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We consider a closed multiclass queueing network model in which each class receives a different
priority level and jobs with lower priority are served only if there are no higher-priority jobs in the
queue. Such systems do not enjoy a product form solution, thus their analysis is typically carried out
through approximate mean value analysis (AMVA) techniques. We formalise the problem in PEPA in
a way amenable to differential analysis. Experimental results show that our approach is competitive
with simulation and AMVA methods.

1 Introduction

Closed multiclass queueing networks with priorities have been intensively studied since the early days
of performance evaluation to assess the impact of priorities in I/O-bound workloads and in computing
systems with background processes. Although these models are relatively well-understood, the recent
diffusion of virtualised server architectures that allow to dynamically change the priority of different
virtual machines and their I/O workloads raises the challenge of devising new solutions approaches that
could match the needs of modern performance analyses, such as estimating response time distributions
or predict the impact of generally-distributed service times. In this paper, we propose an initial study on
the applicability and accuracy of fluid methods for PEPA models [5] to the problem of estimating per-
formance indexes of closed queueing networks with priorities, with a focus on non-preemptive priority
scheduling which is known to be harder to approximate than preemptive disciplines [3].

Related Work Existing techniques for the analysis of closed queueing networks with priorities include
Sevcik’s shadow server method [6] and approximations based on the arrival theorem used in mean value
analysis (MVA) [6]. In the shadow server method, the service time of a low priority job is inflated to
account for the capacity used by high priority classes. The inflation factor of a class depends on the
steady-state utilisation of the classes with higher priorities and can be efficiently determined by iterative
techniques [6, 3]. The shadow server method is effective for preemptive-resume (PR) priority scheduling,
but it usually suffers larger errors under non-preemptive disciplines. The MVA priority approximation
in [1] significantly improves over the shadow server method by developing estimates for the mean queue-
length seen on arrival by a priority class and for inter-dependencies between throughputs of different
priority classes in closed models. A comprehensive discussion of such results is given in [3] together
with an extension to the approximate MVA (AMVA) framework [6] of both the shadow server technique
(AMVA-SHA) and the MVA priority approximation (AMVA-CL). AMVA techniques leverage on fixed-
point approximations of the MVA arrival theorem [6] and are generally more accurate than recursive
methods since they avoid error propagation that affects the latter. Additionally, AMVA methods tend
to be cheaper computationally, especially on models with large job populations. However, their main
limitation is that they can be hard to generalise outside the initial assumptions. This is because the
AMVA framework requires to develop accurate approximation for queue-lengths seen on arrival, residual
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service times, and interference effects between classes. In what follows, we try to address this limitation
of approximation techniques for priority queueing networks by applying fluid analysis techniques.

2 PEPA Models

Problem Statement We consider a closed multiclass queueing network with J stations and I workload
classes indexed by j = 1, . . . ,J and i = 1, . . . , I, respectively. Service rates of class j jobs at station i are
exponential with rate µi, j; the probability that a class i job visits station k immediately after completing
service at station j is indicated with pi jk. The total job population of class i is denoted by Ni. Stations
are partitioned into two groups: labels 1, . . . ,D denote delay (infinite server) stations, labels D+1, . . . ,J
indicate priority queues with M j ≥ 1 servers. We focus on non-preemptive priority scheduling. We
assume that jobs of class i have higher priority than jobs of class i′ > i. However, the arrival of a class-
i job at a station does not cause the removal of a class-i′ job currently in service. This scheduling is
known to be harder to model than preemptive-resume (PR) priority scheduling due to inter-dependencies
between closed classes [3]. We now develop a PEPA model for a single-server queue and later integrate
this definition into a PEPA queueing network specification.

PEPA Model of a Priority Station Without loss of generality, we initially discuss a workload with
I = 2 classes and one job for each class. The server is approximated in PEPA as a two-state sequential
component which admits a job of either class and then serves it (with exponentially-distributed rates µ1
and µ2), i.e.,

Admit def= (admit,ν).Serve, Serve def= (serve1,µ1).Admit +(serve2,µ2).Admit. (1)

where ν denotes the rate at which the empty server is replenished with a new job if one is available
for admission. Intuitively, for ν → +∞ the above approximation converges to the exact behaviour of a
non-idling server.

We propose a separate PEPA model to describe jobs visiting the station. For a job of class i, we
define the following states

Waiti
def= (admit,wiν).Runi, Runi

def= (servei,µi).Waiti, i ∈ {1,2},

where the weight wi acts in the final model as the relative probability that the next admitted job to the
queue is of class i. Based on the above definitions, the system equation

Sched def= (Wait1 ‖ Wait2) BC
L

Admit, L = {admit,serve1,serve2},

captures the non-preemptive access to the server as follows. If the class-1 job is in the Run1 state then
the class-2 job must be in the Wait2 state. The service completion of a job is also modelled correctly as

(Run1 ‖ Wait2) BC
L

Serve
(serve1,µ1)−−−−−−→ (Wait1 ‖ Wait2) BC

L
Admit

(Wait1 ‖ Run2) BC
L

Serve
(serve2,µ2)−−−−−−→ (Wait1 ‖ Wait2) BC

L
Admit

The Sched model can approximate a priority queue if a careful selection of the parameters w1, w2, and ν

is made. Observe that the following two transitions are enabled from Sched:

(Wait1 ‖ Wait2) BC
L

Admit
(admit, w1

w1+w2
min((w1+w2)ν ,ν))

−−−−−−−−−−−−−−−−−−→ (Run1 ‖ Wait2) BC
L

Serve

(Wait1 ‖ Wait2) BC
L

Admit
(admit, w2

w1+w2
min((w1+w2)ν ,ν))

−−−−−−−−−−−−−−−−−−→ (Wait1 ‖ Run2) BC
L

Serve



which imply that the probability that a job is admitted into service are w1/(w1 + w2) for class 1 and
w2/(w1 +w2) for class 2. It then follows that for sufficient large w1 �w2 one can accurately approximate
that class-1 jobs have priority over class-2 jobs. Furthermore, if w1 + w2 ≥ 1, their actual values do not
have any impact on the mean holding time of state Sched, which is 1/ν .

We naturally extend the above approximation approach to a station with many jobs and M identical
servers with the following description

(Wait1[N1] ‖ Wait2[N2]) BC
L

Admit[M].

The state associated with this component has the following two transitions:

(Wait1[N1] ‖ Wait2[N2]) BC
L

Admit[M]

(
admit, N1w1

N1w1+N2w2
min(N1w1+N2w2)ν ,Mν)

)
−−−−−−−−−−−−−−−−−−−−−−−−→

(Wait1[N1−1] ‖ Run1 ‖ Wait2[N2]) BC
L

(Admit[M−1] ‖ Serve), (2)

(Wait1[N1] ‖ Wait2[N2]) BC
L

Admit[M]

(
admit, N2w2

N1w1+N2w2
min(N1w1+N2w2)ν ,Mν)

)
−−−−−−−−−−−−−−−−−−−−−−−−→

(Wait1[N1] ‖ Wait2[N2−1] ‖ Run2) BC
L

(Admit[M−1] ‖ Serve). (3)

In this case, to model the priority of class 1 over class 2, the weights must be chosen such that, N1w1 �
N2w2 for any N1 and N2 which can be done easily since N1 and N2 are bounded quantities. It is worth
noting that this PEPA model does not keep track of the arrival order of jobs of the same class. That
is, the admitted job within a class is selected randomly. Following the principles of the shadow server
approximation, all existing analysis techniques for priority networks take this assumption which blurs the
differences between scheduling policies such as random, first-come first-served, last-come first-served.
In our validation study presented in the next section, the PEPA model is compared against stations with
first-come first-served priority scheduling, also called head-of-line (HOL) scheduling.

Multiserver stations cause a further source of approximation. Suppose, for instance, that w1 = 1000,
w2 = 1, N1 = 2, N2 = 1 and M = 4. Then, from (2) and (3) follows that the mean holding time in
state (Wait1[N1] ‖ Wait2[N2]) BC

L
Admit[M] is 1/min((N1w1 +N2w2)ν ,Mν) = 1/(4ν). However, this

holding time is shorter than 1/(3ν), which is the correct value under approximation assumptions when
N1 + N2 = 3 jobs in the queue compete for access to the server. Nevertheless, using a shorter holding
time is only beneficial to approximation accuracy, since in the real queueing network admission is in fact
instantaneous.

Queueing Network Model The PEPA model for the queueing network considers each workload class
and each station, either delay or with priority, as a distinct component. A class i job in a delay station
j is associated with a single derivative Runij, whereas a job in a priority station is modelled with two
derivatives which are visited in sequence, i.e., Waitij and Runij:

Runij
def=

D

∑
k=1

(
serveij, pi jkµi j

)
.Runik +

J

∑
k=D+1

(
serveij, pi jkµi j

)
.Waitik,1 ≤ i ≤ I and 1 ≤ j ≤ J

Waitij
def= (admitj,wiν).Runij, 1 ≤ i ≤ I and D < j ≤ J

The following PEPA definitions are the generalisation of (1) for the behaviour of the priority stations

Waitj
def= (admitj,ν).Runj, Runj

def=
I

∑
i=1

(serveij,µi j).Waitj, for D < j ≤ J.



Based on the above definitions, we conclude the specification of the priority queueing network by the
synchronisation(

Run11[N1] ‖ Run21[N2] ‖ · · · ‖ RunI1[NI]
)
BC

L

(
WaitD+1[MD+1] ‖ · · ·WaitJ[MJ]

)
,

where L = {admitj : D < j ≤ J}∪{serveij : 1 ≤ i ≤ I,D < j ≤ J}, (4)

which initialises the system with all jobs in the delay station with index 1.

Performance Metrics Estimates of queue lengths and utilisations can be readily obtained from this
model through fluid approximation. Let N (S, t) denote the solution of the ordinary differential equation
which gives the number of sequential components in state S at time t (t = ∞ for steady-state measures).
For instance, (4) implies that N (Waitj,0) = M j for D < j ≤ J. The steady-state queue length of class-i
jobs at station j, for all i and j, is denoted by Qi j and is defined as

Qi j =
{

N (Runij,∞) for 1 ≤ j ≤ D,
N (Waitij,∞) for D < j ≤ J.

For a delay station j, Qi j indicates the number of jobs of class i in the station. For a priority station,
Qi j does not include the number of jobs in service. Instead, the fraction of servers in a priority station j
utilised by class-i jobs, denoted by Ui j, is defined as

Ui j = N (Runij,∞)/M j, for all i and D < j ≤ J.

3 Validation

Two validation data sets have been used to assess the accuracy of the differential priority queueing
model. The first data set consists of models with R = 2 workload classes, whereas the second data set
has models with R = 3 workload classes. Each data set contains networks with D = 1 delay station and
2, 4, or 10 priority queues. Routing probabilities and service demand are drawn randomly from uniform
distributions. Service demands range in [0,1] for the priority queues and in [0,1000] and [0,5000] for
the delay server respectively when R = 2 and R = 3, which allowed to span in a balanced manner the
full range of queue utilizations. Each model generated in this manner was then analysed for all possible
class population mixes such that each class had Ni = 5,10, . . . ,120 jobs and the sum of the jobs across
all classes was equal to N = 120. Each of such models was also analysed with different server capacities
K = 1,2,5 at all priority queues.

Differential analysis was performed by setting ν = 50000 with admission weights wi separated by
three orders of magnitude, i.e., wi−1/wi = 1000 and wI = 1. A comparison against discrete-event simu-
lation with the software library JINQS [4] was employed to assess the accuracy. Let Es(xi j) and Ed(xi j)
be the estimation of the performance metric xi j as computed through simulation and through differen-
tial analysis, respectively. The notions of approximation errors for utilisations and queue lengths, taken
from [2], are defined as

∆
Ui j = |Es(Ui j)−Ed(Ui j)| and ∆

Qi j = |Es(Qi j)−Ed(Qi j)|/Ni,

respectively. For each model, the following four statistics were computed: ∆U
avg,∆

U
max,∆

Q
avg, and ∆

Q
max,

where the subscripts avg and max stand for the average and the maximum errors, respectively, across
1 ≤ i ≤ I and D < j ≤ J, of utilisations and queue lengths.



Two Classes Three Classes

J K ∆U
avg ∆U

max ∆
Q
avg ∆

Q
max ∆U

avg ∆U
max ∆

Q
avg ∆

Q
max

3 1 0.0070 0.0164 0.0121 0.0344 0.0019 0.0077 0.0072 0.0270
3 2 0.0024 0.0061 0.0060 0.0168 0.0010 0.0047 0.0043 0.0170
3 5 0.0014 0.0041 0.0023 0.0055 0.0002 0.0012 0.0015 0.0061

3 Avg 0.0035 0.0088 0.0068 0.0188 0.0011 0.0045 0.0044 0.0168

5 1 0.0096 0.0266 0.0116 0.0515 0.0030 0.0167 0.0058 0.0410
5 2 0.0044 0.0135 0.0052 0.0267 0.0009 0.0056 0.0024 0.0193
5 5 0.0014 0.0043 0.0020 0.0112 0.0004 0.0017 0.0003 0.0019

5 Avg 0.0050 0.0145 0.0062 0.0293 0.0014 0.0079 0.0030 0.0222

11 1 0.0089 0.0480 0.0085 0.0785 0.0042 0.0387 0.0059 0.0833
11 2 0.0058 0.0316 0.0048 0.0540 0.0016 0.0173 0.0029 0.0478
11 5 0.0020 0.0151 0.0021 0.0261 0.0003 0.0044 0.0009 0.0175

11 Avg 0.0054 0.0308 0.0050 0.0516 0.0020 0.0195 0.0031 0.0483

All models 0.0046 0.0177 0.0060 0.0327 0.0015 0.0104 0.0035 0.0286

Table 1: Average approximation errors of fluid approximation for the two data sets, aggregated by the
number of stations and server capacity.

Table 1 shows the approximation errors. The error statistics across all model instances (last row)
show excellent agreement in general. For a given number of stations, the accuracy of the approximation
increases with K. This can be explained by the fact that, for fixed network parameters, distinct values of
K give rise to the same system of ODEs with different initial conditions. Thus, larger K corresponds to
more replicas of independent sequential components in the model, which makes the differential approach
more and more accurate [7]. The approximation is found to be largely independent from the network
size, with error statistics of the same order of magnitude for 3, 5, and 11 stations. We also found that
the accuracy is better for lightly loaded networks — saturated networks have errors up to two orders of
magnitude higher on average than networks with low utilisation. Numerical results showing this trend
are however not reported here due to space constraints.

Table 2 compares the above results with the accuracy of AMVA methods. Results show that the ran-
dom models cannot be approximated in first place by product-form networks. The approximation error
of AMVA methods for product-form models (AMVA-PF), here computed using the AQL method [3],
shows maximum errors of up to 17% for utilisations and 30% for queue lengths, respectively. Con-
versely, methods that explicitly account for priorities have errors that are generally below 5%. In all
cases, the fluid method behaves comparably in terms of accuracy.

4 Conclusion and Future Work

We have found that PEPA fluid approximation techniques successfully apply to closed queueing networks
with priorities and non-preemptive scheduling. Results indicate that the fluid approach is competitive
with established AMVA approximations, but we expect it to generalise more easily to networks with
multiple non-product-form features, such as priorities and general service times. In addition, the fluid
framework will allow us to evaluate other performance indices than steady-state expected values, such as



Two Classes Three Classes

Method J K ∆U
avg ∆U

max ∆
Q
avg ∆

Q
max ∆U

avg ∆U
max ∆

Q
avg ∆

Q
max

Fluid 3 All 0.0035 0.0088 0.0068 0.0188 0.0011 0.0045 0.0044 0.0168
AMVA-CL 3 All 0.0017 0.0043 0.0052 0.0120 0.0006 0.0025 0.0045 0.0168
AMVA-SHA 3 All 0.0025 0.0067 0.0069 0.0182 0.0007 0.0026 0.0049 0.0189
AMVA-PF 3 All 0.0141 0.0311 0.0238 0.0642 0.0022 0.0069 0.0127 0.0627

Fluid 5 All 0.0050 0.0145 0.0062 0.0293 0.0014 0.0079 0.0030 0.0222
AMVA-CL 5 All 0.0030 0.0092 0.0050 0.0201 0.0008 0.0047 0.0030 0.0201
AMVA-SHA 5 All 0.0037 0.0116 0.0062 0.0267 0.0010 0.0054 0.0036 0.0246
AMVA-PF 5 All 0.0265 0.0638 0.0254 0.1488 0.0021 0.0106 0.0076 0.0681

Fluid 11 All 0.0054 0.0308 0.0050 0.0516 0.0020 0.0195 0.0031 0.0483
AMVA-CL 11 All 0.0036 0.0221 0.0044 0.0356 0.0014 0.0153 0.0029 0.0388
AMVA-SHA 11 All 0.0047 0.0278 0.0051 0.0446 0.0019 0.0202 0.0038 0.0552
AMVA-PF 11 All 0.0322 0.1748 0.0230 0.3001 0.0047 0.0430 0.0085 0.1660

Fluid All models 0.0046 0.0177 0.0060 0.0327 0.0015 0.0104 0.0035 0.0286
AMVA-CL All models 0.0027 0.0117 0.0049 0.0224 0.0009 0.0074 0.0035 0.0252
AMVA-SHA All models 0.0036 0.0152 0.0061 0.0296 0.0012 0.0093 0.0041 0.0328
AMVA-PF All models 0.0241 0.0885 0.0241 0.1687 0.0030 0.0201 0.0096 0.0985

Table 2: Average approximation errors for differential and AMVA techniques.

transient characteristics and passage-time distributions. Future work will focus on such generalisations
and on the natural extension of our ideas to the preemptive scheduling case.
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