing to
receive that message. Rule (PInt2) models the interleaving between the processes P1 and P2 when performing
an action with a β-label (i.e., [a := v] and τ). Finally, Rule (FCom) models the non-blocking nature of the
broadcast in the sense that P1 can broadcast messages irrespective of the presence of listeners and this is
modeled by allowing P2 to discard the broadcast. This means that P1 is not really aware of the message
reception. Note that the input action is blocking in that it can only take place through synchronization with
an available broadcast. Since the broadcasted message might have a bound name (i.e., x̃ 6= ∅), in both rules
(PCom) and (FCom), the side condition is added to avoid name clashing.

Running example (step 5/6) The process PR running on a robot, say Robot1 with an attribute environment
Γ and Γ(id) = 1, apart from the behavior of P3 (not specified here) or the possibility to discard incoming
broadcasts, has the following possible transitions:

PR
[this.state:=stop]
7−−−−−−−−−−−→Γ1

P1|P3

PR
Γ′:(1, qry)@(role=rescuer ∨ role=helping)
7−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Γ1

P2|P3

Where Γ′ = Γ1|{role} according to Equation 1.

1:10 • Y. Abd Alrahman, R. De Nicola and M. Loreti

Table VI. : Component labeled semantics

(C-Brd)
P

Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

Γ :P
Γ′:(ṽ)@Π
−−−−−−→ Γ :P ′

(C-Rcv)
P

Γ′:(ṽ)@Π
7−−−−−−→Γ P ′

Γ :P
Γ′:(ṽ)@Π
−−−−−−→ Γ :P ′

(Γ |= Π)

(C-FRcv) Γ :P
Γ′:(ṽ)@Π
−−−−−−→ Γ :P (Γ 6|= Π) (C-Fail)

P
˜Γ′:(ṽ)@Π

7−−−−−−→Γ P

Γ :P
Γ′:(ṽ)@Π
−−−−−−→ Γ :P

(C-Upd)
P

[a:=v]
7−−−−→Γ P ′

Γ :P
τ
−→ Γ[a 7→ v] : P ′

(C-tau)C
νx̃Γ:(ṽ)@ff
−−−−−−−→ C′

C
τ
−→ C′

(Res)
C[y/x]

γ
−→ C′

νxC
γ
−→ νyC′

y 6∈ n(γ) ∧ y 6∈ fn(C)\{x} (LHide)
P

τ
7−→ΓP

′

Γ :P
τ
−→ Γ :P ′

(EHide1)
C

νx̃Γ:(ṽ)@Π
−−−−−−−−→ C′ (Π ◮y) = ff

νyC
νx̃Γ:(ṽ)@ff
−−−−−−−→ νyνx̃C′

y ∈ n(Π) (EHide2)
C

νx̃Γ:(ṽ)@Π
−−−−−−−−→ C′ (Π ◮y) 6= ff

νyC
νx̃Γ:(ṽ)@Π◮y
−−−−−−−−−−→ νyC′

y ∈ n(Π)

(EOpen)
C[y/x]

Γ:(ṽ)@Π
−−−−−−→ C′ Π 6= ff

νxC
νyΓ:(ṽ)@Π
−−−−−−−−→ C′

y ∈ ṽ\n(Π) ∧ y 6∈ fn(C)\{x} (LOpen)
P

νxΓ′:(ṽ)@Π
7−−−−−−−−→ΓP

′

Γ :P
νxΓ′:(ṽ)@Π
−−−−−−−−→ Γ :P ′

(τ-Int)
C1

τ
−→ C′

1

C1‖C2
τ
−→ C′

1‖C2

(Sync)
C1

Γ:(ṽ)@Π
−−−−−−→ C′

1 C2
Γ:(ṽ)@Π
−−−−−−→ C′

2

C1 ‖ C2
Γ:(ṽ)@Π
−−−−−−→ C′

1 ‖ C′
2

(Com)
C1

νx̃Γ:(ṽ)@Π
−−−−−−−−→ C′

1 C2
Γ:(ṽ)@Π
−−−−−−→ C′

2 Π 6= ff

C1 ‖ C2
νx̃Γ:(ṽ)@Π
−−−−−−−−→ C′

1 ‖ C′
2

x̃ ∩ fn(C2) = ∅

3.2 Operational semantics of component

We use the transition relation −−−→ ⊆ Comp × CLAB × Comp to define the behavior of a component
where Comp denotes a component and CLAB is the set of transition labels γ which are generated by the
following grammar:

γ ::= νx̃Γ:(ṽ)@Π | Γ:(ṽ)@Π | τ

The first two labels denote AbC output and input actions respectively while the τ -label denotes either an
update action or an output action with a false predicate. The notions of free and bound names are exactly
the same as defined in the previous section. The definition of the transition relation −−−→ depends on the
definition of 7−−−→ in the previous section in the sense that the behavior of the process-level is lifted to the
component-level. The transition relation −−−→ is formally defined in Table VI. To simplify the presentation,
we omitted the symmetrical rules for τ-Int and Com. Rule (C-Brd) models the fact that a component Γ :P can
broadcast a message ṽ with a predicate Π, if its running process P is willing to do so. Γ′ refers to the exposed
portion of the local environment Γ that is used for communication. Rule (C-Rcv) states that a component Γ :P
can receive a broadcast only when its local environment Γ satisfies the predicate of the broadcast Π and its
running process is willing to receive. Rule (C-FRcv) states that any component Γ :P can discard a broadcast
and stay unchanged if its local environment Γ does not satisfy the predicate of the broadcast Π. On the other
hand, rule (C-Fail) states that any component Γ :P can discard a broadcast and stay unchanged if its running

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:11

process is willing to do so. Rule (C-Upd) states that a component Γ :P can update the value of attribute a to
v by performing an internal action, if its running process P is willing to perform an update action for attribute
a. Notation Γ[a 7→ v] denotes the environment update: Γ[a 7→ v](a′) = Γ(a′) if a 6= a′ and v otherwise. Rules
C-tau, Res, EHide1, EHide2, EOpen, and Sync have the same meaning of the rules tau, PRes, Hide1,
Hide2, Open, and PSyn respectively. The only difference is that the former rules work at the component
level while the latter work at the process level. Rule (LHide) models local computations at the process level
as internal actions at the component level. Rule (LOpen) exports private names from the process level to the
component level. Rule (τ-Int) models the interleaving between components C1 and C2 when performing an
internal action. Rule (Com) states that two components C1 and C2 that execute in parallel can communicate if
C1 can broadcast a message with a predicate that is different from ff and C2 can possibly receive that message.

Running example (step 6/6) If we further specify the subprocess P2 in the process PR running on the
robots, it becomes:

Query ,

(this.id, qry)@(role = rescuer ∨ role = helping) ⊢{role} .

(((role = rescuer ∨ role = helping) ∧ reply = ack)

(vpos, c, reply).P ′
2

+

Query

)

Basically, the explorer robot continuously sends queries to other robots whose role is either “rescuer” or
“helping”. Once a reply comes containing the victim position “vpos”, the number of robots required to rescue
the victim “c”, and an acknowledgement “reply”, the explorer binds these values in the continuation process
P ′
2 and continues execution.
Let us assume that the role of Robot2 is “rescuer”, Robot3 is “helping”, and all other nearby robots are

explorers. Robot3 has already received the victim information from Robot2 and now Robot3 is the only one
who is responsible for communicating these information to other robots. Robot1 has already sent a message
containing its identity “this.id” and “qry” request and Robot3 caught it. Now by using rule (C-Brd), Robot3
sends the information back to Robot1 by generating this transition.

Γ3 :PR3

Γ:(vloc, 2, ack)@(id=1)
−−−−−−−−−−−−−−−→ Γ3 :P

′
R3

where Γ = Γ3|{role}. On the other hand, Robot1 applies rule (C-Rcv) to receive victim information and
generates this transition.

Γ1 :PR1

Γ:(vloc, 2, ack)@(id=1)
−−−−−−−−−−−−−−−→

Γ1 :P
′
2[vloc/vpos, 2/c, ack/reply]

These robots can perform the above transitions since Γ1 |= (id = 1) and Γ |= ((role = rescuer ∨ role =
helping) ∧ reply = ack). Other robots which are not addressed by communication discard the broadcast by
applying rule (C-FRcv) (i.e., every robot has a unique id, so only Γ1 |= (id = 1)). Now the overall system
evolves by applying rule (Com) as follows:

1:12 • Y. Abd Alrahman, R. De Nicola and M. Loreti

S
Γ:(vloc, 2, ack)@(id=1)
−−−−−−−−−−−−−−−→

Γ1 :P
′
2[vloc/vpos, 2/c, ack/reply]

‖ Γ2 :PR2
‖ Γ3 :P

′
R3

‖ . . . ‖ Γn :PRn

4. THE EXPRESSIVENESS OF ABC CALCULUS

In this section, we show the expressive power of AbC by first providing a complete model for the swarm
robotics scenario that is introduced in Section 1 and used as a running example in previous sections. Second,
we show how some other communication models and programming frameworks can be seamlessly translated
into AbC . The idea is to demonstrate how natural and intuitive it is to use AbC to model systems where
collaboration, adaptation, and reconfiguration are the main concerns. And also to show that attribute-based
communication is rich enough to encode the already existing approaches.

4.1 A swarm robotics model in AbC

The swarm robotics model exploits the fact that a process running on a robot can either only read the
values of some attributes that are controlled by its sensors (i.e., their values are provided by sensors) or read
and update the other attributes in its local environment. Reading the values of the attributes controlled by
sensors either provides the robot with information about its environment and this models what is called
(context-awareness) or provides the robot with information about its current status and this models what is
called (self-awareness). For instance, reading the value of the collision attribute in the local environment
Γ(collision) = tt makes the robot aware that an imminent collision with a wall in the arena has been detected
and this triggers an adaptation mechanism to change the direction of the robot. On the other hand, reading
the value of the batteryLevel attribute in the local environment Γ(batteryLevel) = 15% makes the robot aware
that its battery level is critical (i.e., < 20%) and this triggers an adaptation mechanism to stop movement by
mean of an actuation signal for halting the actuators and the robot enters the power saving mode.
We assume that each robot has a unique identity (id) and since the robot acquires information about its

environment or its own status by mean of reading the values provided by sensors, no additional assumptions
about the initial state are needed. It is worth mentioning that sensors and actuators are not modeled by AbC
as they represent the robot internal infrastructure while AbC model represents the programmable behavior
of the robot (i.e., its running code).

The robotics scenario is modeled as a set of parallel AbC components, each component represents a robot
(Robot1‖ . . . ‖Robotn) and each robot has the following form (Γi : PR). The behavior of a single robot is

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:13

modeled in the following AbC process PR:

PR ,

(〈this.victimPerceived = tt〉

[this.state := stop].

[this.vPosition := vLoc].

[this.count := 3].

[this.role := rescuer].

(role = explorer ∧ y = qry)(x, y).

(this.vPosition, this.count, ack)@(id = x) ⊢{role}

+

Query

)| RandomWalk | IsMoving

The robot follows a random walk in exploring the disaster arena. The robot recognizes the presence of a
victim by mean of locally reading the value of an attribute controlled by its sensors or help other robots
to rescue a victim by mean of sending queries for information about the victim from other robots whose
role is either “rescuer” or “helping”. If the sensors recognize the presence of a victim and the value of
“victimPerceived” becomes “tt”, the robot updates its “state” to “stop” which triggers an actuation signal
to the actuators to stop movement, computes the victim position and the number of the required robots to
rescue the victim and store them in the attributes “vPosition” and “count” respectively, changes its role to
“rescuer”, and waits for queries from nearby explorers. Once a query is received, the robot sends back the
victim information to the requesting robot addressing it by its “id” and the collective (i.e., the swarm) starts
forming in preparation for the rescuing procedure.

On the other hand, if the victim is still not perceived, the robot continuously sends queries for information
about the victim to the nearby robots whose role is either “rescuer” or “helping”. This query contains
the robot identity “this.id” and a special name “qry” to indicate the request type. If an acknowledgement
arrives containing victim’s information, the robot changes its role to “helping” and start the helping procedure.

Remark 4.1. The interaction between an explorer robot currently running “Query” and a rescuer robot
that is waiting for a request from nearby explorers suggests a possible way of modeling point-to-point
communication like in π-calculus [Milner et al. 1992].

Query ,

(this.id, qry)@(role = rescuer ∨ role = helping) ⊢{role} .

(((role = rescuer ∨ role = helping) ∧ reply = ack)

(vpos, c, reply).

[this.role := helping].

HelpingRescuer

+

Query

)

1:14 • Y. Abd Alrahman, R. De Nicola and M. Loreti

The “helpingRescuer” process defined below is triggered by receiving the victim information from the
rescuer-collective as mentioned above.

HelpingRescuer ,

[this.vPosition := vpos].

[this.target := vpos].

(〈this.position = this.target〉

[this.role := rescuer]

|

〈c > 1〉

(role = explorer ∧ y = qry)(x, y).

(this.vPosition, c− 1, ack)@(id = x) ⊢{role})

The helping robot stores the victim position in the attribute “vPosition” and updates its target to be the
victim position. This triggers the actuators to move to the specified location. The robot waits until it reaches
the victim and at the same time is willing to respond to other robots queries, if more than one robot is needed
for the rescuing procedure. Once the robot reaches the victim (i.e., its position coincides with the victim
position), the robot changes its role to “rescuer” and join the rescuer-collective.
The “RandomWalk” process is defined below. This process computes a random direction to be followed

by the robot. Once a collision is detected by the proximity sensor, a new random direction is calculated.

RandomWalk , [this.direction := 2πrand()].

〈this.collision = tt〉

RandomWalk

Finally, process “IsMoving” captures the status of the battery level in a robot at any time. Once the battery
level drops into a critical level (i.e., 20%), the robot changes its status to “stop” which results in halting the
actuators and the robot enters the power saving mode. The robot stays in this mode until it is recharged to
at least 90% and then it starts moving again.

IsMoving ,

〈this.state = move ∧ ¬(this.batteryLevel > 20%)〉

[this.state := stop].

〈this.batteryLevel > 90%〉

[this.state := move].

IsMoving

For simplifying the presentation, we do not model the charging task in this scenario and we assume that this
task is accomplished according to some predefined procedure. It is worth mentioning that if more victims are
found in the arena, different rescuer-collectives will be spontaneously formed to rescue them. To avoid forming
multiple collectives for the same victim, we assume that sensors only detect isolated victims. Light-based
message communication [OGrady et al. 2010] between robots can be used. Thus once a robot has reached a
victim, it signals with a specific color light to other robots not to discover the victim next to it [Pinciroli et al.
2015]. Since we do not model the failure recovery in this scenario, we assume that all robots are fault-tolerant
and they cannot fail. For more details, a runtime environment for the SCEL language where AbC is inspired
from can be found in the following website “http://jresp.sourceforge.net”. Different case studies from different
domains have been implemented in an attribute-based fashion.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:15

Table VII. : Encoding bπ-calculus into AbC

(Component Level)

L P MΓ , Γ :L P M

(Process Level)

L nil M , 0 L τ.P M , [Portτ := τ].L P M

L P +Q M , L P M + L Q M

L a(x̃).P M , Π(x̃).L P M with Π = (Porta = a)

L āx̃.P M , (x̃)@Π ⊢{Porta} .L P M with Π = (Porta = a)

L (rec A〈x̃〉).P)〈ỹ〉 M , (A , L P M)

L P‖Q M , L P M|L Q M

L νxP M , new(x)L P M

L〈x = y〉P,Q M , 〈x = y〉L P M + 〈x 6= y〉L Q M

4.2 Encoding the bπ-calculus

In this section, we study the relative expressiveness of attribute-based communication, mainly in comparison
to channel-based communication with value-passing. We choose bπ-calculus [Ene and Muntean 2001] as
a representative for channel-based process calculi and translate it into AbC . What makes bπ-calculus a
proper choice is that bπ-calculus uses broadcast instead of binary synchronization as a basic primitive for
communication which makes it a sort of variant of value-passing CBS [Prasad 1991]; channels in bπ-calculus
can be also communicated like in π-calculus [Milner et al. 1992] which is considered as one of the richest
paradigm introduced for concurrency so far. Based on a separation result presented in [Ene and Muntean
1999], it has been proved that bπ-calculus and π-calculus are incomparable in the sense that there does not
exist any uniform, parallel-preserving translation from bπ-calculus into π-calculus up to any “reasonable”
equivalence. On the other hand, in π-calculus a process can non-deterministically choose the communication
partner while in bπ-calculus cannot. Like bπ-calculus, AbC components broadcast one at a time and are
instantaneously heard by all components satisfying the predicate of the broadcast. However, a possible way
of modeling π-calculus point-to-point communication into AbC is already hinted in Remark 4.1, Section 4.1.
Proving the existence of a uniform and parallel-preserving encoding of bπ-calculus into AbC up to some
reasonable equivalence ensures at least the same separation result between AbC and π-calculus.
The encoding of a bπ-calculus process P is rendered as an AbC component Γp :P where the process

environment Γp is defined as follows.

Definition 4.2 (Process Environment). Let P be a bπ-process and Ch be a countable set of channels
such that Ch ⊆ n(P) ∪ {τ}, then there exists a corresponding process environment Γp in AbC such that
Γp = {(portx, x)| for all x ∈ Ch}.

The only feature of bπ-calculus that is not present in AbC is the possibility of specifying the name of a
channel where the exchange happens instantaneously (i.e., the communication channel instantly appears
at the time of communication and disappears afterwards). AbC relies on the satisfaction of predicates
over attributes for driving the communication instead. So, these attributes are always available in the local
environment and cannot disappear at any time. However, this is not a problem in the sense that we can
exploit the fact that AbC processes have the ability to specify the set of exposed attributes for communication.

1:16 • Y. Abd Alrahman, R. De Nicola and M. Loreti

By simply restricting this set to be a singleton (i.e., every broadcast contains only a single exposed attribute),
we can have the same behavior. This approach can be illustrated in the following encoding:

L āx̃.P M , (x̃)@Π ⊢{Porta} .L P M with Π = (Porta = a)

L a(x̃).P M , Π(x̃).L P M with Π = (Porta = a)

Remark 4.3. The attributes values in AbC can be modified by means of internal actions. Changing
attributes values introduces opportunistic interactions between components in the sense that an attribute
update means an opportunity of interaction. The is because selecting interaction partners depends on the
predicate over the attributes they expose. Changing the values of these attributes implies changing the
set of possible partners and this is why modeling adaptivity in AbC is quite natural. This possibility is
missing in bπ-calculus and all other channel-based process calculi since internal actions and the opportunity
of interaction are orthogonal in their models.
We argue that finding a compositional encoding for the following simple behavior is very difficult if not

impossible in channel-based process calculi.

Γ1 : (msg)@(tt) ⊢{b} ‖

Γ2 : [this.a := 5].P | (b ≤ this.a)(x).Q

Initially Γ1(b) = 3 and Γ2(a) = 2. Changing the value of the local attribute a by the left-hand side process in
the second component provides an opportunity of receiving the message “msg” from the process residing in
the first component.

The full encoding of bπ-calculus into AbC is reported in Table VII. The formal definition which specifies
what properties are preserved by this encoding and a proof sketch for the correctness of the encoding up to a
specific behavioral equivalence will be presented in Section 5.3.

4.3 Encoding interaction patterns

In this section, we provide insights on how the concept of attribute-based communication can be exploited
to provide a general unifying framework encompassing different interaction patterns tailored for multiway
interactions. We show how group-based [Agha and Callsen 1993], [Chockler et al. 2001], [Holbrook and
Cheriton 1999] and publish/subscribe-based [Eugster et al. 2003], [Bass and Nguyen 2002] interaction patterns
can be naturally rendered in AbC . Since these interaction patterns do not have formal descriptions, we
proceeds by relying on examples.

We start with group-based interaction patterns and show that when encoding a group name as an attribute
in AbC , the constructs for joining or leaving a given group can be encoded as attribute updates, see the
following example:

Γ1 : (msg)@(group = a) ⊢{group} ‖

Γ2 : (group = b)(x)| [this.group := c] ‖
...

Γ7 : (group = b)(x)| [this.group := a]

initially Γ1(group) = b, Γ2(group) = a, and Γ7(group) = c. Component 1 wants to send the message “msg”
to group “a”. Only Component 2 is allowed to receive it as it is the only member of group “a”. Component 2
can leave group “a” and join “c” by performing an update action. On the other hand, if Component 7 joined
group “a” before “msg” is emitted then both of Component 2 and Component 7 will receive the message.

It is worth mentioning that a possible encoding of group communication into bπ-calculus has been introduced
in [Ene and Muntean 2001]. The encoding is relatively complicated and does not guarantee the causal order

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:17

of message reception. “Locality” is neither a first class citizen in bπ-calculus nor in AbC . However, “locality”
(in this case, the group name) can be naturally encoded as an attribute in AbC while in bπ-calculus, it needs
much more efforts.

Publish/subscribe interaction patterns can be considered as special cases of the attribute-based ones. For
instance, a natural encoding of the topic-based publish/subscribe model [Eugster et al. 2003] into AbC can
be accomplished by allowing publishers to broadcast messages with “tt” predicates (i.e., satisfied by all) and
only subscribers can check the compatibility of the exposed publishers attributes with their subscriptions, see
the following example:

Γ1 : (msg)@(tt) ⊢{topic} ‖

Γ2 : (topic = this.subscription)(x) ‖
...

Γn : (topic = this.subscription)(x) ‖

Apparently, the publisher broadcasts the message “msg” tagged with a specific topic for all possible subscribers
(the predicate is satisfied by all) and the subscriber receives the message if the topic matches its subscription.
For the sake of presentation, we abstract from the existence of a possible broker/mediator between the
publishers and subscribers. However, a detailed model can be easily developed.
The dynamic settings of the attributes in AbC and the possibility of controlling their visibility during

interactions are the main reasons why AbC enjoys a greater flexibility and expressive power.

5. BEHAVIORAL THEORY FOR ABC

This section follows a standard approach in concurrency in defining behavioral equivalences. We begin with a
reduction barbed congruence and then we introduce an equal definition of labeled bisimulation for AbC . At
the end of this section, we show a formal definition for the encoding presented in Section 4.2 and we sketch
the proof of its correctness up to the strong reduction barbed congruence.

5.1 Reduction barbed congruence

In the behavioral theory, two terms are considered as equivalent if they cannot be distinguished by any
external observer (i.e., they have the same observable behavior). For instance, in π-calculus both message
transmission and reception are considered to be observable. However, this is not the case in AbC because of
the non-blocking nature of the broadcast. Only message transmission can be observed.

Note that the transition C
Γ:(ṽ)@Π
−−−−−→ C ′ does not guarantee that C has performed an input action but rather

it means that C might have performed an input action. This is because that transition might happen due to
the application of one of three different rules in Table VI: (C-Rcv) which guarantees reception and either
(C-FRcv) or (C-Fail) which guarantee non-reception. Hence, input action cannot be observed by an external
observer and the output action is the only observable in AbC . Following Milner and Sangiorgi [Milner and
Sangiorgi 1992], we use the term “barb” as synonymous of observable. In what follows, we shall use the
following notations:

— =⇒ denotes
τ
−→∗

—
γ
=⇒ denotes =⇒

γ
−→=⇒ if (γ 6= τ)

—
γ̂
=⇒ denotes =⇒ if (γ = τ) and

γ
=⇒ otherwise.

— _ denotes {
γ
−→ | γ is an output or γ = τ}

— _∗ denotes(_)∗

1:18 • Y. Abd Alrahman, R. De Nicola and M. Loreti

A context C[•] is a component term with a hole, denoted by [•] and AbC conetxts are generated by the
following grammar:

C[•] ::= [•] | [•]‖C | C‖[•] | νx[•]

Definition 5.1 (Barb). Let C↓Π mean that component C can broadcast a message with a predicate Π (i.e.,

C
νx̃Γ:(ṽ)@Π
−−−−−−−→ where Π 6= ff). We write C ⇓Π if C _∗ C ′ ↓Π.

1

Definition 5.2 (Barb Preservation). R is barb-preserving iff for every (C1, C2) ∈ R, C1↓Π implies C2 ⇓Π

Definition 5.3 (Reduction Closure). R is reduction-closed iff for every (C1, C2) ∈ R, C1 _ C ′
1 implies

C2 _∗ C ′
2 and (C ′

1, C
′
2) ∈ R

Definition 5.4 (Context Closure). R is context-closed iff for every (C1, C2) ∈ R and for all contexts C[•],
(C[c1], C[c2]) ∈ R

Now, everything is in place to define reduction barbed congruence.

Definition 5.5 (Weak Reduction Barbed Congruence). A symmetric relation R over the set of AbC - com-
ponents which is barb-preserving, reduction-closed, and context-closed.

Two components are weak reduction barbed congruent, written C1
∼= C2, if (C1, C2) ∈ R for some reduction

barbed congruent relation R. The strong reduction congruence “≃” is obtained in a similar way by replacing
⇓ with ↓ and _∗ with _ .

Lemma 5.6. if C1
∼= C2 then

• C1 ⇓Π iff C2 ⇓Π

• C1 _∗C ′
1 implies C2 _∗ ∼= C ′

1

Proof. The proof follows easily by definition.

5.2 Bisimulation Proof Methods

In this section, we define an appropriate notion of bisimulation for AbC components. We prove that our
labeled bisimilarity coincides with reduction barbed congruence, and thus represents a valid tool for proving
that two components are reduction barbed congruent.

Definition 5.7 (Weak Labelled Bisimulation). A symmetric binary relation R over the set of AbC - compo-
nents is a weak bisimulation if for every action γ, whenever (C1, C2) ∈ R and

• γ is of the form τ, Γ:(ṽ)@Π, or (νx̃Γ:(ṽ)@Π with Π 6= ff), it holds that

C1
γ
−→ C ′

1 implies C2
γ̂
=⇒ C ′

2 and (C ′
1, C

′
2) ∈ R

Two components C1 and C2 are weak bisimilar, written C1 ≈ C2 if there exists a weak bisimulation R relating
them. Strong bisimilarity, “∼”, is defined in a similar way by replacing =⇒ with −→.

It is easy to prove that ∼ and ≈ are equivalence relations by relying on the classical arguments of [Milner
1989]. However, our labeled bisimilarity enjoys a much more interesting property: the closure under any
context. So, in the next two lemmas, we prove that our labeled bisimilarity is preserved by name restriction
and parallel composition.

1From now on, we use the predicate Π to denote only its meaning, not its syntax.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:19

Lemma 5.8 (∼ and ≈ are preserved by parallel composition). Let C1 and C2 be two compo-
nents such that:

— C1 ∼ C2 implies C1‖C ∼ C2‖C for all components C.

— C1 ≈ C2 implies C1‖C ≈ C2‖C for all components C.

Proof. It is sufficient to prove that the relation R = {(C1‖C,C2‖C)| for all C such that (C1 ∼ (≈) C2)}
is a bisimulation. See Appendix B, Page 23.

Lemma 5.9 (∼ and ≈ are preserved by name restriction). Let C1 and C2 be two components
such that:

— C1 ∼ C2 implies νxC1 ∼ νxC2 for all names x.

— C1 ≈ C2 implies νxC1 ≈ νxC2 for all names x.

Proof. it is sufficient to prove that the relation R = {(C,B)| C = νxC1, B = νxC2 with (C1 ∼ (≈) C2)}
is a bisimulation. See Appendix B, Page 24.

As an immediate results of Lemma 5.8 and Lemma 5.9, ∼ and ≈ are congruence relations (i.e., closed under
any context).

Now, we can show that our label bisimilarity represents a proof technique for reduction barbed congruence.

Theorem 5.10 (Soundness). Let C1 and C2 be two components such that:

— C1 ∼ C2 implies C1 ≃ C2.

— C1 ≈ C2 implies C1
∼= C2.

Proof. (we only prove the weak case)
It is sufficient to prove that bisimilarity is barb-preserving, reduction-closed, and context-closed.

— (Barb-preservation): By the definition of the barb C1↓Π if C1
νx̃Γ:(ṽ)@Π
−−−−−−−→ for an output label νx̃Γ:(ṽ)@Π

with Π 6= ff. As (C1 ≈ C2), We have that also C2
νx̃Γ:(ṽ)@Π
=======⇒ and C2 ⇓Π.

— (Reduction-closure): C1 _ C ′
1 means that either C1

τ
−→ C ′

1 or C1
νx̃Γ:(ṽ)@Π
−−−−−−−→ C ′

1. As (C1 ≈ C2), then there

exists C ′
2 such that either C2 =⇒ C ′

2 or C2
νx̃Γ:(ṽ)@Π
=======⇒ C ′

2 with (C ′
1 ≈ C ′

2). So C2 _∗ C ′
2.

— (Context-closure): Let (C1 ≈ C2) and let C[•] be an arbitrary AbC-context. By induction on the structure
of C[•] and using Lemma 5.8 and Lemma 5.9, We have that C[c1] ≈ C[c2].

In conclusion, We have that (C1
∼= C2) as required.

Finally, we prove that our labeled bisimilarity is more than a proof technique, but rather it represents a
complete characterization of the reduction barbed congruence.

Lemma 5.11 (Completeness). Let C1 and C2 be two components such that:

— C1 ≃ C2 implies C1 ∼ C2.

— C1
∼= C2 implies C1 ≈ C2.

Proof. It is sufficient to prove that the relationR = {(C1, C2) | such that (C1 ≃ (∼=) C2)} is a bisimulation.
See Appendix B, Page 24.

As a direct consequence of Theorem 5.10 and Lemma 5.11, we have that bisimilarity and reduction barbed
congruence coincide.

Theorem 5.12 (Characterization). Bisimilarity and reduction barbed congruence coincide.

1:20 • Y. Abd Alrahman, R. De Nicola and M. Loreti

5.3 The correctness of encoding

In this section, we provide a formal definition and a proof sketch for the encoding (translation) presented
in Section 4.2. We begin with the properties that our encoding preserves. Basically, when translating a
term from bπ-calculus into AbC , we would like the translation: to be compositional in the sense that it is
independent from contexts; to be independent from the names of the source term (i.e., name invariance); to
preserve the parallel composition (i.e., Homomorphic w.r.t. ‘|’); to be faithful in the sense it preserves the
observable behavior (i.e., barbs) and reflects divergence; to translate output (input) action in bπ-calculus
into a corresponding output (input) in AbC , and finally the translation should preserve the operational
correspondence between the source and target calculus. This includes that the translation should be complete
(i.e., every computation of the source term can be mimked by its translation) and it should be sound (i.e.,
every computation of a translated term corresponds to some computation of its source term).

Definition 5.13 (Divergence). P diverges, written P ⇑, iff P _ω where ω denotes an infinite number of
reductions.

Definition 5.14 (Uniform Encoding). An encoding L � M : L1 → L2 is uniform if it enjoys the following
properties:

1. (Homomorphic w.r.t. ‘|’): L P | Q M , L P M | L Q M

2. (Name invariance): L Pσ M , L P Mσ, for any permutation of names σ.

3. (Faithfulness): P ⇓1 iff L P M ⇓2;P ⇑1 iff L P M ⇑2

4. Operational correspondance
1. (Operational completeness): if P _1 P ′ then L P M_∗

2 ≃2 L P ′ M where ≃ is the strong barbed
equivalence of L2.

2. (Operational soundness): if L P M _2 Q then there exists a P ′ such that P_∗
1P

′ and Q _∗
2 ≃2 L P ′ M,

where ≃ is the strong barbed equivalence of L2.

Lemma 5.15 (Operational Completeness). if P _bπ P ′ then L P M _∗ ≃ L P ′ M where ≃ is the
strong barbed equivalence of AbC.

Proof. (Sketch) The proof proceeds by induction on the shortest transition of _bπ. We have several
cases depending on the structure of the term P . We only consider the case of parallel composition when

communication happens: P1‖P2
νỹāx̃
−−−→ P ′

1‖P
′
2.

By applying induction hypotheses on the premises P1
νỹāx̃
−−−→ P ′

1 and P2
a(x̃)
−−−→ P ′

2, we have that L P1 M _∗

≃ L P ′
1 M and L P2 M _∗ ≃ L P ′

2 M. We can apply (C-Brd) if ỹ = ∅ or (LOpen) otherwise. We consider (C-Brd)

only and (LOpen) follows in the same way.

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

2 M

L P1 M|L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M|L P ′
2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M|L P ′
2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and we have that:
L P ′

1‖P
′
2 MΓ ≃ Γ :L P ′

1 M|L P ′
2 M as required. See full proof at Appendix C, Page 25.

The idea that we can mimic each transition of bπ-calculus by exactly one transition in AbC implies that
soundness and completeness of the operational correspondence can be even proved in a stronger way as in
corollary 1 and 2.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:21

Corollary 5.16 (Strong Completeness). if P _bπP
′ then ∃Q such that Q ≡ LP ′M and LP M _AbC Q.

Corollary 5.17 (Strong Soundness). if L P M _AbC Q then Q ≡ L P ′ M and P _bπ P ′

Theorem 5.18. The encoding L � M : bπ → AbC is uniform.

Proof. Definition 5.14(1) and 5.14(2) hold by construction. Definition 5.14(4) holds by Lemma 5.15,
Corollary 5.16, and Corollary 5.17 respectively. Definition 5.14(3) holds easily and as a result of the strong
formulation of operational correspondence in Corollary 5.16, and Corollary 5.17, this encoding preserves the
observable behavior and cannot introduce divergence.

6. DISCUSSION AND RELATED WORK

In this section, we discuss the main differences between the version of AbC presented in this paper and the
one of [Abd Alrahman et al. 2015], then we touch on related works concerning calculi with primitives that
permit selecting/restricting communication partners.

The main aim of the new version of AbC is to overcome some of the limitations of the original one and enrich
the calculus with new primitives to effectively control interactions in an attribute-based fashion. Indeed, the
new calculus is much more richer and we can say that only the basic idea of attribute-based communication
survived from the old one. Even the operational semantic model is different, the new AbC is equipped with
a labeled operational semantics rather than just with a reduction based one. The main advantage of the
labeled semantics is that it can be used to provide a compositional account of systems and thus to study the
interaction of different components in different contexts. The reduction semantics, instead, can only be used
to describe the overall system evolution, and not to study the impact of a given component on the rest.

The most notable novelty of the current version of AbC calculus is that components can specify the visibility
of attributes during interaction. As opposed to the previous version where components attach the whole
attribute environment alongside the broadcasted message, in the current version, a component can decide
the attributes to be exposed. This new feature enhances the expressive power of AbC , as already shown in
Section 4, and also helps in avoiding improper behaviors. Consider the following example:

(Old AbC)

Γ1:(v1)@(port1 = a) + (v2)@(port2 = b) ‖

Γ2:(port1 = a)(x) + (port2 = b)(x)

(New AbC)

Γ1:(v1)@(port1 = a) ⊢{port1} +(v2)@(port2 = b) ⊢{port2} ‖

Γ2:(port1 = a)(x) + (port2 = b)(x)

where Γ1 = Γ2 = {(port1, a), (port2, b)}. Apparently, the receiving component on right-hand side of “‖” is
waiting to receive two different messages, one from a component satisfying (port1 = a) and the other from a
component satisfying (port2 = b). However, in the previous version of AbC since the whole Γ1 is exposed
in the interaction, the message v1 can be received by any of the two alternative subprocesses. On the other
hand, this behavior can be avoided in the new version of AbC since components can decide what attribute to
expose. So in this example, they either expose “port1” or “port2”.
Other differences are that the new version has a polyadic (i.e., multi-valued) instead of a monadic

communication, name restriction operators both at the component and process levels, and it supports
multi-threaded components through a parallel composition operator at the process level. Moreover the new
AbC has specific operators (this.− and match) for guaranteeing self-awareness and context-awareness, and
its predicate language is richer and permits considering the sent values when selecting partners.

1:22 • Y. Abd Alrahman, R. De Nicola and M. Loreti

As already mentioned in the introduction, the main source of inspiration of AbC has been the SCEL
language [De Nicola et al. 2013], [De Nicola et al. 2014] that had been introduced to handle the challenges
posed by the design of ensembles [Sanders and Smith 2008] of autonomic components. In SCEL, autonomic
components are equipped with dedicated knowledge repositories, and different components cooperate by
storing and retrieving information about themselves and their environment. Each component is equipped
with an interface where its attributes are published and predicates over attributes are used to dynamically
specify the communication partners.
Clearly there are many other calculi that aim at providing tools for specifying and reasoning about

communicating systems, here we would like to touch only on those tailored for group communications while
identifying the ones enjoying specific properties.
CBS [Prasad 1991], [Prasad 1995], [Ostrovsky et al. 2002] is probably the first process calculus to rely

on broadcast rather than on channel-based communication. It captures the essential features of broadcast
communication in a simple and natural way. Whenever a process transmits a value, all processes running
in parallel and ready to input catch the broadcast. The CPC calculus [Given-Wilson et al. 2010] relies on
pattern-matching. Input and output prefixes are generalized to patterns whose unification enables a two-way,
or symmetric, flow of information and partners are selected by matching inputs with outputs and testing
for equality. The attribute π-calculus [John et al. 2008], [John et al. 2010] aims at constraining interaction
by considering values of communication attributes. A λ-function is associated to each receiving action and
communication takes place only if the result of the evaluation of the function with the provided input falls
within a predefined set of values. The imperative π-calculus [John et al. 2009] is a recent extension of the
attribute π-calculus with a global store and with imperative programs used to specify constraints. The
broadcast Quality Calculus of [Vigo et al. 2013] deals with the problem of denial-of-service by means of
selective input actions. It inspects the structure of messages by associating specific contracts to inputs, but
does not provide any mean to change the input contracts during execution.
All the above mentioned calculi, just like bπ-calculus [Ene and Muntean 1999], [Ene and Muntean 2001]

considered in Section 4.2, can be modelled in AbC ; the advantage of the latter is that the dynamic setting of
the attributes and the possibility of hiding some of them during specific interactions offers greater flexibility
and expressiveness.

7. CONCLUDING REMARKS

We have introduced an extended and polyadic version of AbC calculus for attribute-based communication
initially proposed in [Abd Alrahman et al. 2015]. Apart from the primitives of attribute-based input and
output, the extended version includes: name restriction, multithreading, a match operator, a rich language
for predicates, and the ability to specify which attributes to be exposed during interactions. We have
investigated the expressive power of AbC both in terms of its ability to model scenarios featuring collaboration,
reconfiguration, and adaptation and of its ability to encode a powerful process calculus for channel-based
communication and other interaction paradigms. We have defined behavioral equivalences for AbC and finally
we proved the correctness of the proposed encoding up to some reasonable equivalence.

We plan to investigate the impact of bisimulation in terms of axioms, proof techniques, etc. and to consider
also alternative behavioral relations like testing preorders. Further attention will be also dedicated to the
actual implementation of the different linguistic abstractions that we have introduced. We also plan to define
a full-fledged language based on AbC operators and to test its effectiveness not only as a tool for encoding
calculi but also for dealing with case studies from different application domains.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:23

ACKNOWLEDGMENT

This research has been supported by the European projects IP 257414 ASCENS and STReP 600708
QUANTICOL, and by the Italian project PRIN 2010LHT4KM CINA.

APPENDIX

A. SECTION 3.1 PROOFS

Proof of Lemma 3.1. The “only if” implication is straightforward. For the “if” implication, the proof is
carried out by induction on the structure of Π.

—if (Π = tt): according to Table V, (tt◮x = tt) which means that the satisfaction of tt does not depend on
x (i.e., Γ |= tt◮x iff Γ |= tt). From Table I (b), We have that tt is satisfied by all Γ, so it is easy to that if
Γ |= tt◮x then ∀v. Γ[v/x] |= tt◮x as required.

—if (Π = ff): according to Table V, (ff◮x = ff) which again means that the satisfaction of ff does not depend
on x. From Table I (b), We have that ff is not satisfied by any Γ, so this case holds vacuously.

—if (Π = (a = m)◮x): according to Table V, We have two cases:
—if (x = m) then Π = ff and by induction hypotheses, the case holds vacuously.
—if (x 6= m) then Π = (x = m), according to Table I (b), we have that Γ |= (a = m) iff Γ(a) = m.
Since x 6= m, then Γ(a) = m holds for any value of x in Γ and we have that if Γ |= (a = m)◮x then
∀v. Γ[v/x] |= (a = m)◮x as required.

—if (Π = Π1 ∧ Π2): according to Table V, (Π1 ∧ Π2)◮x = (Π1◮x ∧ Π2◮x). From Table I (b), We have that
Γ |= (Π1◮x ∧Π2◮x) iff Γ |= Π1◮x and Γ |= Π2◮x. By induction hypotheses, We have that if (Γ |= Π1◮x
then ∀v. Γ[v/x] |= Π1◮x) and if (Γ |= Π2◮x then ∀v. Γ[v/x] |= Π2◮x).
Γ |= (Π1◮x∧Π2◮x) iff ∀v.(Γ[v/x] |= Π1◮x∧Γ[v/x] |= Π2◮x) and now We have that if Γ |= (Π1 ∧Π2)◮x
then ∀v. Γ[v/x] |= (Π1 ∧Π2)◮x as required.

—if (Π = Π1 ∨Π2): This case if analogous to the previous one.

—if (Π = ¬Π): According to Table V, (¬Π)◮x = ¬(Π◮x). From Table I (b), We have that Γ |= ¬(Π◮x) iff
not Γ |= (Π◮x). By induction hypotheses, We have that if (not Γ |= Π◮x then ∀v. not Γ[v/x] |= Π◮x)
and now We have that if Γ |= ¬(Π)◮x then ∀v. Γ[v/x] |= ¬(Π)◮x as required.

and this concludes the proof.

B. SECTION 5.2 PROOFS

The following Lemma is useful to prove that a component with a restricted name does not need any renaming
when performing a τ action. We will use it in the proof of Lemma 4

Lemma B.1. C[y/x] =⇒ C ′ implies νxC =⇒ νyC ′

Proof. The proof proceeds by induction on the length of the derivation =⇒n

—Base Case: n = 0
C[y/x] ≡α C ′ which implies νxC ≡α νyC[y/x]

—For all k ≤ n: C[y/x] =⇒k C ′ implies νxC =⇒k νyC ′

if C[y/x] =⇒n + 1 C ′, then we have that C[y/x] =⇒n C ′′ τ
−→ C ′

This implies that νxC =⇒n νyC ′′ and C ′′ τ
−→ C ′ which means that νyC ′′ τ

−→ νyC ′.
In other words, C ′′ τ

−→ C ′ implies C ′′[y/y]
τ
−→ C ′. Now we can apply (Res) rule. Since y 6∈ fn(C ′′)\{y} and

y 6∈ n(τ), we have that νyC ′′ τ
−→ νyC ′ and we have that νxC =⇒ νyC ′ as required.

and this concludes the proof.

1:24 • Y. Abd Alrahman, R. De Nicola and M. Loreti

Proof of Lemma 5.8. (we only prove the weak case)
It is sufficient to prove that the relation R = {(C1‖C,C2‖C)| for all C such that (C1 ≈ C2)} is a weak

bisimulation. Depending on the last applied rule to derive the transition C1‖C
γ
−→ Ĉ, we have several cases.

—C1‖C
τ
−→ Ĉ, then the last applied rule is (τ -Int) or its symmetry.

—if (τ -Int) is applied then Ĉ = C ′
1‖C and C1

τ
−→ C ′

1. Since C1 ≈ C2 then there exists C ′
2 such that C2 =⇒ C ′

2

and (C ′
1 ≈ C ′

2). By applying (τ -Int) several times, we have that C2‖C =⇒ C ′
2‖C and (C ′

1‖C,C
′
2‖C) ∈ R

—if the symmetry of (τ -Int) is applied then Ĉ = C1‖C
′ and C

τ
−→ C ′. So it is immediate to have that

C2‖C =⇒ C2‖C
′ and (C1‖C

′, C2‖C
′) ∈ R

—C1‖C
νx̃Γ:(ṽ)@Π
−−−−−−−→ Ĉ with x̂ ∩ fn(C) = ∅ and Π 6= ff, then the last applied rule is (Com) or its symmetry.

—if (Com) is applied then Ĉ = C ′
1‖C

′, C1
νx̃Γ:(ṽ)@Π
−−−−−−−→ C ′

1 and C
Γ:(ṽ)@Π
−−−−−→ C ′. Since C1 ≈ C2 then there

exists C ′
2 such that C2

νx̃Γ:(ṽ)@Π
=======⇒ C ′

2 and (C ′
1 ≈ C ′

2). By an application of (Com) and several application

of (τ -Int), we have that C2‖C
νx̃Γ:(ṽ)@Π
=======⇒ C ′

2‖C
′ and (C ′

1‖C
′, C ′

2‖C
′) ∈ R

—if the symmetry of (Com) is applied then Ĉ = C ′
1‖C

′, C1
Γ:(ṽ)@Π
−−−−−→ C ′

1 and C
νx̃Γ:(ṽ)@Π
−−−−−−−→ C ′. So it is

immediate to have that C2‖C
νx̃Γ:(ṽ)@Π
=======⇒ C ′

2‖C
′ and (C ′

1‖C
′, C ′

2‖C
′) ∈ R

—C1‖C
Γ:(ṽ)@Π
−−−−−→ Ĉ, then the last applied rule is (Sync) and Ĉ = C ′

1‖C
′, C1

Γ:(ṽ)@Π
−−−−−→ C ′

1, and C
Γ:(ṽ)@Π
−−−−−→ C ′.

Since C1 ≈ C2 then there exists C ′
2 such that C2

Γ:(ṽ)@Π
=====⇒ C ′

2 and (C ′
1 ≈ C ′

2). By an application of (Sync)

and several application of (τ -Int), we have that C2‖C
Γ:(ṽ)@Π
=====⇒ C ′

2‖C
′ and (C ′

1‖C
′, C ′

2‖C
′) ∈ R.

The strong case of bisimulation (∼) follows in a similar way.

Proof of Lemma 5.9. (we only prove the weak case)
It is sufficient to prove that the relation R = {(C,B)| C = νxC1, B = νxC2 with (C1 ≈ C2)} is a weak

bisimulation. We have several cases depending on the performed action in deriving the transition C
γ
−→ Ĉ.

—if (γ = τ) then only rule (Res) is applied. if (Res) is applied, then C1[x/x]
τ
−→ C ′

1 and Ĉ = νxC ′
1. As

(C1 ≈ C2), We have that C2[x/x] =⇒ C ′
2 with (C ′

1 ≈ C ′
2). By Lemma B.1 and several applications of (Res),

we have that B =⇒ νxC ′
2 and (νxC ′

1, νxC
′
2) ∈ R.

—if (γ = νỹΓ:(ṽ)@Π) then either rule (EOpen), (Res), (EHide1) or (EHide2) is applied.

—if (EOpen) is applied, then x ∈ (ṽ ∪ ỹ)\n(Π) and C1[z/x]
Γ:(ṽ)@Π
−−−−−→ C ′

1 with Ĉ = C ′
1. As (C1 ≈ C2), We

have that C2[z/x]
Γ:(ṽ)@Π
=====⇒ C ′

2 with (C ′
1 ≈ C ′

2). By Lemma B.1, an application of (EOpen), and several

applications of (Res), we have that B
νỹΓ:(ṽ)@Π
=======⇒ C ′

2 and (C ′
1, C

′
2) ∈ R.

—if (Res) is applied, then C1[z/x]
νỹΓ:(ṽ)@Π
−−−−−−−→ C ′

1 and Ĉ = νzC ′
1. As (C1 ≈ C2), We have that

C2[z/x]
νỹΓ:(ṽ)@Π
=======⇒ C ′

2 with (C ′
1 ≈ C ′

2). By Lemma B.1 and several applications of (Res), we have that

B
νỹΓ:(ṽ)@Π
=======⇒ νzC ′

2 and (νzC ′
1, νzC

′
2) ∈ R

—if (EHide1) is applied, then C1
νỹΓ:(ṽ)@Π
−−−−−−−→ C ′

1 and Ĉ = νxνỹC ′
1. As (C1 ≈ C2), We have that C2

νỹΓ:(ṽ)@Π
=======⇒

C ′
2 with (C ′

1 ≈ C ′
2). By Lemma B.1, an application of (EHide1), and several applications of (Res), we

have that B
νỹΓ:(ṽ)@ff

======⇒ νxνỹC ′
2 and (νxνỹC ′

1, νxνỹC
′
2) ∈ R

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:25

—if (EHide2) is applied, then C1
νỹΓ:(ṽ)@Π
−−−−−−−→ C ′

1 and Ĉ = νxC ′
1. As (C1 ≈ C2), We have that C2

νỹΓ:(ṽ)@Π
=======⇒ C ′

2

with (C ′
1 ≈ C ′

2). By Lemma B.1, an application of (EHide2), and several applications of (Res), we have

that B
νỹΓ:(ṽ)@Π◮x
========⇒ νxC ′

2 and (νxC ′
1, νxC

′
2) ∈ R

—if (γ = Γ:(ṽ)@Π) then x 6∈ n(γ) and only rule (Res) is applied. So we have that C1[y/x]
Γ:(ṽ)@Π
−−−−−→ C ′

1 and

Ĉ = νyC ′
1. As (C1 ≈ C2), We have that C2[y/x]

Γ:(ṽ)@Π
=====⇒ C ′

2 with (C ′
1 ≈ C ′

2). By Lemma B.1 and several

applications of (Res), we have that B
Γ:(ṽ)@Π
=====⇒ νyC ′

2 and (νyC ′
1, νyC

′
2) ∈ R

The strong case of bisimulation (∼) follows in a similar way.

Proof of Lemma 5.11. (we only prove the weak case)
It is sufficient to prove that the relation R = {(C1, C2) |C1

∼= C2} is a weak bisimulation.

1. Suppose that C1
νx̃Γ:(ṽ)@Π
−−−−−−−→ C ′

1 for any Γ,Π and a sequence of values ṽ where Π 6= ff. We build up a
context to mimic the effect of this action.
Our context has the following form:

C[•] , [•] ‖
∏

i∈I

Γi :Πi(x̃i).〈x̃i = ṽ〉(x̃i)@(in = a) ⊢{in}

‖
∏

j∈J

Γj : (in = a)(x̃j).(x̃j)@(out = b) ⊢{out}

where I ∩ J = ∅, Γi|{in} |= (in = a), Γj |= (in = a), and the names a and b are fresh. Πi is an
arbitrary predicate. We use the notation 〈x̃i = ṽ〉 to denote 〈(xi,1 = v1) ∧ (xi,2 = v2) ∧ · · · ∧ (xi,n = vn)〉
where n = |x̃i| and

∏

i∈I

Γi :Pi to denote the parallel composition of all components Γi :Pi, for i ∈ I. Now

assume that (Γi |= Π) and (Γ |= Πi). We let Πi to range over any predicate that is satisfied by Γ (i.e., the
exposed environment in the broadcast of C1). Intuitively, the existence of a barb on (in = a) indicates that
the action has not yet happened, whereas the presence of a barb on (out = b) together with the absence of
the barb on (in = a) ensures that the action happened.

As ∼= is context-closed, C1
∼= C2 implies C[C1] ∼= C[C2]. Since C1

νx̃Γ:(ṽ)@Π
−−−−−−−→ C ′

1, it follows by Lemma 2
that:

C[C1] ⇒ C ′
1 ‖

∏

i∈I

Γi :0 ‖
∏

j∈J

Γj : (ṽ)@(out = b) ⊢{out} = Ĉ1

with Ĉ1 6⇓ (in=a) and Ĉ1 ⇓(out=b).

The reduction sequence above must be matched by a corresponding reduction sequence C[C2] ⇒ Ĉ2
∼= Ĉ1

with Ĉ2 6⇓ (in=a) and Ĉ2 ⇓(out=b). The conditions on the barbs allow us to get the structure of the above
reduction sequence as follows:

C[C2] ⇒ C ′
2 ‖

∏

i∈I

Γi :0 ‖
∏

j∈J

Γj : (ṽ)@(out = b) ⊢{out}
∼= Ĉ1

This implies that C2
νx̃Γ:(ṽ)@Π
=======⇒ C ′

2 . Reduction barbed congruence is preserved by name restriction, so we
have that νaνbĈ1

∼= νaνbĈ2 and C ′
1
∼= C ′

2 as required.

1:26 • Y. Abd Alrahman, R. De Nicola and M. Loreti

2. Suppose that C1
Γ:(ṽ)@Π
−−−−−→ C ′

1 for any Γ,Π and a sequence of values ṽ. We build up the following context
to mimic the effect of this action.

C[•] , [•] ‖ Γ′ : (ṽ)@(in = a) ⊢{in} .(ṽ)@(out = b) ⊢{out}

where Γ = Γ′|{in}, Π = (in = a), and the names a and b are fresh. As ∼= is context-closed, C1
∼= C2 implies

C[C1] ∼= C[C2]. Since C1
Γ:(ṽ)@Π
−−−−−→ C ′

1, it follows by Lemma 2 that:

C[C1] ⇒ C ′
1 ‖ (ṽ)@(out = b) ⊢{out} = Ĉ1

with Ĉ1 6⇓ (in=a) and Ĉ1 ⇓(out=b).

The reduction sequence above must be matched by a corresponding reduction sequence C[C2] ⇒ Ĉ2
∼= Ĉ1

with Ĉ2 6⇓ (in=a) and Ĉ2 ⇓(out=b) as follows:

C[C2] ⇒ C ′
2 ‖ (ṽ)@(out = b) ⊢{out}

∼= Ĉ1

This implies that C2
Γ:(ṽ)@Π
=====⇒ C ′

2. Reduction barbed congruence is preserved by name restriction, so we
have that νaνbĈ1

∼= νaνbĈ2 and C ′
1
∼= C ′

2 as required.

3. Suppose that C1
τ
−→ C ′

1. This case is straightforward.

The strong case of bisimulation (∼) follows in a similar way.

C. SECTION 5.3 PROOFS

Proof of Lemma 5.15. The proof proceeds by induction on the shortest transition of →bπ. We have
several cases depending on the structure of the term P .

—if P , nil: This case is immediate L nil MΓ , Γ : 0

—if P , τ.Q: We have that τ.Q
τ
→ Q and it is translated to L τ.P MΓ , Γ : [Portτ := τ].L Q M. We only can

apply rule (C-Upd) to mimic this transition.

[Portτ := τ].L Q M
[Portτ :=τ]
7−−−−−−−→Γ L Q M

Γ : [Portτ := τ].L Q M
τ
−→ Γ[Portτ 7→ τ] : L Q M

Now it is not hard to see that L Q MΓ ≃ Γ[Portτ 7→ τ] : L Q M. They are even structural congruent.

—if P , a(x̃).Q: We have that a(x̃).Q
a(z̃)
→ Q[z̃/x̃] and it is translated to

L a(x̃).Q MΓ , Γ : (Porta = a)(x̃).L Q M. We only can apply rule (C-Rcv) to mimic this transition.

(Porta = a)(x̃).L Q M
Γ′:(z̃)@Π
7−−−−−−→Γ L Q M[z̃/x̃]

Γ :(Porta = a)(x̃).L Q M
Γ′:(z̃)@Π
−−−−−−→ Γ :L Q M[z̃/x̃]

(Γ |= Π)

where Π = (Porta = a) and Γ′ = {(porta, a)} and again, it’s not hard to see that:
L Q[z̃/x̃] MΓ ≃ Γ :L Q M[z̃/x̃].

—if P , āx̃.Q: This is analogous to the previous case but with applying (C-Brd) instead.

—The fail rules for nil, τ , input and output are proved in a similar way but with applying (C-Fail) instead.

—if P , νxQ: We have that either νxQ
γ
−→ νxQ′ , νxQ

τ
−→ νxνỹQ′ or νxQ

νxνỹāz̃
−−−−−→ Q′ and it is translated to

L νxQ MΓ , Γ : new(x).L Q M. We prove each case independently.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:27

—Case νxQ
γ
−→ νxQ′ : By applying induction hypotheses on the premise Q

γ
−→ Q′, we have that L Q M _∗

≃ L Q′ M. We can use either (C-Brd), (C-Rcv), or (C-Upd) to mimic transition depending on the performed
action. We only consider (C-Brd) and the other cases follow in the same way.

L Q M[y/x]
Γ′:(ṽ)@Π
7−−−−−−→Γ L Q′ M[y/x]

new(x)L Q M
Γ′:(ṽ)@Π
7−−−−−−→Γ new(y)L Q′ M[y/x]

Γ :new(x)L Q M
Γ′:(ṽ)@Π
−−−−−−→ Γ :new(y)L Q′ M[y/x]

And We have that L νxQ′ MΓ ≃ Γ :new(y)L Q′ M[y/x] as required.

—Case νxQ
τ
−→ νxνỹQ′ : By applying induction hypotheses on the premise Q

νỹνx̄z
−−−−→ Q′, we have that

L Q M _∗ ≃ L Q′ M. We only can use (C-tau) to mimic transition depending on the performed action.

L Q M
νỹΓ′:(ṽ)@Π
7−−−−−−−→Γ L Q′ M

new(x)L Q M
νỹΓ′:(ṽ)@ff

7−−−−−−−→Γ new(x)new(ỹ)L Q′ M

Γ :new(x)L Q M
νỹΓ′:(ṽ)@ff

−−−−−−−→ Γ :new(x)new(ỹ)L Q′ M

Γ :new(x)L Q M
τ
−→ Γ :new(x)new(ỹ)L Q′ M

where Π = (portx = x) and Γ′ = {(portx = x)}. We have that L νxνỹQ′ MΓ ≃ Γ :new(x)new(ỹ)L Q′ M as
required.

—Case νxQ
νxνỹāz̃
−−−−−→ Q′: follows in a similar way.

—Case νxQ
α:
−→: follows in a similar way.

—if P , ((rec A〈x̃〉).P)〈ỹ〉): This case is trivial.

—if P , P1 + P2: We have that either P1 + P2
α
−→ P ′

1 or P1 + P2
α
−→ P ′

2. We only consider the first case

with P1
α
−→ P ′

1 and the other case follows in a similar way. This process is translated to L P1 + P2 MΓ , Γ :

L P1 M+L P2 M. By applying induction hypotheses on the premise P1
α
−→ P ′

1, we have that L P1 M _∗ ≃ L P ′
1 M.

We cn apply either (C-Brd), (C-Rcv), (C-Upd), or (LOpen) to mimic this transition depending on the
performed action. We consider the case of (C-Brd) only and the other cases follow in a similar way.

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M

L P1 M + L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M

Γ :L P1 M + L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M

Again L P ′
1 MΓ ≃ Γ : L P ′

1 M

—if P , P1‖P2: This process is translated to L P1‖P2 MΓ , Γ : L P1 M|L P2 M. We have four cases depending

on the performed action in deriving the transition P1‖P2
α
−→ P̂ .

—P1‖P2
νỹāx̃
−−−→ P ′

1‖P
′
2: By applying induction hypotheses on the premises P1

νỹāx̃
−−−→ P ′

1 and P2
a(x̃)
−−−→ P ′

2,
We have that L P1 M _∗ ≃ L P ′

1 M and L P2 M _∗ ≃ L P ′
2 M. We can apply (C-Brd) if ỹ = ∅ or (LOpen)

otherwise. We consider (C-Brd) only and (LOpen) follows in the same way.

1:28 • Y. Abd Alrahman, R. De Nicola and M. Loreti

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

2 M

L P1 M|L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M|L P ′
2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M|L P ′
2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and again we have that:
L P ′

1‖P
′
2 MΓ ≃ Γ :L P ′

1 M|L P ′
2 M

—P1‖P2
a(x̃)
−−−→ P ′

1‖P
′
2: By applying induction hypotheses on the premises P1

a(x̃)
−−−→ P ′

1 and P2
a(x̃)
−−−→ P ′

2, We
have that L P1 M _∗ ≃ L P ′

1 M and L P2 M _∗ ≃ L P ′
2 M. We can apply (C-Rcv) to mimic this transition.

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

2 M

L P1 M|L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M|L P ′
2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M|L P ′
2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and again we have that: L P ′
1‖P

′
2 MΓ ≃ Γ :L P ′

1 M|L P ′
2 M.

—P1‖P2
α
−→ P ′

1‖P2 if P1
α
−→ P ′

1 and P2
sub(α):
−−−−→ or P1‖P2

α
−→ P1‖P

′
2 if P2

α
−→ P ′

2 and P1
sub(α):
−−−−→. We consider

only the first case and by applying induction hypotheses on the premises P1
α
−→ P ′

1 and P2
sub(α):
−−−−→, We

have that L P1 M _∗ ≃ L P ′
1 M and L P2 M _∗ ≃ L P2 M. We have many cases depending on the performed

action:

—if α = τ then P1‖P2
τ
−→ P ′

1‖P2 with P1
τ
−→ P ′

1 and P2
sub(τ):
−−−−→ . We can apply (C-Upd) to mimic this

transition.

L P1 M
[portτ=τ]
7−−−−−−→Γ L P ′

1 M

L P1 M|L P2 M
[portτ=τ]
7−−−−−−→Γ L P ′

1 M|L P2 M

Γ :L P1 M|L P2 M
τ
−→ Γ :L P ′

1 M|L P2 M

and again we have that: L P ′
1‖P2 MΓ ≃ Γ :L P ′

1 M|L P2 M.

—if α = a(x̃): then P1‖P2
a(x̃)
−−−→ P ′

1‖P2 with P1
a(x̃)
−−−→ P ′

1 and P2
a:
−→ . We can apply (C-Rcv) to mimic

this transition.

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M L P2 M
˜Γ′:(ṽ)@Π

7−−−−−−→Γ L P2 M

L P1 M|L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M|L P2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M|L P2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and again we have that: L P ′
1‖P2 MΓ ≃ Γ :L P ′

1 M|L P2 M.

—if α = νỹāx̃ then P1‖P2
νỹāx̃
−−−→ P ′

1‖P2 with P1
νỹāx̃
−−−→ P ′

1 and P2
a:
−→ . We can apply (C-Brd) if ỹ = ∅ or

(LOpen) otherwise. We consider (C-Brd) only and (LOpen) follows in the same way.

On Expressiveness and Behavioural Theory of Attribute-based Communication • 1:29

L P1 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M L P2 M
˜Γ′:(ṽ)@Π

7−−−−−−→Γ L P2 M

L P1 M|L P2 M
Γ′:(ṽ)@Π
7−−−−−−→Γ L P ′

1 M|L P2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P ′

1 M|L P2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and again we have that:
L P ′

1‖P2 MΓ ≃ Γ :L P ′
1 M|L P2 M

—P1‖P2
a:
−→ with P1

a:
−→ P ′

1 and P2
a:
−→ . We can apply (C-Fail) to mimic this transition.

L P1 M
˜Γ′:(ṽ)@Π

7−−−−−−→Γ L P1 M L P2 M
˜Γ′:(ṽ)@Π

7−−−−−−→Γ L P2 M

L P1 M|L P2 M
˜Γ′:(ṽ)@Π

7−−−−−−→Γ L P1 M|L P2 M

Γ :L P1 M|L P2 M
Γ′:(ṽ)@Π
−−−−−−→ Γ :L P1 M|L P2 M

where Π = (porta = a) and Γ′ = {(porta, a)} and again we have that: L P1‖P2 MΓ ≃ Γ :L P1 M|L P2 M.

—if P , 〈x = y〉P1, P2: We have that either 〈x = x〉P1, P2
α
−→ P ′

1 or 〈x 6= x〉P1, P2
α
−→ P ′

2. By applying (Sum)

rule or its symmetric, it is not hard to see that this is exactly the same meaning of the following translation
〈x = y〉L P M + 〈x 6= y〉L Q M in the sense that L P M can only evolve when x = y, otherwise L Q M evolves.

The idea that we can mimic each transition of bπ-calculus by exactly one transition in AbC implies that the
soundness and completeness of the operational correspondence can be even proved in a stronger way.

REFERENCES

Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi, and Roberto Vigo. 2015. A Calculus for Attribute-based
Communication. In Proceedings of SAC 2015, The 30th ACM/SIGAPP Symposium On Applied Computing.

Gul Agha and Christian J Callsen. 1993. ActorSpace: an open distributed programming paradigm. Vol. 28. ACM.

Michael A Bass and Frank T Nguyen. 2002. Unified publish and subscribe paradigm for local and remote publishing destinations.
(June 11 2002). US Patent 6,405,266.

Gregory V Chockler, Idit Keidar, and Roman Vitenberg. 2001. Group communication specifications: a comprehensive study.
ACM Computing Surveys (CSUR) 33, 4 (2001), 427–469.

Antonio Coronato, Vincenzo De Florio, Mohamed Bakhouya, and Giovanna Di Marzo Serugendo. 2012. Formal Modeling of Socio-
technical Collective Adaptive Systems. In Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASOW 2012, Lyon, France, September 10-14, 2012. 187–192. DOI:“http://dx.doi.org/10.1109/SASOW.2012.40

Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. 2013. A language-based approach to autonomic

computing. In Formal Methods for Components and Objects. Springer, 25–48.

Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. 2014. A formal approach to autonomic systems

programming: the SCEL Language. ACM Transactions on Autonomous and Adaptive Systems (2014), 1–29.

Cristian Ene and Traian Muntean. 1999. Expressiveness of point-to-point versus broadcast communications. In Fundamentals of
Computation Theory. Springer, 258–268.

Christian Ene and Traian Muntean. 2001. A broadcast-based calculus for communicating systems. In Parallel and Distributed
Processing Symposium, International, Vol. 3. IEEE Computer Society, 30149b–30149b.

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces of publish/subscribe.

ACM Computing Surveys (CSUR) 35, 2 (2003), 114–131.

Thomas Given-Wilson, Daniele Gorla, and Barry Jay. 2010. Concurrent pattern calculus. In Theoretical Computer Science.

Springer, 244–258.

Charles Antony Richard Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666–677.

1:30 • Y. Abd Alrahman, R. De Nicola and M. Loreti

Hugh W Holbrook and David R Cheriton. 1999. IP multicast channels: EXPRESS support for large-scale single-source
applications. In ACM SIGCOMM Computer Communication Review, Vol. 29. ACM, 65–78.

Mathias John, Cédric Lhoussaine, and Joachim Niehren. 2009. Dynamic compartments in the imperative π-Calculus. In

Computational Methods in Systems Biology. Springer, 235–250.

Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde M Uhrmacher. 2008. The attributed pi calculus. In
Computational Methods in Systems Biology. Springer, 83–102.

Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde M Uhrmacher. 2010. The attributed pi-calculus with priorities.

In Transactions on Computational Systems Biology XII. Springer, 13–76.

Robin Milner. 1980. A calculus of communicating systems. (1980).

Robin Milner. 1989. Communication and concurrency. Prentice-Hall, Inc.

Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes, II. Information and computation 100, 1
(1992), 41–77.

Robin Milner and Davide Sangiorgi. 1992. Barbed bisimulation. In Automata, Languages and Programming. Springer, 685–695.

Karol Ostrovsky, KVS Prasad, and Walid Taha. 2002. Towards a primitive higher order calculus of broadcasting systems. In

Proceedings of the 4th ACM SIGPLAN international conference on Principles and practice of declarative programming. ACM,
2–13.

Rehan OGrady, Roderich Groß, Anders Lyhne Christensen, and Marco Dorigo. 2010. Self-assembly strategies in a group of
autonomous mobile robots. Autonomous Robots 28, 4 (2010), 439–455.

Carlo Pinciroli, Michael Bonani, Francesco Mondada, and Marco Dorigo. 2015. Adaptation and awareness in robot ensembles:
Scenarios and algorithms. In Software Engineering for Collective Autonomic Systems. Springer, 471–494.

KVS Prasad. 1991. A calculus of broadcasting systems. In TAPSOFT’91. Springer, 338–358.

Kuchi VS Prasad. 1995. A calculus of broadcasting systems. Science of Computer Programming 25, 2 (1995), 285–327.

Jeffrey W Sanders and Graeme Smith. 2008. Formal ensemble engineering. In Software-Intensive Systems and New Computing

Paradigms. Springer, 132–138.

Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Kwiatkowska, John Mcdermid, and Richard Paige.
2012. Large-scale complex IT systems. Commun. ACM 55, 7 (2012), 71–77.

Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. 2013. Broadcast, Denial-of-Service, and Secure Communication. In
10th International Conference on integrated Formal Methods (iFM’13) (LNCS), Vol. 7940. 410–427.

2015 © IMT Institute for Advanced Studies, Lucca
Piazza San ponziano 6, 5100 Lucca, Italy. www.imtlucca.it

