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Abstract

The problem of identifying a fixed-order FIR approximation of linear systems with un-

known structure, assuming that both input and output measurements are subjected to

quantization, is dealt with in this paper. A fixed-order FIR model providing the best

approximation of the input-output relationship is sought by minimizing the worst-case

distance between the output of the true system and the modeled output, for all possible

values of the input and output data consistent with their quantized measurements. The

considered problem is firstly formulated in terms of robust optimization. Then, two dif-

ferent algorithms to compute the optimum of the formulated problem by means of linear

programming techniques are presented. The effectiveness of the proposed approach is

illustrated by means of a simulation example.

Key words: FIR models, Linear programming, Quantized identification, Robust

optimization.

1. Introduction

In many engineering applications, only binary-valued or quantized measurement data

are available. Typical examples include vision systems which commonly make use of

pixelized information; robotics applications where digital rotary or linear encoders are

employed to measure position and velocity; wireless sensor networks where signals are
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quantized and converted into a finite number of bits before being transmitted through

communication channels with limited bandwidth.

Identification of dynamical systems from binary and quantized observations has at-

tracted the attention of many researchers in the last years. More precisely, a maximum

likelihood approach for parameter estimation of a static function from binary-valued out-

put data is discussed in [1], while identification of linear dynamical systems which are

equipped with only binary-valued sensors is addressed in [2] in the case of stochastic and

deterministic description of the disturbances affecting the model. The methodologies

discussed in [2] have been extended to system identification with quantized observations

[3] and to identification of Wiener models [4]. Identification of linear dynamical systems

from quantized output observations is dealt with in [5, 6, 7, 8, 9, 10, 11]. In particular,

local convergence results in identification of IIR models from binary measurements are

given in [10] and extended in [11] for the identification of FIR models from measurements

subjected to non-uniform quantization. Global convergence results to a parameter set-

ting corresponding to a perfect input-output model or to the boundary of the chosen

model set are also provided. Other approaches for the identification of linear systems

from quantized output measurements can be found in [12] and [13], where identification

of Wiener-like models with non-invertible nonlinearity is dealt with. The problem of

state estimation for linear systems from quantized measurements is considered in [14]

and [15]. In the framework of bounded-error identification, that is when disturbances

are supposed to be unknown-but-bounded, recent results are presented in [16], [17] and

[18] on optimal input design for FIR model identification from binary and quantized

observations. The reader is referred to the book [19] and references therein for a detailed

discussion on system identification from quantized measurements.

All the papers mentioned above assume that only the output signal is subjected to

quantization, while the input of the system is perfectly known. When also the input mea-

surements are quantized, the identification problem can be formulated in terms of error-

in-variables problems with unknown-but-bounded measurement noise. In this case the

solution to the identification problem can be obtained by applying the results discussed

in [20], [21], [22] and [23] where different algorithms are presented to compute bounds on

the parameters of IIR models consistent with the assumed model structure, noise bounds

and measured data. Linear system identification from quantized input/output (I/O) data
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in the presence of additive measurement noise on the output signal is tackled in [24] and

[25] by means of least-square and instrumental-variable approaches. Identification of au-

toregressive moving average models from binary measurements of the input and output

signals is addressed in [26], which provides an algorithm yielding consistent parameter

estimates under the assumption that the input/output power ratio of the system is a-

priori known and white disturbances with known distributions affect the input/output

measurements.

The aim of this paper is to evaluate the parameters of a fixed-order FIR model which

provides the best worst-case approximation of the (I/O) relationship of a linear system

with unknown structure. More precisely, the FIR model parameters are identified in

order to minimize the worst-case distance between the output of the true system and

the modeled output for all possible values of input and output data consistent with their

quantized measurements. The paper is organized as follows. Computation of optimal

worst-case FIR parameters is formulated as a robust optimization problem in Section

2. Two different approaches are presented in Section 3 to compute the solution of the

formulated robust optimization problem by means of linear programming techniques.

Capabilities of the proposed identification scheme, together with a comparison with the

standard least square algorithm, are discussed in Section 4.

2. Problem formulation

Consider a stable discrete-time single-input single-output linear dynamical system

described by

yt =
∞∑
t=1

h(t)ut, (1)

where {h(t)}∞t=1 is the impulse response, while ut and yt are the continuous-amplitude

input and output signals at the time instant t, respectively. Measurements uq
t of the

input signal ut are obtained by the following mu-level quantizer Qu(·):

uq
t = Qu(ut)=


⌊
ut−Cu

∆u

⌋
∆u + Cu if Cu < ut < Cu,

Cu, if ut ≥ Cu,

Cu, if ut ≤ Cu,

(2)

where ⌊·⌋ denotes the floor operator, [Cu; Cu] is the range of the quantizer and ∆u =
Cu−Cu

mu−1 is the quantization step. Similarly, quantized measurements yqt of the output

3



signal yt are given by the quantizer Qy(·) with my levels described by

yqt = Qy(yt) =


⌊
yt−Cy

∆y

⌋
∆y + Cy if Cy < yt < Cy,

Cy, if yt ≥ Cy,

Cy, if yt ≤ Cy,

(3)

with ∆y =
Cy−Cy

my−1 .

Assumption 1. We assume that quantizers Qu(·) and Qy(·) are designed so that the

input and the output signals ut and yt belong, respectively, to the quantization ranges

[Cu; Cu] and [Cy; Cy]. �

In view of Assumption 1, the unknown noise-free input ut ranges within the open interval

[ut) defined as [ut)
.
= [uq

t ; u
q
t +∆u), while the unknown noise-free output yt takes values

in the open set [yt)
.
= [yqt ; y

q
t +∆y).

For a given integer n ≥ 1 and for a given sequence of input and output quantized

measurements uq = [uq
−n, uq

−n+1, . . . , uq
N ]T and yq = [yq1, yq2, . . . , yqN ]T, the aim of

our work is to estimate the parameters θ = [θ0, θ1, . . . , θn]
T of an n-order finite-impulse-

response (FIR) model F :

F : ŷt =
n∑

k=0

θkut−k. (4)

Remark 1. Note that, since a finite record of input/output data is collected, Assumption

1 can be relaxed by assuming that ut ∈ [Cu; Cu] only for the time indexes t = −n,−n+

1, . . . , N and yt ∈ [Cy; Cy] for t = 1, . . . , N . Indeed, rough a-priori information on the

upper/lower bound of the input signal can be used to calibrate the quantizer Qu(·) in order

to satisfy Assumption 1. Nevertheless, if such rough a-priori information is not available,

the user can calibrate the quantizer Qu(·) by gradually increasing the quantization range

[Cu; Cu], until there is no value of the measured inputs uq
t equal to Cu or Cu. If fact,

if there is no value of uq
t equal to Cu or Cu, then the true input signal ut is guaranteed

to belong to the interval [Cu; Cu]. The same considerations can be applied in order to

calibrate the output quantizer Qy(·). �

The FIR model F is computed in order to minimize the worst-case distance be-

tween the noise-free output sequence y = [y1, y2, . . . , yN ]T and the predicted out-

put ŷ = [ŷ1, ŷ2, . . . , ŷN ]T for all possible admissible values of the noise-free input
4



u = [u−n, u−n+1, . . . , uN ]T and output signals y, that is, for all values of uk ∈ [uk)

and yt ∈ [yt), with k = −n, . . . , N and t = 1, . . . , N . Thus, the optimal worst-case

parameters θ∗ can be computed by solving the following optimization problem:

θ∗ = argmin
θ

max

uk ∈ [uk]

yt ∈ [yt]

k = −n, . . . , N

t = 1, . . . , N

∥ŷ− y∥∞ (5)

where [uk] and [yk] denote the closure of the open set [uk) and [yk), respectively, that is

[ut]
.
= [uq

t ; u
q
t+∆u] and [yt]

.
= [yqt ; y

q
t+∆y], while ∥ŷ−y∥∞ is the∞-norm of vector ŷ−y.

Remark 2. Problem (5) can be interpreted as a game between designer and nature,

where the designer has to look for a strategy (FIR parameters θ) which minimizes a given

criterion (∥ŷ − y∥∞) against the nature, which in turn plays the most disadvantageous

strategy for the designer (looking for the values of ut ∈ [ut] and yt ∈ [yt] maximizing

∥ŷ−y∥∞). The interested reader is referred to [27] for an overview of the main principles

of game theory. �

Remark 3. If the 2-norm is considered in the objective function of Problem (5), the

deterministic total least square (TLS) approach described in [28] (Chapter 2.8) could

be used to solve the minmax problem (5). However, although by means of the TLS

approach it is possible to deal with the case of bounded input and output errors, the

solution computed by applying the deterministic TLS method described in [28] is, in

general, affected by some conservativeness. In fact, the algorithm proposed in [28] is

based on the implicit assumption that the uncertain variables affecting the different rows

of the regressor are independent with each others. Unfortunately, that is not the case in

Problem (5) where the uncertainties affecting the rows of the regressors are correlated,

due to the presence of different occurrences of the same uncertain input samples. On the

contrary, in this paper we propose two different methods to exactly solve Problem (5) by

taking into account such a correlation. �
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3. Computation of optimal worst-case FIR parameters θ∗

In this section we present two different approaches to compute the optimal worst-case

parameters θ∗ by means of linear programming optimization.

First, we note that, by introducing the slack variable ξ and by substituting equation

(4) into (5), problem (5) can be written as the following robust optimization problem

(θ∗, ξ∗) = argmin
θ,ξ

ξ

s.t.

− ξ ≤
n∑

k=0

θkut−k − yt ≤ ξ, ∀uk ∈ [uk], ∀yt ∈ [yt];

k = −n, . . . , N ; t = 1, . . . , N.

(6)

Note that in (6) there are infinitely many constraints, since the inequalities −ξ ≤
n∑

k=0

θkut−k − yt ≤ ξ must be satisfied for all possible values of uk and yt in the un-

certainty intervals [uk] and [yt], respectively. This kind of problems are known as robust

optimization problems or semi-infinite programming problems, namely problems with

finitely many decision variables and infinitely many constraints [29]. In the following,

two different techniques are presented to reduce (6) to a linear programming problem

with a finite number of constraints. These two methods will be referred to as vertex

approach and nonnegative-scalar approach.

3.1. Vertex-approach

Let Bt be an n+ 2-dimensional box defined as

Bt = [ut]× [ut−1]× . . .× [ut−n]× [yt] (7)

and bt = [ut, ut−1, . . . , ut−n, yt] be an element of Bt. Let b
j
t , with j = 1, . . . , 2n+2, be the

j-th vertex of Bt.

Proposition 1. Condition

−ξ ≤
n∑

k=0

θkut−k − yt ≤ ξ (8)

holds for all ut−k ∈ [ut−k] and for all yt ∈ [yt], with k = 0, . . . , n if and only if

−ξ ≤
n∑

k=0

θkb
j
t,k+1 − bjt,n+2 ≤ ξ, ∀j = 1, . . . , 2n+2, (9)

6



where bjt,k denotes the k-th component of the vertex bjt .

Proof The proof of Proposition 1 follows from the fact that maximum/minimum of
n∑

k=0

θkut−k − yt is attained at some vertex bjt of box Bt. In particular, for a given θ, the

maximum of
n∑

k=0

θkut−k − yt over Bt is

n∑
k=0

θk
(
uq
t−k + Iθk∆u

)
− yt,

while the minimum value is
n∑

k=0

θk
[
uq
t−k + (1− Iθk)∆u

]
− (yt +∆y),

where Iθk is defined as

Iθk =

 1 if θk ≥ 0;

0 if θk < 0.
(10)

�
On the basis of Proposition 1, the optimal worst-case FIR parameters θ∗ solution to

problem (6), can be obtained by solving the following linear programming problem:

(θ∗, ξ∗) = argmin
θ,ξ

ξ

s.t.

− ξ ≤
n∑

k=0

θkb
j
t,k+1 − bjt,n+2 ≤ ξ, ∀j = 1, . . . , 2n+2, t = 1, . . . , N.

(11)

It is worth remarking that the number M of linear constraints involved in (11) is

M = 2N2n+2. Thus, since M increases exponentially with the order n of the FIR model

F , application of the presented procedure is limited to small values of n. In order to

compute a solution of problem (6) also for large values of n, in the following we present

an alternative method which leads to a linear programming problem whose number of

constraints increases linearly with n.

3.2. Nonnegative-scalar approach

Let us rewrite the following robust constraint appearing in the optimization problem

(6)

− ξ ≤
n∑

k=0

θkut−k − yt ≤ ξ, ∀yt ∈ [yt]; ∀ut−k ∈ [ut−k], k = 0, . . . , n, (12)
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as 
∑n

k=0 θkut−k − yqt ≤ ξ,∑n
k=0 θkut−k − (yqt +∆y) ≥ −ξ,

∀ut−k ∈ [ut−k], k = 0, . . . , n,

(13)

or equivalently in terms of nonnegative robust constraints, i.e.
−
∑n

k=0 θkut−k + yqt + ξ ≥ 0,∑n
k=0 θkut−k − yqt −∆y + ξ ≥ 0,

∀ut−k ∈ [ut−k], k = 0, . . . , n.

(14)

It is worth remarking that only θk and ξ are the decision variables in (14), while ut−k

is an uncertain variable which is assumed to belong to the uncertainty set [ut−k]. This

means that θk and ξ have to be computed so that the constraints−
∑n

k=0 θkut−k+yqt+ξ ≥
0 and

∑n
k=0 θkut−k−yqt −∆y+ξ ≥ 0 are satisfied for all possible values of ut−k in [ut−k].

Proposition 2. The collection of robust constraints −
∑n

k=0 θkut−k + yqt + ξ ≥ 0, ∀ut−k ∈ [ut−k],

k = 0, . . . , n; t = 1, . . . , N
(15)

is equivalent to the following set of constraints:

−
∑n

k=0 θkut−k + yqt + ξ =

=ρ
t
+
∑n

k=0λk

(
−uq

t−k + ut−k

)
+
∑n

k=0 σk

(
uq
t−k +∆u − ut−k

)
for some λk ≥ 0; σk ≥ 0; ρ

t
≥ 0;

k = 0, . . . , n; t = 1, . . . , N.

(16)

Proof We first prove that (16) implies (15). Indeed, for all ut−k ∈ [ut−k], −uq
t−k+ut−k ≥

0 and uq
t−k+∆u−ut−k ≥ 0. Besides, since λk ≥ 0, σk ≥ 0 and ρ

t
≥ 0 for all k = 0, . . . , n

and for all t = 1, . . . , N , the right side of the equality in (16) is always positive, therefore

−
n∑

k=0

θkut−k + yqt + ξ ≥ 0 (17)

for any ut−k ∈ [ut−k], with k = 0; . . . , n. Thus, condition (15) holds.

In order to prove that (15) implies (16) we have to show that, when (15) holds, there

exists some nonnegative constants ρ
t
λk, σk, with k = 0, . . . , n and t = 1, . . . , N such

that the terms −
n∑

k=0

θkut−k + yqt + ξ, with t = 1, . . . , N , can be written as

ρ
t
+

n∑
k=0

λk

(
−uq

t−k + ut−k

)
+

n∑
k=0

σk

(
uq
t−k +∆u − ut−k

)
. (18)
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Such constants are equal to

λk =

 0, if θk > 0

−θk, if θk ≤ 0
(19)

σk =

 θk, if θk > 0

0, if θk ≤ 0
(20)

ρ
t
= −

n∑
k=0

θk
(
uq
t−k + Iθk∆u

)
+ yqt + ξ, (21)

with Iθk defined in (10). Indeed, λk and σk in (19) and (20) are nonnegative by definition.

Besides, from eq. (15), the term −
n∑

k=0

θkut−k+yqt +ξ is nonnegative for all ut−k ∈ [ut−k],

thus also ρ
t
is nonnegative since uq

t−k + Iθk∆u ∈ [ut−k]. By substituting λk, σk and ρ
t

defined in (19)-(21) into eq. (18), the term in (18) becomes −
n∑

k=0

θkut−k + yqt + ξ. This

completes the proof. �

Remark 4. The equality constraint appearing in (16) is an equality between two polyno-

mials in the variables ut−k (with k = 0, . . . , n), namely
∑n

k=0 θkut−k − yqt −∆y + ξ, and

ρt+
∑n

k=0λk

(
ut−k − uq

t−k

)
+
∑n

k=0 σk

(
uq
t−k +∆u − ut−k

)
. As is well known, two polyno-

mials are equivalent if and only if the coefficients of the corresponding powers are equal.

Furthermore, the coefficients of the polynomials in (16) depend on the unknowns θ, ξ,

λk, σk and ρt (with k = 0, . . . , n and t = 1, . . . , N). Therefore, the equivalence of the

polynomials in (16) leads to a set of equality constraints in the variables θ, ξ, λk, σk and

ρt. �

Proposition 3. The set of robust constraints
∑n

k=0 θkut−k − yqt −∆y + ξ ≥ 0, ∀ut−k ∈ [ut−k],

k = 0, . . . , n; t = 1, . . . , N
(22)
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is equivalent to the following set of constraints:

∑n
k=0 θkut−k − yqt −∆y + ξ =

=ρt+
∑n

k=0λk

(
−uq

t−k + ut−k

)
+
∑n

k=0 σk

(
uq
t−k +∆u − ut−k

)
for some λk ≥ 0; σk ≥ 0; ρt ≥ 0;

k = 0, . . . , n; t = 1, . . . , N.

(23)

Proof Proof of Proposition 3 follows by considerations similar to the ones used in the

proof of Proposition 2. In this case, the values of λk, σk and ρt which satisfy conditions

in (23) are given by

λk =

 θk, if θk > 0,

0, if θk ≤ 0,
(24)

σk =

 0, if θk > 0,

−θk, if θk ≤ 0,
(25)

ρt =
n∑

k=0

θk
(
uq
t−k + (1− Iθk)∆u

)
− yqt −∆y + ξ. (26)

�
On the basis of Propositions 2 and 3, the optimal worst-case FIR parameters θ∗ solution

to problem (6), can be obtained by solving the following optimization problem:

(θ∗, ξ∗) = arg min

θ, ξ

λk, σk, ρt

λk, σk, ρt

ξ

s.t.

n∑
k=0

θkut−k − yqt −∆y + ξ = ρt+

n∑
k=0

λk

(
ut−k − uq

t−k

)
+

n∑
k=0

σk

(
uq
t−k +∆u − ut−k

)
;

−
n∑

k=0

θkut−k + yqt + ξ = ρ
t
+

n∑
k=0

λk

(
−uq

t−k + ut−k

)
+

n∑
k=0

σk

(
uq
t−k +∆u − ut−k

)
;

for some λk ≥ 0; σk ≥ 0; ρt ≥ 0;

λk ≥ 0; σk ≥ 0; ρ
t
≥ 0;

k = 0, . . . , n; t = 1, . . . , N.

(27)

Property 1. Optimization problem (27) is a linear programming problem in the decision

variables θ, ξ, λk, σk, ρt, λk, σk, ρt.
10



Proof As highlighted in Remark 4, the polynomial
∑n

k=0 θkut−k − yqt −∆y + ξ (in the

variables ut−k (with k = 0, . . . , n)) is equivalent to the polynomial

ρt+
n∑

k=0

λk

(
ut−k − uq

t−k

)
+

n∑
k=0

σk

(
uq
t−k +∆u − ut−k

)
,

if and only if the coefficients of the corresponding powers are equal. This leads to linear

constraints in the variables θ, ξ, λk, σk and ρt, with k = 0, . . . , n and t = 1, . . . , N . The

same considerations hold in order to impose that the polynomial −
∑n

k=0 θkut−k+yqt + ξ

is equivalent to polynomial

ρ
t
+

n∑
k=0

λk

(
−uq

t−k + ut−k

)
+

n∑
k=0

σk

(
uq
t−k +∆u − ut−k

)
.

�

Remark 5. The feasible set of problem (27) is defined by M = 4N + 2n linear con-

straints, thus M increases linearly with the order n of the FIR F . Therefore, unlike the

“vertex” approach, the “nonnegative-scalar” approach can be efficiently applied also in

the case of FIR models F with large order n. �

Remark 6. It is worth remarking that both the vertex and the nonnegative-scalar ap-

proach can be applied, with minor modifications, also in the case the input and the output

signals are measured by means of centered quantizers described by:

uq
t = Qu(ut)=


round

(
ut−Cu

∆u

)
∆u + Cu if Cu < ut < Cu,

Cu, if ut ≥ Cu,

Cu, if ut ≤ Cu,

(28)

yqt = Qy(yt) =


round

(
yt−Cy

∆y

)
∆y + Cy if Cy < yt < Cy,

Cy, if yt ≥ Cy,

Cy, if yt ≤ Cy,

(29)

where round(·) denotes the closest integer approximation. Extension of the proposed ap-

proaches to the case of nonuniform quantization is also straightforward. �
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4. Simulation example

In this section we show the performance of the discussed approach through a numerical

example. The true system generating the data is an IIR model described by

yt =a1yt−1 + a2yt−2 + b0ut + b1ut−1 + b2ut−2, (30)

with a1 = 0.15, a2 = 0.60, b0 = −0.10 b1 = 3.50, b2 = −2.10. The input sig-

nal ut is a random variable uniformly distributed in [−0.2; 0.2]. Quantized measure-

ments of the input and of the output signal are obtained by means of uniform and

centered quantizers described by (28)-(29) with range [Cu; Cu] = [−0.2; 0.2] and

[Cy; Cy] = [−2; 2], respectively. In order to show the effect of the input quantiza-

tion error, four different input quantizers with levels mu = 4, 6, 8, 10 are considered. The

signal-to-noise ratios SNRu = 10 log10

( ∑N
t=1(ut)

2∑N
t=1(ut − uq

t )
2

)
, corresponding to the con-

sidered quantization levels mu, are reported in Table 1. Similarly, four different output

quantizers with levels my = 8, 12, 16, 20 are considered in order to analyze the effect

of the output quantization error. Table 2 shows the values of the signal-to-noise ratios

SNRy = 10 log10

( ∑N
t=1(yt)

2∑N
t=1(yt − yqt )

2

)
corresponding to the considered output quantiza-

tion levels my. It worth pointing out that, in order to provide representative results,

the input and the output quantizers are chosen to be different with each other. In fact,

for input quantization levels mu = 8, 12, 16, 20, the corresponding signal-to-noise rations

are higher than 20 dB and the obtained results would not clearly show the effect of the

noise on the input measurements. All possible combinations of the input and the output

quantizers are analyzed in the simulation example. Furthermore, for each combination

of the input and the output quantizers, a MonteCarlo simulation with 100 runs is per-

formed with a new input realization in each run. The optimal worst-case parameters θ∗

of a FIR model F∗ of order n = 30 are estimated, at each MonteCarlo run, from an

input/ouput sequence of length N = 200. It is worth remarking that, in the considered

Table 1: Signal-to-noise ratio (SNRu) on the input signal measurements vs number of quantization

levels mu.

mu 4 6 8 10

SNRu 4 dB 11 dB 21 dB 32 dB
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example, the feasible set of optimization problem (11) is described by 2N2n+2 ≃ 1.7·1012

constraints. Therefore, because of high computational complexity, the vertex approach

discussed in Section 3.1 can not be exploited to compute FIR parameters θ∗. On the

other hand, the use of the nonnegative-scalar method leads to optimization problem (27)

with 4N + 2n = 860 constraints, that can be efficiently solved by means of linear pro-

gramming solvers like Matlab function linprog. The performance of the estimated FIR

model is tested on a validation set with Nval = 50 input/output measurements. The

validation mean square error MSEV , defined as

MSEV =
1

Nval

Nval∑
t=1

(ŷt − yt)
2
, (31)

is used to evaluate the matching between real data yt and estimated data ŷt. Besides,

performances of the identified FIR model F∗ with parameters θ∗ are also compared

with performances of a FIR model FLS of the same order n, whose parameters θLS are

computed by means of standard least-square (LS) estimation, that is

θLS = argmin
θ

N∑
t=1

(
n∑

k=0

θku
q
t−k − yqt

)2

. (32)

Fig. 1 shows the real output signal yt in the validation data set and the estimated output

ŷt of FIR models F∗ and FLS obtained in one of the Monte Carlo simulation runs with

quantization levels mu = 4 and my = 12. The magnitude of the errors between real

output signal yt and outputs ŷt of FIR models F∗ and FLS is shown in Fig. 2. Figs. 1

and 2 show that the optimal worst-case FIR model F∗ achieves better performance with

respect to the performance of model FLS . In fact, the MSEV obtained by using FIR

model F∗ is 0.0109, smaller than the MSEV obtained by the FIR model FLS , which is

equal to 0.0478. The mean value of the validation mean square error MSEV obtained

over the 100 Monte Carlo runs are reported in Table 3. Such results show that, for low

values of the signal-to-noise ratios on the input measurements (i.e., mu = 4, 6) optimal

worst-case FIR model F∗ achieves better performance, in terms of MSEV , with respect

Table 2: Signal-to-noise ratio (SNRy) on the output signal measurements vs number of quantization

levels my .

my 8 12 16 20

SNRy 6 dB 10 dB 13 dB 16 dB
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to the performance of model FLS . The reason is due to the fact that the least-square

approach provides a poor estimate in case of noise-corrupted measurements of the input

signal. On the other hand, for high values of the signal-to-noise ratios on the input

measurements (i.e., mu = 8, 10) the performance of the two estimated models are quite

similar. It is worth remarking that when non-centered quantizers are used to measure

the output signal, the performance of the LS approach significantly drop because of the

nonzero average on the measurement noise. On the other hand, the optimal worst-case

approach presented in the paper is not affected by this drawback since no assumption on

the mean value of the quantization error is made.

5. Conclusions

The paper deals with the approximation problem of linear dynamical systems with

a fixed-order FIR model from input/output measurements subjected to quantization.

Parameters of a FIR model which minimize the worst-case distance between the true

output signal and the estimated output, for all possible values of the input signal, are

Table 3: Mean value MSEV of the validation mean square error MSEV obtained over the 100 Monte

Carlo runs with the FIR models F∗ and FLS and for all possible combinations of the quantizers used

to measure the input/output signals.

mu my MSEV (F∗) MSEV (FLS)

4 8 0.0276 0.0522
4 12 0.0185 0.0508
4 16 0.0113 0.0488
4 20 0.0104 0.0475
6 8 0.0097 0.0196
6 12 0.0092 0.0152
6 16 0.0084 0.0138
6 20 0.0082 0.0117
8 8 0.0078 0.0075
8 12 0.0069 0.0067
8 16 0.0057 0.0056
8 20 0.0055 0.0052
10 8 0.0075 0.0076
10 12 0.0048 0.0045
10 16 0.0043 0.0040
10 20 0.0039 0.0036
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Figure 1: Comparison between real output data (solid thick line), estimated output of filter F∗ (solid

thin line), estimated output of filter FLS (dashed line).
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Figure 2: Absolute value of the error between real data and estimated data of filter F∗ (solid thick line)

and error between real data and estimated data of filter FLS (dashed line).

computed. The considered approximation problem is formulated in terms of robust op-

timization and two different methods are discussed in order to compute the solution of

the formulated robust optimization problem. The first method, referred to as vertex

15



approach, requires the solution to a linear programming problem with a number of con-

straints which exponentially increases with the order of the FIR model. Thus, because of

high computational burden, the vertex approach can be exploited only for small values

of the FIR order. The second method, referred to as nonnegative-scalar approach, leads

to a linear programming problem with a number of constraints which linearly increases

with the order of the FIR model to be estimated. Therefore, the nonnegative-scalar

approach can be efficiently used to identify FIR models with high order. The reported

simulation example shows that the proposed identification algorithm provides a satis-

factory FIR approximation of the IIR data-generating system. In addition, the ability

of the proposed worst-case approach to deal with the presence of quantization error is

highlighted by comparing the response of the obtained FIR model with the response of

the FIR model estimated by means of the standard least squares approach.
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[7] B. Godoy, G. Goodwin, J. Agüero, D. Marelli, T. Wigren, On identification of FIR systems having

quantized output data, Automatica (2011) 1905–1915.

[8] D. Marelli, K. You, M. Fu, Identification of arma models using intermittent and quantized output

observations, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE, pp. 4076–4079.

[9] X. Liu, J. Wang, Q. Zhang, A quadratic-programming-based method to quantized system identifi-

cation, in: Proc. of IFAC world congress, Milan, Italy, pp. 9052–9057.

16



[10] T. Wigren, Approximate gradients, convergence and positive realness in recursive identification of

a class of non-linear systems, International Journal of Adaptive Control and Signal Processing 9

(1995) 325–354.

[11] T. Wigren, Adaptive filtering using quantized output measurements, IEEE Transactions on Signal

Processing 46 (1998) 3423–3426.

[12] E. W. Bai, J. Reyland, Towards identification of Wiener systems with the least amount of a priori

information on the nonlinearity, Automatica 44 (2008) 910–919.

[13] E. W. Bai, J. Reyland, Towards identification of Wiener systems with the least amount of a priori

information: IIR cases, Automatica 45 (2009) 956–964.

[14] E. Sviestins, T. Wigren, Optimal recursive state estimation with quantized measurements, IEEE

Trans. Automatic Control 45 (2000) 762–767.

[15] Z. Duan, V. P. Jilkov, X. R. Li, State estimation with quantized measurements: Approximate

mmse approach, in: 11th International Conference on Information Fusion, pp. 1–6.

[16] M. Casini, A. Garulli, A. Vicino, Optimal input design for identification of systems with quantized

measurements, in: 47th IEEE Conference on Decision and Control, pp. 5506–5512.

[17] M. Casini, A. Garulli, A. Vicino, Input design for worst-case system identification with uniformly

quantized measurements, in: Proc. of SYSID 2009, Saint-Malo, France, pp. 54–59.

[18] M. Casini, A. Garulli, A. Vicino, Input design in worst-case system identification using binary

sensors, IEEE Trans. Automatic Control 56 (2011) 1186–1191.

[19] L. Y. Wang, G. G. Yin, J. F. Zhang, Y. Zhao, System Identification with Quantized Observations,

Control: Foundations & Applications Systems & control, Springer, 2010.

[20] V. Cerone, Feasible parameter set for linear models with bounded errors in all variable, Automatica

29 (1993) 1551–1555.

[21] V. Cerone, D. Piga, D. Regruto, Set-membership error-in-variables identification through convex

relaxation techniques, IEEE Transactions on Automatic Control 57 (2012) 517–522.

[22] V. Cerone, D. Piga, D. Regruto, Enforcing stability constraints in set-membership identification of

linear dynamic systems, Automatica 47 (2011) 2488–2494.

[23] V. Cerone, D. Piga, D. Regruto, Improved parameters bounds for set-membership EIV problems,

International Journal of Adaptive Control and Signal Processing 25 (2011) 208–227.

[24] H. Suzuki, T. Sugie, System identification based on quantized i/o data corrupted with noises and

its performance improvement, in: 45th IEEE Conference on Decision and Control, pp. 3684–3689.

[25] M. Ikenoue, S. Kanae, Z. J. Yang, K. Wada, Identification of errors-in-variables models from

quantized input-output measurements vai bias-compensate instrumental variable type method, In-

ternational Journal of Innovative Computing, Information and Control 6 (2010) 183198.

[26] V. Krishnamurthy, Estimation of quantized linear errors-in-variables models, Automatica 31 (1995)

1459–1464.
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