
Checking choreography conformance using SLMC

Lúıs Caires, David Tavares Sousa, Hugo Torres Vieira

October 16, 2007

Abstract

We illustrate with a simple example how the Spatial Logic Model
Checker can be used to check choreography conformance properties.

1 Introduction

Spatial Logics [4, 3, 5, 2] have proven their adequacy to express prop-
erties of distributed systems. Distributed processes run, communicate,
access resources, and so on, in a distributed structured space, which
makes them natural candidates for the specification of properties using
spatial logics that are specially equipped with structural observations.

One example of a distributed model is service oriented computing, a
paradigm of gaining importance given its widespread application. The
purpose of a service relationship is to allow the incorporation of certain
activities in a given system, without having to engage local resources
and capabilities to support or implement such activities. By delegating
activities to an external service provider, that will perform them using
its own remote resources and capabilities, a computing system may
concentrate on those tasks for which it may autonomously provide
convenient solutions. Thus, the notion of service makes particular
sense when the service provider and the service client are separate
entities, with access to separate sets of resources and capabilities. This
understanding of the service relationship between provider and client
assumes an underlying distributed computational model, where client
and server are located at least in distinct (operating system) processes,
more frequently in distinct sites of a network.

As services collaborate to reach a determined goal, an important
aspect subject to verification is that the protocols of interaction are
designed correctly, i.e., in accordance to an interaction specification.
The idea is that one can statically set the rules of interaction in a
choreography plan and check that interacting partners conform to such
a specification. Furthermore it might be interesting to verify that such
interactions do not cause systems to get stuck, and other liveness and
also safety properties.

We illustrate here with a familiar example a natural specification
of a choreography conformance property using spatial logics, and we
demonstrate the verification of such property using the SLMC tool [9,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/33751341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1], that uses π-calculus [8] to specify systems and the spatial logics
of [2] to describe the properties.

2 Buyer Seller Shipper revisited

We consider the Buyer, Seller, Shipper pattern. Our system will be
built out of three distinct parts, each one representing a separate entity:
either the Buyer, or the Seller or finally the Shipper. For the sake of
simplicity each one of these participants will be identified by a name.
The top level system description will then look like:

defproc System = Buyer(bu) | Seller(se) | Shipper(sh);

The names given as arguments will function as the identifiers. The
general idea is that the Buyer is going to try to buy something off the
Seller, deciding upon the price requested, being that in a successful
purchase the Seller interacts with the Shipper to obtain the delivery
details, which are then sent back to the Buyer. We turn to the defini-
tion of the Buyer:

defproc Buyer(buyer) =
new session in (

quoteCh!(session,buyer).
session?(quote).
select {

session!(accept).
session?(deliverydetails).
Buyer(buyer);

session!(reject).
Buyer(buyer)

});

The behaviour of the Buyer can be described as: first tries to com-
municate with the Seller using channel quoteCh, and establishes a ses-
sion by emitting the private name session. The Buyer then expects
a message indicating the price on session, depending on which the
decision to purchase is made. If the Buyer decides to purchase then
it will inform the Seller, sending accept on session, and expects the
Seller to inform on the delivery details. At the end of each run, both
in a successful purchase or not, the Buyer returns to the initial state.

We now turn to the description of the Seller:

defproc Seller(seller) =
quoteCh?(session,bu).
session!(price).
session?(choice).
select {

[choice=accept].
new t in (

deliveryCh!(t,seller).

2

t?(deliverydetails,sh).
session!(deliverydetails).
Seller(seller));

[choice=reject].
Seller(seller)

};

The Seller will start by following the interaction described for the
Buyer: first expects a request for a price and replies informing on the
price on a received name session, afterwards expecting a decision on
the purchase. In the case of acceptance by the Buyer, signalled by
the matching of the received name and accept, the Seller will place a
request to the Shipper to obtain the delivery details. After receiving
the delivery details from the Shipper, the Seller forwards them to the
Buyer and returns to the initial state. In the case of rejection of the
purchase the Seller directly returns to the initial state.

Finally we have the Shipper description, that expects requests for
delivery details, post replies to these requests and returns to the initial
state:

defproc Shipper(shipper) =
deliveryCh?(t,se).
t!(deliverydetails,shipper).
Shipper(shipper);

3 Choreography

We start with the specification of a message link or connection, i.e., two
parts of a system are linked or connected if they hold dual capabilities
of a channel. We also specify and identify the source or sender and the
destination or receiver:

defprop sArrow(message,src,dst) =
inside((1 and @src and <message!>true)

| (1 and @dst and <message?>true) | true);

The property sArrow here specified states that opening up all re-
stricted names, that can bind parts of the system, the system can be
broken down into three parts |, two that are indivisible 1, and another
that can be anything true. The two indivisible parts hold occurrences
of the names src and dst that identify them as sender and receiver, re-
spectively, being that the sender must exhibit an output ! on message
while the receiver must exhibit the input ?, being the continuations
specified as any possible state.

Using this predicate sArrow we can then be more specific of the
links we intend to describe:

defprop sBuyer2Seller(message) = sArrow(message,bu,se);
defprop sSeller2Buyer(message) = sArrow(message,se,bu);
defprop sShipper2Seller(message) = sArrow(message,sh,se);
defprop sSeller2Shipper(message) = sArrow(message,se,sh);

3

We can express that the Buyer is able to send a message to the
Seller that is in turn able to receive that message sBuyer2Seller.
We can express the same property reverting the communication roles
sSeller2Buyer. We can express that the Shipper and Seller can be
connected both ways: either sShipper2Seller or sSeller2Shipper.

Let us now describe the initial interaction between Buyer and Seller:

defprop buyerSellerInteraction(session, A) =
sBuyer2Seller(quoteCh) and
[] (sSeller2Buyer(session) and

[](sBuyer2Seller(session) and
[][](A)));

We have that initially Buyer and Seller can communicate on mes-
sage quoteCh, corresponding to the price request, and also any pos-
sible evolution of the system [] will lead to a state where Seller is
connected to Buyer on the parametered name session, corresponding
to the reply to the price request. After any possible evolution Buyer
is connected to Seller again on the channel given by session, to in-
form on the decision taken. After two steps, involving the decision
procedure, the system is in a state specified by the parameter A.

We turn to the description of the interaction between Seller and
Shipper:

defprop sellerShipperInteraction(A) =
sSeller2Shipper(deliveryCh) and
[] hidden t.

(sShipper2Seller(t) and
[] (A));

Property sellerShipperInteraction specifies that at starting point,
Seller is connected to Shipper in channel deliveryCh, corresponding
to the request for delivery details. Also, after one step, there is a re-
stricted name t under which Shipper is connected to Seller, where the
delivery details will be passed along. Afterwards Seller is connected to
buyer, corresponding to the forwarding of the delivery details. Finally,
after one step, the system is in a state specified by the parameter A.

We are at this point able to devise a specification that expresses
the overall behaviour of a run of this protocol between Buyer, Seller
and Shipper:

defprop sGlobalDescription =
maxfix X.(

hidden session.
buyerSellerInteraction(session,

X
or
sellerShipperInteraction(

sSeller2Buyer(session) and []X)));

So, recalling that the interaction properties require an argument
that specifies the final state of the interaction we have that: We start

4

by revealing the restricted name session and then we proceed to specify
that the interaction between Buyer and Seller takes place using that
name. Afterwards the system either returns to the initial state or the
interaction between Seller and Shipper takes place. If the interaction
between Seller and Shipper occurs, at the end of it the Seller is once
again connected to the Buyer, in channel session, after which any
possible evolution leads back to the initial state.

3.1 Checking choreography conformance

After loading the example on the SLMC tool one can write:

check System |= sGlobalDescription;

to which the tool will reply with:

* Process System satisfies the formula sGlobalDescription *

thus giving our intended assertion.

3.2 Checking other properties

Other interesting properties include liveness, which can be writen as:

defprop aLive = always (<tau>true);

Property aLive specifies that a system in every possible state can
always perform an internal action tau, hence the system never gets
stuck.

Also we may consider of interest to check safety properties like, for
instance, the existence of races. We start by specifying that a writer is
an indivisible process that can perform an output on a given channel.

defprop write(x) = (1 and < x! >true);

We characterize a reader similarly, being the channel capability the
input:

defprop read(x) = (1 and < x? >true);

We can now express that a configuration that holds a race is one
where there exists a channel where two distinct components are trying
to write to and there is one other trying to read from:

defprop hasRace =
inside (exists x.(write(x) | write(x) | read(x) | true));

Finally we can state that a race free system is a system that in
every possible configuration holds no races.

defprop raceFree = always (not hasRace);

Once again we load the example in the SLMC tool:

check System |= raceFree;

5

to which the tool will reply with:

* Process System satisfies the formula raceFree *

thus giving our intended assertion.

4 Concluding remarks

We have shown by means of a simple example how one can use the
SLMC tool to check for choreography conformance. We presented
a simple specification of the familiar buyer shipper seller pattern in
π-calculus, and showed a natural description of the choreography of
interaction using spatial logics.

An interesting follow up to this illuminating exercise would be to
use an analogous approach considering service-world languages, such
as WS-BPEL [6] to provide system specification and WS-CDL [7] to give
the choreography plan.

References

[1] Spatial logic model checker. http://www-ctp.di.fct.unl.pt/SLMC/.

[2] L. Caires. Behavioral and Spatial Properties in a Logic for the
Pi-Calculus. In Igor Walukiwicz, editor, Proc. of Foundations of
Software Science and Computation Structures’2004, number 2987
in Lecture Notes in Computer Science. Springer Verlag, 2004.

[3] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part
II). In CONCUR 2002 (13th International Conference), Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[4] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part
I). Information and Computation, 186(2):194–235, 2003.

[5] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Log-
ics for Mobile Ambients. In 27th ACM Symp. on Principles of
Programming Languages, pages 365–377. ACM, 2000.

[6] A. Alves et al. Web Services Business Process Execution Language
Version 2.0. Technical report, OASIS, 2006.

[7] N. Kavantzas et al. Web Services Choreography Description Lan-
guage Version 1.0. Technical report, W3C Working Draft, 2005.

[8] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[9] H. Vieira and L. Caires. Spatial logic model checker user’s guide.
Technical Report TR-DI/FCT/UNL-03/2004, DI/FCT Universi-
dade Nova de Lisboa, 2004.

6

