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Abstract— Upper stages of launchers sometimes drift, with
the main engine switched-off, for a longer period of time until
re-ignition and subsequent payload release. During this period
a large amount of propellant is still in the tank and the motion
of the fluid (sloshing) has an impact on the attitude of the stage.
For the flight phase the classical spring/damper or pendulum
models cannot be applied. A more elaborate sloshing-aware
model is describe in the paper involving a time-varying inertia
tensor.

Using principles of hybrid systems theory we model the
minimum impulse bit (MIB) effect, that is, the minimum torque
that can be exerted by the thrusters. We design a hybrid
model predictive control scheme for the attitude control of a
launcher during its long coasting period, aiming at minimising
the actuation count of the thrusters.

Index Terms— Attitude Control, Upper Stage, Sloshing, Min-
imum Impulse Thrusters, Hybrid Model Predictive Control,
Aerospace.

I. INTRODUCTION

Upper stages of launchers sometimes have a control mode
known as “long coasting phase” which can last up to five
hours. The spacecraft, already in orbit with the main engine
switched off, drifts with its payloads toward the point on
the orbit where the separation shall take place. The stage
slowly rotates around its roll axis in order to avoid heating
up (barbecue mode). The control torques are generated by
thrusters. For some types of thrusters the accepted total
number of actuation is limited and the long duration of the
coasting period makes this problem rather challenging.

Although the spin rate is low (1 to 5deg/sec), the gyro-
scopic coupling cannot be neglected and the plant dynamics
must be treated in a multiple-input/multiple-output (MIMO)
fashion [1]. Sometimes the main engine will be re-ignited
just prior to the payload release in order to change the orbit
parameters. Therefore a considerable amount of propellant
is left in the tank (up to 1 to 2 tons). Compared to the dry-
mass (in the order of 4 to 6 tons) the torques generated
by the propellant motion cannot be neglected (sloshing
phenomenon).

The classical way to model the fluid motion are pendulum
or spring/damper models (see e.g., [2], [3]). Such models are
fairly representative if a sufficient acceleration (either from
the main engine or in a gravitational field) is present. In a
near zero-g environment no constant acceleration is present,
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which could generate the restoring force, responsible for
the oscillating behaviour of the fluid and the motion of the
fluid is only dominated by the surface tension. Unlike these
two cases the barbecue mode during the long coasting flight
generates a special acceleration environment.

In the case of a cylindrical, centrally placed tank the
spin rate generates, via the centrifugal force, a rotational
symmetrical acceleration field. In principle, an oscillating
behaviour could be expected again, however, a spinning body
in free-fall condition will exhibit a motion combining the
spinning around the body axis plus a slower rotation of the
axis itself (nutation and precision, see [4] and Figure 1).
The fluid collects as a bulge and, following the rotating
acceleration vector, slowly rotates along the tank wall as it
is also reported by Veldman and Vogels [5]. This motion
creates large, time-varying off-diagonal elements in the in-
ertia tensor. Computational fluid dynamics (CFD) analyses
have been proposed and are best suited to model the sloshing
effect, but the difficulty to perform such simulations in real
time renders them unsuitable for the purposes of control [6],
[7]. In this paper we describe a control-oriented model in
analytic form whose parameters are determined offline based
on CFD computations.

A noteworthy burgeoning interest in applications of model
predictive control (MPC) in aerospace and, in particular, in
attitude control can be observed. The use of MPC for attitude
control has been proposed by Manikonda et al. [8], Vieira
et al. [9] and other authors. Hegrenæs et al. propose an
explicit MPC control scheme for attitude control [10], [11].
Other attitude control approaches have been proposed in the
literature. Xiao et al. [12] study the problem of fault-tolerant
attitude control considering the saturation of the actuators.
Bang et al. [13] propose a sliding-mode controller based
on the feedback linearisation of the system’s dynamics and
Tournes et al. [14] propose a sliding mode controller taking
into account the discontinuous nature of the thrusters. Sim-
pler control solutions such as PD and LQR have also been
proposed without, however, being able to take consistently
into account the constraints that apply on the system [15],
[16]. Nonlinear model predictive control approaches for
constrained attitude control have been proposed by Kalabic
et al. [17].

The thrusters of the spacecraft that are used to control its
attitude are subject to a minimum impulse bit, that is, once
activated they will apply a minimum torque to the spacecraft.
This effect leads to a hybrid description of the dynamics of
the spacecraft and, eventually, to a hybrid MPC problem
which is formulated as a mixed-integer quadratic problem.
Mixed integer programming has been used by Richards
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et al. [18] and Mellinger et al. [19] for offline trajectory
planning. The proposed approach takes trajectory planning
online and applies the control actions in a receding horizon
manner.

Recent developments in optimisation theory, enable the
design of fast embedded MPC controllers with guaranteed
convergence in fixed-point arithmetic [20]. These results
have made their appearance in the field of attitude con-
trol [21]. At the same time, Frick et al. [22] proposed
certain heuristics to considerably speed-up the solution of
hybrid MPC optimisation problems and yield near-optimal
solutions. Evidently, optimisation and control theory offer the
tools for the use of of MPC in real aerospace applications.

Fig. 1: CFD simulation of upper stage with two cylindrical
tanks. Two types of propellant in red and blue. From left
to right: (i) end of spin-up phase, started from initially flat
propellant distribution, (ii) fluid is collected as a bulge, (iii)
the bulge has slowly rotated with the tank, (iv) illustration
of spinning and nutation; precession not shown.

The paper is organised as follows: First, in Section III-
A we present a novel kinematic model for the spacecraft
attitude dynamics involving sloshing and we explain how
an extended Kalman filter can be used to reconstruct the
system’s state in Section III-A. In Section III-C we linearise
the system dynamics and in Section III-D we model the
impulsive thrusters in a hybrid systems framework. The pro-
posed hybrid model predictive control scheme is presented
in Section IV succeeded by simulation results to demonstrate
the performance of the closed-loop system.

II. NOTATION

Let N, R, Rn, Rm×n be the sets of natural numbers, real
numbers, real n-vectors and real m-by-n matrices. Let P
be a logical proposition. We denote by [P ] its truth value,
i.e., [P ] = 1 if P is true and [P ] = 0 otherwise. We use
the notation x(t) with t ≥ 0 for continuous-time signals and
xk with k ∈ N for discrete-time ones. For any nonnegative
integers k1, k2 with k1 ≤ k2, the finite set {k1, . . . , k2} is
denoted by N[k1,k2].

III. NONLINEAR KINEMATIC MODEL

In this paper we study the attitude dynamics using a
body-fixed (BF) frame which is a right-handed, orthonormal
reference frame fixed to the spacecraft so that the x-axis
is aligned to its principal axis and the rotation about it is
denoted by Φ and is called the roll angle. The rotational

Fig. 2: Body fixed (BF) frame with the x-axis, defined by
ebfx , aligned with the principal axis of the spacecraft.

displacement about the y-axis defines the pitch angle Θ and
the rotation about the z-axis is the yaw angle Ψ. The BF
body frame is illustrated in Figure 2.

In this section we provide a detailed discussion on the
derivation of a dynamical model that captures the upper stage
attitude dynamics in light of the additional torques caused
by the sloshing of fuel and the impulsive thrusters which are
used to control the attitude of the spacecraft.

A. Sloshing-aware Modelling of Upper Stage Dynamics

In the following the dynamics of motion is derived via the
Lagrange formalism (see [23]). The system is modeled as a
rigid body (stage plus payloads) and a ring within which a
point mass mf can rotate (see Figure 3). The parameters p,
r and α are determined via CFD simulations and represent
the position of the fluid within the tank for a specific spin
rate.

The generalised coordinates q of the system are the angular
rates ω and the propellant position α. The energy T of the
system is can be expressed as:

T =
1

2

3∑
i,j=1

Iijωiωj +
1

2
mfr

2α̇2. (1)

Solving

d

dt
(
∂T

∂q̇i
)− ∂T

∂q̇i
= 0, (2)

provides the equation of motion, thus, the motion of the mass
mf is given by

d2α

dt2
= κ

dα

dt
+
θ(α, ω)

mfr2
, (3)

where κ is a constant representing the wall friction and θ is
given as

θ(α, ω) = r2(ω2
y − ω2

z) sinα cosα− prωxωy sinα

+ prωxωz cosα− r2ωyωz cos(2α). (4)

Equation (4) is the coupling of the main body motion onto
the moving mass mf , i.e., the excitation caused by the
combined motion of precession and nutation. Equation (3)
is the sum of the accelerations acting on mf and κ must be



(a) Side view of multi-body
spacecraft system

(b) Top view of multi-body
spacecraft system

Fig. 3: Multibody model for the bulge phenomenon. The
values of p and r define the circular rotation which the
bulge can move (see Fig. 1) and α describes the current
fluid position.

adapted such that relative motion of mf resembles the bulge
motion computed via CFD. Equation (3) can be written as

dα

dt
= β, (5a)

dβ

dt
= κβ +

θ(α, ω)

mfr2
. (5b)

The inertia tensor J of the upper stage is a function of the
sloshing state α as follows

J(α) = J0 + Jmf
(α), (6)

where J0 is the inertia tensor of the spacecraft without the
effect of sloshing (which is a diagonal matrix) and Jmf (α)
is the contribution of the moving mass to the overall inertia
given by the symmetric matrix

Jmf
(α)=mf

r2 pr cosα pr sinα
∗ p2 + r2 sin2 α − sinα cosα
∗ ∗ p2 + r2 cos2 α

 . (7)

The torque τ given by

τ = τext +

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 · l, (8)

where l = Jω is the angular momentum and τext is the
torque applied by the thrusters. Differentiating l and by virtue
of (8) we have

dl

dt
=

dJ

dt
ω + J

dω

dt
=

dJ

dα

dα

dt
ω + J

dω

dt
, (9)

and given that τ = dl/dt, we have that

τ =
dJ

dα

dα

dt
ω + J

dω

dt
. (10)

For convenience let us define

Ω(ω) =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 . (11)

The attitude dynamics, by virtue of (8) and (10), is now
described by

dω

dt
= J−1ΩJω + J−1τext − J−1

dJ

dα
βω. (12)

The right-hand side of (12) is a complex function of ω mainly
because of the involvement of the inverse J−1; its derivation
in explicit form was carried out using the Symbolic Toolbox
of MATLAB 2013a. The pitch and yaw errors, denoted by
εy(t) and εz(t) respectively, follow the dynamics:

dεy(t)

dt
= ωy(t) + εz(t)ωx(t), (13a)

dεz(t)

dt
= ωz(t)− εy(t)ωx(t). (13b)

The attitude dynamics is described by the state vec-
tor z(t) = (εy, εz, ωx, ωy, ωz, α, β)

′ with input u(t) =
(τext,x, τext,y, τext,z)

′. The overall dynamics given in equa-
tions (5), (12) and (13) can then be written concisely in the
form

dz(t)

dt
= F (z(t), u(t)), (14a)

y(t) = Cz(t), (14b)

where in particular F : R7 × R3 → R7 has the input-affine
form F (z, u) = f(z) + g(z)u and C ∈ R5×7 is the matrix
C = [ I5 0 ], i.e., the sloshing states α and β cannot be
measured directly in real time.

The above system is discretised with sampling period
h > 0 to give:

zk+1 = zk + hF (zk, uk), (15a)
yk = Czk, (15b)

which will be used as the nominal plant model in the
formulation of the state estimation and model predictive
control problems in what follows. For convenience we define
fh(z, u) = z + hF (z, u).

B. State Estimation

We employ an extended Kalman filter (EKF) to estimate
the state of the discrete-time system (15). The extended
Kalman filter is the nonlinear version of the Kalman filter
which makes use of the nominal nonlinear system dynamics
to predict the evolution of the state while it uses updated local
linearisations of the nonlinear system at the currect estimated
state to estimate the covariance of the state vector [24]. Many
authors have also used the EKF approach to reconstruct



the spacecraft attitude parameters [25], [26]. Here, the state
estimates ẑk are updated according to the nonlinear equation

ẑk+1 = (I −KkCfh(ẑk, uk)) +Kkyk, (16)

where Kk ∈ R7×7 is determined by

Kk = GkC
′(CGkC

′ +R)−1, (17a)
Pk+1 = (I −KkC)Pk, (17b)

with

Fk =
∂fh
∂z

∣∣∣∣
(ẑk,uk)

, (17c)

Gk = FkPkF
′
k +Q. (17d)

The matrix Q in the above equations is the covariance matrix
of a term wk acting as a zero-mean additive noise on the
system dynamics, that is, zk+1 = zk+hF (zk, uk)+wk, and
Pk is a covariance estimate for the current state estimate
ẑk. The matrix R is the covariance matrix of a zero-mean
additive measurement noise nk, that is, yk = Czk +nk. The
estimates of the EKF as in (16) are expected to converge to
the extent the initial estimate ẑ0 is sufficiently close to the
actual initial state.

C. Linearisation of the model

At time kj we linearise the discrete time model (15)
around the current estimated state ẑkj and input ukj to arrive
at the following affine dynamical model

zk+1 = Akjzk +Bkjuk + fkj , (18)

for k>kj , where Akj , Bkj and fkj are functions of ẑkj and
ukj as follows

Akj = A(ẑkj , ukj ) = I + h
∂F

∂z

∣∣∣∣
(ẑkj

,ukj
)

(19)

Bkj = B(ẑkj , ukj ) = h
∂F

∂u

∣∣∣∣
(ẑkj

,ukj
)

(20)

fkj = f(ẑkj , ukj ) = ẑkj+F (ẑkj ,kj ) (21)

The linearisation is updated every Nl sampling periods, that
is kj = jNl and the resulting, time-varying, estimated system
matrices are given to the MPC controller.

D. Minimum Impulse Thrusters

In this section we model the hybrid behaviour of the ac-
tuators using the mixed logic and dynamics framework [27].
The torques exerted by the thrusters are subject to a minimum
impulse bit (MIB), meaning that, once the thrusters are
switched on they cannot be turned off immediately and there
is a fixed minimum period of time for which they remain
open. The minimum time interval for which the thrusters
must stay on implies a minimum exerted torque on the
corresponding axis. This can be modelled by non-convex
constraints of the form uk ∈ U , with

U = [−umax, umin] ∪ {0} ∪ [umin, umax], (22)

where umin ∈ R3 denotes the minimum impulse bit and
umax ∈ R3 denotes the maximum torque that can be

provided in a sampling interval on each axis. In order to
translate this constraint to a computationally tractable form,
we consider the convex constraints

−umax ≤ uk ≤ umax, (23)

introduce the binary vectors δk ∈ {0, 1}3 and θk ∈ {0, 1}3
which are written as δk = [δ1k, δ

2
k, δ

3
k]′ and θk = [θ1k, θ

2
k, θ

3
k]′,

and we establish the correspondence

δik = [ui(k) ≤ −umin,i], (24a)

θik = [ui(k) ≥ umin,i], (24b)

for i = 1, 2, 3. Notice that whenever δi = 1 or θi = 1,
the control action u is outside the bounds defined by {u |
−umin ≤ u ≤ umin}, so in light of (23) it can be applied
to the system. We define the following propositional logic
constraints on the auxiliary continuous variables ηk ∈ R3:

(δik ∨ θik)→ (ηi,k = ui,k), (25a)

¬(δik ∨ θik)→ (ηi,k = 0), (25b)

for all i = 1, 2, 3 and where ∨ denotes the logical disjunction
(OR) operator and ¬ is the negation operator. In addition, we
introduce the auxiliary variables vk ∈ R3 to trace whether
at every time instant a thruster activation takes place:

v,i,k = [δik ∨ θik] (26)

for all i = 1, 2, 3.
By (23), (24) and (25) we have ηk ∈ U . Hence, the system

dynamics subject to the thrusters constraints can be described
by the linear discrete-time model

zk+1 = Axk +Bηk + f (27a)
γk+1 = γk + [ 1 1 1 ] vk, (27b)

where the additional state variable γk ∈ R, namely the
activation count, stands for the number of thrusters activa-
tions and, if necessary, can be bounded by the number of
maximum activations allowed γmax according to:

γk ≤ γmax. (28)

This constraint is likely to become active only if the pre-
diction horizon is long enough to foresee the exhaustion of
available actuations or γk is close to γmax. In (27a), A, B
and f are provided by the linearisation step explained in
Subsection III-C.

IV. HYBRID MODEL PREDICTIVE CONTROL

MPC is an optimisation-based control methodology where
at each time instant a performance index is optimised using
a discrete-time model of the controlled process taking into
account the constraints on the state and input variables of
the system. This optimisation yields a sequence of control
actions whose first element is applied to the system as input
while other elements are discarded [28], [29]. As already
mentioned, the proposed control scheme aims at (i) steering
the pitch and yaw errors and the spin rate to desired set-
points while (ii) accounting for the aforementioned con-
straints and (iii) exhibiting a sparse actuation profile.
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ẑ

u y

ẑ

Fig. 4: The proposed control scheme with the hybrid MPC
controller, the EKF and the online linearisation.

The model used by MPC here is an affine model of the sys-
tem obtained by linearisation and the proposed hybrid MPC
scheme, illustrated in Figure 4, is formulated as follows:

P(x0, γ0, A,B, f) :

min
πN

VN (πN , γ0) (29a)

s.t. x(0) = x0, γ(0) = γ0, (29b)
Constraints (23) – (28), for k ∈ N[0,Nu], (29c)
zk+1 = Azk+Bηk+f, for k ∈ N[Nu,N−1], (29d)
− umax ≤ ηk ≤ umax, for k ∈ N[Nu,N−1] (29e)

where Nu ≤ N defines the hybrid control horizon, i.e., the
number of time steps for which the minimum impulse bit
is taken into account as in (29c). Let us denote the set
of optimisation variables of the MPC problem by πN =
{{uk, vk, δk}k∈N[0,Nu]

, {ηk}k∈N[0,N−1]
, }, where N ≥ 1 is

the prediction horizon and let x0 be the current state, γ0 be
the total number of activations up to the current time instant k
and let A, B and f be estimated linearisation matrices of the
system derived as in Section III-C. The MPC control action
is computed in a receding horizon fashion: At every sampling
time instant, optimisation problem (29) is solved to yield the
optimal solution π?N and the first control action η?0 is applied
to the system. The MPC controller commands admissible
torques to the thrusters which will be activated for a certain
time between tmin and Ts, where tmin is the minimum time
for which the thrusters can remain open (and corresponds to
a umin torque) and Ts is the sampling time. The proposed
methodology accounts for the hybrid nature of the thrusters
and offers a clear advantage over other approaches to attitude
control that issue merely on/off commands [30]. In fact, with
the proposed approach the sampling time Ts can be much
larger than the minimum impulse time tmin, as a result, the
MPC controller can have a greater foresight of the system
evolution at a much lower computational cost.

A short hybrid control horizon compared to the prediction
horizon is typically employed to reduce the complexity of

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

10
x 10

−4

Time [s]

S
ta

te
 e

s
ti
m

a
te

io
n
 e

rr
o
r 

(n
o
rm

)

Fig. 5: Norm of the observer error for various initial state
estimates ẑ0.

the resulting optimisation problem. In the proposed formula-
tion (29), the input is assumed to satisfy all constraints given
by equations (23)–(28) for all k ∈ N[0,Nu]. For time instants
after Nu, we relax the hybrid constraints and we assume that
the input can take any value subject to the constraints (29e)
and the system dynamics (29d).

For the chosen sampling time of 0.5s, a large prediction
horizon is required for the MPC controller to have enough
foresight given that the rotational dynamics of the upper
stage are relatively slow. At the same time, the computational
complexity can be mitigated by choosing a short hybrid
control horizon.

The cost function VN in (29) is defined as

VN (πN , γ0)=Vf (zN , γN )+

N−1∑
k=0

`(zk, ηk) (30)

where ` : R7 × R3 → R+ is the stage cost

`(z, u) = ‖Qz‖p + ‖Ru‖p, (31)

and Vf is the terminal cost defined as

Vf = ‖QNzN‖p + ρ(γN − γ0) (32)

Matrices Q, QN , R and ρ are used to strike a desired
trade-off between pointing accuracy and usage of thrusters.
Any p-norm (1 ≤ p ≤ ∞) can be used for the stage and
terminal cost functions. Here we used p = ∞ so that the
resulting problem is a mixed-integer linear problem (MILP).

V. SIMULATION RESULTS

Firstly we assess the performance of the EKF observer.
We define the observer error as ek = zk − ẑk. The norm
of ek for different initial state estimates is presented in Fig-
ure 5. The observer, tested in closed-loop with the proposed
hybrid MPC controller, was found to converge in a small
neighbourhood about the actual state of the system.

In order to assess the performance of the closed-loop sys-
tem using different tuning parameters we introduce certain



TABLE I: Evaluation of the closed-loop performance by
simulations over an period Tsim = 300s.

ρ Jy
act Jy

act Jact J40
pa Jtse

0.005 37 131 168 1.14 · 10−4 0.0510

0.05 28 56 84 0.0018 0.0834

0.1 32 48 80 0.0349 0.2988

0.2 34 45 79 0.1279 1.6862

performance indicators. First, the pointing-accuracy indica-
tor

JKpa =

Tsim∑
k=Tsim−K

ε2y,k + ε2z,k, (33)

where Tsim is the simulation time and K is the number of
time instants before the end of the simulation to be consid-
ered. We also introduce the total squared error indicator

Jtse =

Tsim∑
k=0

ε2y,k + ε2z,k, (34)

the number of thruster actuations along the y and z axes,
denoted by Jyact and Jzact and the total actuation count on
the y and z axes, Jact. In all cases ωx converges fast to
its set-point with few actuations along the x axis (see for
example Figures 7 and 8).

In Table I we summarise the evaluation results of the
closed-loop system for different values of ρ having fixed
Q = diag(7, 7, 4, 1, 1, 1, 1), QN = 2Q, R = 0 and p = ∞.
The linearisation is updated with Nl = 10, i.e., every 5s.
The prediction horizon is fixed to N = 20 and Nu = 8; this
particular choice of the prediction and hybrid control horizon
was found to offer a good trade-off between optimality and
computational complexity. It is interesting to see that if we
decrease the hybrid control horizon to Nu = 2, the pointing
accuracy worsens significantly leading to J40

pa = 1.1669 and
Jtse = 52.98 with Jact = 144. The respective simulations
are presented in Figure 9. This important observation justifies
the use of hybrid MPC for the control of spacecraft with
impulsive thrusters. Moreover, hybrid control horizon values
larger than 8 were not found to improve the closed-loop
performance, thus, were avoided for the sake of retaining
the complexity as low as possible. The average computation
time for the derivation of the control action was 0.12s on
a 2.2GHz Intel Core i7 machine. Simulations were carried
out in MATLAB 2013a, using YALMIP [31] and the MILP
solver of Gurobi [32].

We can notice that higher values of ρ lead to a sparser
actuation profile reducing the number of y and z actuations at
the cost of a lower pointing accuracy and overall performance
(in terms of Jpa and Jtse). The state trajectory for ρ = 0.05
is illustrated on the εy-εz-plane in Figure 6 where we observe
that the state moves into a small neighbourhood of the set-
point. The HMPC commands are shown in Figure 7 and the
spin rate is presented in Figure 8.
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Fig. 6: Controlled trajectory on the yz-plane (up) and in the
time domain (down) with EKF and HMPC in the loop for
300s with ρ = 0.05. Green: State trajectory for the first 12s
and Red: last 20s of the simulation.
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[31] J. Löfberg, “YALMIP : a toolbox for modeling and optimization
in matlab,” in Computer Aided Control Systems Design, 2004 IEEE
International Symposium on, pp. 284–289, Sept 2004.

[32] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2014.
Online at http://www.gurobi.com.


