
Type-based Access Control in Data-Centric Systems

Luı́s Caires1, Jorge A. Pérez1, João C. Seco1, Hugo T. Vieira1, and Lúcio Ferrão2

1 CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

2 OutSystems SA

Data-centric multi-user systems, such as web applications, require flexible yet fine-
grained data security mechanisms. Such mechanisms are usually enforced by a specially
crafted security layer, which adds extra complexity and often leads to error prone cod-
ing, easily causing severe security breaches. In this paper, we introduce a programming
language approach for enforcing access control policies to data in data-centric programs
by static typing. Our development is based on the general concept of refinement type,
but extended so as to address realistic and challenging scenarios of permission-based
data security, in which policies dynamically depend on the database state, and flexible
combinations of column- and row-level protection of data are necessary. We state and
prove soundness and safety of our type system, stating that well-typed programs never
break the declared data access control policies.

1 Introduction

Data-centric multi-user software systems are a pervasive class of software applications,
where transactions manipulate information stored in a shared database on behalf of sev-
eral different users, playing several different roles. In the case of web-based systems, of
which common examples are collaborative applications or social networks, the number
of users may be extremely large, and the security requirements critical. Indeed, such
systems require very flexible yet fine-grained data security mechanisms, including dy-
namic, role-based access control. Moreover, web applications are usually developed
and executed in heterogeneous multiple-tier environments. Access control to data in
such environments is typically performed at runtime by specially crafted security code,
which mediates between the application code and the relational database management
system. Such a security layer is hard to construct, error prone, and may easily cause se-
vere security breaches. To make things a bit harder, access control policies are usually
dependent on stored data and meta-data, and highly dynamic. Addressing such security
requirements is frequently hindered by the expressiveness gap that exists between the
required access control policies at the application side, and the actual security mecha-
nisms provided by database engines.

Properly mapping the access control policies defined at the application side into as-
sociated database mechanisms is often difficult, if not impossible, also because multiple
application profiles should be related to only a few database profiles. As an unfortunate
side result, the enforcement of access control policies at the database level is kept to
a minimum, promoting security breaches, as a consequence of the lack of protection
between layers. It is therefore important to identify new verification methods to prevent
programmers from inadvertently violating access control constraints in such common
scenarios of permission-based data-centric security.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/33751337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this work we develop a programming language approach for expressing and ver-
ifying access control policies to data in (relational) data-centric programs by means of
static type checking. More precisely, we introduce a core language λDB which includes
typeful programming constructs to manipulate (query and update) data stored in data
“entities”, to be physically represented by database tables (cf. the relational model). The
associated type system allows access control policies to be associated to data entities,
allowing queries and updates to the database to be validated against the declared con-
straints, taking into account also the particular information stored, and the current static
state of the current principal. In λDB, access control policies are explicitly represented
at the level of types: we endow λDB with dependent refinement types, which ensure that
well-typed programs do not violate prescribed access control policies.

Access control mechanisms available in database systems are supported by fixed
relations between users, operations, and tables. This basic approach induces a so called
“column-level” protection in database tables, based on the static structure of the data
model. Such a static form of access control, however, is far from enough, because in
common situations the authorization to access a particular piece of information de-
pends on information also stored in the database. For example, in web applications, it
is very common to find data with security requirements such as, e.g., “only the man-
ager of a proposal is able to modify it” or “only intranet users can see the submitted
applications”. Similarly, dynamic properties such as “only the current friends of a user
can see his/her photos” are familiar. Notice that, the predicate “friend” as used here is
dynamic and state dependent: a user can be granted a permission (by being selected as
“friend”), that may be later revoked by other transaction. Any access control mechanism
for data-centric systems should therefore be flexible and expressive enough to capture
state dependencies of these kinds, which covers the notion of “row-level” protection to
database entities. Our type system fully addresses such a challenging combination of
column-level, row-level, and authorization permissions to enable the static verification
of policies such as the one above, enabling the type-checker to issue an error whenever
the programmer inadvertently tries to compile insecure code.

Our approach is based on associating expressive conditions as guards to basic op-
erations on data entities (read, update, insert, etc.), and verify such conditions at the
appropriate points in the code by static checking. In this way, it is possible to encode
usual database permissions (but also more general conditions), and verify the program’s
conformance to the access control policies. To this end we build on the notion of refine-
ment types [13, 15], extended to a setting where properties depend both on the static
state and on the dynamic state when manipulating entity tables. Intuitively, a refine-
ment type {x : β | C} classifies values of type β for which the logical expression C
holds; for instance, {x : int | x > 0} is the type of the positive integers. This also
allows a type environment to be seen as a refined property of the declared objects, so
that for instance, we may say that a typing environment ∆ = ∆′, a : {x : β | C}
entails C{a/x}, written ∆ ! C{a/x}, where C is some condition about the program
state. We also consider the combination of refinement types with functional dependent
types, something particularly useful to express general pre- and post- conditions [15]. In
the context of access control to database entities, refinement types are useful to express
what conditions are valid for each program fragment and, ultimately, to implement flex-

entity Person [userid: string; public: string;
photo: picture; secret: string;]

read public where true;
read userid where Auth(uid);
read secret where Auth(uid) and uid = userid;
read photo where Auth(uid) and Friends(userid,uid);
write where Auth(userid);

entity Friend [user: string; friend: string;]
invariant Friends(user,friend)
write where Auth(user)

Fig. 1. Some Sample Database Entities.

ible mechanisms for access control. Notice however, that our requirements for dynamic
row-level protection, as captured in the typing rules for database reading and updating
constructs, are not naturally expressible in existing refinement type systems, due to the
dependence of refinements on the actual data stored in database entities.

We illustrate our approach with a sequence of simple examples, in the scenario of
a social network application. The data model contains, among other elements, entities
Person and Friend, defined in Fig. 1. Entities are defined by enumerating their field
names and types, together with a set of access control policies associated to them. Here
we focus on the “friendship” relation, implemented by entity Friend, and on using it to
control the access users have to each others’ data. Each permission clause is composed
by (i) the kind of access granted (either read or write); (ii) the list of entity fields it
protects; and (iii) a condition, expressed as a logical formula. Field names occur in
the logical conditions, to allow them to refer to data in the entity row. The intended
semantics is that the disjunction of the set of all access control policies for a given
kind of access and field name must be valid for the corresponding operations to be
applied. Intuitively, the capabilities associated to a list of database columns will only
be granted if the associated conditions hold in the context of evaluation. In general, the
evaluation context entails primitive properties (e.g., expressing authorizations), which
may be explicitly asserted, or hold as a consequence of logical deduction from the
primitive ones (conceptually stored in a log [15]). The elementary propositions of such
formulas are predicates parameterized by language identifiers and constants.

In our case, entity Person declares four read permissions and one write permis-
sion. The first read permission stipulates that field public is always readable, as its
associated condition (true) always holds. The contents of field userid of a row is only
readable if Auth(uid) holds for some uid (identifiers not field names are existen-
tially quantified variables). The third read permission states that field secret should
be accessible only if predicate Auth(userid) holds in the current state. When a con-
dition in a permission clause refers to field names, its validity depends on the actual
data stored on each entity row. Free names in the conditions (for example uid) are
existential parameters in each permission, and will be instantiated by concrete values at
verification time. In the example, we assume that Auth(user1) asserts that user named
user1 is authenticated in the system. The consequence of this condition is that an au-

thenticated user can only select the field secret from those rows in which field userid
corresponds to its own userid (for brevity, we omit the (trusted) code that establishes
predicate Auth(_) in the login process). The fourth read permission states that an au-
thenticated user (with name user2) can access the field photo of another user (with
name user1) only in the case that predicate Friends(user1,user2) is valid. The write
permission applies to every field in Person and is self-explanatory.

The specification of entity Friend features a write permission and an invariant clause.
The invariant clause says that for each one of the rows [user = user1, friend = user2]

actually stored in entity Friend, the proposition Friends(user1,user2) always holds.
Intuitively, the invariant must hold of a tuple in order for it to be added to the table, so
that it is known to hold for every tuple read from the table; invariants in entity decla-
rations express refinements over the actually stored data. As specified by the write per-
mission, a row such as [user = user1, friend = user2], asserting user2 to be a friend
of user1 can only be created, updated, or deleted in a context where the condition (au-
thorization) Auth(user1) holds. The permissions thus enforce that friends can only be
added (or removed) by the authenticated user user1 to a data record having her as key,
and only if the condition Friends(user1,user2) holds in the current state. This last
condition may hold either because it may be obtained as effect of a query, or by calling
a trusted library (which may establish it by an explicit assume statement).

Permission clauses as introduced in this example, also support reasoning about row-
and column-level protection when accessing data. For instance, the following query,
expressed in a LINQ [16] like syntax,

from p in Person where true select public

is well-typed and safe since the condition in the permission associated to field public
always holds (true). Other fields are protected by stronger conditions. For instance,
reading the contents of the secret field of a row is only possible for the rows where
userid=name and Auth(name). For example, the query

from p in Person where p.userid=loggeduser select secret

will only type-check in a context where Auth(loggeduser) holds, for some given
loggeduser while the query

from p in Person where true select secret

will not type-check. We now consider the definitions of some functions on entities.
Consider a function that fetches the field secret of a given user, with type

getSecret: {n:string | Auth(n)} → string

The refined parameter type acts as a pre-condition, since function getSecret can only
be called if the argument is a string s such that predicate Auth(s) holds. We define
getSecret using a query on entity Person, as follows:

def getSecret(name:{n:string | Auth(n)}):string = {
let l = (from p in Person

where p.userid = name
select p.secret) in

if isEmpty(l) then NULL else head(l) }

According to the declarations in Fig. 1, the context of the query expression selecting
field secret is required to satisfy predicate Auth(p.userid) for the selected rows.
This is obtained directly from the typing name:{n:string | Auth(n)} and from the
query’s where clause p.userid = name, which holds for all rows in the result of the
query. Notice that we assumed given two predefined operations isEmpty and head to
handle the results of queries.

As a last example, we define a function for fetching the photo of a given user. We
will need two parameters, the logged-on user name and the user name whose photo is
sought. The function getPhoto would then have the following type:

getPhoto: {n:string | Auth(n)} × string → picture

Reading the field photo requires the owner of the photo to be known as a friend of the
authenticated user, expressed by the predicate Friends(−,−).

Recall that Friends(useri,userj) relation is managed dynamically by the appli-
cation, by inserting and deleting rows from entity Friend. Now, given users user1 and
user2 where we know that Auth(user1) is valid (from the function type parameters),
we may statically establish that predicate Friends(user2,user1) is valid. This is done
by querying such a row in entity Friend. We thus have

def getPhoto(name:{n:string | Auth(n)},
othername:string):picture = {

if isFriendOf(othername,name) then
let l = (from p in Person

where p.userid = othername
select p.photo) in

if isEmpty(l) then NULL else head(l)
else NULL }

The conditions for reading field photo can be deduced from the context, which entails
Auth(name) (from the parameter type) and Friends(othername,name) (from the
result of the isFriendOf call). Notice how our type system actually forces the pro-
grammer to perform a runtime test, by consulting the Friend entity before retrieving
the photo. To that end, we may use an auxiliary function isFriendOf, with type

isFriendOf: u:string×v:string → {b:bool | b⇒ Friends(u,v)}

and which encapsulates the table access, and whose return (refined) type entails the
friendship of the given parameters, defined as follows:

def isFriendOf(user:string, friend:string):
{b:bool | b ⇒ Friends(user,friend)} = {

let l = (from f in Friends
where f.user = user

and f.friend = friend
select f) in

if isEmpty(l) then false
else {head(l); true} }

We assume that read permissions for user and friend are true by default. Notice
that the type of head(l) entails Friends(user,friend), resulting from the entity
invariant.

e ::= (Expressions)
v (Value)

| e (v) (Application)
| [m = e] (Record)
| e.m (Field Selection)
| e op e (Operation)
| e ? e : e (Conditional)
| let x = e in e (Let)
| e1, ..., ek (Collection)
| create t : βρ in e (Create)
| from x in t where e select e (Select)
| update x in t where e with e (Update)
| append e to t (Append)
| delete x in t where e (Delete)
| assume C (Assume)
| assert C (Assert)

C, R, W ::= (Propositions)
p(V) (Predicate)

| V = V (Equality)
| C ∧ C (Conjunction)
| C =⇒ C (Implication)

u, v ::= (Values)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = v] (Record)
| v1, ..., vk (Collection)
| $(v) (Classified Value)

V ::= (Terms)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = V] (Record)
| V1, ..., Vk (Collection)
| $(V) (Classified Term)
| V.m (Field Selection)

ρ ::= (Permissions)
rd(m, R) (Read)

| wr(m, W) (Write)

Fig. 2. Syntax of λDB: Expressions, Logical Propositions, Values, Terms, Permissions.

The rest of the paper is structured as follows. Sections 2 and 3 introduce the syntax
and operational semantics of the λDB language, where a key notion of access control
compliance is also defined (Definition 3.7). In Section 4, a type system for ensuring
safety is proposed and its main results are stated, namely type preservation under re-
duction (Theorem 4.6), progress (Theorem 4.7), and typeful access control compliance
(Corollary 4.8). Section 5 discusses related work.

2 Syntax

In this section we present the syntax of λDB and describe its main constructs. λDB con-
tains a functional core, several constructs for storage and manipulation of data entities,
and logical operators for expressing the knowledge about properties of data in pro-
grams. The syntax of λDB expressions (e), logical propositions (C), values (v), terms
(V) and permissions (ρ) is given in Fig. 2, where we assume given infinite sets of names
Λ (ranged over by m,n, o, . . .) and of variables V (ranged over by t, x, y, z, . . .). The
distinguished variable this is used in table permissions to refer to a table row.

Expressions include values v, application e(v), records [m1 = e1, . . . ,mk = ek],
where each mi is a field, and field access e.m. λDB values include the unit value (),
true and false, variables, and abstractions λx:τ.e, where τ is the type of x. A value may
also be a record or a collection v1, . . . , vk. We often use the overbar to abbreviate in-

dexed sets; this way, e.g., [m = v] stands for [m1 = v1, . . . ,mk = vk] and v stands for
v1, . . . , vk. If r′ = [. . . , mi = v′i, . . .], then we denote v′i by r′mi

. Database tables are
modeled by references to collections of records. To represent high security data (data
not accessible according to the permissions and the current knowledge) we introduce
classified values '(v), meaning that value v is not accessible to the current program.
Classified values '(v) cannot appear in source programs, but are useful for expressing
the language semantics and its properties, namely the notion of access control compli-
ance (Definition 3.7). Notice that the language of values is included in the language of
terms, and that the language of terms is included in the language of expressions.

A field access expression e.m, provided e evaluates to a record with a field named
m, evaluates to the contents of the m field of such record. We assume some unspecified
set of operations over basic values (ranged over by op) and write e1 op e2 to repre-
sent the application of the operation to the result of evaluating expressions e1 and e2.
Expressions also include a conditional statement e1 ? e2 : e3, with the expected mean-
ing: if e1 then evaluate e2 otherwise evaluate e3. The let expression let x = e1 in e2

assigns the value obtained by evaluating e1 to variable x, and binds x with scope e2

(notice that let is not representable through function application since we require the
argument of application to be a value, for typing purposes). The collection of expres-
sions e1, . . . , ek allows to build collections of values by evaluating e1, . . . , ek. Also, we
assume the extension of the language with other basic values, and with basic language
constructs encoded in a standard way. For instance, we use e1; e2 to denote the sequen-
tial composition of expressions. We use the notation fn() to refer to the set of free
names of expressions, defined as expected. Logical conditions, for example database
access permissions, are expressed in λDB with propositions C. Logical propositions are
a predicate on a sequence of terms p(V), a term equality test V1 = V2, a conjunction
C1 ∧ C2, or an implication C1 ⇒ C2. Note that we separately define values v (which
appear in programs) from terms V (which appear in propositions). Terms add to values
the field selection construct, in such way allowing propositions to talk about properties
of record fields, but the intuition is that terms denote values.

Database constructs are SQL-like. Expression create t : βρ in e creates a new
database table and binds it to variable t in scope e. The create expression uses the table
type βρ, which specifies access control policies for t. A full account of types is given in
Section 4; for now it suffices to say that a type βρ, associates t with a (record) type β
for its rows and a set of permissions ρ. As discussed earlier, permissions define access
control policies at the level of database entities, based on logical conditions. There are
two kinds of permissions: a permission rd(m,R) specifies that field m can be read
only if condition R is deducible from the current knowledge. Similarly, permission
wr(m,W) specifies that field m can be modified only if condition W is deducible from
the current knowledge. In a permission rd(m,R) or wr(m,W), the (current) database
row to which they apply to is denoted by the reserved variable this , and any other free
variables are considered to be existentially quantified with scope R or W , respectively.
For example, rd(address, auth(x)∧x = this.id) specifies that field address can only
be read if there is a value s for which auth(s) holds and this.id = s.

Expression from x in t where e1 select e2 specifies a read access to the table t: it
returns the collection of all values obtained by applying the select expression e2 to all

er ::= e (Expression)
| updater

t e with e (Runtime Update)
| fromr

t x in e where e select e (Runtime Select)
| deleter

t e where e (Runtime Delete)

Fig. 3. Syntax of λDB Runtime Expressions.

the rows in t for which the where boolean expression e1 evaluates to true. Variable x is
bound with scope e1 and e2.

Expression update x in t where e1 with e2 updates the fields in the rows of t that
satisfy the where condition e1 according to the record obtained by evaluating e2 for ev-
ery such row. Variable x is bound with scope e1 and e2. Expression append e to t adds
to t the collection of values obtained by evaluating e. Expression delete x in t where e
deletes from t the rows that satisfy the condition e. Variable x is bound with scope e. In
examples we specify the database permissions together with entity invariants (see, e.g.,
Fig. 1). Such invariant specifications are syntactic sugar for table type refinements, as
the following example illustrates. Consider entity Friend in Fig. 1. The corresponding
λDB declaration, letting ρ = rd(user, Auth(user)), wr(friend,Auth(user)), is:
create Friend : {x : [user : string ; friend : string] | Friends(x.user , x.friend)}ρ . . .

As other languages with refinement types, λDB expressions include statements for
adding and checking assertions at runtime: assume C specifies that proposition C
should be assumed true from the current state on, while assert C checks whether propo-
sition C is true in the current state. For our model to make sense, the use of assume C
commands is forbidden to regular users and only allowed in trusted code, accessible to
user code through trusted APIs (following the approach of [6]).

3 Operational Semantics

We now present the operational semantics of λDB and introduce a notion of access con-
trol compliance for λDB programs. The semantics is defined using a reduction relation
and evaluation contexts [19]. Reduction is defined between configurations of the form
(S;C; e), where S is a state, e is an expression, and C is a proposition defining the
current knowledge. A reduction step of the form (S;C; e) → (S′;C ′; e′) means that
expression e in state S with knowledge C evolves in one computation step to expres-
sion e′ in state S′ with knowledge C ′. State S is a mapping from table names (vari-
ables) to collections of basic values, each one annotated with a set of permissions ρ:
S ! {t1 %→ 〈v1〉ρ1

, . . . , tk %→ 〈vk〉ρk
}. We use S(t) to refer to the element 〈v〉ρ such

that t %→ 〈v〉ρ ∈ S. We note dom(S) the set of table names defined in state S. Runtime
expressions (er), representing intermediate states in the computation of database oper-
ations, are given in Fig. 3. In the following, we use e to denote er, where appropriate.
Evaluation contexts specify the structure of language expressions whose inner expres-
sions are active and may reduce. We write C[e] to represent the expression obtained by
replacing the hole · by e in the evaluation context C[·]. The syntax of evaluation contexts
is given in Fig. 4. Reduction relies on an auxiliary notion of knowledge entailment:

Definition 3.1 (Entailment). Let C and C ′ be logical propositions. We define C ! C ′

(C entails C ′) if the proposition C ⇒ C ′ is derivable in classical propositional logic
extended with equality over terms in V and the axiom scheme [m = v].mi = vi.

C[·] ::= · (Hole)
| fromr

t x in v where C[·] select e (From)
| updater

t v with v ? e : e, C[·] ? e : e, e (Update-If)
| updater

t v with v, C[·], e (Update)
| append C[·] to t (Append)
| deleter

t v where C[·] (Delete)
| [n = v, o = C[·], m = e] (Record)

| v, C[·], e (Collection)
| let x = C[·] in e (Let)
| C[·] (v) (Application)
| C[·] ? e : e (If)
| C[·] op e (Op Left)
| v op C[·] (Op Right)
| C[·].n (Field)

Fig. 4. Syntax of Evaluation Contexts.

(S; C; true?e1:e2) → (S; C; e1) (r-if-true) (S; C; false?e1:e2) → (S; C; e2) (r-if-false)

(S; C; let x=v in e) → (S; C; e{v/x})(r-let) (S; C; (λx:τ.e)(v)) → (S; C; e{v/x})(r-app)

v &= $(v′)
(S; C; [. . . , n = v, . . .].n) → (S; C; v)

(r-field)
(S; C; e1) → (S′; C′; e′1)

(S; C; C[e1]) → (S′; C′; C[e′1])
(r-cont)

(S; C; assume C′) → (S; C ∧ C′; ())(r-assume)
C ' C′

(S; C; assert C′) → (S; C; ())
(r-assert)

Fig. 5. Reduction Rules for Basic Operations.

For example, we have (x.m = true ⇒ q(x.m)) ∧ x = [m = true] ! q(true).
We may now precisely define the reduction relation on configurations.

Definition 3.2 (Reduction). Reduction, noted (S; C; e) → (S′; C ′; e′), is induc-
tively defined by the rules in Fig. 5, 6, and 7.

In order to express the notion of compliance with access control policies, we instru-
ment our semantics so that access to values in the state is guarded by the permissions
associated to the corresponding tables. We use the notion of classified value to mark
the data for which permissions are not entailed by the current knowledge. The rules in
Fig. 5 capture the reductions for the conditional expression (r-if-true) and (r-if-false),
let (r-let), and application (r-app) in a standard way. Rule (r-field) states that a record
value indexed by a field name reduces to the corresponding field value, provided it
is not a classified value. Rule (r-cont) allows for reduction to take place internally to a
given evaluation context. Rule (r-assume) applies to expressions of the form assume C ′

which reduce to the unit value and add proposition C ′ to the knowledge in the resulting
configuration. By rule (r-assert), an expression of the form assert C ′ reduces, to the
unit value, provided that proposition C ′ is entailed by the current knowledge.

Fig. 6 and 7 present the reduction rules for the operations on database tables. Rule
(r-create) specifies the creation of a new entry in the state, by associating a fresh table
name with an empty collection. Rule (r-from) specifies the first step of the evaluation
of a from expression by reducing to an intermediate expression. Crucially, the resulting
runtime expression fromr takes a filtered copy of the values associated with table t in
the state, according to the filter() operation defined as follows:

t′ &∈ dom(S) ∪ fn(e)

(S; C; create t : βρ in e) → (S, t′ *→ 〈∅〉ρ; C; e{t′/t})
(r-create)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; from x in t where e1 select e2) → (S; C; fromr
t x in v′ where e1{v

′
/x} select e2)

(r-from)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; update x in t where e1 with e2) → (S; C; updater
t v with (e1 ? e2 : []){v′/x})

(r-update)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; delete x in t where e) → (S; C; deleter
t v where e{v′/x})

(r-delete)

ok2write(v)ρ
C

(S, t *→ 〈u〉ρ; C; append v to t) → (S, t *→ 〈u, v〉ρ; C; ())
(r-append)

Fig. 6. Reduction Rules for Table Operations.

u = {v′k | vk = true}
(S; C; fromr

t x in v′ where v select e2) → (S; C; e2{u/x})
(r-fromr)

∀i (e3
i = e1

i ∧ ui = true) ∨ (e3
i = e2

i ∧ ui = false)

(S; C; updater
t v with u ? e1 : e2) → (S; C; updater

t v with e3)
(r-update-if r)

u = v • v′ ok2update(v, v′)ρ
C

(S, t *→ 〈u′〉ρ; C; updater
t v with v′) → (S, t *→ 〈u〉ρ; C; ())

(r-updater)

u = {vk | v′k = false} ok2write({vk | v′k = true})ρ
C

(S, t *→ 〈u′〉ρ; C; deleter
t v where v′) → (S, t *→ 〈u〉ρ; C; ())

(r-deleter)

Fig. 7. Reduction Rules for Runtime Expressions.

Definition 3.3 (Filtering). Given a set of permissions ρ, a proposition C, and a record
r = [m = v], we define filtering of r under C, ρ, by filter(r)ρ

C ! [m = v′] where:

v′i =
{

vi if exists rd(mi, R) ∈ ρ and θ such that C ! θ(R{r/this})
'(vi) otherwise

We set filter(v1, . . . , vn)ρ
C = filter(v1)ρ

C , . . . ,filter(vn)ρ
C .

The filtering operation marks a value vi in a record field as classified if no instance of
its read permissions is derivable from the current knowledge C, replacing vi by '(vi) in
the resulting record. A substitution θ (a finite function from variables to terms) is used
to instantiate all free variables in a permission condition by closed values (except for
the reserved variable this). From now on, we use θ(C) assuming that the domain of θ
is the set of free variables in C, except this . Filtering causes a program to get stuck if
it attempts to select a classified value from a record read from a table later on in the
computation.

In the runtime counterpart of expression from x in t where e1 select e2, expression e1

is expanded to a collection of expressions, where each element (e1{v′i/x}) instantiates
the cursor variable x with one of the filtered rows (v′i) of table t. Notice that the fromr

expression freezes the current (filtered) state of table t, so as to use it when producing
the final result. Rule (r-fromr) applies to a fromr expression where all conditional ex-
pressions are values, and reduces to a collection of expressions, obtained by replacing
the cursor variable x by each one of the selected rows in the select expression e2.

By rule (r-update), an update expression reduces to a runtime expression updater,
that expresses the modifications to the selected rows of t, via a collection of conditional
constructs (e1?e2:[]), where the cursor variable x is replaced by the filtered values of
table t. If the condition e1 yields true, the modified field values are computed by ex-
pression e2, otherwise the result is an empty record denoting that no modification is to
be performed in that particular row. Rule (r-update-if r), is applied after the evaluation
of all conditions, and performs the corresponding selections. This three-step evaluation
ensures the expected semantics where conditions are all evaluated first. Finally, rule
(r-updater) actually updates the table in the resulting state. The record update operation
below is used to update the collection associated to table name t in the state. It takes
two records r,r′ and produces a record based on the first argument, replacing its field
values with the values of the second record whenever they exist.

Definition 3.4 (Record Update). Let r = [m = v] and r′ = [m′ = v′] be two records
with m′ ⊆ m. The update of record r by r′, noted r • r′, is defined by

r • r′ ! [m = u] where ui = (if mi ∈ m′ then r′mi
else rmi)

We set r • r′ = r1 • r′1, . . . , rn • r′n.

For example [pwd = foo, uid = 9] • [uid = 0] = [pwd = foo, uid = 0].
Rule (r-delete) specifies that a delete expression reduces to the runtime expression

deleter, in which the where expression is expanded into a collection of boolean tests,
again instantiating the cursor variable x with the filtered records v′. Rule (r-deleter)
updates the values in table t in the resulting state, by keeping only the ones whose
corresponding test yields false. Rule (r-append) reduces to a configuration where the
collection associated with table name t is imperatively augmented with values v. The
operations update, delete, and append depend on the runtime verification that the current
knowledge entails the necessary write permissions. Rule updater expression depends on
test ok2update() that checks only the modified fields in a record when compared with
the original row, while rules (r-deleter) and (r-appendr) depend on the test ok2write()
which checks permissions for all fields in the table rows.

Definition 3.5 (Write and Update Permission Checks). Given r = [m = u] and r′ =
[m′ = v] (with m′ ⊆ m), a set of permissions ρ for r, and a proposition C, we define
the write and update permission checks, ok2write(r)ρ

C , and ok2update(r, r′)ρ
C by:

ok2write(r)ρ
C ! ∀mi∈m ∃Wi, θi(wr(mi,Wi) ∈ ρ and C ! θi(Wi{r/this}))

ok2update(r, r′)ρ
C !

∀mi∈m′ (rmi = r′mi
) ∨ ∃Wi, θi(wr(mi,Wi) ∈ ρ and C ! θi(Wi{r′/this}))

We set ok2write(v)ρ
C = ok2write(v1)ρ

C ∧ . . . ∧ ok2write(vn)ρ
C ,

and ok2update(v, u)ρ
C = ok2update(v1, u1)ρ

C ∧ . . . ∧ ok2update(vn, un)ρ
C .

β, φ ::= unit (Unit Type)
| bool (Boolean Type)
| [m : β] (Record Type)
| {x : β | C} (Refinement Type)

τ, σ ::= β (Basic Type)
| β∗ (Collection Type)
| Πx : τ. τ (Dependent Function Type)

Fig. 8. Syntax for Types.

We may now define the notion of error for λDB configurations.

Definition 3.6 (Error). A configuration (S;C; e) is an error if e is not a value and
there are no S′, C ′, e′ such that (S;C; e) → (S′;C ′; e′).

Notice that a configuration (S;C; e) immediately attempting to select a field of a record
containing a hidden (classified) value is an error, since by the premise of (r-field), it has
no reduction. Given that classified values are only introduced in data access primitives
by filtering out data in fields for which no read permission is available, we define:

Definition 3.7 (Data Access Control Compliance). A configuration is data access
control compliant if no computation from it gets stuck in a field selection (r-field), up-
date, delete, or append operation, due to a ok2write() or ok2update() test failure.

It is then clear that programs that do not get into errors are in particular access control
compliant. In the next section, we introduce a type system that statically ensures that
well-typed programs do not get into errors, and are therefore access control compliant.

4 Type System

In this section we present our type system, which ensures that well-typed programs are
data access control compliant. The syntax of types is defined in Fig. 8. We have basic
types (β): unit, bool, the record type [m1 : β1, . . . ,mk : βk], and refinement types
{x : β | C}, which capture values of type β for which the proposition C holds (x is
bound with scope C). Types also include collection types β∗ which type collections of
values of type β, and dependent function types Πx : τ.σ, the type of functions that
given a value x of type τ return a value of type σ, where x may occur on σ. As usual,
the standard function type τ → σ is represented by Πx : τ.σ, where x does not occur
in σ. Notice that we forbid collections of functions, collections of collections, etc, for
simplicity. We also introduce table types, denoted βρ to classify table names. Recall
that table names are imperatively bound to collection of values of type β, and have their
contents are guarded by a set of permissions ρ.

We now present our typing relation. A typing judgment of the form ∆ ! e : τ says
that expression e has type τ under environment ∆. Also, we use ∆ ! C to say that
knowledge C is logically entailed from the knowledge in environment ∆ (see below).
We introduce an auxiliary type constructor, not expected to appear on source programs,
but needed to type records where some fields may contain secured data. Such types,
called projected types, have the form β"m, where β is a record type or an (hereditary)
refinement of a record type, and are only used to type the query “cursor” in the scope
of database table operations. Intuitively, β"m means the same as β, but selection on a

“classified” field (a field not in m) is not allowed in well-typed programs. Crucially,
types containing projected types as subexpressions are not allowed, so that the projec-
tion construction in only allowed to occur at the top level of any type. This condition is
important to block illegal information flows out of trusted where and select clauses. In
the sequel, we range both types τ and projected types β"m using µ.

Type declarations, ranged over by γ, are assignments of types to variables, defined
as either x : τ (normal type) or as x : τ"m (projected type) or as t : βρ (table type). For
example, x : [name : β1, email : β2, address : β3]"name,email is a type declaration that
specifies that the only fields accessible in variable x are name and email, while field
address is not accessible. A typing environment, ranged over by ∆, is a sequence of
typing declarations γ1, . . . , γk. A well-formed typing environment satisfies a domain
closure property on type declarations (from left to right). We say typing environment ∆
is well-formed if for all γ such that ∆ = ∆′, γ,∆′′ and γ = x : τ or γ = x : τ"m or
γ = x : βρ then x -∈ fn(∆′), where there is a notion of free names of environments,
declarations, and types (we use fn(), taking into account names in the domain and in
the types). From this point on, we assume typing environments are always well-formed.
Also, we use ∆π to denote the environment obtained by deleting from ∆ all identifiers
which are assigned non-basic types. To define the knowledge of a type environment, we
introduce the auxiliary notion of term environment. This is the same as the notion of
environment, but where term declarations may assign types to terms V (see Fig. 2), not
just to variables. So a type environment is also a term environment. Given a term envi-
ronment ∆, we may consider the knowledge it expresses about the terms it specifies, as
a set (taken as the conjunction) of propositions.

Definition 4.1 (Knowledge). The knowledge of a term declaration γ, noted kn(γ), is
inductively defined on types by:

kn(V :{x:β | C}) ! {C{V/x}} ∪ kn(V :β) kn(V :[m:β]) ! S
mi∈m kn(V.mi:βi)

kn(V :{x:β | C}"m) ! {C{V/x}} ∪ kn(V :β"m) kn(V :[m:β]"n) ! S
mi∈n kn(V.mi:βi)

and as kn(γ) ! ∅ for other types. Then kn(∆) is given by kn(∆, γ) = kn(∆)∪ kn(γ),
and kn(∅) = ∅. We often identify the set kn(∆) with the conjunction of its elements.

Definition 4.2 (Derivable Knowledge). Given a term environment ∆, formula C is
derivable knowledge from ∆, noted by ∆ ! C, if kn(∆) ! C.

Logical entailment has been defined in Definition 3.1. We can verify that knowledge is
preserved by term substitution, that is, kn(∆){V/x} = kn(∆{V/x}), and we also have
that ∆ ! V :µ implies ∆ ! kn(V :µ). We can now define:

Definition 4.3 (Typing). Typing is expressed by judgment ∆ ! e : µ, stating expression
e is well-typed by µ in environment ∆. Typing rules are given in Figs. 9, 10, and 11.

We first discuss the typing rules that do not concern database operations, depicted
in Fig. 9. Rules (t-assert), (t-assume), (t-refine), (t-term-refine), and (t-unrefine) express
standard principles in refinement type theories (see, e.g., [15]), with some simplifica-
tions, due to the absence of subtyping in our presentation. Rule (t-assert) checks if the
environment knowledge supports the specified proposition. Rule (t-assume) (remember

∆ ' C
∆ ' assert C : unit

(t-assert) ∆ ' assume C : { : unit | C} (t-assume)

∆ ' () : unit (t-unit)
∆ ' V : β ∆ ' C(V)
∆ ' V : {x : β | C(x)} (t-term-refine)

∆ ' e : β ∆, x : β ' C(x)
∆ ' e : {x : β | C(x)} (t-refine)

∆ ' e : {x : β | C(x)}
∆ ' e : β

(t-unrefine)

∆ ' e : Πx : τ. σ ∆ ' v : τ
∆ ' e (v) : σ{v/x} (t-app)

∆ ' e1 : σ ∆, x : σ ' e2 : τ
∆ ' let x = e1 in e2 : τ

(t-let)

∆, x : τ ' e : σ
∆ ' λx : τ.e : (Πx : τ. σ)

(t-fun)
op : τ1 → τ2 → σ ∀i∈1,2 ∆ ' ei : τi

∆ ' e1 op e2 : σ
(t-op)

∆ ' e1 : {b : bool | C(b)}
∆, : { : unit | C(true)} ' e2 : τ ∆, : { : unit | C(false)} ' e3 : τ

∆ ' e1 ? e2 : e3 : τ
(t-if)

∆, x : τ, ∆′ ' x : τ (t-id)
∀i ∆ ' ei : βi

∆ ' [m = e] : [m : β]
(t-record)

∀i ∆ ' ei : β
∆ ' e : β∗

(t-collection)

∆ ' e : [. . . , n : β, . . .]
∆ ' e.n : β

(t-field)
∆ ' v : [. . . , n : β, . . .]"m n ∈ m

∆ ' v.n : β
(t-fieldProj)

∀i ((vi = $(ui) ∧mi &∈ n) ∨∆ ' vi : βi)

∆ ' [m = v] : [m : β]"n

(t-recProj) ∆, x : τ "m, ∆′ ' x : τ "m (t-idProj)

∆ ' x : τ"m fields(τ) = m
∆ ' x : τ

(t-allFields)

Fig. 9. Typing Rules (I).

that assume is only to be used in trusted code, not user code) types the assume witness
(with unit type) with its logical refinement, which may then be added to the current
knowledge (namely, via a let x = assume C in . . .).

We now consider the basic typing rules for database operations (see Fig. 10). Typing
rules for related runtime expressions follow similar lines and are shown in Fig. 11. Rule
(t-from) specifies that a from expression is well-typed if the environment knowledge en-
tails the permissions needed to access the data in the table (I, J,K,L are sets of record
field labels). The where expression e1 returns a boolean b such that C(x, b) for the given
record x. Thus if x is selected by the test e1, we know C(x, true) holds. Notice that e1

itself is only allowed to use table fields mj (mj ∈ J) for which the appropriate read
permissions Rmj are entailed by the current knowledge ∆. Using this additional piece
of knowledge (C(x, true)), taking into account that the result of the where test is true
for the selected rows, the set of permissions Rmk , for fields mk ∈ K, is derived. Notice
that the refinement predicate obtained for the where expression (i.e., C(x, b)) carries
information about the actual data being selected. This allows us to capture the intended
row-level access control conditions, as all necessary read permissions are valid for each

∆(t) = β{rd(mi,Rmi) |mi∈I}∪ρ J, K ⊆ I

∆ '
V

mj∈J θj(Rmj) ∆π, x : β"J ' e1 : {b : bool | C(x, b)}
∆ ' C(this, true) =⇒

V
mk∈K θk(Rmk)

∆, x : β"K , : { : unit |C(x, true)} ' e2 : φ

∆ ' from x in t where e1 select e2 : φ∗
(t-from)

∆(t) = β{rd(mi,Rmi) | mi∈I}∪{wr(ml,Wml
) | ml∈L}∪ρ J, K ⊆ I L ⊆ K

∆ '
V

mj∈J θj(Rmj) ∆π, x : β"J ' e1 : {b : bool | C(x, b)}
∆ ' C(this, true) =⇒

V
k∈K θmk (Rmk)

β = {r : τ | I(r)} I(r) ' H(r) H(r) ∧ U(r) ' I(r) φ = {r : |τ |K |U(r)}
D(y) = (

V
ml∈K−L y.ml = x.ml) ∧

V
ml∈L θml(Wml{y/this})

∆, x : β"K , : { : unit |C(x, true)} ' e2 : {y : φ | D(y)}
∆ ' update x in t where e1 with e2 : unit

(t-update)

∆(t) = β{rd(mj ,Rmj) | mj∈J}∪{wr(ml,Wml
) | ml∈L}∪ρ fields(β) = L

∆ '
V

mj∈J θj(Rmj) ∆π, x : β"J ' e : {b : bool | C(x, b)}
∆ ' C(this, true) =⇒

V
ml∈L θl(Wml)

∆ ' delete x in t where e : unit
(t-delete)

∆(t) = β{wr(ml,Wml
) | ml∈L}∪ρ fields(β) = L

∆ ' e : {x : β |
V

ml∈L θl(Wml{x/this})}
∗

∆ ' append e to t : unit
(t-append)

∆, t : βρ ' e : τ β = {r : βr | I(r)} βr is a record type
∆ ' create t : βρ in e : τ

(t-create)

Fig. 10. Typing Rules (II).

selected row. For soundness, we type the test in the pure part of the environment ∆π .
This ensures that computation of where clauses will never generate new knowledge,
even if they may generate side effects.

Notice that the type of the cursor x is projected to the set of accessible fields when
typing the where and select expressions, so that only the fields for which permissions
are entailed may be selected (see Rule (t-fieldProj)). Also, to derive the permissions, we
type the cursor identifier x with the (row) element type for the table (β), projected to
the accessible fields (either mj or mk). The typing of the select expression ensures that
φ is the type of the values returned; in general, φ may implicitly include information on
the invariants of entity t as a refinement.

Rule (t-fieldProj) types the field access to an identifier which type declaration is
projected in a set of field names and where this set contains the accessed field. In rule
(t-allFields), an environment that specifies a projected type declaration for identifier n
types it with the (unrestricted) type τ , provided the projection is over all fields of type
τ — we use fields(τ) to denote the set of fields of the record type τ , possibly occurring
under a refinement type. The combined use of rules (t-allFields) and (t-fieldProj) en-
sures that a record value typed by a projected type can only be used as a non protected

record when the projection is over the whole set of fields. Otherwise, the only admissi-
ble behavior on such a value will be to select a field in the projection set. This ensures
a tight control on the information flow of secured data. In particular, classified (high)
values '(v) will never be leaked outside the context of a database operation, such as a
where or a select computation, since protected types are not used elsewhere, due to our
typing and syntactic constraints.

Rule (t-update) implements a reasoning similar to (t-from), as far as the where test
is concerned, with fields in J selected for safe reading, based on available read per-
missions Rmj . However, to type the with clause e2, we must check: (1) that e2 copies
without modification (y.ml = x.ml) the fields in K − L for which write permissions
are not deduced, and (2) that write permissions Wmk are currently entailed for all po-
tentially modified fields mk. In general, write permissions Wmk may refer to readable
fields (allowed by Rml), where L ⊆ K (only readable fields may be updated), but not
to other (classified) fields. So, we require in the rule that the permissions Wml(r) may
only refer to fields of r in K. All these conditions explain the refinement D(y) of φ. To
ensure that the updated row would satisfy the table type β = {r : τ | I(r)} (expressing
invariant I(r)) we verify, through a frame reasoning, that the conjunction of the prop-
erties of the update records produced by e2 together with the properties of the classified
part imply the table invariant I(r) for the updated record r. So, we require that H(r)
only refers to fields of τ not in K and U(r) only refers to fields of τ in K. Notice that
the base record type of φ is the same of β, but with fields out of K removed (noted
|τ |K). All these conditions ensure that the update v3 = v1 • v2 in rule (r-update-if) is
well defined, and that neither invariants nor write permissions are violated at runtime.

The remaining rules follow similar ideas: (t-delete) verifies that write permissions
are available for all fields of all records selected by the where test, and (t-append) re-
quires write access to all table fields. We now introduce well-typed configurations.

Definition 4.4 (Well-typed Configuration and State). A configuration (S;C; e) is
well-typed in environment ∆ (noted ∆ ! (S;C; e) if (a) ∆ ! e : τ ; (b) ∆ ! S;
and (c) for all Ci ∈ kn(∆), C ! Ci. We also define ∆ ! S by for all (t %→ 〈v〉ρ) ∈ S
we have ∆(t) = βρ and for all vi ∈ v, ∆ ! vi : β.

Notice that (c) states that the runtime condition C (the log) is stronger that the static
knowledge entailed by ∆. This fact is used in our proofs to express that any statically
verified condition (assertions, permissions) also holds at runtime.

We now present our main results, which ensure that programs that go through our
typing rules are access control compliant (in addition to being of course error (stuck)
free in the usual sense). The main statements are Theorem 4.6 (Type Preservation) —
well-typing is invariant under reduction — Theorem 4.7 (Progress) — well-typed ex-
pressions are either values or have a reduction — and Corollary 4.8 — well-typed ex-
pressions comply with access control policies. Detailed proofs may be found in [9]. We
first present our type preservation result, which relies on two substitution lemmas.

Lemma 4.5 (Substitution).

1. (Entailment) Let ∆, x : µ,∆′ ! C. If ∆ ! V : µ then ∆, (∆′{V/x}) ! C{V/x}.
2. (Typing) Let e be an expression where ∆, x : µ,∆′ ! e : σ. If ∆ ! v : µ then

∆, (∆′{v/x}) ! e{v/x} : σ{v/x}.

Theorem 4.6 (Type Preservation). Let ∆ ! (S;C; e). If (S;C; e) → (S′;C ′; e′) then
there is ∆′ such that ∆, ∆′ ! (S′, C ′, e′).

Theorem 4.6 says that any reduction step in well-typed configuration leads to a well-
typed configuration, where the typing of the final configuration is possibly extended so
as to capture added knowledge (e.g., in case of an assume) or new locations of tables
(via create) in the state. Our second result states that a closed well-typed configuration
(S;C; e) either has a value as its distinguished expression e, or has a reduction (it is not
stuck). In particular, it is not an error.

Theorem 4.7 (Progress). Let ∆ ! (S;C; e) and fn(e) ⊆ dom(S). Then either e is a
value or (S;C; e) → (S′;C ′; e′).

Theorem 4.7 states closed well-typed programs never get stuck on a expression which
is not a value, and thus, in particular, well-typed configurations never get stuck on an
assert C statement. Also notice that access to a classified record value is never at-
tempted performed by well-typed programs, and safety of database updates, deletes, and
appends, is also ensured by the validity of runtime control assertions such as ok2write(),
which ultimately depend on assertion checking. By Theorems 4.6 and 4.7 we conclude:

Corollary 4.8 (Data Access Control Compliance). Let ∆ ! (S;C; e) and fn(e) ⊆
dom(S). Then (S;C; e) is data access control compliant.

Corollary 4.8 tells us, in a technically precise way, that well-typed configurations never
attempt to read data from tables which is forbidden by the prescribed policies, neither
store in tables data that violates the prescribed policies or table invariants.

5 Discussion and Related Work

Refinement types were introduced in [13] in the context of ML type theory. Recently,
Gordon and co-authors have developed a general theory of refinement types for a con-
current λ-calculus [15]. Their approach is applied in [6], where refinement types are in-
terpreted as logic assertions which are used to verify authentication/authorization prop-
erties in security protocols. Our model builds on the general framework of refinement
types, but does not seem naturally expressible within it; in fact, a key ingredient of
our approach is the integration of refinements with coarse-grained typing principles for
database operations, allowing access policies to selectively depend on the stored data,
on a row-level basis, as required in realistic scenarios. We have no perspective on how
to model our typed language in other related languages, including Fine [17], mainly
because of the need to tightly integrate the constraints needed to statically type-check
the trusted from and update constructs, parametric on general filtering where tests.

Several (proposals of) programming and/or modeling languages integrating data op-
erations into programs — often in the form of SQL-like operations — have been put
forward recently; examples include LINQ [16], Cω [8], Links [11], Ur/Web [10], Dmi-
nor [7], and M; some of these works have tackled security issues. Our work shares the
same general goals with [10]. However, the underlying approaches are very different.
In [10] access policies are defined as queries and programs are checked (using symbolic

evaluation techniques) so as to guarantee any data exchanged with the database is con-
tained in the result set of some policy, while access control policies may depend on the
actual data and on the knowledge held by the user performing the query — captured by
known, a distinguished predicate. In our approach access control policies also depend
on the actual data; they are expressed in terms of arbitrary logical expressions which can
capture, for instance, the knowledge held by the user or some data relationship, thus in-
troducing extra flexibility. Another fundamental difference between our work and [10]
lies on the conception of access control itself. The approach in [10] enforces a strong
distinction between the access control capabilities of the (trusted) server and those of
its (untrusted) clients. In our work, thanks to refinement types, access control can be
treated in a more uniform way: the actual access control permissions of a participant
(server or clients) depends on the knowledge currently available to it. This is reflected
in the handling of where clauses: in [10] the data by a where clause is not subject to
access control checks, which allows for queries that implicitly leak non-accessible in-
formation while in our approach the where test code is subject to access control checks
in a uniform way, which excludes queries that access classified information, in the pre-
cise sense of Corollary 4.8.

Dminor [7] combines refinement types and expressions enforcing dynamic type
tests. Although a basic form of select expressions is expressible in Dminor (by means
of an accumulator construct), it does not support other database-like expressions nor
offers a simple way of enforcing fine-grained access control permissions over data enti-
ties, two of the distinguishing features of λDB. The approach of [7] is related to the work
in RFC in [6], which we reviewed above. Links [11] is a typed functional programming
language for web applications. In [5] a secure compilation strategy for Links is for-
malized by a concurrent λ-calculus, endowed with a refinement type system, but not
addressing data management operations. SELinks [12] extends Links with label-based
security policies. In SELinks security labels are associated to objects which contain sen-
sible data; a labeled object is not accessible. Policy enforcement functions are used to
safely “unlabel” objects, thus implementing the semantics associated to the security la-
bels. A type system [18] ensures the correct mediation between application code and the
policy enforcement functions. Our focus is on data access control, based on logical con-
ditions on the data itself, where permissions are directly taken in account while typing
database primitives, by means of refinement types, allowing for fine-grained policies to
be directly verified in application level SQL-like database manipulation code.

6 Concluding Remarks

We have presented a type-based approach to statically enforce access control to per-
sistent data in data-centric software systems such as web applications. We believe that
our proposal provides a useful mechanism to enforce the preservation of protection (in
the general sense of [1]) between application-level security and database-level secu-
rity management. Our technical development is based on a core language λDB, which
includes comprehensive SQL-like operations, and is equipped with a refinement type
system. Refinement types are combined with access permissions, allowing the system
to control unsecure information flows across database operations. Although simple to

use, at least in principle, our approach is expressive enough to enforce access control
policies at a very fine-grained level, in particular allowing security constraints to dy-
namically depend on the stored data, as is often the case in real applications. Our main
results certify that our type system excludes error configurations, namely systems that
violate access control policies, in a technically precise sense. In future work, we intend
to extend our model with more sophisticated permission and access control concerns.
For simplicity and usability, our refinements logic is a simple classical logic, where
deduced facts are monotonically accumulated, while database contents keeps chang-
ing overtime. Nevertheless, this approach is already very useful and consistent with
the scenario of web-based applications, where all the state resides in the database, and
operations are implemented by independent short-running requests. Our type system
ensures that no data access violations may occur in a transaction, given the currently
visible database stored data and related policies. Nevertheless, it would be interesting
to study the adoption in our framework of more expressive logics (e.g., [3, 14, 4]), and
to research the interplay between refinement types and types for information flow [2].
Acknowledgements. We thank Carnegie Mellon—PT INTERFACES 44-2009-12, CITI,
and OutSystems SA. Thanks to Frank Pfenning for insightful discussions. The anony-
mous referees are also thanked for their extremely useful comments and criticisms.

References

1. M. Abadi. Protection in Programming-Language Translations. In Proc. of ICALP’98, volume
1443 of Lecture Notes in Computer Science, pages 868–883. Springer-Verlag, 1998.

2. M. Abadi. Access Control in a Core Calculus of Dependency. In J. H. Reppy and J. L.
Lawall, editors, Proc. of ICFP’06, pages 263–273. ACM, 2006.

3. M. Abadi. Logic in Access Control (Tutorial Notes). In Proc. of FOSAD, volume 5705 of
Lecture Notes in Computer Science, pages 145–165. Springer-Verlag, 2009.

4. M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin. A Calculus for Access Control
in Distributed Systems. ACM Trans. Program. Lang. Syst., 15(4):706–734, 1993.

5. I. G. Baltopoulos and A. D. Gordon. Secure Compilation of a Multi-Tier Web Language. In
Proc. of TLDI’09, pages 27–38. ACM, 2009.

6. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement Types for
Secure Implementations. In Proc. of CSF’08, pages 17–32. IEEE Computer Society, 2008.

7. G. M. Bierman, A. D. Gordon, C. Hritcu, and D. Langworthy. Semantic Subtyping with an
SMT Solver. In Proc. of ICFP’10, pages 105–116. ACM, 2010.

8. G. M. Bierman, E. Meijer, and W. Schulte. The Essence of Data Access in Cω. In Proc. of
ECOOP’05, volume 3586 of Lecture Notes in Computer Science, pages 287–311. Springer-
Verlag, 2005.

9. L. Caires, J. A. Pérez, J. C. Seco, H. T. Vieira, and L. Ferrão. Type-based Access Control in
Data-Centric Systems. Technical Report DIFCTUNL 3/10, U. Nova de Lisboa, 2010.

10. A. Chlipala. Static Checking of Dynamically-Varying Security Policies in Database-Backed
Applications. In Proc. of OSDI’10. USENIX Association, 2010.

11. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Programming Without Tiers.
In Proc. of FMCO’06, volume 4709 of Lecture Notes in Computer Science, pages 266–296.
Springer-Verlag, 2006.

12. B. J. Corcoran, N. Swamy, and M. W. Hicks. Cross-Tier, Label-Based Security Enforcement
for Web Applications. In SIGMOD Conference 2009, pages 269–282. ACM, 2009.

13. T. Freeman and F. Pfenning. Refinement Types for ML. In Proc. of PLDI’91, pages 268–277.
ACM, 1991.

14. D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter. A Linear Logic of Au-
thorization and Knowledge. In Proc. of ESORICS’06, volume 4189 of Lecture Notes in
Computer Science, pages 297–312. Springer-Verlag, 2006.

15. A. D. Gordon and C. Fournet. Principles and Applications of Refinement Types. Technical
Report MSR-TR-2009-147, Microsoft Research, 2009.

16. E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object, Relations and XML in
the .NET Framework. In SIGMOD Conference 2006, pages 706–706. ACM, 2006.

17. N. Swamy, J. Chen, and R. Chugh. Enforcing Stateful Authorization and Information Flow
Policies in Fine. In Proc. of ESOP’10, volume 6012 of Lecture Notes in Computer Science,
pages 529–549. Springer-Verlag, 2010.

18. N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A Language for Enforcing User-defined
Security Policies. In Proc. of IEEE S&P’08, pages 369–383. IEEE Computer Society, 2008.

19. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Information and
Computation, 115:38–94, 1994.

Appendix: Typing Rules for Runtime Expressions

∆(t) = β{rd(mi,Rmi) |mi∈I}∪ρ J, K ⊆ I

∆ '
V

mj∈J θmj (Rmj) ∀vi∈v ∆ ' vi : β"J

∀ei∈e ∆π ' ei : {b : bool | C(vi, b)} ∆ ' C(this, true) =⇒
V

mk∈K θmk (Rmk)

∆, x : β"K , : { : unit |C(x, true)} ' e2 : φ

∆ ' fromr
t x in v where e select e2 : φ#

∆(t) = β{rd(mi,Rmi) |mi∈I}∪{wr(ml,Wml
) |ml∈L}∪ρ J, K ⊆ I L ⊆ K

∆ '
V

mj∈J θmj (Rmj) ∀vi∈v ∆ ' vi : β ∀v′
i∈v′ ∆ ' v′i : β"J

∀e′
i∈e′ ∆π ' e′i : {b : bool | C(v′i, b)} ∆ ' C(this, true) =⇒

V
mk∈K θmk (Rmk)

β = {r : τ | I(r)} I(r) ' H(r) H(r) ∧ U(r) ' I(r) φ = {r : |τ |K |U(r)}
e′′i = e2{v

′
i/x} D(y) = (

V
ml∈K−L y.ml = x.ml) ∧

V
ml∈L θml(Wml{y/this})

∆, x : β"K , : { : unit |C(x, true)} ' e2 : {y : φ | D(y)}
∆ ' updater

t v with e′ ? e′′ : [] : unit

∆(t) = β{rd(mk,Rmk
) |mk∈K}∪{wr(ml,Wml

) |ml∈L}∪ρ L ⊆ K

∀vi∈v ∆ ' vi : β ∆ ' C(this, true) =⇒
V

mk∈K θmk (Rmk)

β = {r : τ | I(r)} I(r) ' H(r) H(r) ∧ U(r) ' I(r) φ = {r : |τ |K |U(r)}
D(y)(

V
ml∈K−L y.ml = x.ml) ∧

V
ml∈L θml(Wml{y/this})

∀ei∈e (ei = []) ∨
(∆ ' v′i : β"K ∧ ∆, : { : unit |C(v′i, true)} ' ei : {y : φ | D(y){v′i/x}})

∆ ' updater
t v with e : unit

∆(t) = β{rd(mj ,Rmj) |mj∈J}∪{wr(ml,Wml
) | l∈L}∪ρ fields(β) = L

∆ '
V

mj∈J θmj (Rmj) ∀vi∈v ∆ ' vi : β ∀v′
i∈v′ ∆ ' v′i : β"J

∀ei∈e ∆π ' ei : {b : bool | C(x, b)} ∆ ' C(this, true) =⇒
V

ml∈L θml(Wml)

∆ ' deleter
t v where e : unit

Fig. 11. Typing Rules (III).

