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Abstract

Set-membership identification of a Linear Parameter Varying (LPV) model describing the vehicle lateral dynamics is addressed
in the paper. The model structure, chosen as much as possible on the ground of physical insights into the vehicle lateral
behavior, consists of two single-input single-output LPV models relating the steering angle to the yaw rate and to the sideslip
angle. A set of experimental data obtained by performing a large number of manoeuvres is used to identify the vehicle lateral
dynamics model. Prior information on the error bounds on the output and the time-varying parameters measurements are
taken into account. Comparison with other vehicle lateral dynamics models is discussed.
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1 Introduction

A remarkable number of vehicle dynamics control sys-
tems have been proposed in the last decades to effec-
tively improve driving safety, vehicle handling and pas-
senger comfort. Lane keeping systems (Suryanarayanan
et al., 2004; Cerone et al., 2009a), active (Rajamani
and Hedrick, 1994) and semiactive (Poussot-Vassal et
al., 2008) suspension systems, adaptive cruise control
(Rajamani et al., 2000) are just a few examples. Due to
the interest in these control systems, modeling of road
vehicle behavior has received a renewed attention in re-
cent years. Indeed, the plant mathematical model should
be carefully selected in order to design effective control
systems, paying also attention to the tradeoff between
model complexity and accuracy.
The most popular among the vehicle lateral dynamics
models proposed in the literature is a linear second or-
der model, referred to as single track (or bicycle) model
(see, e.g., Rajamani (2006) for details). The linear sin-
gle track model is used in many papers to design linear
controllers of the lateral dynamics both for lane keeping
(Cerone et al., 2009a; Suryanarayanan et al., 2004) and
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yaw stability applications (Cerone et al., 2009b; Güvenç
et al., 2004). However, such a simple model becomes in-
adequate when either the longitudinal velocity is allowed
to vary rapidly or aggressive steering manoeuvres like
steering angle steps or double lane change manoeuvres,
are performed. In such cases, more complex models are
needed. A good deal of remarkable works has been re-
cently focused on the problem of model based on-line
estimation of some key variables of the vehicle lateral
dynamics. These estimators, sometimes called virtual
sensors, can be profitably used to replace physical sen-
sors which cannot be mounted on production cars due
to their prohibitive costs. In (Piyabongkarn et al., 2009)
the authors discuss an effective algorithm for sideslip
angle estimation based on a proper combination of the
estimates provided by a linear single track model and a
kinematics model. The problem of sideslip angle estima-
tion is also considered in (Stephant et al., 2004) where a
linear estimator based on the single track model is com-
pared with three different nonlinear filters designed on
the basis of some proper nonlinear extensions of the bi-
cycle model. The obtained results show that the non-
linear observers significantly outperform the linear one.
The papers mentioned above motivate the development
of nonlinear models of the lateral dynamics.
In recent years, the linear parameter varying (LPV)
modeling approach received a major attention from the
identification and control research community, mainly
due to the strong connection between LPV models and
gain scheduling control design methods (see the survey
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paper Rugh and Shamma (2000) for a review of the
literature on the subject). LPV models belong to the
more general class of linear time-varying models and,
roughly speaking, they can be defined as linear systems
where, either the matrices of the state equations or the
coefficients of the input-output relation, depend on one
or more time varying parameters, whose real-time sam-
ples are assumed to be available. A grey-box approach
to LPV modeling of vehicle dynamics is considered in
(Gaspar et al., 2008). As to black-box identification of
LPV models, a relevant number of approaches has ap-
peared in the literature in the last decade. An up-to-date
overview of the available LPV modeling and identifica-
tion approaches can be found in the book (Toth, 2010).
Most of the works on LPV identification are based on
the assumption that the measurement error is statisti-
cally described. A worthwhile alternative to the stochas-
tic description of measurement errors is the bounded-
error or set-membership (SM) characterization, where
uncertainties are assumed to belong to a given set. Fur-
ther details on this approach can be found in the book
Milanese et al. (1996). Only few contributions can be
found in the literature addressing the identification of
LPV models when the measurement errors are supposed
to be bounded. In (Sznaier and Mazzarro, 2003; Bianchi
and Sanchez-Pena, 2010) identification and model inval-
idation of LPV systems in presence of bounded noise
and a possible nonparametric part is considered. Belforte
and Gay (Belforte and Gay, 2004) consider the identifi-
cation of discrete-time LPV models with finite impulse
response structure and output measurements affected by
bounded noise.
In this paper SM identification of a black-box input-
output LPV model of the vehicle lateral dynamics is ad-
dressed. The proposed model consists of two single in-
put single output (SISO) LPV representations, relating
the steering angle to the yaw rate and the sideslip angle
respectively. The paper is organized as follows. The se-
lection of the two SISO models structure is discussed in
Section 2 relying on physical insights about the vehicle
lateral behavior. Then, the approach for the identifica-
tion of SISO discrete-time LPV models when both the
output and the time-varying parameters measurements
are affected by bounded noise, previously presented by
the authors in (Cerone and Regruto, 2008), is briefly re-
viewed and extended in Section 3. In Section 4 experi-
mental data obtained by performing a large number of
different manoeuvres are exploited to identify a black-
box LPV vehicle lateral dynamics model through the
algorithm described in Section 3. The performances of
the identified LPV model are compared with the ones
obtained by other vehicle dynamics models.

2 LPV model of the lateral dynamics: structure
selection

The aim of our contribution is to obtain a model which
adequately describes the input-output relations between

the steering angle and the two most relevant variables of
the lateral dynamics, i.e., the yaw rate and the sideslip
angle. Therefore, the proposed system description con-
sists of two SISO LPV models, relating the steering an-
gle to the yaw rate and to the sideslip angle respectively.
The choice of an appropriate model structure should
be based as much as possible on insight and knowledge
about the system to be identified. To this aim, in this
section the fundamental aspects of vehicle lateral dy-
namics are briefly reviewed. Then, physical insights are
used to select the scheduling variables and the dynamic
order of the two SISO LPV models to be identified.

2.1 Brief review of vehicle lateral dynamics

A single track (or bicycle) model with two degrees of
freedom is considered here to describe the vehicle be-
havior, according to (Rajamani, 2006; Piyabongkarn et
al., 2009). Among the possible equivalent choices for the
model state variables, we consider the body sideslip an-
gle β and the yaw rate r since they are of particular inter-
est when describing the vehicle lateral dynamics, which,
under the assumption of negligible road bank angle, can
be described by the following two equations (see, e.g.,
Rajamani, 2006)

mVx(β̇ + r) = Fyf
+ Fyr , Iz ṙ = lfFyf

− lrFyr (1)

where m is the vehicle mass, Iz is the yaw moment of
inertia, Vx is the vehicle longitudinal velocity, Fyr is the
rear lateral tire force, Fyf

is the front tire lateral force,
lr and lf are the distances between the projection of the
vehicle center of mass to the ground and the tire-road
contact point in static conditions. Under the assumption
of small tires slip angles, front and rear lateral forces can
be reasonably described by

Fyf
= cfαf , Fyr = crαr, (2)

where αf and αr are the front and the rear tire slip
angles respectively, defined as the angles between the tire
longitudinal axes and the directions of the tire velocity
vectors. These angles can be related to the state variables
β and r through

αf = δ − β − rlf/Vx, αr = −β + rlr/Vx, (3)

where δ is the steering angle. Substitution of equations
(2) - (3) into equations (1) leads to the first order non-
linear differential equations

ṙ = −β

(
lfcf
Iz

− lrcr
Iz

)
− r

(
l2fcf

IzVx
+

l2rcr
IzVx

)
, (4)
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β̇ =− β

(
cf

mVx
+

cr
mVx

)
− r

(
1− lfcf

mV 2
x

+
lrcr
mV 2

x

)
+

+
cf

mVx
δ.

(5)

Under the assumption of constant longitudinal velocity
Vx, equations (4) and (5) provide a second order linear
time-invariant model. In spite of its simplicity, such a
linear model provides a good tradeoff between complex-
ity of the model structure and accuracy in describing
the vehicle behavior. However, the accuracy of the linear
bicycle model significantly decreases in the presence of
time-varying longitudinal velocity Vx(t). Furthermore,
when aggressive steering manoeuvres exciting the tires
nonlinear behavior are performed, lateral forces can no
more be described by equation (2). In order to overcome
such drawbacks, in this paper an LPV model for the
vehicle lateral dynamics is introduced and identified by
exploiting experimental data.

2.2 Lateral dynamics model structure

In order to take into account the key features of the
vehicle lateral dynamics discussed in Section 2.1, here
we address the problem of selecting the structure of the
SISO black-box LPVmodels to be identified on the basis
of the following considerations:

• second order difference equations are considered to
retain information on the dynamics order of the single
track physical model;

• to take into account the effects of possible time-
varying longitudinal velocity, nonlinear dependence
on the reciprocal of the longitudinal velocity is ex-
plicitly considered in the coefficients of the difference
equations;

• since the nonlinear tire behavior is excited by aggres-
sive steering manoeuvres, which in turn lead to large
lateral acceleration values, nonlinear dependence on
lateral acceleration is explicitly considered in the co-
efficients of the difference equations.

Based on these considerations, we introduce the follow-
ing SISO LPV models to describe the vehicle dynamics:

rt +
2∑

i=1

ai(V
−1
xt

, ayt)rt−i =
2∑

j=0

bj(V
−1
xt

, ayt)δt−j , (6)

βt +

2∑
i=1

ck(V
−1
xt

, ayt)βt−k =

2∑
ν=0

dν(V
−1
xt

, ayt)δt−ν , (7)

where rt, βt, Vxt , ayt and δt are the samples at time t
of the yaw rate, body sideslip angle, longitudinal veloc-
ity, lateral acceleration and steering angle respectively.
Coefficients ai, bj , ck, dν are assumed to be polynomial

memoryless functions of parameters ayt and V −1
xt

.

Remark 1 — It is worthwhile pointing out that our
objective is to model the vehicle lateral dynamics from
an input-output point of view, thus we are not inter-
ested in estimating the value of the physical parameters
of the vehicle. Therefore, we have chosen to describe the
system under consideration by means of two black-box
models whose parameters are not related with those in-
volved in the single track model reviewed in Section 2.1.

Remark 2 — Lateral acceleration measurements can
be obtained through low cost accelerometers, while
many different effective approaches can be found in the
literature to compute a reliable estimate of the vehicle
longitudinal velocity (see, e.g., Imsland et al., 2006)
using information from on-board sensors commonly
available on production cars. Availability of such low
cost measurements of the scheduling variables makes it
possible to use the proposed LPV models in real-time
applications such as, for example, virtual sensors for
on-line estimation of sideslip angle and yaw rate.

Remark 3 — The proposed model structure does not
take explicitly into account the dependency on the sur-
face adhesion coefficient. Since the lateral dynamics
strongly depends on the surface, we suggest to identify a
bank of LPV models each one corresponding to a differ-
ent value of the adhesion coefficient. Scheduling among
the models in the bank, can be performed in real-time
on the basis of the adhesion coefficient value estimated
with one of the algorithm available in the literature like
the one presented in (Wang et al., 2004).

3 Identification procedure

In this section we review the algorithm proposed in
(Cerone and Regruto, 2008) for the identification of
SISO discrete time LPV models when both the out-
put and the time-varying parameters are affected by
bounded noise.

3.1 Formulation of the identification problem

Consider the SISO discrete-time LPV model described
in terms of a linear difference equation

wt +

na∑
i=1

αi(λt)wt−i =

nb∑
j=0

βj(λt)ut−j , (8)

where ut and wt are the input and the output signals
respectively, λt ∈ Rµ, λt = [λ1tλ2t . . . λµt ]

T is a vec-
tor of time-varying parameters which are assumed to be
measurable and coefficients αi and βj are assumed to be
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memoryless mappings of parameters λt described by

αi(λt) =

ni∑
k=1

αi,kfi,k(λt), βj(λt) =

mj∑
h=0

βj,hgj,h(λt),

where fi,k(·) and gj,h(·) are known nonlinear basis func-
tions. Let yt and zt be noise-corrupted measurements of
wt and λt respectively

yt = wt + ηt, zt = λt + εt, (9)

with εt = [ε1tε2t . . . εµt ]
T. Measurement uncertainties

ηt and εst , s = 1 . . . µ, are known to range within given
bounds ∆ηt and ∆εst , more precisely

|ηt| ≤ ∆ηt, εt ∈ Et, (10)

where Et = {εt ∈ Rµ : |εst | ≤ ∆εst , s = 1, 2, . . . , µ}.
The unknown parameter vector θ ∈ Rp to be estimated
is defined as

θT = [α1,1 . . . α1,n1 . . . αna,1 . . . αna,nna

β0,1 . . . β0,m1 . . . βnb,1 . . . βnb,mnb
] ,

(11)

where p =
∑na

i=1 ni +
∑nb

j=0 mj . In the set-membership
context, all parameter vectors belonging to the so-called
feasible parameter set (FPS), i.e. parameters consis-
tent with measurements, error bounds and the assumed
model structure, are feasible solutions to the identifica-
tion problem. Given N samples of signals ut, yt and zt,
the feasible parameter set for the LPV system described
by equations (8) - (10), is defined as

Dθ = {θ ∈ Rp : yt − ηt+

+
na∑
i=1

αi(zt − εt)[yt−i − ηt−i] =
nb∑
j=0

βj(zt − εt)ut−j ;

| ηt |≤ ∆ηt; εt ∈ Et; t = 1, .., N}.

As discussed in (Cerone and Regruto, 2008), the exact
feasible parameter region Dθ is, in general, a noncovex
set described by nonlinear inequalities whose shape may
become fairly complex for increasing values of N . Thus,
in (Cerone and Regruto, 2008) a polytopic outer approx-
imation D′

θ of the exact feasible parameter set Dθ is de-
rived. By exploiting such a polytopic description, two
different procedures based on convex optimization are
proposed in Section 3.2 to select, among the elements of
D′

θ, a single model which minimizes a suitable functional
of the fitting error.

3.2 Pointwise estimators for the selection of a single
model belonging to the feasible set

Although Dθ is the set of all the LPV models that are
consistent with experimental data and error bounds, nei-

ther the feasible parameter set nor its convex approxi-
mationD′

θ derived in (Cerone and Regruto, 2008) can be
easily used either to simulate the vehicle behavior or to
design a controller of the vehicle lateral dynamics. Thus,
the problem of selecting a single model among the fea-
sible ones arises. Two different pointwise estimators are
considered here, both based on the minimization of the
functional

J(θ) = ∥ϕθ − y∥2 (12)

where ϕ ∈ RN×p is the regressor matrix, y =
[y1y2 . . . yN ]T and ∥ · ∥2 is the quadratic norm of a se-
quence. The functional J is exactly the same functional
minimized by the well known least-squares (LS) esti-
mator whose optimality and robustness properties have
been widely studied also in the set-membership frame-
work (Kacewicz et al., 1986). Unlike the standard least
squares estimator, which looks for the optimal solution
exploring the entire p-dimensional parameter space,
here we are interested in restricting the search among
the parameters values which belong to the outer approx-
imation D′

θ of the feasible set proposed in (Cerone and
Regruto, 2008). Note that the standard least squares
estimate is not guaranteed to be consistent with the
experimental data and the assumed error bounds. Be-
sides, since ϕ and y are corrupted by bounded uncer-
tainties ε and η respectively, at least in principle we
have to look for the solution of the so-called robust least
squares problem which consists in the minimization of
the worst-case residual against the uncertainty affecting
the data. Summarizing, the computation of the robust
least squares estimate constrained to the set D′

θ leads
to the solution of the optimization problem

θ∗ = arg min
θ∈D′

θ

max
ε∈E,η∈χ

J̃(θ, ε, η). (13)

where J̃(θ, ε, η) = ∥ϕ(ε, η)θ−y(η)∥2, ε = [εT1 ε
T
2 . . . εTN ]T,

E = {ε : εt ∈ Et, t = 1, . . . , N}, η = [η1η2 . . . ηN ]T and
χ = {η : |ηt| ≤ ∆ηt, t = 1, . . . , N}.
Solution to the robust least squares problem, which is
equivalent to problem (13) when θ is not constrained
to belong to D′

θ, is addressed in (El Ghaoui and Le-
bret, 1997) where the authors show that such a prob-
lem is NP-hard in general. Then, they present a semi-
definitive relaxation technique to compute a suboptimal
solution. Their approach can be extended to deal with
the case of θ inD′

θ. Although such a relaxation technique
results to be an effective way of dealing with robust least
squares problems, it could become rather cumbersome
from both the computation time and the memory stor-
age requirements points of view, when the number of
measurements N is large and uncertainty affecting the
data is highly structured. Thus, in this work the follow-
ing alternative pointwise estimator is also considered

θ̂ = arg min
θ∈D′

θ

J(θ) (14)

4



which corresponds to the computation of the least
squares estimate constrained to the outer-approximation
D′

θ of the feasible set Dθ. Since problem (14) derives
from problem (13) by neglecting the presence of uncer-
tainty in the functional to be minimized, it is clear that
problem (14) can be also interpreted as an alternative
way of computing a suboptimal solution of problem
(13). Such an estimate can be reliably computed also
in the presence of thousands of experimental data. For
such a reason estimator (14) should be preferred to es-
timator (13) when dealing with identification problems
with quite large values of N .
It is worthwhile remarking that the generalization of the
presented identification procedure to the case of noisy
input signal is straightforward.

4 Identification of vehicle lateral dynamics from
experimental data

The algorithm presented in Section 3 has been imple-
mented to identify the model of the vehicle lateral dy-
namics described by (6) and (7), through the experi-
mental data obtained from 13 different manoeuvres per-
formed on dry roads with a passenger car provided by
FIAT s.p.a. These manoeuvres include: 4 steering an-
gle steps in the right side with amplitude 30◦, 50◦, 70◦

and 80◦; 4 steering angle steps in the left side with am-
plitude 30◦, 50◦, 70◦ and 80◦; 2 different double lane
changes and 3 different steering angle frequency sweeps.
The lateral acceleration and the yaw rate are measured
by an accelerometer and by a gyroscope respectively, the
sideslip angle measurements are collected by a Corrys-
Datron optical sensor, while the longitudinal velocity is
obtained by means of an estimation procedure imple-
mented by FIAT. The given measurement error bounds
on ayt , rt, βt and Vxt are 0.1 m/s2, 0.1◦/s, 0.3◦ and 2
km/h respectively. The steering angle measurements are
affected by negligible noises.

4.1 Identification Set and Validation Set

The experimental data are split into two different sets:
the identification set and the validation set. The param-
eters of the LPV models of the lateral dynamics are es-
timated by using only the data in the identification set,
while the accuracy of the obtained model is evaluated
on the data of the validation set, which are not used
during the identification. The identification set includes
the following manoeuvres: 2 steering angle steps in the
right side of amplitude 50◦ and 80◦; 2 steering angle
steps in the left side of amplitude 30◦ and 70◦; 1 dou-
ble lane change; 2 frequency sweeps; while the validation
set includes: 2 steering angle steps in the right side of
amplitude 30◦ and 70◦; 2 steering angle steps in the left
side of amplitude 50◦ and 80◦; 1 double lane change (the
one not considered in the identification set); 1 frequency
sweep (the one not considered in the identification set).

The number Nid of experimental data in the identifica-
tion set is 13,280; while the numberNval of experimental
data in the validation set is 8,733. Note that the two sets
are disjoint, that is no manoeuvre is included in both of
them. Besides, attention is paid to guarantee that the
two data sets include all the different types of the con-
sidered manoeuvres. In fact, they contain at least one
steering angle step in the left and right side, one double
lane change and one frequency sweep. Thus, if a steering
angle step in the right (or left) side is included in one
set, the steering angle step of the same amplitude is in-
cluded in the other set, but in the opposite side. Such a
split of the data guarantees that, both in the identifica-
tion stage and in the validation stage, all the considered
experimental situations are taken into account.
In order to evaluate the matching between real data (yt)
and estimated data (ȳt), we consider the mean square
errors in the identification data set (MSEid) and in the
validation data set (MSEval), defined as

MSEid =

Nid∑
t=1

(yt − ȳt)
2

Nid
, MSEval =

Nval∑
t=1

(yt − ȳt)
2

Nval

4.2 Selection of polynomials degrees

As stated in Section 2.2, coefficients ai, bj , ck and dν
in (6) and (7) are assumed to be polynomial functions
of both the lateral acceleration ayt and the reciprocal of
longitudinal velocity Vxt . Here, the problem of selecting
the degree of such polynomial arises. Indeed, as the de-
gree of polynomials ai, bj , ck and dν increases, the de-
grees of freedom of the LPV model increase too, provid-
ing a better matching between real data and estimated
data in the identification set. However, a model with a
large number of degrees of freedom could overfit the data
in the identification set, leading to possibly low accuracy
of the identified model when tested on the data of the
validation set. Besides, as the degree of polynomials ai,
bj , ck and dν increases, the complexity of the identified
model increases too. On the basis of such considerations,
we have selected the structure of such polynomials by
increasing progressively their degree until the identified
model provides a satisfactory accuracy level on the val-
idation set. The dynamic model has been identified for
the following five different structures of the functions ai,
bj , ck and dν :

S1. linear in both ayt and V −1
xt

;

S2. quadratic in both ayt and V −1
xt

;

S3. cubic in ayt and quadratic in V −1
xt

;

S4. quadratic in ayt and cubic in V −1
xt

;

S5. cubic in both ayt and V −1
xt

.

The mean square error in the validation set MSEval

for the yaw rate and sideslip angle, identified through
the above structures of the functions ai, bj , ck and dν ,
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are reported in Table 1, together with the number of
estimated parameters for modeling the vehicle lateral
dynamics. By analyzing the results in Table 1, we have
chosen the structure S2 for the function ai, bj , ck and
dν , which provides a good tradeoff between accuracy
and complexity of the model. Therefore, the assumed
structures for ai, bj , ck and dν in (6)-(7) are

ai
(
ayt , V

−1
xt

)
= ai1 + ai2ayt + ai3a

2
yt

+ ai4
ayt

Vxt

+

+ ai5
a2yt

Vxt

+ ai6
ayt

V 2
xt

+ ai7
1

Vxt

+ ai8
1

V 2
xt

+ ai9
a2yt

V 2
xt

,

bj
(
ayt

, V −1
xt

)
= bj1 + bj2ayt

+ bj3a
2
yt

+ bj4
ayt

Vxt

+

+ bj5
a2yt

Vxt

+ bj6
ayt

V 2
xt

+ bj7
1

Vxt

+ bj8
1

V 2
xt

+ bj9
a2yt

V 2
xt

,

ck
(
ayt , V

−1
xt

)
= ck1 + ck2ayt + ck3a

2
yt

+ ck4
ayt

Vxt

+

+ ck5
a2yt

Vxt

+ ck6
ayt

V 2
xt

+ ck7
1

Vxt

+ ck8
1

V 2
xt

+ ck9
a2yt

V 2
xt

,

dν
(
ayt , V

−1
xt

)
= dν1 + dν2ayt + dν3a

2
yt

+ dν4
ayt

Vxt

+

+ dν5
a2yt

Vxt

+ dν6
ayt

V 2
xt

+ dν7
1

Vxt

+ dν8
1

V 2
xt

+ dν9
a2yt

V 2
xt

.

4.3 Obtained results and discussion

The comparison between real data and the simulated re-
sponse provided by the identified LPV model and the
single track model described in section 2.1 is reported
here. Time-varying velocity is used when simulating the
single track model in order to perform a fair compari-
son with the LPV model. The values of the physical pa-
rameters, corresponding to the passenger car used dur-
ing the experimental test and used in the simulation of
the single track model, have been provided by FIAT.
Because we are dealing with problem with a large num-
ber of experimental data (the length Nid of the identi-
fication data set is 13,280) the pointwise estimator (14)
has been preferred to (13) in the SM-identification of

Table 1
Number of estimated parameters (p) and MSEval for the
yaw rate and sideslip angle description obtained for the five
different structures S1-S5 of the functions ai, bj , ck and dν .

Structure of the MSEval MSEval

functions [(◦/s)2] [(◦)2] p

ai, bj , ck and dν (yaw rate) (sideslip angle)

S1 4.05 26 20

S2 0.91 0.028 45

S3 0.87 0.023 60

S4 0.83 0.021 60

S5 0.72 0.018 80

the LPV model for computational-burden reasons. The
MSEid and MSEval is computed both for the yaw rate
and the sideslip angle and they are reported in Table 2
and Table 3 respectively, which show that the estimated
SM-LPV model is significantly more accurate than the
single track one in describing the vehicle lateral dynam-
ics. Fig. 1 shows a comparison between the estimated
SM-LPV model and the single track one in describing
the yaw rate and the sideslip angle for a steering angle
step of 70◦ in the right side. The same models are com-
pared in Fig. 2 for a double lane change manoeuvre. As
expected, the single track model is not able to properly
describe the sideslip angle dynamics during manoeuvres
such as double lane changes and steering angles steps
with amplitude greater than 50◦, which highly excite the
nonlinearities of the vehicle (see Fig. 1(b) and Fig. 2(b)).

In order to show the effectiveness of the identification
procedure presented in this work, performances of the
SM-LPV model identified through (14) are also com-
pared with the performances obtained by an LPV model
with the same structure, whose parameters θLS are ob-
tained without constraining θ to belong to the feasible
set D′

θ. This means that parameter θLS is computed
through the standard LS estimation, i.e.

θLS = argmin
θ

∥ϕθ − y∥2. (15)

The MSEid and MSEval obtained by the LS-LPV
model in describing the vehicle lateral dynamics are re-
ported in Table 2 and Table 3. Since in (14) the param-
eters θ are constrained to belong to the feasible set D′

θ,
the mean square error MSEid provided by the LS-LPV
model estimated through (15) is lower than the MSEid

achieved by the SM-LPV model. On the other hand, the
MSEval obtained by the SM-LPV model is lower than
the one obtained by the LS-LPV model. These results
can be explained by the fact that the LS-estimation (15)
does not exploit the information on the noise bounds
and tends to overfit the data in the identification set,
leading to a less accurate identified model with respect
to the SM-LPVmodel, which, on the contrary, takes into
account the prior information on the noise by constrain-
ing the LPV parameters θ to be consistent with given
error bounds. Fig. 3 shows the comparison between the
SM-LPV model and the LS-LPV model for a steering
angle step manoeuvre of 80◦ in the left side, which,
among the experimented manoeuvres, is the one where
the difference between the two models is more evident.

The plot of the two time-varying parameters is shown
only for the case of double lane change manoeuvre: the
longitudinal velocity Vxt is shown in Fig. 4(a) while the
lateral acceleration ayt is shown in Fig. 4(b).
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Fig. 1. Comparison between SM-LPV model and single track model. (a) yaw rate and (b) sideslip angle for steering angle step
of 70◦ in the right side. Real data (thin), estimated data with SM-LPV model (thick), estimated data with single track model
(dashdot).
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Fig. 2. Comparison between SM-LPV model and single track model. (a) yaw rate and (b) sideslip angle for double lane change
manoeuvre. Real data (thin), estimated data with SM-LPV model (thick), estimated data with single track model (dashdot).
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Fig. 3. Comparison between SM-LPV model and LS-LPV model. (a) yaw rate and (b) sideslip angle for steering angle step
of 80◦ in the left side. Real data (thin), estimated data with SM-LPV model (thick), estimated data with LS-LPV model
(dashdot).
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Fig. 4. Double lane change manoeuvre: (a) longitudinal velocity and (b) lateral acceleration.
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Table 2
MSE in yaw rate description.

model MSEid [(◦/s)2] MSEval [(
◦/s)2]

single track 2.25 2.39

SM-LPV (14) 0.56 0.91

LS-LPV (15) 0.38 1.08

Table 3
MSE in sideslip angle description.

model MSEid [(◦)2] MSEval [(
◦)2]

single track 0.63 1.21

SM-LPV (14) 0.019 0.028

LS-LPV (15) 0.008 0.044

5 Conclusion

Set-membership LPV identification of vehicle lateral dy-
namics is considered in the paper. First, the structure of
the model to be identified is properly selected on the ba-
sis on physical insights on the vehicle dynamics. Then, a
previously published algorithm for the identification of
SISO LPV models when both the output and the time-
varying measurements are affected by bounded noise is
exploited to identify an LPV model of the vehicle lat-
eral dynamics from a large set of experimental data. The
obtained results show that the identified LPV model
describes the vehicle lateral dynamics more accurately
than the single track model and the LPV model identi-
fied through the standard LS algorithm.
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