
Causal-Consistent Reversibility
in a Tuple-Based Language

Elena Giachino
and Ivan Lanese

Focus Team, University of Bologna/INRIA, Italy
Email: elena.giachino@unibo.it, ivan.lanese@gmail.com

Claudio Antares Mezzina
SOA Unit

FBK Trento, Italy
Email: mezzina@fbk.eu

Francesco Tiezzi
School of Science and Technology

University of Camerino, Italy
Email: francesco.tiezzi@unicam.it

Abstract—Causal-consistent reversibility is a natural way of
undoing concurrent computations. We study causal-consistent
reversibility in the context of µKLAIM, a formal coordination
language based on distributed tuple spaces. We consider both
uncontrolled reversibility, suitable to study the basic properties of
the reversibility mechanism, and controlled reversibility based on
a rollback operator, more suitable for programming applications.
The causality structure of the language, and thus the definition
of its reversible semantics, differs from all the reversible lan-
guages in the literature because of its generative communication
paradigm. In particular, the reversible behavior of µKLAIM
read primitive, reading a tuple without consuming it, cannot
be matched using channel-based communication. We illustrate
the reversible extensions of µKLAIM on a simple, but realistic,
application scenario.

I. INTRODUCTION

Reversibility is a main ingredient of different kinds of
systems, including, e.g., biological systems or quantum sys-
tems. We are mainly interested in reversibility as a support
for programming reliable concurrent systems. The basic idea
is that if a system reaches an undesired state (e.g., an error
or deadlock state), reversibility can be used to go back to a
past desirable state. Our claim is that the ability to reverse
actions is key to understanding and improving existing patterns
for programming reliable systems, such as transactions or
checkpointing, and to devise new ones.

Studying reversibility in a concurrent setting is partic-
ularly tricky. In fact, even the definition of reversibility is
different w.r.t. the sequential one, since “recursively undo
the last action” is not meaningful in a concurrent scenario,
where many actions can be executed at the same time by
different threads. This observation led to the concept of causal-
consistent reversibility: one may undo any action if no other
action depending on it has been executed (and not undone).
Building on this definition, reversible extensions of many
concurrent calculi and languages have been defined, e.g.,
for CCS [5], [18], π-calculus [4], higher-order π [14] and
µOz [17]. However, to figure out how to make a general
programming language reversible, the interplay between re-
versibility and many common language features has still to
be understood. In particular, none of the reversible calculi
in the literature features tuple-based communication: they all
consider channel-based communication.

This paper studies reversibility in the context of
µKLAIM [11], a formal language based on distributed tuple
spaces derived from the coordination language KLAIM [8].

µKLAIM contrasts on two main points with all the languages
whose causal-consistent reversible semantics has been studied
in the literature. First, it features localities. Second, it uses
tuple-based communication as the interaction paradigm, sup-
ported by five primitives. Primitives out and in respectively
insert tuples into and remove them from tuple spaces. Primi-
tives eval, to execute a process on a possibly remote location,
and newloc, creating a new location, support distribution.
Finally, µKLAIM features the primitive read, which reads a
tuple without consuming it. This last primitive allows con-
current processes to access a shared resource while staying
independent, thus undoing the actions of one of them has no
impact on the others. This behavior, common when manip-
ulating shared data structures, e.g. in software transactional
memories, cannot be programmed using only in and out
primitives, nor using channel-based communications, since the
resulting causal structure would be different.

In this paper, we first study uncontrolled reversibility
(Section III), i.e. we define how a process executes forward
or backward, but not when it is supposed to do so. This
produces a clean algebraic setting, suitable to prove properties
of our reversibility mechanism. In particular, we show that
reversible µKLAIM (RµKLAIM for short) is causally consistent
(Theorem 1), and that its forward computations correspond
to µKLAIM computations (Lemmas 2 and 3). However, un-
controlled reversibility is not suitable for programming error
recovery activities. In fact, it does not provide a mechanism
to trigger a backward computation in case of error: backward
actions are always enabled. Even more, a RµKLAIM process
may always diverge by doing and undoing the same action
forever.

To solve this problem, we build on top of RµKLAIM a lan-
guage with controlled reversibility, CRµKLAIM (Section IV).
CRµKLAIM computation normally proceeds forward, but the
programmer may ask for a rollback using a dedicated roll
operator. This operator undoes a given past action, and all
its consequences, but it does not affect independent actions.
The roll operator is based on the uncontrolled reversibility
mechanism, but it is much more suitable to exploit reversibility
for programming actual applications. We put CRµKLAIM at
work on a practical example about franchising (Section V).
Proofs and additional examples are available in the companion
technical report [10].

From the practical perspective, we believe that the formal
approach proposed in this paper is a further step towards the
sound development of a real-world reversible language for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/33751291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(Nets) N ::= 0 | l :: C | N1 ‖ N2 | (νl)N

(Components) C ::= 〈et〉 | P | C1 | C2

(Processes) P ::= nil | a.P | P1 | P2 | A

(Actions) a ::= out(t)@` | eval(P)@`
| in(T)@` | read(T)@` | newloc(l)

(Tuples) t ::= e | ` | t1, t2

(Evaluated tuples) et ::= v | l | et1, et2

(Templates) T ::= e | ` | ! x | !u | T1, T2

TABLE I. µKLAIM SYNTAX

(Monoid) N ‖ 0 ≡ N N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RCom) (νl1)(νl2)N ≡ (νl2)(νl1)N

(PDef) l :: A ≡ l :: P if A , P

(Ext) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l 6∈ fn(N1)

(Alpha) N ≡ N ′ if N =α N
′

(Abs) l :: C ≡ l :: (C |nil)

(Clone) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

TABLE II. µKLAIM STRUCTURAL CONGRUENCE

programming distributed systems. Its main benefit with respect
to traditional languages would be to relieve the programmer
from coding rollback activities from scratch: they can be easily
obtained by applying the rollback operator.

II. µKLAIM SYNTAX AND SEMANTICS

KLAIM [8] is a formal coordination language designed to
provide programmers with primitives for handling physical
distribution, scoping and mobility of processes. KLAIM is
based on the Linda [9] generative communication paradigm.
Communication in KLAIM is achieved by sharing distributed
tuple spaces, where processes insert, read and withdraw tuples.
The data retrieving mechanism is based on associative pattern-
matching. In this paper, to simplify the presentation, we
consider a core language of KLAIM, called µKLAIM. We refer
to [2] for a detailed account of KLAIM and µKLAIM.

Syntax. The syntax of µKLAIM is in Table I. We assume
four disjoint sets: the set of localities, ranged over by l,
of locality variables, ranged over by u, of value variables,
ranged over by x, and of process identifiers, ranged over
by A. Localities are the addresses (i.e., network references)
of nodes and are the syntactic ingredient used to model
administrative domains. In µKLAIM, communicable objects
are (evaluated) tuples, i.e., sequences of actual fields. Tuple
fields may contain expressions, localities or locality variables.
We leave the expressions e unspecified; we just assume they
include values (v) and value variables. Names, i.e., locality
variables and localities, are ranged over by `. We assume each
process identifier A has a single definition A , P , available
at any locality of the net.

Nets are finite plain collections of nodes where compo-
nents, i.e., processes and evaluated tuples, can be hosted. A
node is a pair l :: C, where l is the address of the node and

C is the hosted component. In the net (νl)N , the scope of the
name l is restricted to N . 0 denotes the empty net.

Processes, the µKLAIM active computational units, may
be inactive as nil, prefixed by an action as a.P , parallel
compositions as P1 | P2, and process identifiers as A. We may
drop trailing nils. Processes may be executed concurrently
either at the same locality or at different localities and can
perform actions.

Actions out, in and read add/withdraw/access data from
repositories. Action eval activates a new thread of execution
in a (possibly remote) node, and newloc creates new nodes.
All actions but newloc indicate their target locality. Actions
in and read are blocking and use, as patterns to select data in
repositories, templates: sequences of actual and formal fields,
where the latter are written !x and !u, and are used to bind
value variables to values and locality variables to localities,
respectively.

Localities and variables can be bound inside processes and
nets: newloc(l).P binds name l in P , and (νl)N binds l in
N . Prefixes in(. . . , ! , . . .)@`.P and read(. . . , ! , . . .)@`.P
bind variable in P . A locality/variable that is not bound
is called free. The set fn(·) of free names of a term is
defined accordingly. As usual, we say that two terms are
α-equivalent, written =α, if one can be obtained from the
other by consistently renaming bound localities/variables. In
the sequel, we assume Barendregt convention, i.e. we work
only with terms whose bound variables and bound localities
are all distinct and different from the free ones.

Operational semantics. The operational semantics of
µKLAIM is given in terms of a structural congruence relation
and a reduction relation expressing the evolution of a net. The
structural congruence ≡ is defined as the least congruence
closed under the equational laws in Table II. Law (Abs) states
that nil is the identity for · | ·. Law (Clone) turns a parallel
between co-located components into a parallel between nodes
(thus, it is also used, together with (Monoid) laws, to achieve
commutativity and associativity of · | ·). The other laws are
standard.

We define the auxiliary pattern-matching function
match(·, ·) as the smallest function closed under the rules in
Table III. Intuitively, a tuple matches a template if they have
the same number of fields, and corresponding fields match:
two values/localities match only if they are identical, bound
value/locality variables match any value/locality, and the
matching for free variables always fails. When match(T, t)
succeeds, it returns a substitution for the variables in T ;
otherwise, it is undefined. A substitution σ is a function
with finite domain from variables to localities/values, and is
written as a collection of pairs of the form v/x or l/u. We
use ◦ to denote substitution composition and ε to denote the
empty substitution.

We assume the existence of a function [[·]] for evaluating
tuples and templates, which computes the value of closed ex-
pressions occurring in a tuple/template. Its definition depends
on the definition of expressions, which we left unspecified.
Only evaluated tuples 〈et〉 are stored in tuple spaces.

We say a relation R is evaluation closed if it is closed un-
der active contexts, i.e. N1 R N ′1 implies (N1 ‖ N2) R (N ′1 ‖

match(T1, t1) = σ1 match(T2, t2) = σ2

match((T1, T2), (t1, t2)) = σ1 ◦ σ2

match(v, v) = ε match(!x, v) = [v/x]

match(l, l) = ε match(!u, l) = [l/u]

TABLE III. µKLAIM MATCHING RULES

[[t]] = et

(Out)
l :: out(t)@l

′
.P ‖ l

′
:: nil 7→ l :: P ‖ l′ :: 〈et〉

match([[T]], et) = σ

(In)
l :: in(T)@l

′
.P ‖ l

′
:: 〈et〉 7→ l :: Pσ ‖ l′ :: nil

match([[T]], et) = σ

(Read)
l :: read(T)@l

′
.P ‖ l

′
:: 〈et〉 7→ l :: Pσ ‖ l′ :: 〈et〉

l :: newloc(l′).P 7→ (νl′)(l :: P ‖ l′ :: nil) (New)

l :: eval(Q)@l′.P ‖ l′ :: nil 7→ l :: P ‖ l′ :: Q (Eval)
TABLE IV. µKLAIM OPERATIONAL SEMANTICS

N2) and (νl)N1 R (νl)N ′1, and under structural congruence,
i.e. N ≡ M R M ′ ≡ N ′ implies N R N ′. The µKLAIM
reduction relation 7→ is the smallest evaluation-closed relation
satisfying the rules in Table IV. All rules for (possibly remote)
actions out, eval, in and read require the existence of the
target node l′. In rule (Out) the action can proceed only if the
tuple in its argument is evaluable. If so, the evaluated tuple
is released in the target node l′. Rules (In) and (Read) require
the target node to contain a tuple matching their (necessarily
evaluable) template argument T . The content of the matched
tuple is then used to replace the free occurrences of the
variables bound by T in P , the continuation of the process
performing the actions. Action in consumes the matched tuple,
while action read does not. Rule (New) creates a new (private)
node. Rule (Eval) launches a new thread executing process Q
on a target node l′.

III. UNCONTROLLED REVERSIBILITY

In this section we define RµKLAIM, an extension of
µKLAIM with uncontrolled reversibility. RµKLAIM nets allow
both forward actions, modeling µKLAIM actions, and back-
ward actions, undoing them, but nothing is specified about
whether to prefer forward steps over backward steps, or vice
versa. While the general approach follows [14], the technical
development is considerably different.

We first present RµKLAIM, with a simple example to point
out the peculiarity of the causality relationships produced
by RµKLAIM constructs. Then, we show that the typical
properties expected from a reversible formalism hold.

Syntax. RµKLAIM syntax is in Table V. Processes, ac-
tions, (evaluated) tuples, and templates are the same as in
µKLAIM (Table I). The main ingredients of RµKLAIM are
keys k, uniquely identifying tuples and processes, memories µ,
storing information for undoing past actions, and connectors
k1 ≺ (k2, k3), tracking causality information. More precisely,

N ::= 0 | l :: C | l :: empty | N1 ‖ N2 | (νz)N

C ::= k : 〈et〉 | k : P | C1 | C2 | µ | k1 ≺ (k2, k3)

µ ::= [k : out(t)@l; k′′; k′] | [k : in(T)@l.P ;h : 〈et〉; k′]
| [k : read(T)@l.P ;h; k′] | [k : newloc(l); k′]
| [k : eval(Q)@l; k′′; k′]

TABLE V. RµKLAIM SYNTAX

we have the additional syntactic category of keys, ranged
over by k, h, We use z to range over keys and localities.
Uniqueness of keys is enforced by using restriction, the only
binder for keys (free and bound keys and α-conversion are
defined as usual, and from now on fn(N) also includes free
keys), and by only considering well-formed nets.

Definition 1 (Initial and well-formed nets): A RµKLAIM
net is initial if it has no memories, no connectors, and all its
keys are distinct. A RµKLAIM net is well formed if it can be
obtained by forward or backward reductions (cfr. Definition 2)
starting from an initial net.

Keys are needed to distinguish processes/tuples with the
same form but different histories, thus allowing for differ-
ent backward actions. Histories are stored in memories and
connectors. A memory keeps track of a past action, thus we
have one kind of memoryfor each kind of action. All of them
store the prefix giving rise to the action and the fresh key k′
generated for the continuation. Furthermore, memories for in
and read store their original continuation P , since it cannot
be recovered from the running one, obtained by applying a
substitution - a non reversible transformation1. Also, the out
memory stores the key k′′ of the created tuple, the eval’s
one the key k′′ of the spawned process, and the in’s one
the consumed tuple h : 〈et〉. The memory for read only
needs the key h of the read tuple, still available in the term
and uniquely identified by key h. Connector k1 ≺ (k2, k3)
recalls that processes with keys k2 and k3 originated from
the split of process tagged by k1. Finally, we distinguish
empty localities, l :: empty, containing no information, from
localities l :: k : nil containing a nil process with its key k,
which may interact with a memory to perform a backward
action.

Operational semantics. Structural congruence for
RµKLAIM extends the one for µKLAIM in Table II to deal
with keys: new rules (Garb) and (Split) and updated rules are
reported in Table VI. Rule (Garb) garbage-collects unused
keys. Rule (Split) splits parallel processes using a connector
and generating fresh keys to preserve keys uniqueness.

Definition 2 (RµKLAIM semantics): The operational se-
mantics of RµKLAIM consists of a forward reduction relation
7→r and a backward reduction relation r. They are the
smallest evaluation-closed relations (now closure under active
contexts considers also restriction on keys) satisfying the rules
in Table VII.

Forward rules correspond to µKLAIM rules, adding the man-
agement of keys and memories. We have one backward rule
for each forward rule, undoing the forward action. Consider
rule (Out). Existence of the target node l′ is guaranteed by

1One may look for more compact ways to store history information. This
issue is considered for reversible µOz in [17], but it is out of the scope of the
present paper.

(RCom) (νz1) (νz2)N ≡ (νz2) (νz1)N (PDef) l :: k : A ≡ l :: k : P if A , P (Ext) N1 ‖ (νz)N2 ≡ (νz) (N1 ‖ N2) if z 6∈ fn(N1)

(Abs) l :: C ≡ l :: C ‖ l :: empty (Garb) (νk) 0 ≡ 0 (Split) l :: k : P | Q ≡ (νk1, k2) l :: k ≺ (k1, k2) | k1 : P | k2 : Q

TABLE VI. RµKLAIM STRUCTURAL CONGRUENCE

[[t]] = et

(Out)
l :: k : out(t)@l′.P ‖ l′ :: empty
7→r (νk′, k′′) (l :: k′ : P | [k : out(t)@l′; k′′; k′] ‖ l′ :: k′′ : 〈et〉)

(νk′′) (l :: k′ : P | [k : out(t)@l′; k′′; k′] ‖ l′ :: k′′ : 〈et〉)
 r l :: k : out(t)@l′.P ‖ l′ :: empty

(OutRev)

match([[T]], et) = σ

(In)
l :: k : in(T)@l′.P ‖ l′ :: h : 〈et〉
7→r (νk′) l :: k′ : Pσ | [k : in(T)@l′.P ;h : 〈et〉; k′] ‖ l′ :: empty

l :: k′ : Q | [k : in(T)@l′.P ;h : 〈et〉; k′] ‖ l′ :: empty
 r l :: k : in(T)@l′.P ‖ l′ :: h : 〈et〉 (InRev)

match([[T]], et) = σ

(Read)
l :: k : read(T)@l′.P ‖ l′ :: h : 〈et〉
7→r (νk′) l :: k′ : Pσ | [k : read(T)@l′.P ;h; k′] ‖ l′ :: h : 〈et〉

l :: k′ : Q | [k : read(T)@l′.P ;h; k′] ‖ l′ :: h : 〈et〉
 r l :: k : read(T)@l′.P ‖ l′ :: h : 〈et〉 (ReadRev)

l :: k : newloc(l′).P
7→r (νl′) ((νk′) l :: k′ : P | [k : newloc(l′); k′] ‖ l′ :: empty)

(New) (νl′) (l :: k′ : P | [k : newloc(l′); k′] ‖ l′ :: empty)
 r l :: k : newloc(l′).P (NewRev)

l :: k : eval(Q)@l′.P ‖ l′ :: empty
7→r (νk′, k′′) (l :: k′ : P | [k : eval(Q)@l′; k′′; k′] ‖ l′ :: k′′ : Q)

(Eval) l :: k′ : P | [k : eval(Q)@l′; k′′; k′] ‖ l′ :: k′′ : Q
 r l :: k : eval(Q)@l′.P ‖ l′ :: empty

(EvalRev)

TABLE VII. RµKLAIM OPERATIONAL SEMANTICS

requiring a parallel term l′ :: empty. If locality l′ is not
empty, such term can be generated by structural rule (Abs).
Two fresh keys k′ and k′′ are created to tag the continuation
P and the new tuple 〈et〉, respectively. Also, a memory is
created (in the locality where the out prefix was) storing all
the relevant information. The corresponding backward rule,
(OutRev), may trigger if a memory for out with continuation
key k′ and with created tuple key k′′ finds a process with
key k′ in the same locality and a tuple with key k′′ in the
target locality l′. Requiring that l′ contains only the tuple
tagged by k′′ is not restrictive, thanks to structural rule (Clone).
Note also that all the actions performed by the continuation
process k′ : P have to be undone beforehand, otherwise no
process with key k′ would be available at top level (i.e., outside
memories). Moreover, the tuple generated by the out, which
will be removed by the backward reduction, must bear key k′′
as when it was generated. Note the restriction on key k′′: this
is needed to ensure that all the occurrences of k′′ are inside
the term, i.e. k′′ occurs only in the out memory and in the
tuple. This ensures that read actions that have accessed the
tuple, whose resulting memory would contain k′′, have been
undone. The problem of read dependencies is peculiar to the
µKLAIM setting, and it does not emerge in the other works in
the reversibility literature. On the other hand, restricting key k′
in rule (OutRev) would be redundant since in a well-formed net
it can occur only twice, and both the occurrences are consumed
by the rule. Thus, the restriction can be garbage collected
by using structural congruence. Executing the backward rule
(OutRev) undoes the effect of the forward rule (Out), as proved
by the Loop lemma below. In rule (Eval), k′′ labels the spawned
process Q. No restriction on k′′ is required in rule (EvalRev),
since k′′ cannot occur elsewhere in the term. In rule (In) the
consumed tuple is stored in the memory, while in rule (Read)
only the key is needed since the tuple is still in the term, and its
key is unchanged. Rule (New) creates a new, empty locality.
In rule (NewRev) we again use restriction (now on the name l′
of the locality) to ensure that no other locality with the same
name exists. This could be possible since localities may be

split using structural congruence rules (Abs) or (Clone).

Example 1: We show an example to clarify the difference
between the behavior of a RµKLAIM read action and its
implementations in the other reversible languages we are aware
of. They feature channel-based communication, thus the only
way of accessing a resource is consuming it with an input and
restoring it with an output. This corresponds to the behavior
we obtain in RµKLAIM by using an in followed by an out.
Consider a RµKLAIM net N with three nodes, l1 hosting a
tuple 〈foo〉, and l2 and l3 hosting processes willing to access
such tuple:
N ′ = l1 :: k1 : 〈foo〉 ‖ l2 :: k2 : in(foo)@l1.out(foo)@l1.P

‖ l3 :: k3 : in(foo)@l1.out(foo)@l1.P
′

By executing first the sequence of in and out in l2, and then
the corresponding sequence in l3 (the order is relevant), the
net evolves to:
(νk′2, k

′′
2 , k
′′′
2 , k

′
3, k
′′
3 , k
′′′
3)(l1 :: k′′′3 : 〈foo〉

‖ l2 :: k′′2 : P | [k2 : in(foo)@l1.out(foo)@l1.P ; k1 : 〈foo〉; k′2]
| [k′2 : out(foo)@l1; k

′′′
2 ; k′′2]

‖ l3 :: k′′3 : P ′ | [k3 : in(foo)@l1.out(foo)@l1.P ′; k′′′2 :〈foo〉; k′3]
| [k′3 : out(foo)@l1; k

′′′
3 ; k′′3])

Now, the process in l2 cannot immediately perform a backward
step, since it needs the tuple k′′′2 : 〈foo〉 in l1, while only
k′′′3 : 〈foo〉 is available. The former tuple has been consumed
by the in action at l3 (see the corresponding memory stored in
l3) and then replaced by the latter by the out action at l3. This
means that to perform the backward step of the process in l2
one needs first to reverse the process in l3. Of course, this is not
desired when the processes are accessing a shared resource in
read-only modality. This is nevertheless the behavior obtained
if the resource is, e.g., a message in ρπ [14] or an output
process in [5], [18], [4].

The problem can be solved in RµKLAIM using the read
primitive. Let us replace in the net above each sequence of in
and out with a read:

N = l1 :: k1 : 〈foo〉 ‖ l2 :: k2 : read(foo)@l1.P
‖ l3 :: k3 : read(foo)@l1.P

′

erN(0) = 0 erN(N1 ‖ N2) = erN(N1) ‖ erN(N2)
erN(l :: empty) = l :: nil erN(l :: C) = l :: erC(C)
erN((νk) N) = erN(N) erN((νl) N) = (νl) erN(N)
erC(k : P) = P erC(C1 | C2) = erC(C1) | erC(C2)
erC(k : 〈et〉) = 〈et〉 erC(k ≺ (k1, k2)) = nil erC(µ) = nil

TABLE VIII. erN AND erC FUNCTIONS

By executing the two read actions (the order is now irrele-
vant), the net N evolves to:

(νk′2, k
′
3) (l1 :: k1 : 〈foo〉

‖ l2 :: k′2 : P | [k2 : read(foo)@l1.P ; k1; k
′
2]

‖ l3 :: k′3 : P ′ | [k3 : read(foo)@l1.P
′; k1; k

′
3])

Any of the two processes, say l2, can undo the executed read
action without affecting the execution of the other one. Thus,
applying rule (ReadRev) we get:

(νk′2, k
′
3) (l1 :: k1 : 〈foo〉

‖ l2 :: k2 : read(foo)@l1.P
‖ l3 :: k′3 : P ′ | [k3 : read(foo)@l1.P

′; k1; k
′
3])

Basic properties. We now show that RµKLAIM respects
the µKLAIM semantics, and that it is causally consistent. We
first introduce some auxiliary definitions.

Well-formed nets satisfy the property below, where,
given memories of the shape [k : out(t)@l; k′′; k′],
[k : in(T)@l.P ;h′ : 〈t〉; k′], [k : read(T)@l.P ;h; k′],
[k : eval(Q)@l; k′′; k′] and [k : newloc(l); k′], and
connectors of the shape k ≺ (k′, k′′), we call k the
head of those memories/connector, and k′ and, when they
occur, k′′ or h, the tail. Keys h and h′ occur in an input
position.

Definition 3 (Complete net): A net N is complete, writ-
ten complete(N), if: (i) for each key k in the tail of a
memory/connector of N there exists in N (possibly inside
a memory) either a process k : P , or a tuple k : 〈t〉, or a
connector k ≺ (h1, h2) and, unless all the occurrences of k are
in input positions, k is bound in N ; and (ii) for each memory
[k : newloc(l); k′] in N there exists in N a node named l
and l is bound in N .

Lemma 1: For each well-formed net N : (i) all keys oc-
curring in N attached to processes or tuples (possibly in a
memory) are distinct, and (ii) N is complete.

From a RµKLAIM net we can derive a µKLAIM net by
removing history and causality information. This is formalized
by function erN (and the auxiliary function erC for com-
ponents) defined in Table VIII. The following lemmas state
the correspondence between RµKLAIM forward semantics and
µKLAIM semantics.

Lemma 2: Let N and M be two RµKLAIM nets such that
N 7→r M . Then erN(N) 7→ erN(M).

Lemma 3: Let R and S be two µKLAIM nets such that
R 7→ S. Then for all RµKLAIM nets M such that erN(M) =
R there exists a RµKLAIM net N such that M 7→r N and
erN(N) ≡ S.

The Loop lemma below shows that each reduction has an
inverse.

Lemma 4 (Loop lemma): For all well-formed RµKLAIM
nets N and M , the following holds: N 7→r M ⇐⇒M r N.

We now move to the proof that RµKLAIM is indeed
causally consistent.

In a forward reduction N 7→r M we call forward memory
the memory µ which does not occur in N and occurs in M .
Similarly, in a backward reduction N r M we call backward
memory the memory µ which occurs in N and does not occur
in M . We call transition a triplet of the form N

µ7→r−→ M ,
or N

µ r−→ M , where N,M are well-formed nets, and µ is
the forward/backward memory of the reduction. We call N
the source of the transition, M its target. We let η range
over labels µ7→r and µ r . If η = µ7→r , then η• = µ r ,
and vice versa. Without loss of generality we restrict our
attention to transitions derived without using α-conversion.
We also assume that when structural rule (Split) is applied
from left to right creating a connector h ≺ (k1, k2), there
is a fixed function determining k1 and k2 from h, and that
different values of h produce different values of k1 and k2.
This is needed to avoid that the same name is used with
different meanings (cfr. the definition of closure below). Two
transitions are coinitial if they have the same source, cofinal if
they have the same target, and composable if the target of
the first one is the source of the second one. A sequence
of pairwise composable transitions is called a trace. We let
δ range over transitions and θ range over traces. If δ is
a transition then δ• denotes its inverse. Notions of source,
target and composability extend naturally to traces. We denote
with εM the empty trace with source M , and with θ1; θ2 the
composition of two composable traces θ1 and θ2. The stamp
λ(µ7→r

) of a memory µ is:

λ([k : out(t)@l; k′′; k′]) = {k, k′, k′′, r(l)}
λ([k : in(T)@l.P ; k′′ : 〈et〉; k′]) = {k, k′, k′′, r(l)}
λ([k : read(T)@l.P ; k′′; k′]) = {k, r(k′′), k′, r(l)}
λ([k : eval(Q)@l; k′′; k′]) = {k, k′, k′′, r(l)}
λ([k : newloc(l); k′]) = {k, k′, l}

We set λ(µ r
) = λ(µ7→r

). The stamp of a memory defines the
resources used by the corresponding transitions. The notation
r(z) highlights that resource z is used in read-only modality.
All actions but newloc use a locality name in a read-only
modality. We use κ to range over tags r(z) and z. We define
the closure w.r.t. a net N of a tag κ as closureN (κ) = {κ} ∪
closureN (h) if κ = k1 or κ = k2 and h ≺ (k1, k2) occurs in
N , {κ} otherwise. We define the closure over a set K of tags
as closureN (K) =

⋃
κ∈K closureN (κ). The closure captures

that a connector h ≺ (k1, k2) means that resources k1 and k2
are part of resource h.

Definition 4 (Concurrent transitions): Two coinitial tran-
sitions M

η1−→ N1 and M
η2−→ N2 are in conflict

if, for some resource z, one of the following holds:
(i) z ∈ closureM‖N1

(λ(η1)) and z ∈ closureM‖N2
(λ(η2)),

(ii) r(z) ∈ λ(η1) and z ∈ closureM‖N2
(λ(η2)), or (iii) z ∈

closureM‖N1
(λ(η1)) and r(z) ∈ λ(η2). Two coinitial transi-

tions are concurrent if they are not in conflict.

Essentially, two transitions are in conflict if they both use the
same resource, and at most one of them uses it in read-only
modality.

The definition of concurrent transitions is validated by the
following lemma.

Lemma 5 (Square lemma): If δ1 = M
η1−→ N1 and δ2 =

M
η2−→ N2 are two coinitial concurrent transitions, then there

exist two cofinal transitions δ2/δ1 = N1
η2−→ N and δ1/δ2 =

N2
η1−→ N .

Causal equivalence, denoted by �, is the least equivalence
relation between traces closed under composition that obeys
the following rules:

δ1; δ2/δ1 � δ2; δ1/δ2 δ; δ• � εsource(δ) δ•; δ � εtarget(δ)

Intuitively causal equivalence identifies traces that differ only
for swaps of concurrent actions and simplifications of inverse
actions. Next result shows that there is a unique way to go from
one state to another up to causal equivalence. This means that
causal equivalent traces can be reversed in the same ways, and
that traces which are not causal equivalent lead to distinct nets.

Theorem 1 (Causal consistency): Let θ1 and θ2 be coini-
tial traces, then θ1 � θ2 if and only if θ1 and θ2 are cofinal.

IV. CONTROLLED REVERSIBILITY

In this section we define CRµKLAIM, an extension of
µKLAIM featuring an explicit rollback facility to control
RµKLAIM reversing capabilities, allowing us to program re-
covery activities inside µKLAIM applications. We follow the
general approach of [13], but adapted to deal with the interplay
of the different µKLAIM actions.

P ::= nil | a.P | P1 | P2 | A | roll(ι)

a ::= outγ(t)@` | evalγ(P)@` | inγ(T)@`
| readγ(T)@` | newlocγ(l)

µ ::= [k : outγ(t)@l.P ; k′′; k′] | [k : inγ(T)@l.P ;h : 〈t〉; k′]
| [k : readγ(T)@l.P ;h; k′] | [k : newlocγ(l).P ; k′]
| [k : evalγ(Q)@l.P ; k′′; k′]

TABLE IX. CRµKLAIM SYNTAX

CRµKLAIM syntax extends RµKLAIM syntax on two re-
spects. First, actions in CRµKLAIM are labeled by references γ,
which act as variables for keys. Second, CRµKLAIM introduces
process roll(γ), which undoes the action labeled by γ. To
simplify the technicalities, we change the syntax of memories
as well, recording the continuation process also in out, eval,
and newloc memories. Formally, we update the syntax of
processes, actions and memories as reported in Table IX. Other
syntactic categories are unchanged. At runtime references γ
are replaced by keys k, thus we use ι to range over both
γ and k. If aγ denotes an action labeled by γ, then γ is
bound in aγ .P with scope P . The definition of initial nets in
CRµKLAIM is extended w.r.t. Definition 1, by also requiring
that they do not contain any roll(k) (the argument of roll
is always a reference), nor free occurrences of references.
Well-formedness changes accordingly. Structural congruence
coincides with the one of RµKLAIM. For simplicity we denote
memories as [k : a.P ; ξ], where a is one of the CRµKLAIM
actions and ξ is the additional information (e.g., the remaining
keys in an out memory, the read tuple and the continuation
key in an in memory, and so on) . For readability’s sake we
omit references when they are not relevant.

The following result will help us in the definition of
CRµKLAIM semantics.

Lemma 6 (Net normal form): For any CRµKLAIM net N ,
we have:

N ≡ (νz̃)
n

l∈L

(
l ::
∏
i∈I

(ki :Pi) |
∏
j∈J

[kj : aj .Pj ; ξj] |∏
h∈H

(kh ≺ (k2h, k
3
h)) |

∏
x∈X

(kx :〈etx〉) |∏
w∈W

[k1w : inγw(Tw)@lw.Pw; k
2
w : 〈tw〉; k3w] |∏

y∈Y
[k1y :readγy (Ty)@ly.Py; k

2
y; k

3
y]
)

where action aj is neither in nor read for every j ∈ J .

Definition 5 (CRµKLAIM semantics): The CRµKLAIM
operational semantics consists of a forward reduction relation
7→c and a backward reduction relation c. The backward
reduction relation is the smallest evaluation-closed relation
satisfying rule (Roll) in Table X. The forward reduction
relation is the smallest evaluation-closed relation satisfying
the forward rules in Table X. These rules are the forward
rules of Table VII extended to instantiate γ with the proper
key.

Backward reductions in CRµKLAIM correspond to executions
of the roll operator. Since all the occurrences of references
γ are bound, when a roll becomes enabled its argument is
always a key k, uniquely identifying the memory created
by the action to be undone. Thus, backward reductions are
defined by the semantics of roll(k). The semantics involves
many subtleties, related to the behavior of the different actions.
However, we define just one rule, (Roll), capturing all of them.

The roll(k) operator should undo all the actions depending
on the target action k, and only them. The all part is captured
by the notion of completeness (Definition 3), and the only part
by a notion of k-dependence (written <:) defined below. The
term M in rule (Roll) captures the part of the net involved
in the reduction. As a result of the reduction, M disappears,
leaving just the process k : a.P that was inside the memory. If
the action a was an in, then also the consumed tuple should
be restored. This is the role of Nt. Also, unless the locality
containing the roll has been created by a descendant of k, it
has to be preserved. This is the role of Nl. Finally, resources
taken by the computation from the context should be given
back to the context. This is the role of N k (see Definition 8).

We now define formally the notations used in the definition
of the semantics. Causal dependence among keys and localities
is needed for k-dependence.

Definition 6 (Causal dependence): Let N be a
CRµKLAIM net and TN the set of keys and localities
in N . The relation <:N on TN is the smallest preorder (i.e.,
reflexive and transitive relation) satisfying:

• k <:N k′ if one of [k : outγ(t)@l.P ; k1; k2],
[k : evalγ(Q)@l.P ; k1; k2], k ≺ (k1, k2) occurs in N ,
with k′ = k1 or k′ = k2;

• k <:N k′ if one of [k1 : inγ(T)@l.P ; k2 : 〈et〉; k′],
[k1 : readγ(T)@l.P ; k2; k

′] occurs in N , with k = k1
or k = k2;

M = (νz̃)l :: k′ : roll(k) ‖ l′ :: [k : a.P ; ξ] ‖ N k <: M complete(M)
Nt = l′′ :: h : 〈t〉 if a = inγ(T)@l′′ ∧ ξ = h : 〈t〉; k′′, otherwise Nt = 0 Nl = 0 if k <:M l, otherwise Nl = l :: empty (Roll)

(νz̃)l :: k′ : roll(k) ‖ l′ :: [k : a.P ; ξ] ‖ N c l
′ :: k : a.P ‖ Nt ‖ Nl ‖ N k

[[t]] = et

(Out)
l :: k : outγ(t)@l

′.P ‖ l′ :: empty 7→c (νk′, k′′) (l :: k′ : P [k/γ] | [k : outγ(t)@l
′.P ; k′′; k′] ‖ l′ :: k′′ : 〈et〉)

match([[T]], et) = σ

(In)
l :: k : inγ(T)@l′.P ‖ l′ :: h : 〈et〉 7→c (νk′) (l :: k′ : P [k/γ]σ | [k : inγ(T)@l′.P ;h : 〈et〉; k′]) ‖ l′ :: empty

match([[T]], et) = σ

(Read)
l :: k : readγ(T)@l′.P ‖ l′ :: h : 〈et〉 7→c (νk′) (l :: k′ : P [k/γ]σ | [k : readγ(T)@l′.P ;h; k′]) ‖ l′ :: h : 〈et〉

l :: k : newlocγ(l
′).P 7→c (νl′) ((νk′) (l :: k′ : P [k/γ] | [k : newlocγ(l

′).P ; k′]) ‖ l′ :: empty) (New)

l :: k : evalγ(Q)@l′.P ‖ l′ :: empty 7→c (νk′, k′′) (l :: k′ : P [k/γ] | [k : evalγ(Q)@l′.P ; k′′; k′] ‖ l′ :: k′′ : Q) (Eval)
TABLE X. CRµKLAIM OPERATIONAL SEMANTICS

• k <:N z if [k : newlocγ(l).P ; k
′] occurs in N , with

z = l or z = k′;

• l <:N k if l :: k : P or l :: k : 〈et〉 occurs in N .

Note that for action out the continuation and the tuple depend
on the action, while for actions in and read the continuation
depends on both the action and the tuple. The last clause
specifies that tuples and processes depend on the locality where
they are. We can now define k-dependence.

Definition 7 (k-dependence): Let N be a CRµKLAIM net
in normal form (see Lemma 6). Net N is k−dependent, written
k <: N , if: (i) for every i ∈ I ∪J ∪H ∪X we have k <:N ki;
(ii) for every i ∈W ∪Y we have k <:N k1i or k <:N k2i ; and
(iii) for every z ∈ z̃ we have k <:N z.

We now describe the resources taken from the environment
that need to be restored. We start with a simple example.

Example 2: Consider the following net:

l :: k : outγ(foo)@l.in(foo1)@l.roll(γ) | k′ : 〈foo1〉

After two steps the net becomes:

(νk′′, k′′′, k′′′′) (l :: k′′′′ : roll(k) | k′′′ : 〈foo〉
| [k : outγ(foo)@l.in(foo1)@l.roll(γ); k

′′′; k′′]

| [k′′ : in(foo1)@l.roll(k); k′ : 〈foo1〉; k′′′′])

Performing roll(k) should lead back to the initial state.
Releasing only the content of the target memory is not enough,
since also the tuple k′ : 〈foo1〉 should be released. This tuple
is restored by N k in rule (Roll), since it is in a memory in
N , but k′ does not depend on k.

Projection, defined below, should release the tuples consumed
by in actions which are undone, and also in and read actions
that accessed a tuple created by an out action that is undone.
Resources are released only if they do not depend on the key
k of the roll.

Definition 8 (Projection): Let N be a net in normal form
(see Lemma 6). If k 6∈ z̃ then:

N k ≡ (νz̃)
n

l∈L′

(
l ::

∏
w∈W ′

k1w : inγw(Tw)@lw.Pw |∏
y∈Y ′

k1y : readγy (Ty)@ly.Py

)
n

w∈W ′′

(
lw::k

2
w : 〈tw〉

)
where L′ = {l ∈ L | k 6<:N l}, W ′ = {w ∈ W | k 6<:N k1w},
Y ′ = {y ∈ Y | k 6<:N k1y} and W ′′ = {w ∈W | k 6<:N k2w}.

We show now that CRµKLAIM is indeed a controlled version
of RµKLAIM. Let erCon be a function from CRµKLAIM nets
to RµKLAIM nets which is the identity but for replacing roll(ι)
with nil, and removing continuations inside memories for out,
eval and newloc, and references γ.

Theorem 2: Given a CRµKLAIM net N , if N 7→c M
then erCon(N) 7→r erCon(M) and if N c M then
erCon(N) +

r erCon(M) where +
r is the transitive closure

of r.

V. A FRANCHISING SCENARIO

In this section, we apply our reversible languages to a
simplified but realistic franchising scenario, where a number
of franchisees affiliate to a franchisor and determine the price
of goods to expose to their customers. Each franchisee obtains
a lot of goods from the market, gets the suggested price from
the corresponding franchisor, possibly modifies it according to
some local policy, and then publishes the computed price. In
case of errors, e.g., the computed price is not competitive, fran-
chisees can change price and, possibly, franchisor by undoing
and performing again the activities described above. Notably,
this does not affect the franchisors and the other franchisees.
Instead, when a franchisor needs to change the suggested

market :: k1 : 〈“lot”, 100, franchisor1 〉 | k2 : 〈“lot”, 100, franchisor1 〉 | . . . | k3 : 〈“lot”, 200, franchisor2 〉 | . . .
‖ franchisor1 :: k4 : outγ1 (“suggPrice”, price())@franchisor1 .P1 ‖ franchisor2 :: k5 : outγ2 (“suggPrice”, price())@franchisor2 .P2

‖ franchisee1 :: k6 : inγ3 (“lot”, !xq , !ufr)@market .read(“suggPrice”, !xpr)@ufr .out(“price”, applyLocalPolicy1 (xpr))@franchisee1.Q1

‖ franchisee2 :: k7 : inγ4 (“lot”, !xq , !ufr)@market .read(“suggPrice”, !xpr)@ufr .out(“price”, applyLocalPolicy2 (xpr))@franchisee2.Q2

TABLE XI. crµKlaim SPECIFICATION OF THE FRANCHISING SCENARIO

(νk′′4)(market :: . . . | k3 : 〈“lot”, 200, franchisor2 〉 | . . .
‖ (νk′4) franchisor1 :: k′4 : P1[k4/γ1] | k′′4 : 〈“suggPrice”, 170〉 | [k4 : outγ1 (“suggPrice”, price())@franchisor1 .P1; k

′′
4 ; k′4]

‖ (νk′5, k
′′
5) franchisor2 :: k′5 : P2[k5/γ2] | k′′5 : 〈“suggPrice”, 160〉 | [k5 : outγ2 (“suggPrice”, price())@franchisor2 .P2; k

′′
5 ; k′5]

‖ (νk′6, k
′′
6 , k

′′′
6 , k′′′′6)franchisee1 :: k′′′6 : Q1[k6/γ3] | k′′′′6 : 〈“price”, 180〉

| [k6 : inγ3 (“lot”, !xq , !ufr)@market.Q
′
1; k1 :〈“lot”, 100, franchisor1 〉; k

′
6]

| [k′6 : read(“suggPrice”, !xpr)@franchisor1 .Q
′′
1 ; k

′′
4 ; k′′6]

| [k′′6 : out(“price”, applyLocalPolicy1 (170))@franchisee1.Q1; k
′′′′
6 ; k′′′6]

‖ (νk′7, k
′′
7 , k

′′′
7 , k′′′′7)franchisee2 :: k′′′7 : Q2[k7/γ4] | k′′′′7 : 〈“price”, 185〉

| [k7 : inγ4 (“lot”, !xq , !ufr)@market.Q
′
2; k2 :〈“lot”, 100, franchisor1 〉; k

′
7]

| [k′7 : read(“suggPrice”, !xpr)@franchisor1 .Q
′′
2 ; k

′′
4 ; k′′7]

| [k′′7 : out(“price”, applyLocalPolicy2 (170))@franchisee2.Q2; k
′′′′
7 ; k′′′7])

TABLE XII. crµKlaim NET OF THE FRANCHISING SCENARIO (AFTER A FEW FORWARD STEPS)

price, it performs a backward computation that involves all the
affiliated franchisees. For the sake of presentation, hereafter we
consider a scenario consisting of the market, two franchisors
and two franchisees.

The whole scenario is rendered in CRµKLAIM as the net
in Table XI, where:

P1 = in(“chgPr”)@franchisor1 .roll(γ1)
P2 = in(“chgPr”)@franchisor2 .roll(γ2)

Q1 = in(“chgPr”)@franchisee1 .roll(γ3)
Q2 = in(“chgPr”)@franchisee2 .roll(γ4)

The market is a storage of tuples, representing lots of goods,
of the form 〈“lot”, v, l〉, where v indicates a number of items
and l the locality of the franchisor providing the lot. Each
franchisor is a node executing a process that produces the
suggested price, by resorting to a (non specified) function
price(). Then, it waits for a change price request (i.e., a
tuple 〈“chgPr”〉) to trigger the rollback of the executed
activity (by means of the roll operator). Such tuple could
be generated by a local process monitoring the selling trend
that we leave unspecified and omit. The franchisees are nodes
executing processes with the same structure. Each of them
first gets a lot from the market, by consuming a lot tuple.
Then, it reads the suggested price from the corresponding
franchisor and uses it to determine the local price (using the
unspecified function applyLocalPolicyi(·)). Finally, similarly
to the franchisor process, it waits for a change price request
and possibly rolls back.

Consider a net evolution where the two franchisors produce
their suggested prices (170 and 160 cents, respectively) and the
two franchisees acquire the first two lots, read the suggested
price and publish their local prices (by increasing the suggested
price by 10 and 15 cents, respectively). The resulting net is
shown in Table XII, where Q′i and Q′′i denote the continuations
of the in and read actions.

If franchisee1 needs to change its lot of goods, a tu-
ple 〈“chgPr”〉 is locally produced and, then, the rollback
is triggered by roll(k6). In this way, the memory of the
first in will be directly restored (and its forward history
deleted), rather than undoing action-by-action the forward
execution (as in RµKLAIM). As expected, the backward step
does not affect franchisee2. Instead, if franchisor1 wants
to change the price stored in k′′4 : 〈“suggPrice”, 170〉, it

undoes action k4 : out(“suggPrice”, price())@franchisor1
by also involving the read memories within franchisee1
and franchisee2, because k′′4 occurs within them, and all
the occurrences of k′′4 must be considered to apply rule
(Roll). Thus, the projection operation · k4 will restore the
read actions from their memories. This allows the franchisees
affiliated to this franchisor to adjust their local prices.

If we replace the actions read(“suggPrice”, !xpr)@ufr by
in(“suggPrice”, !xpr)@ufr .out(“suggPrice”, xpr)@ufr , the
(undesired) side effect already discussed in the simple example
shown in Section III arises: if a franchisee changes its lot, it
may involve in the undo procedure the other franchisees.

Notably, by setting processes Pi and Qi to nil and remov-
ing all references, we obtain a RµKLAIM specification, which
exhibits computations as the one above (Theorem 2), but also
other computations mixing forward and backward actions in
an uncontrolled way that are undesired in this scenario.

VI. RELATED WORK AND CONCLUSION

The history of reversibility in a sequential setting is already
quite long [16], [7]. Our work however concerns causal-
consistent reversibility, which has been introduced in [5].
This work considered causal-consistent reversibility for CCS,
introducing histories for threads to track causality information.
A generalization of the approach, based on the transformation
of dynamic operators into static, has been proposed in [18].
Both the works are in the setting of uncontrolled reversibil-
ity, and they consider labeled semantics. Labeled semantics
for uncontrolled reversibility has been also studied for π-
calculus [4], while reduction semantics has been studied for
HOπ [14] and µOz [17]. We are closer to [14], which uses
modular memories similar to ours. Controlled reversibility
has been studied first in [6], introducing irreversible actions,
then in [1], where energy parameters drive the evolution of
the process, and in [19], where a non-reversible controller
drives a reversible process. For an exhaustive survey on causal-
consistent reversibility we refer to [15].

The main novelty of our work concerns the analysis of the
interplay between reversibility on the one hand, and tuple-
based communication on the other hand. The results we
discussed correspond to some of the results in [14], [13], which
were obtained in the simpler framework of HOπ.

We have not yet transported to µKLAIM all the results
in [14], [13], [12]. The main missing results are an encoding
from the reversible calculus into the basic one [14], a more
low level semantics for controlled reversibility [13], and the
introduction of alternatives to avoid repeating the same error
after a rollback [12]. A full porting of the results above
would need to study the behavioral theory of RµKLAIM and
CRµKLAIM, which is left for future work. We outline however
below how the issues above can be faced.

The most natural way to add alternatives [12] to
CRµKLAIM is to attach them to tuples. For instance, k :
〈foo〉%〈foo1〉 would mean “try 〈foo〉, then try 〈foo1〉”. Such
a tuple behaves as k : 〈foo〉, but it becomes k : 〈foo1〉 when it
is inside a memory of an in, and a roll targeting the memory is
executed. As in HOπ, such a simple mechanism considerably
increases the expressiveness.

A faithful encoding of RµKLAIM and CRµKLAIM into
µKLAIM itself would follow the lines of [14]. Its definition
would be simpler than that for reversible HOπ [14], since tuple
spaces provide a natural storage for memories and connectors.
Such encoding will pave the way to the use of KLAVA [3], a
framework providing run-time support for KLAIM actions in
Java, to experiment with reversible distributed applications.

A low-level semantics for CRµKLAIM, more suitable to an
implementation, should follow the idea of [13], based on an
exploration of the causal dependences of the memory pointed
by the roll. However, one has to deal with read dependences,
and at this more concrete level the use of restriction is no
more viable. Thus, one should keep in each tuple the keys of
processes that have read it.

ACKNOWLEDGMENT

The authors gratefully thank the anonymous referees for
their useful remarks. This work was partially supported by
Italian MIUR PRIN Project CINA Prot. 2010LHT4KM and
by the French ANR project REVER n. ANR 11 INSE 007.

REFERENCES

[1] G. Bacci, V. Danos, and O. Kammar. On the Statistical Thermodynam-
ics of Reversible Communicating Processes. In CALCO, volume 6859
of LNCS, pages 1–18. Springer, 2011.

[2] L. Bettini, V. Bono, R. De Nicola, G. L. Ferrari, D. Gorla, M. Loreti,
E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri. The Klaim Project:
Theory and Practice. In Global Computing, volume 2874 of LNCS,
pages 88–150. Springer, 2003.

[3] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package
for Distributed and Mobile Applications. Software - Pract. Exper.,
32(14):1365–1394, 2002.

[4] I. D. Cristescu, J. Krivine, and D. Varacca. A Compositional Semantics
for the Reversible Pi-calculus. In LICS, pages 388–397. IEEE Press,
2013.

[5] V. Danos and J. Krivine. Reversible Communicating Systems. In
CONCUR, volume 3170 of LNCS, pages 292–307. Springer, 2004.

[6] V. Danos and J. Krivine. Transactions in RCCS. In CONCUR, volume
3653 of LNCS, pages 398–412. Springer, 2005.

[7] V. Danos and L. Regnier. Reversible, Irreversible and Optimal Lambda-
Machines. Theor. Comput. Sci., 227(1-2), 1999.

[8] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language
for Agents Interaction and Mobility. T. Software Eng., 24(5):315–330,
1998.

[9] D. Gelernter. Generative Communication in Linda. ToPLaS, 7(1):80–
112, 1985.

[10] E. Giachino, I. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-Consistent
Reversibility in a Tuple-Based Language (TR). http://www.cs.unibo.it/
∼lanese/work/klaimrev-TR.pdf.

[11] D. Gorla and R. Pugliese. Resource Access and Mobility Control with
Dynamic Privileges Acquisition. In ICALP, volume 2719 of LNCS,
pages 119–132. Springer, 2003.

[12] I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani.
Concurrent Flexible Reversibility. In ESOP, volume 7792 of LNCS,
pages 370–390. Springer, 2013.

[13] I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Controlling
Reversibility in Higher-Order Pi. In CONCUR, volume 6901 of LNCS,
pages 297–311. Springer, 2011.

[14] I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing Higher-Order Pi.
In CONCUR, volume 6269 of LNCS, pages 478–493. Springer, 2010.

[15] I. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent reversibility.
Bulletin of the EATCS, 114, 2014.

[16] G. Leeman. A Formal Approach to Undo Operations in Programming
Languages. ToPLaS, 8(1), 1986.

[17] M. Lienhardt, I. Lanese, C. A. Mezzina, and J.-B. Stefani. A Reversible
Abstract Machine and Its Space Overhead. In FMOODS/FORTE,
volume 7273 of LNCS, pages 1–17. Springer, 2012.

[18] I. Phillips and I. Ulidowski. Reversing Algebraic Process Calculi. J.
Log. Algebr. Program., 73(1-2):70–96, 2007.

[19] I. Phillips, I. Ulidowski, and S. Yuen. A Reversible Process Calculus
and the Modelling of the ERK Signalling Pathway. In RC, volume 7581
of LNCS, pages 218–232. Springer, 2012.

