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Abstract Decohesion undergoing large displacements

takes place in a wide range of applications. In these

problems, interface element formulations for large dis-
placements should be used to accurately deal with cou-

pled material and geometrical nonlinearities. The present

work proposes a consistent derivation of a new inter-

face element for large deformation analyses. The re-

sulting compact derivation leads to a operational for-
mulation that enables the accommodation of any order

of kinematic interpolation and constitutive behavior of

the interface. The derived interface element has been

implemented into the finite element codes FEAP and
ABAQUS by means of user-defined routines. The in-

terplay between geometrical and material nonlinearities

is investigated by considering two different constitutive

models for the interface (tension cut-off and polynomial

cohesive zone models) and small or finite deformation
for the continuum. Numerical examples are proposed

to assess the mesh independency of the new interface

element and to demonstrate the robustness of the for-

mulation. A comparison with experimental results for

J. Reinoso
IMT Institute for Advanced Studies Lucca, Piazza San
Francesco 19, 55100 Lucca, Italy
Institute of Structural Analysis. Leibniz Universität Han-
nover, Appelstr. 9A, 30167 Hannover, Germany
Group of Elasticity and Strength of Materials, School of Engi-
neering, University of Seville, Camino de los Descubrimientos
s/n, 41092, Seville, Spain
E-mail: j.reinoso@isd.uni-hannover.de

M. Paggi
IMT Institute for Advanced Studies Lucca, Piazza San
Francesco 19, 55100 Lucca, Italy
E-mail: marco.paggi@imtlucca.it

peeling confirms the predictive capabilities of the for-

mulation.
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1 Introduction

In recent years, cohesive zone models (CZMs) have been

used in a variety of engineering applications concern-
ing the formation of free surfaces due to the develop-

ment of fracture processes. Relying on the seminal work

of Barenblatt [1], CZMs have been massively incorpo-

rated into computational frameworks, especially in the

context of the nonlinear finite element (FE) method,
as a consequence of two primary reasons: (i) the high

versatility of the approach to accommodate different

phenomenological fracture events, and (ii) the relative

simplicity to numerically implement interface elements
as user defined subroutines into research and commer-

cial FE codes. In this context, the basic ingredient that

characterizes CZMs is the so-called nonlinear traction-

displacement jump relationship which relates the co-

hesive tractions to the relative opening and sliding dis-
placements at the interface, where various contributions

have been proposed, see [2–5] for a wide review of for-

mulations and a recent special issue on the topic.

Applications cover several fields and range from quasi-
static fracture in quasi-brittle solids [6, 7] with special

attention to modelling snap-back instabilities during

crack propagation [8, 9], crack propagation in compos-

ites [11–13], coupled thermo-mechanical applications [14–
16], micromechanical and multi-scale analyses [10, 17,

18], fracture and contact at interfaces [20], combination

of friction and cohesive fracture at interfaces [21, 22],

and flaw-tolerance assessment in bio-inspired materi-

als [19, 23], among others.

Specific contributions related to finite elements re-

garded the study of the effect of the numerical inte-

gration of interface elements [24], ill-conditioning situ-

ations [25], convergence issues [26, 27] and the use of a
set of overlapping cohesive segments [28].

In applications regarding thin structural elements

subjected to large displacements, as, e.g., in biologi-
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cal membranes, paper sheets, elastomers, viscoelastic

materials for the encapsulation of solar cells, the com-

plexity relies on the fact that during the simulation the

deformed configuration cannot be approximated by the

underformed one due to the occurrence of large dis-
placements. Therefore, the computation of the inter-

face gap (global or projected over a local reference ba-

sis) according to the initial underformed geometry can

lead to errors depending upon the specific applications
and materials tested. Thus, large-displacement analyses

require tracking of the surface separation, the relative

rotations between the two sides of the interface and

the simultaneous deformation of the two bodies sep-

arated by the interface. A pioneering attempt to solve
this problem is due to Ortiz and Pandolfi [29], who sug-

gested the adoption of a reference middle surface of the

cohesive element in the current configuration to define

a convenient (deformed) surface for the calculation of
the normal and tangential directions to the interface.

Nevertheless, their resulting formulation specified for a

quadratic 3D interface element for matching tetrahedra

and stemming from the differentiation of the cohesive

tractions with respect to the normal unit vector to the
middle surface led to a non-symmetric geometric stiff-

ness matrix. In [30], a 3D large displacement interface

element was used based on the aforementioned formu-

lation in order to simulate standard fracture mechanics
tests in thin aluminum panels. In that case, a resid-

ual with a rotation matrix updated along the deforma-

tion process was considered, whereas its consistent lin-

earization did not take into account the dependence of

the standard B-operator with respect to the kinematic
field.

In [31], an alternative formulation for a 2D inter-

face element in large displacements was proposed by in-

troducing a non symmetric co-rotational reference sys-

tem coincident with one of the two deformed sides of
the interface. As also admitted by the authors, this co-

rotational description leads to a very complex formula-

tion of cumbersome implementation. Approximate 2D

and 3D formulations with emphasis on the problem of
interface fibrilation were recently proposed in [32, 34].

In this instance, the kinematics of the interface element

was assumed to be like that of 2D or 3D trusses under

large displacements and rotations. More recently, an in-

terface element in large displacements for fully coupled
thermo-mechanical applications was proposed in [33].

The authors defined the CZM relation in a global refer-

ence system, similarly to the method proposed in [32],

but did not consider a CZM relation that takes into
account the contribution of different fracture modes.

Although this could be an advantage to simplify the

burn of the linearization of the residual, actually it re-

quires the use of integrated formulations to deal with

the transition from small to large displacement regimes

as suggested in [32]. Moreover, to the present authors’

view, the geometrical contribution to the stiffness ma-

trix was not clearly addressed in [33].
The objective of this paper is concerned with the

development of a consistent interface element formula-

tion for material and geometrical nonlinearities and the

derivation of its corresponding finite element implemen-
tation. The starting point of the consistent derivation is

the analysis of the interface contribution to the Princi-

ple of Virtual Work of the whole mechanical system, its

virtual variation, discretization and then linearization.

As shown in the next sections, the resulting derivation
leads to a simple and compact operational formulation

in which the geometric and the material contribution

to the element stiffness matrix are clearly identified. In

addition to this, one of the most appealing aspects of
the model herein proposed relies on its versatility to

accommodate any 2D and 3D finite element typologies

along with any interface decohesion law, without any

lack of generality.

The article is organized as follows. In Section 2, the
governing equations of the large displacement interface

formulation and the corresponding finite element dis-

cretization are established. The constitutive models for

the bulk and for the interface used in this investigation
are then briefly outlined in Section 3. In particular, a

tension cut-off model and a polynomial CZM are con-

sidered as two limit cases representative for very brittle

or ductile interface performances. Section 4 addresses

the main issues regarding the FE implementation in
the context of the classical iterative Newton-Rapshon

solution scheme. Section 5 presents a series of test prob-

lems, applications to peeling and proves the robustness

of the formulation and its ability to capture experimen-
tal results related to peeling tests of very thin layers.

Finally, the main conclusions are given in Section 6.

2 Large displacement interface model and finite

element formulation

2.1 Variational framework

The point of departure of the present formulation relies

on the interface contribution to the expression of the
Principle of Virtual Work of the whole system. Let us

to assume two deformable bodies B
(i)
0 (i = 1, 2) in the

reference configuration (denoted as Bulk-1 and Bulk-2

in Fig.1), which could have different constitutive rela-
tions that characterize their mechanical performance.

As customary, both bodies are subjected to the exter-

nal body forces F
(i)
v (i = 1, 2). The boundary conditions
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Fig. 1 A schematic definition of two bodies separated by a
cohesive interface.

applied on their boundaries are ti = t̂i on ∂Bi
0,t and

ui = ûi on ∂Bi
0,u (i = 1, 2).

The bodies undergo a motion φ : B0 × [0, t] → R3,

where [0, t] is the time step interval, that maps the ref-

erence material points (X ∈ B0) onto the current ma-
terial points (x ∈ B), such that x = φ(X, t). The de-

formation gradient of the transformation is defined as

F := ∂Xφ(X, t), with the Jacobian J = det[F] and ∂X
denoting the partial derivative with respect to the refer-
ence frame. Moreover, it is supposed that the interface

between both solids is characterized by the presence of

a cohesive surface S0.

Focusing our attention on the analysis of the inter-

face between the solids, the contribution of the interface

cohesive tractions T, acting on S0, to the Principle of
Virtual Work of the mechanical system in the reference

configuration is:

Πintf(gloc) =

∫

S0

gT
locTdS (1)

where gloc is the gap vector accounting for opening and

sliding displacements between the two sides of the in-
terface. Note that, due to the geometrical nonlinearity,

the traction vector previously defined corresponds to

the nominal first Piola-Kirchhoff tractions related to

the local basis of the interface in the reference configu-

ration.

It is worth noting that in the large deformation set-
ting, the gaps vector vanishes when the body undergoes

rigid body motions, thus confirming the frame indiffer-

ence of the formulation proposed in this paper.

Reference Configuration Current Configuration

X

e1

e2

x

u

X = x + u

Bulk-2

Bulk-1
Bulk-1

Bulk-2

Interface

Kinematics

e3

Fig. 2 Kinematics definition of the interface along the de-
formation process.

The virtual variation of Πintf according to the prin-

ciple of virtual displacements reads:

δΠintf(gloc) =

∫

S0

(

∂gloc

∂u
δu

)T

TdS

=δuT

∫

S0

(

∂gloc

∂u

)T

TdS

(2)

In case of large displacements, the updated coordi-

nates of a generic point are given by x = X + u, see

Fig.2.

As is generally proposed for interface formulations,
it is convenient to define a middle line (in the 2D case)

in the updated configuration by averaging the position

vectors and the displacement fields of the upper and

lower sides of the interface, see Fig.3 after performing
a standard discretization process. Hence, the position

vector x of a generic point along this middle line can be

determined by pre-multiplying the positioning vector x

by an averaging operator M:

x = Mx (3)

2.2 Finite element formulation

Based on isoparametric interpolation, the position vec-

tor at the interface can be approximated through:

x ∼= xe = Nxn (4)

where xn denotes the nodal position vector (the su-

perscript n identifies nodal quantities), and N is the

the operator that collects the shape functions and it
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Fig. 3 Sketch of the interface element with node numbering
and integration points.

depends on the natural coordinate of the element ξ. In-

troducing now the discretization of the interface into

Eq.(3), the interpolated average position vector yields:

x ∼= xe = NMxn (5)

Similarly, the coordinates of the points belonging to

the middle line in the reference configuration, X, and
their displacement vector, u, can be computed via a

standard interpolation procedure from the nodal quan-

tities

X ∼= X
e
= NMXn, u ∼= ue = NMd (6)

where Xn and d denote the position vector of the nodes

in the reference configuration and their nodal displace-

ment vector, respectively.

In 2D, the tangential and the normal vectors t and

n to the middle line of the interface element used to

define the local frame are given by:

t =
∂xe

∂ξ
, n · t = 0 (7)

Note that in 3D application, in line with the derivation

proposed in Ortiz and Pandolfi [29], the convective tan-
gential and normal vectors to the middle surface of the

interface element (t1, t2 and n) used to define the local

frame are determined via differentiation of the average

coordinates with respect to the natural coordinates ξ

and η:

t1 =
∂xe

∂ξ
, t2 =

xe

∂η
, n = t1 × t2 (8)

The gap vector in the reference cartesian frame, g,
can be obtained by pre-multiplying the nodal displace-

ment vector d by a suitable operator L which pro-

vides the difference between the displacements of the

upper and the lower bodies at the interface. Accord-

ingly, within the FE discretization we have:

g ∼= ge = NLd (9)

The constitutive relation for the interface, i.e., the so-
called cohesive zone model (CZM), is usually provided

in a local frame defined by the normal and the tangen-

tial vectors to the average line of the interface element

in order to distinguish between fracture Modes I and

II, as introduced in Eq.(7). Therefore, the gap vector in
this local frame, gloc, has to be computed by multiply-

ing the gap vector in the reference frame by a rotation

operator R:

gloc = R(u)g (10)

It is remarkable to note that, in case of large displace-

ments, the operator R(u) is a function of the displace-

ment field. Its expression is detailed in Section 4 for the

2D case that represents the main scope of the present

work (the 3D version can be derived adapting the for-
mulation here developed). Consequently, a consistent

formulation must take into account this dependency in

the subsequent linearization of the discretized version

of the interface contribution to the Principle of Vir-
tual Work within the classical Newton-Raphson itera-

tive solution scheme. This dependency will lead to the

so-called geometric contribution to the element stiffness

matrix. Introducing the FE discretization, Eq.(10) can

be rewritten as:

ge
loc = R(d)NLd (11)

Examining the terms entering the virtual variation

of the virtual work in Eq.(2), the partial derivative

(∂gloc/∂u) is approximated by:

∂gloc

∂u
∼=

∂ge
loc

∂d
= R(d)NL+

∂R(d)

∂d
NLd (12)

where the differentiation of the second order tensor R

with respect to the components of the vector d leads to
a third order tensor. Note that in (12) the formulation

is simplified by omitting the second derivative of the ro-

tation matrix with respect to the displacement vector.

This vanishes in case of linear displacement interpola-

tion under the assumption that the norm of the tangent
vector t does not depend on the displacement field. In

this regard, we also assessed the role of this term based

on representative numerical tests adopting alternative

interpolation schemes. It was found that this term has
an almost negligible effect on the results and it is there-

fore reasonable to be neglected.

The operatorB = NL is now introduced and Eq.(12)

can be rephrased as:

∂ge
loc

∂d
= RB+

∂R

∂d
Bd (13)
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The matrices R and B are evaluated at the element

level, though the typical superscript (e) has been omit-

ted here to simplify notation.

Inserting this intermediate result into the discretized

version of Eq.(2), where u is simply replaced by d, the
following general formulation valid for any kind of in-

terface element topology dealing with geometric and

material nonlinearities is derived:

δΠe
intf = δdT

∫

S0

(

RB+
∂R

∂d
Bd

)T

TdS (14)

The solution of the variational equation δΠe
intf =

δdTfeintf = 0 ∀δd results in the equations set feintf = 0,

where feintf is a nonlinear function of the unknown d and

assumes the role of the residual vector in the Newton-

Raphson iterative scheme:

f
e,k
intf =

∫

S0

(

RB+
∂R

∂d
Bd

)T

TdS (15)

which leads to the following equations set for the com-

putation of the corrector ∆d at each iteration k:

Ke,k∆d = −f
e,k
intf (16a)

dk+1 = dk +∆d (16b)

To alleviate the notation, the superscript k will be omit-
ted in the sequel. Following standard arguments of non-

linear FE formulations, the element stiffness matrix Ke

is obtained from the linearization of the residual, i.e.,

Ke = ∂fintf/∂d and it is evaluated by using the dis-
placement field solution at the iteration k:

Ke =

∫

S0

[

2BT ∂RT

∂d
T

+

(

BTRT + dTBT ∂RT

∂d

)

∂T

∂d

]

dS

(17)

In this derivation, as it was already stated, the second-
order differentiation of the rotation matrix R was omit-

ted.

The derivative of the cohesive traction vectorT with

respect to the displacement vector d can be determined

via a chain rule differentiation:

∂T

∂d
=

∂T

∂gloc

gloc

∂d
= C

(

RB+
∂R

∂d
Bd

)

(18)

where C =
∂T

∂gloc
represents the tangent interface con-

stitutive matrix whose expression will be detailed in the

next section.

After some algebra we obtain the following result:

Ke =

∫

S0

BTRTCRB dS

+

∫

S0

[

2BT ∂RT

∂d
T+ dTBT ∂RT

∂d
C
∂R

∂d
Bd

+BTRTC
∂R

∂d
Bd+ dTBT ∂RT

∂d
CRB

]

dS

(19)

Summarizing, the tangent stiffness matrix which ac-

counts for both the material and the geometric contri-

butions reads:

Ke = Ke
mat +Ke

geom (20a)

Ke
mat =

∫

S0

BTRTCRB dS (20b)

Ke
geom =

∫

S0

[

2BT ∂RT

∂d
T+ dTBT ∂RT

∂d
C
∂R

∂d
Bd

+

(

BTRTC
∂R

∂d
Bd+ dTBT ∂RT

∂d
CRB

)]

dS (20c)

In case of small displacements, Eq.(20) reduces to

the standard form of the material contribution to the

element stiffness matrix, Eq.(20b). In case of large dis-
placements, the complete tangent stiffness matrix is

composed of four terms, see Eq.(20c). Only the first

one, involving the computation of the cohesive traction

vector T is not symmetric. Therefore, a nonsymmetric
solver has to be used. However, in case of a symmetric

constitutive matrix C for the interface, as it happens

in case of the same CZM parameters for Mode I and

Mode II, we explored the possibility to neglect the non

symmetric contribution to Kg. The examples discussed
in Section 5 will show that this will not affect the ac-

curacy of the solution and slightly penalize the con-

vergence rate. The omission of this term, on the other

hand, makes it possible the use of symmetric solvers.
This fact represents an obvious advantage in case of

massive computations.

3 Material models

With reference to the continuum, to assess the effect

of large displacements on debonding of thin structures,

both a small deformation and a large deformation ver-

sions of a standard homogeneous isotropic hyperelastic
material model are considered in the sequel. The deriva-

tion is here omitted for the sake of brevity. The readers

can refer to [36] for more details.

Regarding the cohesive traction vector T, with the
aim of quantifying the role of the geometric nonlinear

effects along the decohesion process, two different types

of interface constitutive laws are examined.
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First, a tension cut-off CZM is considered, with un-

coupled Mode I and Mode II deformation. This type

of CZM has the advantage of allowing for closed form

solutions for specific testing configurations, like for the

double cantilever beam test [37]. The stiffness of the
CZM can be related to the Young’s modulus E and to

the thickness of the adhesive h, i.e. k = σmax/lnc ∼ E/h

where σmax and lnc denote the critical traction for dam-

age initiation and the critical relative displacement, re-
spectively. In this approach, when the crack sliding or

opening displacements overcome a critical value corre-

sponding to the achievement of the adhesive strength,

σmax, the interface suddenly debonds. Since such crit-

ical relative displacements for failure are very small
quantities in applications, the process zone size is ex-

pected to be quite small and limited within a region

very close to the real crack tip, where displacements

are moderately small.

The cohesive traction vector T = (τ, σ)T reads:

τ =τmax
gloc,t
ltc

(21a)

σ =σmax
gloc,n
lnc

(21b)

where gloc,t and gloc,n are the tangential and normal

components of the gap vector gloc, whereas ltc and

lnc are the critical sliding and opening displacements.

The tangent constitutive matrix stemming from the lin-
earization of the CZM tractions with respect to the gap

vector is:

C =





τmax

ltc
0

0
σmax

lnc



 (22)

In this case, in line with the previous arguments, the re-

sulting interface element stiffness matrix is always sym-

metric.

As second formulation, we consider the polynomial

CZM by Tvergaard [38] as an example of an interface

constitutive relation where the cohesive traction vec-

tor T = (τ, σ)T is a nonlinear function of the sliding
and opening displacements with a softening branch af-

ter reaching the maximum cohesive tractions. For the

same values of the parameters τmax, σmax and of the

initial stiffness as for the tension cut-off model, this

CZM has a larger fracture energy and therefore a more
widespread process zone is expected. In this model, the

cohesive tractions are given by

τ =τmax
gloc,t
ltc

P (λ) (23a)

σ =σmax
gloc,n
lnc

P (λ) (23b)

where

P (λ) =

{ 27

4

(

1− 2λ+ λ2
)

, for 0 ≤ λ ≤ 1

0, otherwise
(24a)

λ =

√

(

gloc,n
lnc

)2

+

(

gloc,t
ltc

)2

(24b)

For this CZM, the tangent constitutive matrix reads:

C =









τmax
P

ltc
+ τmax

gloc,t
ltc

∂P

∂λ

∂λ

∂gloc,t

τmax
gloc,t
ltc

∂P

∂λ

∂λ

∂gloc,n

σmax
gloc,n
lnc

∂P

∂λ

∂λ

∂gloc,t

σmax
P

lnc
+ σmax

gloc,n
lnc

∂P

∂λ

∂λ

∂gloc,n









(25)

4 Matrix operators for finite element

implementation

This section covers the main features concerning the

numerical implementation of the large displacement in-

terface element formulation proposed in the previous

section. According to the derivation presented in Sec-
tion 2, we restrict our attention to the implementation

of the element in a 2D version, although Eqs.(18) and

(19) are the same for 3D problems, provided that a mid-

dle surface is introduced in analogy with the middle line
for the 2D case.

Let us to consider a 4 node bilinear interface ele-

ment, see Fig.3. The corresponding shape functions to

accomplish the numerical integration are N1 =
1

2
(1−ξ)

and N2 =
1

2
(1 + ξ). Each node has two degrees of free-

dom, so that the nodal position and displacement vec-

tors are arranged as:

X = (X1, Y1, X2, Y2, X3, Y3, X4, Y4)
T (26a)

d = (u1, v1, u2, v2, u3, v3, u4, v4)
T (26b)

where Xi, Yi identifies the cartesian coordinates corre-

sponding to the node i and ui and vi stands for the
corresponding displacements along the X and Y direc-

tions.

The gap and the traction vectors that characterizes

the CZM are evaluated in correspondence of each inte-

gration point, so that:

gloc = (gloc,t, gloc,n)
T (27a)

T = (τ, σ)T (27b)
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Next, the matrix operators defined in Section 2 to

determine the coordinates and the gaps of the points

belonging to the interface middle line take the form:

N =
[

N1I N2I
]

(28a)

M =
1

2

[

I 0 0 I

0 I I 0

]

L =

[

−I 0 0 I

0 −I I 0

]

(28b)

where 0 is a 2× 2 null matrix and I is a 2× 2 identity
matrix. As previously stated, the CMZ is evaluated at

the local reference system that is defined by the tan-

gential vector t and the normal vector n to this middle

line. Thus, the rotation operator yields:

R =

[

tx ty
nx ny

]

(29)

where:

tx = ny =
X2 + u2 +X3 + u3 −X1 − u1 −X4 − u4

2‖t‖

ty = −nx =
Y2 + v2 + Y3 + v3 − Y1 − v1 − Y4 − v4

2‖t‖

and the symbol ‖.‖ denotes the Euclidean norm of the

corresponding vector. Note that, differing from previous
interface formulations [39], this operator is evaluated at

each integration point at the element level.

The operator stemming from the third order tensor

has to be computed with care. For the present particu-

lar case it renders:

∂R

∂d
Bd =

[

−a −b +a +b +a +b −a −b

−b +a +b −a +b −a −b +a

]

(30)

where a =
−N1u1 −N2u2 +N2u3 +N1u4

2‖t‖
and b =

−N1v1 −N2v2 +N2v3 +N1v4
2‖t‖

.

The remaining operations to accomplish are straight-
forward, and therefore are omitted here for the sake of

conciseness.

The algorithmic treatment of the proposed formu-

lation, implemented by the present authors both in the

Finite Element Analysis Program FEAP and in the

commercial software Abaqus as user defined subrou-
tines, is summarized in the following sequence of main

operations, see Algorithm 1. Note that the external loop

over j refers to the numerical integration, whereas the

variable nlgeom indicates a flag defined in the input file
to select between: (i) small displacement formulation

(nlgeom = 0) or (ii) large displacement formulation

(nlgeom = 1).

Data: Given: Xe, d, ∆d, ∆t
if nlgeom > 0 then

Update the geometry: xe = Xe + d;
else

xe = Xe;
end

Construct L;
Loop over the integration points;
for j = 1 to 2 do

Evaluate shape functions and derivatives;
Compute the local basis vectors [t,n] and rotation
matrix R;
Construct N;
Perform B = NL;

Compute RB → (RB)T ;
Evaluate T, C according to the selected CZM;

end

if nlgeom > 0 then

Perform: ∂R

∂d
Bd;

Construct the geometrical stiffness matrix Ke
geom,

Eq.(20c);
Compute the geometric part of the residual vector
feintf , second term of Eq.(15);

else
Compute the material part of the residual vector
feintf ,first term of Eq.(15);

end

Evaluate the material contribution to the stiffness
matrix Ke

mat, Eq.(20b);
if nlgeom > 0 then

Ke = Ke
mat +Ke

geom

else
Ke = Ke

mat

end

Update stiffness matrix and r.h.s. vector;

Algorithm 1: Numerical implementation of the

large displacement interface element.

5 Numerical examples

In this section, the numerical performance of the pro-
posed element is illustrated. To this aim, two appli-

cations are selected. First, we investigate the element

capabilities through a series of benchmark problems to

highlight the principal capabilities that the present ele-
ment formulation incorporates. Second, a structural ap-

plication consisting of a peeling test is addressed. Small

or finite displacement formulations for the continuum

and for the interface element are examined, along with

two different CZM formulations.

5.1 Benchmark tests

A preliminary test problem shown in Fig.4(a) is an-

alyzed in order to assess the performance of the new
interface element for large displacements as compared

to a standard formulation for small displacement. This

benchmark problem aims at investigating the interplay
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between geometric and material nonlinearities, an issue

not yet rigorously quantified in the related literature.

Therefore, as was previously stated, we consider small

or large deformation hyperelastic material models for

the continuum in order to investigate the role played
by the different interface element formulations in these

two cases. Hence, each numerical test will be identified

by labels X − Y (Z). Whereas X refers to the interface

element formulation and it can be S or L depending on
the small or the large displacement formulation used,

the second label Y stands for the constitutive model of

the continuum and again it can be S or L depending

on the small or large deformation theory adopted for

the hyperelastic material. The symbol Z in parenthesis
denotes the solver used (s for symmetric solver or u for

a non symmetric solver).

In this benchmark problem, two blocks of lateral size

1 mm and different heights are discretized by a single
finite element each. The lower block of unit height has

a Young’s modulus E1 = 500 MPa in order to simulate

an almost rigid substrate, whereas the upper block has

a height of 0.1 mm and a Young modulus E2 = 5 MPa

to simulate a highly deformable elastomeric tape or a
paper sheet. Both materials have a vanishing Poisson’s

ratio and the simulations are conducted under plane

strain assumption. An interface element is placed be-

tween the two blocks and its CZM can have either a
tension cut-off or a polynomial form, see Fig.4(b) for the

Mode I relations (Section 3). The values of the CZM pa-

rameters σmax and τmax are selected the same for both

the tension cut-off and the polynomial CZMs, to per-

form a consistent comparison. On the other hand, the
fracture energy of the tension cut-off model is much

smaller than that of the polynomial CZM, as it can

be readily visualized in Fig.4(b) from the different area

under the respective traction-separation relations. The
value of lnc in the tension cut-off model has been se-

lected so that the tension cut-off curve is tangent to

the polynomial CZM at gloc,n = 0.

As far as the boundary conditions are concerned,

a non-uniform Mixed Mode debonding problem is sim-
ulated by restraining the first block at the basis and

imposing a linear vertical displacement variation to the

upper side of the second block. This testing configura-

tion has been chosen because leads to large displace-

ments at the interface during the deformation process
and therefore Mode Mixity [40]. In other types of load-

ing, such as uniform Mode I debonding, uniform Mode

II debonding or uniform Mixed Mode debonding, the

response of the interface element would be in fact the
same regardless of the small or large displacement for-

mulation used, since the orientation of the local frame

does not change during the deformation process. These

∆

E
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E
2

(a) Sketch of the test problem

0
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0.4
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1
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σ/
σ m

a
x

Polynomial
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(b) σ/σmax vs. gloc,n

Fig. 4 Sketch of the geometry of the 2-blocks Mixed Mode
test problem and illustration of the normal cohesive traction-
normal gap CZM relations used in the simulations.

trends are consistent with the results reported in [32],
although they were based on an approximated large

displacement formulation for the interface element de-

duced by the kinematics of a beam element in large

displacements and rotations.

The vertical reaction force F in the constrained node

is plotted vs. the imposed displacement ∆ in Fig.5 for

an interface tougher in Mode I than in Mode II, i.e.,
with σmax/τmax = 10 and lnc = ltc = 0.1 mm. The re-

sults for the tension cut-off CZM are shown in Fig.5(a)

and those for the polynomial CZM are depicted in Fig.5(b).

Examining the curves related to the tension cut-off CZM,

Fig.5(a), we note that, in case of the small deformation
theory for the continuum, curves labeled (S − S) and

(L−S) are almost coincident before the peak load, i.e.,

before complete debonding of the first Gauss point of

the interface. Note that the labels (s) and (u) make
reference to the symmetric or unsymmetric character

of the formulation. In this sense, the small-displacement

case always leads to a symmetric stiffness matrix, whereas
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the large displacement case provides a general unsym-

metric formulation, in which the role of the term that

break the symmetry (see Eq.(20c)) is examined.

After the peak load, an abrupt reduction in the in-

terface load-carrying capacity takes place and the struc-
tural response is characterized by a lower stiffness until

complete decohesion takes place. In this respect, the

large displacement formulation for the interface pre-

dicts a much lower displacement jump for complete
debonding. A similar difference can be noticed in case of

a large deformation formulation for the continuum, see

curves labeled (S−L) and (L−L). Since this CZM does

not consider coupling between Mode I and Mode II, i.e.,

the matrix C is diagonal, it makes sense to compare
the results for the large displacements interface element

formulation by considering the complete expression of

the tangent stiffness matrix and using a non symmetric

solver or the approximate symmetric expression and us-
ing a symmetric solver. As it can be seen from Fig.5(a),

the results are coincident.

In case of the polynomial CZM, the results have the

same trend as for the tension cut-off, just with much

smoother curves during the debonding process. In light
of the previous arguments, it is worth noting that for a

given assumption regarding the kinematics of the con-

tinuum, the use of a large displacement formulation for

the interface instead of its small displacement counter-
part has a predominant effect on the softening branch

of the F −∆ response. In this case, since the matrix C

is not symmetric due to the expression of the CZM, a

non symmetric solver has been always used and the full

expression for the geometric stiffness matrix has been
retained in the computations.

Examining the element performance in case of an

interface with the same fracture parameters in Mode

I and in Mode II (σmax/τmax = 1), see Fig.6, we find

that the discrepancy between the predictions in case of
large or small interface element formulations are min-

imal. On the other hand, small or large displacement

formulations for the continuum significantly affects the

post-peak branch. Since in this case the matrix C is
symmetric for both the CZM formulations, the use of

the complete non symmetric tangent stiffness matrix or

its symmetric version by neglecting the non symmet-

ric contribution to its geometric component have been

compared and the results are again coincident.

Finally, the last scenario to be inspected is repre-

sented by the case of an interface much tougher in Mode

II than in Mode I (σmax/τmax = 0.1), see Fig.7. As far

as the choice of the symmetric or the non symmetric
solver is concerned, the same comments to the case

when Mode I prevails over Mode II apply. In this in-

stance, since the loading test is predominantly in Mode
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F
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(a) Tension cut-off CZM
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(b) Polynomial CZM

Fig. 5 Total force vs. imposed displacement for the test
problem in Fig.4(a) and different CZM formulations for an in-
terface tougher in Mode I than in Mode II (σmax/τmax = 10).
(S − S): small displacement interface element & small de-
formation continuum; (L − S): large displacement interface
element & small deformation continuum; (S − L): small dis-
placement interface element & large deformation continuum;
(L − L): large displacement interface element & large defor-
mation continuum.

I, we observe a much lower peeling force F in this bench-

mark test. Additionally, slight discrepancies between
the numerical predictions using large or small interface

element formulations are noticed.

Therefore, it is possible to draw the practical con-

clusion that the large displacement formulation for the

interface should be primarily used in case of applica-
tions with σmax > τmax, as, e.g., in fibrilation problems

where the shear strength of cellulose or polymeric fibrils

is almost negligible as compared to their axial strength.

5.2 Structural application: peeling test and

comparison with experiments

Examining now a structural problem where the large

displacement formulation for the interface element is
deemed to be crucial, a peeling test where a thin layer

is pulled from al almost rigid substrate by the action of

a vertical displacement imposed to the top right corner
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Fig. 6 Total force vs. imposed displacement for the test
problem in Fig.4(a) and different CZM formulations for an
interface with the same toughness in Mode I and in Mode
II (σmax/τmax = 1). (S − S): small displacement interface
element & small deformation continuum; (L − S): large dis-
placement interface element & small deformation continuum;
(S − L): small displacement interface element & large de-
formation continuum; (L − L): large displacement interface
element & large deformation continuum.

is considered (see the final deformed shapes in case of

(S − S) or (L − L) formulations in Fig.8). The mate-

rial parameters for the bulks and for the CZMs (tension

cut-off and polynomial CZMs) are the same as in the
previous example, considering the case of an interface

tougher in Mode I than in Mode II (σmax/τmax = 10,

where the large displacement formulation for the inter-

face element was found to significantly differ from the

small displacement one. A non symmetric solver and
the complete expression for the tangent stiffness ma-

trix are used.

The force-displacement curves for different kinemat-
ics formulations are compared in Fig.9. As a general

trend, the large displacement formulation for the inter-

face element leads to lower peak loads as compared to

its small displacement counterpart, for a given kinemat-
ical model of the continuum. Large differences among

the predictions of the formulations can also be observed

as far as the softening branches are concerned.
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Fig. 7 Total force vs. imposed displacement for the test
problem in Fig.4(a) and different CZM formulations for an
interface tougher in Mode II than in Mode I (σmax/τmax =
0.1). (S − S): small displacement interface element & small
deformation continuum; (L−S): large displacement interface
element & small deformation continuum; (S − L): small dis-
placement interface element & large deformation continuum;
(L − L): large displacement interface element & large defor-
mation continuum.

F F

Fig. 8 Deformed meshes of the peeling test in case of small
displacement formulations for the continuum and the inter-
face element (left, (S−S)) or large displacement formulations
(right, (L− L)).
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Fig. 9 Total force vs. imposed displacement for the peeling
test in Fig.7 and different CZM formulations for an inter-
face tougher in Mode I than in Mode II (σmax/τmax = 10)).
(S − S): small displacement interface element & small de-
formation continuum; (L − S): large displacement interface
element & small deformation continuum; (S − L): small dis-
placement interface element & large deformation continuum;
(L − L): large displacement interface element & large defor-
mation continuum.

Additionally, some comments on the convergence

of the formulation herein proposed have to be added.

First, from the numerical point of view, the interface
element formulation was found to be quite stable, with

the appearance of small oscillations in the softening

branches for the peeling test only in case of the tension

cut-off CZM. These effects are caused by the sharp dis-
continuity in the traction-gap constitutive relation lead-

ing to small jumps in the load when debonding takes

place in a given Gauss point, see Figs.9(a). These small

oscillations disappear in case of the polynomial CZM,

since a softening is included in the interface constitutive
relation.

Second, for the sake of completeness, the mesh con-

vergence of the method is tested by considering the

polynomial CZM and performing peeling tests as in
Fig.9(b) for the (L-L) case, with different mesh refine-

ment for the bulk and the interface in the horizontal di-

rection. In the coarsest discretization (mesh 1), only 25
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Fig. 10 Mesh convergence study for the peeling test in Fig.8.
Mesh 1 corresponds to 25 elements along the interface, mesh
2 to 50 elements, mesh 3 to 100 elements and mesh 4 to 200
elements.

elements along the interface are used. Finer meshes with

50 elements (mesh 2), 100 elements (mesh 3) and 200 el-

ements (mesh 4) along the interface are also considered.
The corresponding load-displacement curves are shown

in Fig.10, where an excellent mesh-independency even

for the coarsest mesh can be observed.

The predictive capabilities of the proposed formula-

tion are finally checked against experimental results.

To this aim, a 90◦ peeling of a backsheet (0.1 mm
thick, Young’s modulus 2.8 GPa, vanishing Poisson’s

ratio, hyperelastic material) from a glass substrate (4

mm thick, Young’s modulus 73 GPa, vanishing Pois-

son’s ratio, linear elastic material) is simulated by mod-

elling the adhesive response of the Epoxy Vynil Acetate
(EVA) interlayer via the polynomial CZM used in the

previous examples. The parameters to be identified are

the peak cohesive traction σmax and the fracture en-

ergy GIc, which is proportional to the critical open-
ing displacement lnc. The same parameters for Mode I

and Mode II deformation are used and the symmetric

formulation of the interface element for large displace-

ment analyses is adopted. The test is conducted under

plane strain conditions. Mesh and boundary conditions
are analogous to those displayed in Fig.8, although the

upper layer is much thinner in the present problem.

Four finite elements are used to discretize the back-

sheet through its thickness and 200 finite elements are
used along the interface, considering an initial bonded

length of 50 mm.

For this test, essential to ascertain the reliability of
backsheet bonding in photovoltaic systems, experimen-

tal results are reported in [41]. Since the material pa-

rameters and the exact dimensions corresponding to the

experimental force-peel extension curve are not listed
in [41], we use values conforming to the standard ma-

terials used in PV production, see [42]. Another source

of uncertainty regards the way the peeling extension
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Fig. 11 Peeling of a backsheet from a glass substrate: nu-
merical vs. experimental results taken from [41].

is measured, since no details are provided in [41]. In

the numerical simulation we predict the peeling exten-

sion via the location of the fictitious crack tip position.
Keeping in mind that, alternatively, the position of the

real crack tip could be used, this choice makes a cer-

tain difference especially in the pre-peak branch of the

force-peel extension curve.

Numerical results are shown in Fig.11 for GIc = 5.4

N/mm, which corresponds to the steady-state peeling

force measured in experiments. A series of curves ob-
tained by varying σmax in the range from 3.6 to 28.8

N/mm are displayed and are used to identify the value

of σmax which provides the best agreement with experi-

ments. In the present case, we found σmax ∼ 5.8 N/mm,
corresponding to the black dashed curve in Fig.11. The

numerical methods is able to predict the stead-state

peeling force very well, in excellent agreement with ex-

periments. The pre-peak response, which has the high-

est degree of inaccuracy in the real tests, is in any case
reasonably well reproduced.

6 Conclusions and outlook

In this paper, a consistent derivation of an interface

element for large displacements applications has been

proposed.

The present theory finds its variational basis in the

interface contribution to the Principle of Virtual Work

of the whole mechanical system. Our present work, dif-
fering from alternative formulations presented in the

literature, furnishes a consistent derivation of the inter-

face model involving large deformations. Particularly,

the cohesive model herein developed takes into account
the full finite kinematics in which the material and the

geometrical contributions to the element stiffness ma-

trix are clearly determined.

The corresponding finite element discretization of

the interface model has been accomplished based on a

linear two-dimensional zero-thickness interface element

for which the fundamental operators and the implemen-

tation details have been addressed. The compact and
consistent theoretical derivation allows its straightfor-

ward generalization to different orders of the kinematic

interpolation and to 3D topologies.

Numerical applications using two different cohesive

interface laws and with small or finite deformation kine-

matic assumptions for the continuum have been ex-
amined in order to assess the interface element per-

formance. Particularly, concerning the interface consti-

tutive models, two laws have been selected: (1) the so-

called tension cut-off model, that assimilates a quasi-

brittle behavior of the interface, and (2) the polyno-
mial based Tvergaard model that was adopted for sim-

ulating a ductile interface. The numerical results have

proven the applicability of the interface element pro-

posed especially in terms of its satisfactorily numerical
convergence in achieving equilibrium solutions, along

with a minimal mesh sensitivity. The predictive char-

acter of the method has been demonstrated through

the simulation of a peeling test of a backsheet from a

glass substrate, in which the ability of the formulation
to capture the nonlinear character of the experimental

trend is noteworthy.

In closing, we would like to emphasize that the de-

veloped model is particularly promising in addressing

real situations undergoing large displacements, which

commonly take place in a wide range of engineering
and biomechanical applications. This fact has been evi-

denced in the peeling simulations included in this inves-

tigation where the role of finite displacements has been

highlighted. In case of problems involving thin layers
with an interface much tougher in Mode I than in Mode

II, as in fibrilation problems, the proposed interface el-

ement for large displacements is recommended to be

used instead of its small displacement counterpart, to

avoid a significant overestimation of the peeling force,
as shown in the examples discussed in the present study.
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