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Abstract
We discuss the tensions between intensionality and extensionality of spatial observations in
distributed systems, showing that there are natural models where extensional observational
equivalences may be characterized by spatial logics, including the composition and void
operators. Our results support the claim that spatial observations do not need to be always
considered intensional, even if expressive enough to talk about the structure of systems.
For simplicity, our technical development is based on a minimalist process calculus, that
already captures the main features of distributed systems, namely local synchronous com-
munication, local computation, asynchronous remote communication, and partial failures.

Introduction

Logical characterizations of concurrent behaviors have been introduced for a long
time now. A fundamental result in the field, due to Hennessy and Milner [13], is the
characterization of behavioral equivalence in process algebras as indistinguishabil-
ity with respect to a modal logic. Such results are important not only theoretically,
but also because of their influence in the design of practical specification languages
for software systems. Hennessy-Milner logic (HML) adds to propositional opera-
tors the action modality 〈λ〉A, allowing the logic to observe a grain of behavior: a
process satisfies 〈λ〉A if it satisfies A after performing action λ. HML characterizes
behavioral equivalence in the sense that two processes are strongly bisimilar if and
only if they satisfy exactly the same formulas.

More recently, spatial logics for concurrency [6,9,4] have been proposed with
the aim of specifying distributed behavior and other essential aspects of distributed
computing systems. In general terms, these developments reflect a shift of focus in
concurrency research, that has been building up from the last decade on, from the
study of centralized concurrent systems to the study of general distributed systems.
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While centralized processes may be accurately modeled as pure objects of behavior,
in distributed systems many interesting phenomena besides pure interaction, such
as location dependent behavior, resource usage, and mobility, must be considered.

Present in all spatial logics for concurrency are the composition operator A | B
and the void operator 0 [4]. Intuitively, a system satisfies A | B if it can be decom-
posed in two disjoint subsystems such that one satisfies A and the other satisfies B,
while a system satisfies 0 if it is the empty system. The guarantee (logical adjunct
of the composition operator) A.B, introduced in [9], allows the logic to talk about
contextual properties. Namely, a process satisfies A.B if whenever composed with
a system that satisfies A, yields a (possibly larger) system that satisfies B. Decom-
position and composition of systems as mentioned here is generally interpreted up
to structural congruence, and thus structural congruence seems to play a key role in
the semantics of spatial logics.

Observation of features such as spatial separation are frequently considered in-
tensional because they usually induce fine distinctions among processes that are
not substantiated by purely behavioral (extensional) observations. According to
Sangiorgi [19], “A logic is intensional if it can separate terms on the basis of their
internal structure, even though their behaviors are the same”. Moreover, in many
situations, it turns out that the logical equivalence induced by a spatial logic on
processes, is not only strictly finer than behavioral congruence, but coincides with
structural congruence [19,5,11,20].

These results contributed to widespread the impression that spatial observa-
tions, as those induced by spatial connectives, are intrinsically intensional, imposed
extraneously so to increase the power of the observer. For example, Hirschkoff has
shown [14] that if the so-called intensional connectives composition and void are
removed from a spatial logic for the pi-calculus, while retaining the guarantee, one
obtains a logic whose separation power precisely coincides with strong bisimula-
tion and may then be considered extensional. The ability of the spatial connectives
to capture structural congruence is also attributed to their ability to count, sepa-
rate, and express arithmetical constraints, e.g., about the number of subsystems
of a given system. The observational power of spatial logics may then sometimes
appear a bit arbitrary, in the sense that structural congruence does not have a canon-
ical status among behavioral process equivalences, and is frequently seen just as a
technical convenience, with a syntactic flavor, to ease the presentation of a calculus
operational semantics.

On the other hand, it has been argued [4,2,3] that the intensional character of
logical characterizations of spatiality in distributed computation may be, at least
in part, incidental, and does not necessarily reflect the fundamental motivation for
introducing spatial logics for concurrency. Ideally, we would like spatial observa-
tions, as captured by spatial logics, to reflect natural distinctions and similarities
between distributed systems, in a context where spatial location is a relevant ob-
servable, in parity with more standard behavioral observables. We expect spatial
observations of the sort, captured by spatial logic operators such as composition,
to be taken modulo an intended notion of equality of the observable space-time
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structure, independently on whether such equality relation is technically defined
using a notion of structural congruence. If certain spatial-behavioral observations
precisely capture the observable structure of a model in our sense, they would have
to be considered extensional, even if able to detect aspects of spatial structure.

In this paper, we pursue the informal discussion started above in technical
terms. Namely, we make precise the claim that spatial observations, including
structural ones, may be understood as purely extensional in fairly natural models
of distributed systems. To discuss the several issues of interest in a simplified set-
ting, we consider a minimal distributed process calculus, obtained by extending the
smallest concurrent fragment of CCS with flat anonymous locations. Our model
can be seen as a general abstraction of the essence of distributed systems, already
featuring all the key ingredients present in distributed process calculi, although in a
possibly less refined way. Processes may synchronously communicate locally to a
site through standard CCS-like synchronization, and asynchronously communicate
at a distance, by means of a migration primitive. We also allow systems to nonde-
terministically exhibit partial failures, as in [1,12]. Notice that it is not our aim here
to propose yet another distributed process calculus, but rather to set up a convenient
setting to compare distributed system observational equivalences and their spatial
logical characterizations.

Our technical contributions may be summarized as follows. After introducing
the process calculus and its reduction semantics, we define observational equiv-
alence by adopting the canonical notion of reduction barbed congruence. Barbed
congruence [17] and reduction barbed congruence [16] are currently accepted as the
standard approach to define reference behavioral equivalences for general process
calculi. After showing some basic properties of reduction barbed congruence in
our setting, we define strong bisimulation, an alternative coinductive characteriza-
tion of observational equivalence, which is shown equivalent to reduction barbed
congruence. The interesting aspect of our definition of strong bisimulation is that
it contains “intensional” clauses (in the sense of [19]), namely a clause expressing
separation, and a clause for observing the empty system. We then use the character-
ization of reduction barbed congruence in terms of strong bisimulation to identify
a spatial logic characterization of both reduction barbed congruence and strong
bisimulation: our logic is an extension of HML with the composition and void op-
erators of spatial logic. The same line of development is also carried out for the
weak case. In this latter setting, we prove minimality of the logic, thus showing the
essential role of all of the logic operators, in particular of the spatial operators, in
the intended expressive and separation power. We can verify that in both the strong
and weak cases the process equivalences induced by the logics are coarser than
structural congruence, and that the presence of the composition and void operators,
semantically interpreted in the standard way, do not carry any lack of extensionality
(with extensionality interpreted with reference to a standard observational equiva-
lence), even if the logics can express separation and counting constraints on the
structure of systems.
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1 A Simple Model of Distributed Systems

In this section we present the syntax and operational semantics of our distributed
process calculus. Assume given an infinite set Λ of names, ranged over by a, b, c.

Definition 1.1 [Actions, Processes and Networks] The sets A of actions, P of
processes, and N of networks are given by:

α ::= ā
∣∣∣ a

∣∣∣ τ P, Q ::= nil
∣∣∣ P | Q

∣∣∣ α.P
∣∣∣ go.P N, M ::= 0

∣∣∣ N | M
∣∣∣ [P ]

For actions we consider the output ā, the input a and the internal computation
τ . For processes, we consider the smallest fragment of CCS featuring some form
of concurrency, thus we have inaction nil, parallel composition P | Q, and action
prefixing α.P . On top of this, we introduce a notion of distribution by locating
processes P inside sites of the form [P ], and by adding the migration capability
go.P to processes, which since sites are not natively named, allows processes to
non-deterministically migrate to other sites. A distributed system is thus repre-
sented by a network consisting of a collection of sites spread in space, by means of
spatial composition N | M , which we will abbreviate using

∏
j∈J [P j] for a J-fold

collection of sites. 0 stands for the empty network. We use fn(N) to denote the set
of free names of a network N , defined as usual. The operational semantics of our
calculus follows, captured by the relations of structural congruence and reduction.

Definition 1.2 [Structural congruence] Structural congruence, noted≡, is the least
congruence on processes and networks such that (P , nil, |) and (N ,0, |) are com-
mutative monoids, and P ≡ Q implies [P ] ≡ [Q].

Definition 1.3 [Reduction] Reduction, noted N → M , is the relation between
processes inductively defined as follows

[ā.P | a.Q | R] → [P | Q | R] (Red Comm) [τ.P | Q] → [P | Q] (Red Tau)

[go.P | Q] | [R] → [Q] | [P | R] (Red Go) [P ] | N → 0 (Red Fail)
N → N ′

N | M → N ′ | M
(Red Cong)

N ≡ N ′ → M ′ ≡ M

N → M
(Red Struct)

The rule (Red Comm) specifies interaction between two processes through co-
action synchronization locally inside a site, while rule (Red Tau) specifies internal
action of a process. Rule (Red Go) specifies that a process prefixed by go may
migrate to another site. Rule (Red Fail) expresses that any non-empty network may
fail, thus modeling fail-stop failure of an arbitrary subsystem.

Our aim now is to define a natural notion of observational equivalence on net-
works. To that end, we adopt the canonical notion of barbed equivalence, according
to which two systems are observationally equivalent if no context can distinguish
between them by barb detection. In our case, we restrict to one-hole spatial con-
texts, as e.g., in [1,12], hence of the form C [•] ::= N | •, for some network N .

We use the standard notion of barb observation [17], even if it assumes in a
sense the existence of a global observer, which might be debatable in the context
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of distributed systems. Thus a network N exhibits barb a, noted N ↓a, if there are
P, Q,M such that N ≡ [a.P | Q] | M , hence reflecting the fact that any external
observer can get to know that an input is ready via some channel name, at some
accessible site. We now define our reference observational equivalence relation.

Definition 1.4 [Strong reduction barbed congruence] Strong reduction barbed con-
gruence, noted', is the largest symmetric relation R such that for all (N, M) ∈ R:

For all barbs a, if N ↓a then M ↓a (Barb closed)

If N → N ′ then there is M ′ s.t. M → M ′ and (N ′, M ′) ∈ R (Reduction closed)

For all contexts C [•], (C [N ] , C [M ]) ∈ R (Context closed)

We establish some standard properties of strong reduction barbed congruence,
such as ' is a congruence. Notice that we just consider in this paper, congruences
under spatial (static) contexts. As explained above, this does not carry a lack of
generality, given the main motivations of our development. Moreover:

Proposition 1.5 We have ≡ ⊂ '.

Proof. The proof of ⊆ follows standard lines. To prove that ≡ is strictly included
in ' we may show that [a.nil | a.nil] ' [a.a.nil] but [a.nil | a.nil] 6≡ [a.a.nil]. 2

It follows from the congruence property that strong reduction barbed congru-
ence is closed under composition. In particular for site composition, we have:

Lemma 1.6 Let P i and Qi (i ∈ J) be collections of processes. If for all i ∈ J we
have [P i] ' [Qi], then also

∏
j∈J [P j] '

∏
j∈J [Qj].

Although Definition 1.4 is standard, with reference to the global observation
of barbs in networks, observations already leak some relevant information about
the distributed structure of systems. Lemma 1.7 states that strong reduction barbed
congruent networks always result from an underlying one-one and onto correspon-
dence of strong reduction barbed congruent sites. In particular, we conclude strong
reduction barbed congruent networks always have the same number of sites.

Lemma 1.7 Let M, N be networks such that N ,
∏

j∈J [P j], where P j (j ∈ J) is
a collection of processes, and N ' M . Then there is a collection of processes Qj

(j ∈ J) such that M ≡
∏

j∈J [Qj] and for all j ∈ J we have [P j] ' [Qj].

Proof. (Sketch, full proof in [7]) We consider a context that holds processes that
may migrate and mark every site of N with an input on the unique name, and we
make sure that every input is located at a different site. Since M behaves the same
as N under this context (and using a symmetric reasoning) we obtain that M has
#J sites. We then exploit failures in N that leave only a single site active, being
that this behavior must be mimicked by failures in M that also leave just one site up.
These singled out sites are strong reduction barbed congruent, hence hold the same
unique input, thus ensuring an unique correspondence. We then consider another
context that may clean up the marker and all other foreign elements, which then
allows us to conclude the sites were originally strong reduction barbed congruent.2
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2 Strong Bisimilarity

Since strong reduction barbed congruence relies on universal quantification over
all contexts, we now propose a more manageable characterization of observational
equivalence. More concretely, we introduce a labeled transition system with the
aim of capturing the contextual behavior of the networks, by means of observing
process commitments, in turn expressed by transition labels. Building on such
labeled transition system, a coinductive definition of bisimilarity is then presented.

The set of transition labels, noted L, is given by L , {α | α ∈ A} ∪ {[a] | a ∈
Λ}, and ranged over by λ. Transition labels reflect internal computation (τ ), and
output and input communication (ā and a). Given the mobile capability of processes
we also consider [a] transitions, that will be used to observe migration of processes
to the external environment. This turns out to be essential for covering the case of
networks with a single site, since the enlargement of the system with a new site
gives processes intending to migrate a possible destination. Given these ingredi-
ents, we define our labeled transition system as follows.

Definition 2.1 [Commitment] Commitment, noted N
λ−→ M , is the relation on

processes and labels inductively defined as follows

[ā.P | a.Q | R]
τ−→ [P | Q | R] (Comm) [τ.P | Q]

τ−→ [P | Q] (Tau)

[ā.P | Q]
ā−→ [P | Q] (Out) [a.P | Q]

a−→ [P | Q] (In)

[go.P | Q] | [R]
τ−→ [Q] | [P | R] (Go)

[P ] | N
τ−→ 0 (Fail) N

[a]−→ N | [a.nil] (Grow)

N
λ−→ N ′

N | M
λ−→ N ′ | M

(Cong)
N ≡ N ′ λ−→ M ′ ≡ M

N
λ−→ M

(Struct)

As a sanity check, we ensure τ commitments match reductions and inversely.
Notice that although e.g., the systems [nil] | [nil] and [τ.nil] have exactly the
same commitment graph, they are not observationally equivalent in the light of
Lemma 1.7. Thus, in order to properly capture strong reduction barbed congruence,
we include in the definition of strong bisimulation two spatial clauses (referred to
as “intensional clauses” in [19]). We then have:

Definition 2.2 [Strong Bisimulation] A binary relation B ⊆ N × N is a strong
bisimulation if and only if it is symmetric and whenever (N, M) ∈ B then

N ≡ N ′ | N ′′ ⇒ ∃M ′, M ′′ . M ≡ M ′ | M ′′ ∧ (N ′, M ′) ∈ B ∧ (N ′′, M ′′) ∈ B

N ≡ 0 ⇒ M ≡ 0

N
λ−→ N ′ ⇒ ∃M ′ . M

λ−→ M ′ ∧ (N ′, M ′) ∈ B

We remark that the second clause in Definition 2.2 is subsumed by the third
one since only void systems have no possible internal actions (due to failures),
however we prefer to include it in the definition for the sake of uniformity with the
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corresponding weak version, and thus avoid some extra incidentality. Notice also
that the first clause properly distinguishes [τ.nil] and [nil] | [nil], because there is
no way to split [τ.nil] (up to ≡) in two parts with some transition each. We prove
strong bisimulations are equivalence relations closed under union, and define:

Definition 2.3 [Strong bisimilarity] Strong bisimilarity, noted ∼, is the largest
strong bisimulation.

2.1 Full Abstraction

This section is devoted to proving that strong bisimilarity, as defined in Defini-
tion 2.3, characterizes strong reduction barbed congruence in a fully abstract way.
The proof builds on a series of intermediate technical results.

Lemma 2.4 Let M be a network and P j(j ∈ J) a collection of processes where∏
j∈J [P j] ∼ M . Then there is a collection of processes Qj(j ∈ J) such that

M ≡
∏

j∈J [Qj] and for all j ∈ J , [P j] ∼ [Qj].

Proof. By induction on the size of J , using the separation and emptiness clauses.2

The proof of the main result of this section (Theorem 2.6) is not technically
involved, but critically depends on next Lemma 2.5, that expresses a key composi-
tionality principle of our calculus. Notice that the basic building block of systems
referred to in the statement of Lemma 2.5 is the process: since we have to take mi-
gration into account, it is essential to assure compositionality at the process level.
We abbreviate collections of sites such that each one holds a collection of processes.

Lemma 2.5 Let J be a finite set and Ij , for all j ∈ J , be a finite set. Let P j
i and

Qj
i be processes such that for all j ∈ J and i ∈ Ij we have

[
P j

i

]
∼

[
Qj

i

]
. Then∏

j∈J

[∏
i∈Ij

P j
i

]
∼

∏
j∈J

[∏
i∈Ij

Qj
i

]
Proof. (Sketch, full proof in [7]) By coinduction on the definition of strong bisim-
ulation. We sketch the proof for the interesting case of migration.

We exploit the grow transition using a fresh name, in the sense that it does
not occur in neither one of the P j

i s and Qj
i s, which creates a possible target for

migrations and allows us to isolate migrating processes, since we can decompose
and observe the input on the fresh name. Using this technique and since we can
establish that the newly created sites are bisimilar, we can be sure to obtain a col-
lection of sites that respects the statement of the Lemma for any choice of target
of the migration. Notice that a migration on one side need not be always matched
by a migration on the other, because the migrating process can e.g., be inaction, in
which case, a migration may be matched by an internal computation step. 2

By Lemma 2.4 and Lemma 2.5 we prove strong bisimilarity is a congruence,
from which follows, in standard lines, that ∼ ⊆ '. We then prove ' ⊆ ∼, using
Lemma 1.6 and Lemma 1.7 to address the structural issues. We can then state:

Theorem 2.6 (Full abstraction) We have ∼ = '.
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2.2 Logical Characterization of Strong Bisimilarity

In this section, we characterize strong bisimilarity (and thus strong reduction barbed
congruence) in logical terms, using a simple spatial logic.

Definition 2.7 [Spatial logic Ls] Formulas are defined by the following syntax:

(Formulas) A, B, C ::= T
∣∣∣ ¬A

∣∣∣ A ∧B
∣∣∣ 0

∣∣∣ A | B
∣∣∣ 〈λ〉A

Our logic, besides the usual action modality from HML, includes the compo-
sition and void operators of spatial logics, interpreted in the standard way. For
example, we may express property “network has exactly one site” by the formula
¬0 ∧ ¬(¬0 | ¬0). The semantics of the logic is given by the denotation of the
formulas, i.e., a formula denotes the set of networks that satisfy it.

Definition 2.8 [Semantics of Ls] A formula’s denotation is inductively given by

JTK , N J¬AK , N\JAK JA ∧BK , JAK ∩ JBK J0K , {N | N ≡ 0}

JA | BK , {N | ∃N ′, N ′′ . N ≡ N ′ | N ′′ ∧N ′ ∈ JAK ∧N ′′ ∈ JBK}

J〈λ〉AK , {N | ∃N ′ . N
λ−→ N ′ ∧N ′ ∈ JAK}

We write N |= A to mean N ∈ JAK. We say that networks M and N are
logically equivalent w.r.t. Ls, written M =Ls N , if and only if they satisfy exactly
the same formulas of Ls, namely if and only if, for any formula A of Ls, we have
M |= A ⇐⇒ N |= A. We now state our logical characterization result.

Theorem 2.9 (Logical Characterization of ∼) We have ∼ = =Ls .

Proof. (Sketch, full proof in [7]) Proof of ∼ ⊆ =Ls follows by a standard induc-
tion on the structure of the formulas. We prove =Ls ⊆ ∼ by coinduction on the
definition of strong bisimulation, using the witness R , {(N, M) | N =Ls M}.
Proof of the emptiness clause is immediate. For both the separation and transition
clauses we build on the fact that the image set of the transition for the latter and of
all possible decompositions for the former is finite (up to structural congruence).
We then exploit the finiteness of these finite sets to prove that there is a (logical
equivalent) correspondence between at least one of their elements. Otherwise we
could collect the finite set of all formulas that distinguish them in a conjunction that
must hold for both networks, either after a decomposition or after an action, since
they are logically equivalent. We then obtain our bisimilar result by coinduction.2

As a corollary we immediately conclude that =Ls precisely characterizes '.
Thus the separation power of our spatial logic coincides with behavioral equiva-
lence, even if it includes the basic structural connectives of composition and void,
allowing it to e.g., express arithmetical constraints on the number of sites in a sys-
tem. We may however ask whether these structural operations are essential to char-
acterize behavioral equivalence, in other words, whether the logic is minimal in
some sense. We will give a positive answer to this question in the next section, in
the more interesting case of weak behavioral equivalences.
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3 Weak Bisimilarity

In this section we refine our previous results by considering a coarser observational
equivalence, disregarding internal action, thus we adopt weak reduction barbed
congruence as the reference observational equivalence. We denote by⇒ the reflexi-
ve-transitive closure of reduction ( → ) and state that a network N weakly exhibits
a barb a, noted N⇓a, if there is N ′ such that N ⇒ N ′ and N ′↓a. We then have:

Definition 3.1 [Weak reduction barbed congruence] Weak reduction barbed con-
gruence, noted u, is the largest symmetric relation R such that for all (N, M) ∈ R:

For all barbs a, if N ↓a then M⇓a (Barb closed)

If N → N ′ then there is M ′ s.t. M ⇒ M ′ and (N ′, M ′) ∈ R (Reduction closed)

For all contexts C [•], (C [N ] , C [M ]) ∈ R (Context closed)

We establish some standard properties of weak reduction barbed congruence,
such as u is a congruence. We relate u to the strong reduction barbed congruence.

Proposition 3.2 We have ' ⊂ u.

Proof. The proof of ⊆ follows standard lines. To prove that ' is strictly included
in u we may show that [go.nil] u [nil] but [go.nil] 6' [nil]. 2

Note that from Proposition 3.2 and Proposition 1.5 we immediately conclude
≡ ⊆ u. From the congruence property we obtain that reduction barbed congruence
is closed under composition, which in particular for site composition gives us:

Lemma 3.3 Let P i and Qi (i ∈ J) be collections of processes. If for all i ∈ J we
have [P i] u [Qi], then also

∏
j∈J [P j] u

∏
j∈J [Qj].

As for the strong case, weak reduction barbed congruence is already able to
distinguish systems based on aspects of their structure, for instance, weak reduction
barbed congruent networks always have the same number of sites. Also, as stated
in Lemma 3.4, weak reduction barbed congruent networks weakly reduce to a one-
one and onto correspondence of weakly reduction barbed congruent sites.

Lemma 3.4 Let M, N be networks such that N ,
∏

j∈J [P j], where P j (j ∈ J) is
a collection of processes, and N u M . Then there is a collection of processes Qj

(j ∈ J) such that M ⇒
∏

j∈J [Qj] and for all j ∈ J we have [P j] u [Qj].

Proof. (Sketch, full proof in [7]) The general idea is similar to that in the proof of
Lemma 1.7. However, since now we may only weakly observe a barb, a different
trick must be used to make sure that the migration of all the mark-placing processes
has already occurred. We thus exploit the failure behavior of the context at a chosen
point, avoiding in this way any chance for the migratory processes to postpone their
choice of target, thus ensuring an unique correspondence. 2
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3.1 Weak Bisimilarity

We now propose a coinductive characterization of weak reduction barbed congru-
ence. Weak commitment λ

=⇒ is the transition relation such that N
λ

=⇒ N ′ when
N

τ−→
∗

M ′ λ−→ M ′′ τ−→
∗

N ′ and λ 6= τ , and N
τ

=⇒ N ′ when N
τ−→

∗
N ′. Given

this we define weak bisimulations by adapting the labeled transition and separation
clauses to the weak case.

Definition 3.5 [Weak Bisimulation] A binary relation B ⊆ N × N is a weak
bisimulation if and only if it is symmetric and whenever (N, M) ∈ B then

N ≡ N ′ | N ′′ ⇒ ∃M ′, M ′′ . M ⇒ M ′ | M ′′ ∧ (N ′, M ′) ∈ B ∧ (N ′′, M ′′) ∈ B

N ≡ 0 ⇒ M ≡ 0

N
λ−→ N ′ ⇒ ∃M ′ . M

λ
=⇒ M ′ ∧ (N ′, M ′) ∈ B

We can prove that weak bisimulations enjoy usual properties, such as being
equivalence relations, and closure under union. We thus define:

Definition 3.6 [Weak bisimilarity] Weak bisimilarity, noted ≈, is the largest weak
bisimulation.

3.2 Full Abstraction

In this section, we prove that weak bisimilarity characterizes weak reduction barbed
congruence in a fully abstract way, proof of which builds on the following results.

Lemma 3.7 Let M be a network and P j (j ∈ J) a collection of processes such
that

∏
j∈J [P j] ≈ M . Then there is a collection of processes Qj (j ∈ J) such that

M ⇒
∏

j∈J [Qj] and for all j ∈ J , [P j] ≈ [Qj].

Proof. By induction on the size of J , using the separation and emptiness clauses.2

Lemma 3.8 is the cornerstone for proving full abstraction (Theorem 3.9). As for
the strong case we must ensure compositionality at the process level due to process
mobile capability, as process migration to sites results in inner site composition.

Lemma 3.8 Let J be a finite set and Ij , for all j ∈ J , be a finite set. Let P j
i and

Qj
i be processes such that for all j ∈ J and i ∈ Ij we have

[
P j

i

]
≈

[
Qj

i

]
. Then∏

j∈J

[∏
i∈Ij

P j
i

]
≈

∏
j∈J

[∏
i∈Ij

Qj
i

]
Proof. By coinduction on the definition of strong bisimulation. The proof follows
the lines given for Lemma 2.5, with several adaptations needed for the weak case.
Interesting to notice, in the strong case a migration of the inaction process could be
mimicked by an internal computation, while here it can be mimicked by the empty
sequence of internal actions (we no longer distinguish [go.nil] from [nil]). 2

By Lemma 3.7 and Lemma 3.8 we prove that weak bisimilarity is a congruence,
after which proof that ≈ ⊆ u follows in standard lines. To prove u ⊆ ≈ the

10
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difficulty lies in the spatial clauses, given by Lemma 3.3 and Lemma 3.4. Thus:

Theorem 3.9 (Full abstraction) We have ≈ = u.

3.3 Logical Characterization of Weak Bisimilarity

We characterize weak bisimilarity (and thus weak reduction barbed congruence)
using the spatial logic Lw.

Definition 3.10 [Spatial Logic Lw] Formulas are defined by the following syntax:

(Formulas) A, B, C ::= T
∣∣∣ ¬A

∣∣∣ A ∧B
∣∣∣ 0

∣∣∣ A �� B
∣∣∣ 〈〈λ〉〉A

The logic Lw is obtained from Ls by adapting the composition operator, now
noted A �� B, and the action modality, now noted 〈〈λ〉〉A, to the weak case as de-
fined in Definition 3.11. We leave the void operator with it’s standard interpretation
(notice that N ⇒ 0 is a trivial condition, due to the failure behavior).

Definition 3.11 [Semantics of A �� B and of 〈〈λ〉〉A]

JA �� BK , {N | ∃N ′, N ′′ . N ⇒ N ′ | N ′′ ∧N ′ ∈ JAK ∧N ′′ ∈ JBK}

J〈〈λ〉〉AK , {N | ∃N ′ . N
λ

=⇒ N ′ ∧N ′ ∈ JAK}

We prove logical characterization of ≈, following the lines of Theorem 2.9.

Theorem 3.12 (Logical Characterization of ≈) We have ≈ = =Lw .

As a corollary of Theorem 3.12 we conclude that the separation power of Lw

precisely coincides with weak reduction barbed congruence, even if it includes the
spatial operators composition and void. At this point, we may ask, as at the end of
Section 2.2, whether the spatial operators are essential to the characterization. We
may verify that T can be expressed as 〈〈τ〉〉0, and 〈〈τ〉〉A as A �� 0. Thus let Lmin

w

be the (T, 〈〈τ〉〉A)-free fragment of Lw. We may show that Lmin
w is as expressive as

Lw, and moreover that all of its connectives are essential for its expressiveness.

Theorem 3.13 (Minimality) The logic Lmin
w is minimal. Moreover, the spatial op-

erators are essential to characterize weak reduction barbed congruence.

Proof. (Sketch, full proof in [7]) We show that any logic obtained from Lmin
w by

removing each connective is strictly less expressive.
• (¬A) The ¬-free fragment does not distinguish [nil] | [nil] from [nil].
• (A ∧B) In the ∧-free fragment we can no longer express property 1.
• (0) The 0-free fragment does not tell 0 and [nil] apart.
• (A �� B) The �� -free fragment does not separate [nil] | [nil] from [nil].
• (〈〈α〉〉A, α = ā, a) The 〈〈α〉〉-free fragment does not tell [α.nil] and [nil] apart.
• (〈〈[a]〉〉A) The 〈〈[a]〉〉-free fragment does not distinguish [go.b.nil] from [nil].

2
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4 Concluding Remarks

We have studied observational equivalences in a distributed computation model,
having obtained spatial logic characterizations of observational congruence in both
the strong and weak cases. Taking as reference semantics for observational congru-
ence the standard reduction barbed congruence, we have derived equivalent charac-
terizations of observational congruences in terms of co-inductively defined bisim-
ilarities. The logics considered are natural extensions of HML with spatial opera-
tors, interpreted in the standard way. We have thus shown, in a precise sense, that
spatial logics, in particular the structural operators they offer, are not necessarily
intensional, and may offer adequate expressive power for logically characterizing
distributed behavior. We have also concluded, in the case of the specific process
model here considered, that the composition operator A | B is essential to capture
(extensional) observational equivalence. Intuitively, such structural observations do
not violate extensionality because distributed process behavior already has a related
observational power, due to migration behavior and failures.

Observational equivalences of distributed systems have been studied exten-
sively in the context of CCS-like models; a comprehensive survey may be found
in [10]. However, it seems that logical characterizations have not been much dis-
cussed, and the distributed process equivalences proposed were technically defined
by means of location or history-sensitive transition systems, where the use of loca-
tion names plays a key role, both in the dynamic and static cases. Here, we build on
a more abstract notion of spatial observation, avoiding the use of location names,
and consider a calculus with anonymous sites and migration primitives, in the spirit
of more recent proposals of calculi for distribution and mobility [8,18].

Our adoption of the simplest fail-stop failure model was motivated by the belief
that it already captures the key consequences of failure, cf., the folklore slogan
that in a distributed system one cannot distinguish a failed system from a system
that will respond (much) later. The fail-stop model has been frequently adopted
in formalizations of failure since [1], even if recent related works prefer to trigger
failure by means of an explicit “kill” primitive [12]. Failures play an essential
role in our results. However, it is conceivable that other notions of failure, and
a different set of spatial behaviors and spatial observations, may lead to results
comparable to the ones reported in this paper.

It is interesting to compare our results with those of [14], where an extensional
spatial logic (for the π-calculus) is considered. In that work, extensionality is ob-
tained by removing the composition and void operators, while retaining the guar-
antee, whereas here we obtain extensionality by retaining the composition and void
operators, while doing without the guarantee. We believe that the guarantee could
be added to our developments, without breaking the results. Then, it would be
instructive to see how to capture indirectly the action modalities, as in [15]. It
would be certainly important to assess how to extend the general approach pre-
sented here to richer models, with name restriction, name passing, and full compu-
tational power.
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