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We study the statistical properties of spectrum and eigenstates of the Google matrix of the citation network of
Physical Review for the period 1893–2009. The main fraction of complex eigenvalues with largest modulus is
determined numerically by different methods based on high-precision computations with up to p = 16 384 binary
digits that allow us to resolve hard numerical problems for small eigenvalues. The nearly nilpotent matrix structure
allows us to obtain a semianalytical computation of eigenvalues. We find that the spectrum is characterized by
the fractal Weyl law with a fractal dimension df ≈ 1. It is found that the majority of eigenvectors are located in a
localized phase. The statistical distribution of articles in the PageRank-CheiRank plane is established providing a
better understanding of information flows on the network. The concept of ImpactRank is proposed to determine an
influence domain of a given article. We also discuss the properties of random matrix models of Perron-Frobenius
operators.
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I. INTRODUCTION

The development of the Internet has led to emergence of
various types of complex directed networks created by modern
society. The size of such networks has grown rapidly going
beyond 10 billion in the last two decades for the World Wide
Web (WWW). Thus the development of mathematical tools
for the statistical analysis of such networks has become of
primary importance. In 1998 Brin and Page proposed the
analysis of WWW on the basis of the PageRank vector of the
associated Google matrix constructed for a directed network
[1]. The mathematical foundations of this analysis are based
on Markov chains [2] and Perron-Frobenius operators [3].
The PageRank algorithm allows us to compute the ranking
of network nodes and is known to be at the heart of modern
search engines [4]. However, in many respects the statement
of Brin and Page that “Despite the importance of large-scale
search engines on the web, very little academic research has
been done on them” [1] still remains valid at present. In our
opinion, this is related to the fact that the Google matrix G

belongs to a new class of operators which had been rarely
studied in physical systems. Indeed, the physical systems
are usually described by Hermitian or unitary matrices for
which random matrix theory [5] captures many universal
properties. In contrast, the Perron-Frobenium operators and
Google matrix have eigenvalues distributed in the complex
plane belonging to another class of operators.

The Google matrix is constructed from the adjacency matrix
Aij , which has unit elements if there is a link pointing from
node j to node i and zero otherwise. Then the matrix of
Markov transitions is constructed by normalizing elements
of each column to unity (Sij = Aij/

∑
i Aij ,

∑
j Sij = 1) and

replacing columns with only zero elements (dangling nodes)
by 1/N , with N being the matrix size. After that the Google
matrix of the network takes the form [1,4]

Gij = αSij + (1 − α)/N. (1)

The damping parameter α in the WWW context describes the
probability (1 − α) to jump to any node for a random surfer.
For WWW the Google search engine uses α ≈ 0.85 [4]. The
PageRank vector Pi is the right eigenvector of G at λ = 1
(α < 1). According to the Perron-Frobenius theorem [3], Pi

components are positive and represent the probability to find
a random surfer on a given node i (in the stationary limit) [4].
All nodes can be ordered in a decreasing order of probability
P (Ki) with highest probability at top values of PageRank index
Ki = 1,2, . . . .

The distribution of eigenvalues of G can be rather nontrivial
with the appearance of the fractal Weyl law and other unusual
properties (see, e.g., Refs. [6,7]). For example, a matrix G

with random positive matrix elements, normalized to unity in
each column, has N − 1 eigenvalues λ concentrated in a small
radius |λ| < 1/

√
3N and one eigenvalue λ = 1 (see Sec. VII).

Such a distribution is drastically different from the eigenvalue
distributions found for directed networks with algebraic
distribution of links [8] or those found numerically for other
directed networks including universities’ WWW [9,10], Linux
Kernel and Twitter networks [11,12], and Wikipedia networks
[13,14]. In fact, even the Albert-Barabási model of preferential
attachment [15] still generates the complex spectrum of λ

with a large gap (|λ| < 1/2) [8] being very different from
the gapless and strongly degenerate G spectrum of British
universities’ WWW [10] and Wikipedia [13,14]. Thus it is
useful to get a deeper understanding of the spectral properties
of directed networks and to develop more advanced models
of complex networks which have a spectrum similar to such
networks as those of British universities and Wikipedia.

With the aim to understand the spectral properties of a
Google matrix of directed networks we study here the citation
network of Physical Review (CNPR) for the whole period up
to 2009 [16]. This network has N = 463 348 nodes (articles)
and N� = 4 691 015 links. Its network structure is very similar
to the tree network since the citations are time ordered (with
only a few exceptions of mutual citations of simultaneously
published articles). As a result we succeed in developing
powerful tools, which allowed us to obtain the spectrum of
G in semianalytical way. These results are compared with the
spectrum obtained numerically with the help of the powerful
Arnoldi method (see its description in Refs. [17,18]). Thus we
are able to get a better understanding of the spectral properties
of this network. Due to time ordering of article citations there
are strong similarities between the CNPR and the network of
integers studied recently in Refs. [19].
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We note that the PageRank analysis of the CNPR had
been performed in Refs. [20–23] showing its efficiency in
determining the influential articles of Physical Review. The
citation networks are rather generic (see, e.g., Ref. [24]), and
hence the extension of PageRank analysis of such networks is
an interesting and important task. Here we put the main accent
on the spectrum and eigenstates properties of the Google
matrix of the CNPR, but we also discuss the properties of
two-dimensional (2D) ranking on the PageRank-CheiRank
plane developed recently in Refs. [25–27]. We also analyze the
properties of ImpactRank, which shows a domain of influence
of a given article.

In addition to the whole CNPR we also consider the CNPR
without Revview of Modern Physics articles, which has N =
460 422, N� = 4 497 707. If in the whole CNPR we eliminate
future citations (see description below), then this triangular
CNPR has N = 463 348, N� = 4 684 496. Thus on average we
have approximately 10 links per node. The network includes
all articles of Physical Review from its foundation in 1893 till
the end of 2009.

The paper is composed as follows: in Sec. II we present a
detailed analysis of the Google matrix spectrum of CNPR,
the fractal Weyl law is discussed in Sec. III, properties
of eigenstates are discussed in Sec. IV, CheiRank versus
PageRank distributions are considered in Sec. V, properties of
impact propagation through the network are studied in Sec. VI,
certain random matrix models of Google matrix are studied in
Sec. VII, and discussion of the results is given in Section VIII.

II. EIGENVALUE SPECTRUM

The Google matrix of CNPR is constructed on the basis
of Eq. (1) using citation links from one article to another
(see also Refs. [21–23]). The matrix structure for different
order representations of articles is shown in Fig. 1. In the top
left panel all articles are ordered by time, which generates
an almost perfect triangular structure corresponding to time
ordering of citations. Still there are a few cases with joint
citations of articles which appear almost at the same time.
Also there are dangling nodes which generate transitions to
all articles with elements 1/N in G. This breaks the triangular
structure, and as we will see later it is just the combination of
these dangling node contributions with the other nonvanishing
matrix elements [see also Eq. (4)] which will allow us to
formulate a semianalytical theory to determine the eigenvalue
spectrum.

The triangular matrix structure is also well visible in the
middle left panel where articles are time ordered within each
Physical Review journal. The left bottom panel shows the
matrix elements for each Physical Review journal when inside
each journal the articles are ordered by their PageRank index
K . The right panels show the matrix elements of G on different
scales, when all articles are ordered by the PageRank index
K . The top two right panels have a relatively small number
of nonzero matrix elements showing that the top PageRank
articles rarely quote other top PageRank articles.

The dependence of the number of no-zero links NG,
between nodes with PageRank index being less than K , on
K is shown in Fig. 2 (left panel). We see that compared to
the other networks of universities, Wikipedia, and Twitter

(a)

(b)

(c)

(d)

(f)

(e)

FIG. 1. (Color online) Different order representations of the
Google matrix of the CNPR (α = 1). The left panels show (a) the
density of matrix elements Gtt ′ in the basis of the publication time
index t (and t ′); (b) the density of matrix elements in the basis of
journal ordering according to Phys. Rev. Series I, Phys. Rev., Phys.
Rev. Lett., Rev. Mod. Phys., Phys. Rev. A, B, C, D, E, Phys. Rev.
STAB, and Phys. Rev. STPER with time ordering inside each journal;
(c) the same as (b) but with PageRank index ordering inside each
journal. Note that the journals Phys. Rev. Series I, Phys. Rev. STAB,
and Phys. Rev. STPER are not clearly visible due to a small number
of published papers. Also Rev. Mod. Phys. appears only as a thin line
with 2–3 pixels (out of 500) due to a limited number of published
papers. The panels (a), (b), (c), and (f) show the coarse-grained
density of matrix elements done on 500 × 500 square cells for the
entire network. In panels (d), (e), and (f) the matrix elements GKK ′

are shown in the basis of PageRank index K (and K ′) with the
range 1 � K,K ′ � 200 (d); 1 � K,K ′ � 400 (e); 1 � K,K ′ � N

(f). Color shows the amplitude (or density) of matrix elements G

changing from blue/black for zero value to red/gray at maximum
value. The PageRank index K is determined from the PageRank
vector at α = 0.85.

studied in Ref. [13] we have for CNPR the lowest values
of NG/K practically for all available K values. This reflects
weak links between top PageRank articles of CNPR in contrast
with Twitter, which has a very high interconnection between
top PageRank nodes. Since the matrix elements GKK ′ are
inversely proportional to the number of links, we have very
strong average matrix elements for CNPR at top K values (see
Fig. 2, right panel).

In the following we present the results of numerical and
analytical analysis of the spectrum of the CNPR matrix G.
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FIG. 2. (Color online) (a) Dependence of the linear density
NG/K of nonzero elements of the adjacency matrix among top
PageRank nodes on the PageRank index K for the networks
of Twitter (top blue/black curve), Wikipedia (second from top
red/gray curve), Oxford University 2006 (magenta/gray boxes), and
Cambridge University 2006 (green/gray crosses), with data taken
from Ref. [12], and Physical Review all journals (cyan/gray circles)
and Physical Review without Rep. Mod. Phys. (bottom black curve).
(b) Dependence of the quantity �/K on the PageRank index K with
� = ∑

K1<K, K2<K GK1,K2 being the weight of the Google matrix
elements inside the K × K square of top PageRank indexes. The
curves correspond to the same networks as in (a): Physical Review
without Rep. Mod. Phys. (top black curve), Physical Review all
journals (cyan/gray circles), Oxford University 2006 (magenta/gray
boxes), Cambridge University 2006 (green/gray crosses), Wikipedia
(second bottom red/gray curve), and Twitter (bottom blue/black
curve).

A. Nearly nilpotent matrix structure

The triangular structure of the CNPR Google matrix in
the time index (see Fig. 1) has important consequences for
the eigenvalue spectrum λ defined by the equation for the
eigenstates ψi(j ):∑

j ′
Gjj ′ψi(j

′) = λiψi(j ). (2)

The spectrum of G at α = 1, or the spectrum of S, obtained
by the Arnoldi method [17,18] with the Arnoldi dimension
nA = 8000, is shown in Fig. 3. For comparison we also show
the case of a reduced CNPR without Review of Modern
Physics. We see that the spectrum of the reduced case is rather
similar to the spectrum of the full CNPR.

The nodes can be decomposed in invariant subspace nodes
and core space nodes, and the matrix S can be written in the
block structure [10]:

S =
(

Sss Ssc

0 Scc

)
, (3)

where Sss contains the links from subspace nodes to other
subspace nodes, Scc the links from core space nodes to core
space nodes, and Ssc some coupling links from the core space
to the invariant subspaces. The subspace-subspace block Sss

is actually composed of (potentially) many diagonal blocks
for each of the invariant subspaces. Each of these blocks
corresponds to a column sum-normalized matrix of the same
type as G and has therefore at least one unit eigenvalue, thus
explaining a possible high degeneracy of the eigenvalue λ = 1
of S. This structure is discussed in detail in Ref. [10]. The
university networks discussed in Ref. [10] had a considerable
number of subspace nodes (about 20%) with a high degeneracy
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FIG. 3. (Color online) Spectrum of S for CNPR (reduced CNPR
without Rev. Mod. Phys.) shown on left panels (right panels). (a, c)
Subspace eigenvalues (blue/black dots) and core space eigenvalues
(red/gray dots) in the λ plane (green/gray curve shows unit circle);
there are 27 (26) invariant subspaces, with maximal dimension 6 (6),
and the sum of all subspace dimensions is Ns = 71 (75). The core
space eigenvalues are obtained from the Arnoldi method applied to the
core space subblock Scc of S with Arnoldi dimension nA = 8000 as
explained in Ref. [10] and using standard double-precision arithmetic.
(b, d) Fraction j/N of eigenvalues, shown in a logarithmic scale, with
|λ| > |λj | for the core space eigenvalues (red/gray bottom curve) and
all eigenvalues (blue/black top curve) from raw data of top panels.
The number of eigenvalues with |λj | = 1 is 45 (43) of which 27 (26)
are at λj = 1; this number is identical to the number of invariant
subspaces which have each one unit eigenvalue.

∼103 of the leading unit eigenvalue. However, for the
CNPR the number of subspace nodes and unit eigenvalues
is quite small (see the figure caption of Fig. 3 for detailed
values).

A network with a similar triangular structure, constructed
from factor decompositions of integer numbers, was previ-
ously studied in Ref. [19]. There it was analytically shown
that the corresponding matrix S has only a small number of
nonvanishing eigenvalues and that the numerical diagonaliza-
tion methods, including the Arnoldi method, are facing subtle
difficulties of numerical stability due to large Jordan blocks as-
sociated to the highly degenerate zero eigenvalue. The numer-
ical diagonalization of these Jordan blocks is highly sensitive
to numerical round-off errors. For example, a perturbed Jordan
block of dimension D associated to the eigenvalue zero and
with a perturbation ε in the opposite corner has eigenvalues on
a complex circle of radius ε1/D [19], which may became quite
large for sufficient large D even for ε ∼ 10−15. Therefore in the
presence of many such Jordan blocks the numerical diagonal-
ization methods create rather big “artificial clouds” of incorrect
eigenvalues.

In the examples studied in Ref. [19] these clouds extended
up to eigenvalues |λ| ≈ 0.01. The spectrum for the Physical
Review network shown in Fig. 3 shows also a sudden
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increase of the density of eigenvalues below |λ| ≈ 0.3–0.4,
and one needs to be concerned if these eigenvalues are
numerically correct or only an artifact of the same type of
numerical instability. Actually there is a quite simple way
to verify that they are not reliable due to problems in the
numerical evaluation. For this we apply to the network or
the numerical algorithm (in the computer program) certain
transformations or modifications which are mathematically
neutral or equivalent, e.g., a permutation of the index numbers
of the network nodes but keeping the same network-link
structure, or simply changing the evaluation order in the
sums used for the scalar products between vectors (in the
Gram-Schmidt orthogonalization for the Arnoldi method). All
these modifications should in theory not modify the results
(assuming that all computations could be done with infinite
precision), but in numerical computations on a computer with
finite precision they modify the round-off errors. It turns out
indeed that the modifications of the initially small round-off
errors induce very strong, completely random modifications,
for all eigenvalues below |λ| ≈ 0.3–0.4, clearly indicating
that the latter are numerically not accurate. Apparently the
problematic numerical eigenvalue errors due to large Jordan
blocks ∼ ε1/D with D ∼ 102 is quite stronger in the Physical
Review citation network than in the previously studied integer
network [19].

The theory of Ref. [19] is based on the exact triangular
structure of the matrix S0, which appears in the representation
of S = S0 + edT /N [see also Eq. (4)]. In fact, the matrix
S0 is obtained from the adjacency matrix by normalizing the
sum of the elements in nonvanishing columns to unity and
simply keeping at zero vanishing columns. For the network of
integers [19] this matrix is nilpotent with Sl

0 = 0 for a certain
modest value of l being much smaller than the network size
l � N . The nilpotency is very relevant in the paper for two
reasons: first, it is responsible for the numerical problems to
compute the eigenvalues by standard methods (see the next
point), and, second, it is also partly the solution by allowing
a semianalytical approach to determine the eigenvalues in a
different way.

For CNPR the matrix S0 is not exactly nilpotent despite
the overall triangular matrix structure visible in Fig. 1. Even
though most of the nonvanishing matrix elements (S0)t t ′
(whose total number is equal to the number of links N� =
4 691 015) are in the upper triangle t < t ′ there are a few
nonvanishing elements in the lower triangle t > t ′ (whose
number is 12 126 corresponding to 0.26% of the total number
of links [28]). The reason is that in most cases papers cite
other papers published earlier but in certain situations for
papers with a close publication date the citation order does
not always coincide with the publication order. In some cases
two papers even mutually cite each other. In the following we
will call these cases “future citations.” The rare nonvanishing
matrix elements due to future citations are not visible in the
coarse-grained matrix representation of Fig. 1, but they are
responsible for the fact that S0 of CMPR is not nilpotent
and that there are also a few invariant subspaces. On a
purely triangular network one can easily show the absence of
invariant subspaces (smaller than the full network size) when
taking into account the extra columns due to the dangling
nodes.
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FIG. 4. (Color online) Number of occupied nodes Ni (i.e., posi-
tive elements) in the vector Si

0 e versus iteration number i (red/gray
crosses) for the CNPR (a) and the triangular CNPR (b). In both cases
the initial value is the network size N0 = N = 463 348. For the CNPR
Ni saturates at Ni = Nsat = 273 490 ≈ 0.590N for i � 27 while for
the triangular CNPR Ni saturates at Ni = 0 for i � 352 confirming
the nilpotent structure of S0. In (a) the quantity Ni − Nsat is shown in
order to increase visibility in the logarithmic scale.

However, despite the effect of the future citations the
matrix S0 is still partly nilpotent. This can be seen by
multiplying a uniform initial vector e (with all components
being 1) by the matrix S0 and counting after each iteration the
number Ni of nonvanishing entries [29] in the resulting vector
Si

0e. For a nilpotent matrix S0 with Sl
0 = 0 the number Ni

becomes obviously zero for i � l. On the other hand, since the
components of e and the nonvanishing matrix elements of S0

are positive, one can easily verify that the condition Sl
0e = 0 for

some value l also implies Sl
0ψ = 0 for an arbitrary initial (even

complex) vector ψ , which shows that S0 must be nilpotent with
Sl

0 = 0.
In Fig. 4 we see that for the CNPR the value of Ni saturates

at a value Nsat = 273 490 for i � 27, which is 59% of the
total number of nodes N = 463 348 in the network. On one
hand the (small) number of future citations ensures that the
saturation value of Ni is not zero, but on the other hand it
is smaller than the total number of nodes by a macroscopic
factor. Mathematically the first iteration e → S0e removes the
nodes corresponding to empty (vanishing) lines of the matrix
S0, and the next iterations remove the nodes whose lines in S0

have become empty after having removed from the network
the nonoccupied nodes due to previous iterations. For each
node removed during this iteration process one can construct
a vector belonging to the Jordan subspace of S0 associated
to the eigenvalue 0. In the following we call this subspace
generalized kernel. It contains all eigenvectors of S

j

0 associated
to the eigenvalue 0 where the integer j is the size of the largest
0-eigenvalue Jordan block. Obviously the dimension of this
generalized kernel of S0 is larger or equal than N − Nsat =
189 857, but we will see later that its actual dimension is
even larger and quite close to N . We will argue below that
most (but not all) of the vectors in the generalized kernel of
S0 also belong to the generalized kernel of S, which differs
from S0 by the extra contributions due to the dangling nodes.
The high dimension of the generalized kernel containing many
large 0-eigenvalue Jordan subspaces explains very clearly the
numerical problem due to which the eigenvalues obtained by
the double-precision Arnoldi method are not reliable for |λ| <

0.3–0.4.
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B. Spectrum for the triangular CNPR

In order to extend the theory for the triangular matrices
developed in Ref. [19] we consider the triangular CNPR
obtained by removing all future citation links t ′ → t with
t � t ′ from the original CNPR. The resulting matrix S0 of
this reduced network is now indeed nilpotent with Sl−1

0 �= 0,
Sl

0 = 0, and l = 352, which is much smaller than the network
size. This is clearly seen from Fig. 4, showing that Ni ,
calculated from the triangular CNPR, indeed saturates at
Ni = 0 for i � 352. According to the arguments of Ref. [19],
and additional demonstrations given below, there are at most
only l = 352 nonzero eigenvalues of the Google matrix at
α = 1. This matrix has the form

S = S0 + (1/N) e dT , (4)

where d and e are two vectors with e(n) = 1 for all nodes n =
1, . . . , N and d(n) = 1 for dangling nodes n (corresponding
to vanishing columns in S0) and d(n) = 0 for the other nodes.
In the following we call d the dangling vector. The extra
contribution e dT /N just replaces the empty columns (of S0)
with 1/N entries at each element and dT is the line vector
obtained as the transpose of the column vector d. In Appendix
A we extend the approach of Ref. [19] showing analytically
that the matrix S has exactly l = 352 � N nonvanishing
eigenvalues, which are given as the zeros of the reduced
polynomial given in Eq. (A4), and that it is possible to
define a closed representation space for the matrix S of
dimension l leading to an l × l representation matrix S̄ given
by Eq. (A8) whose eigenvalues are exactly the zeros of the
reduced polynomial.

In the left panel of Fig. 5 we compare the core space
spectrum of S for CNPR and triangular CNPR (data are
obtained by the Arnoldi method with nA = 4000 and standard
double precision). We see that the largest complex eigenvalues
are rather close for both cases, but in the full network we have
many eigenvalues on the real axis (with λ < −0.3 or λ > 0.4),
which are absent for the triangular CNPR. Furthermore, both
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FIG. 5. (Color online) (a) Comparison of the core space eigen-
value spectrum of S for CNPR (blue/black squares) and triangular
CNPR (red/gray crosses). Both spectra are calculated by the Arnoldi
method with nA = 4000 and standard double precision. (b) Com-
parison of the numerically determined nonvanishing 352 eigenvalues
obtained from the representation matrix (A8) (blue/black squares)
with the spectrum of triangular CNPR (red/gray crosses) already
shown in the left panel. Numerics is done with standard double
precision.

cases suffer from the same problem of numerical instability
due to large Jordan blocks.

In the right panel of Fig. 5 we compare the numerical
double-precision spectra of the representation matrix S̄ with
the results of the Arnoldi method with double precision and
the uniform initial vector e as start vector for the Arnoldi
iterations (applied to the triangular CNPR). In Appendix B
we explain that the Arnoldi method with this initial vector
should in theory (in absence of rounding errors) also exactly
provide the l eigenvalues of S̄ since by construction it explores
the same l-dimensional S-invariant representation space that
was used for the construction of S̄ (in Appendix A). The
fact that both spectra of the right panel of Fig. 5 differ
is therefore a clear effect of numerical errors, and actually
both cases suffer from different numerical problems (see
Appendix B for details). A different, and in principle highly
efficient, computational method is to calculate the spectrum
of the triangular CNPR by determining numerically the l

zeros of the reduced polynomial (A4), but according to the
further discussion in Appendix B there are also numerical
problems for this. Actually this method requires the help the
GNU Multiple Precision Arithmetic Library (GMP library)
[30] using 256 binary digits. Also the Arnoldi method can
be improved by GMP library (see Appendix B for details)
even though this is quite expensive in computational time
and memory usage but still feasible (using up to 1280 binary
digits). Below we will also present results (for the spectrum of
the full CNPR) based on a new method using the GMP library
with up to 16 384 binary digits.

In Fig. 6 we compare the exact spectrum of the triangular
CNPR obtained by the high-precision determination of the
zeros of the reduced polynomial (using 256 binary digits)
with the spectra of the Arnold method for 52 binary digits
(corresponding to the mantissa of double-precision numbers),
256, 512, and 1280 binary digits. Here we use for the Arnoldi
method a uniform initial vector and the Arnold dimension
nA = l = 352. In this case, as explained in Appendix B, in
theory the Arnoldi method should provide the exact l = 352
nonvanishing eigenvalues (in the absence of round-off errors).

However, with the precision of 52 bits we have a consider-
able number of eigenvalues on a circle of radius ≈ 0.3 centered
at 0.05, indicating a strong influence of round-off errors due
to the Jordan blocks. Increasing the precision to 256 (or 512)
binary digits implies that the number of correct eigenvalue
increases and the radius of this circle decreases to 0.13 (or
0.1), and in particular it does not extend to all angles. We have
to increase the precision of the Arnoldi method to 1280 binary
digits to have a perfect numerical confirmation that the Arnoldi
method explores the exact invariant subspace of dimension
l = 352 and generated by the vectors vj (see Appendix A). In
this case the eigenvalues obtained from the Arnoldi method and
the high-precision zeros of the reduced polynomial coincide
with an error below 10−14 and in particular the Arnoldi method
provide a nearly vanishing coupling matrix element at the last
iteration, confirming that there is indeed an exact decoupling
of the Arnoldi matrix and an invariant closed subspace of
dimension 352.

The results shown in Fig. 6 clearly confirm the above theory
and the scenario of the strong influence of Jordan blocks on the
round-off errors. In particular, we find that in order to increase
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FIG. 6. (Color online) Comparison of the numerically accurate
352 nonvanishing eigenvalues of S matrix of triangular CNPR,
determined by the Newton-Maehly method applied to the reduced
polynomial (A4) with a high-precision calculation of 256 binary
digits (red/gray crosses, all panels), with eigenvalues obtained
by the Arnoldi method at different numerical precisions (for the
determination of the Arnoldi matrix) for triangular CNPR and
Arnoldi dimension nA = 352 (blue/black squares, all panels). The
first row corresponds to the numerical precision of 52 binary digits
for standard double-precision arithmetic. The second (third, fourth)
row corresponds to the precision of 256 (512, 1280) binary digits. All
high-precision calculations are done with the library GMP [30]. The
panels in the left column show the complete spectra and the panels
in the right columns show the spectra in a zoomed range: −0.4 �
Re(λ),Im(λ) �< 0.4 for the first row or −0.2 � Re(λ),Im(λ) � 0.2
for the second, third, and fourth rows.

the numerical precision it is only necessary to implement
the first step of the method, the Arnoldi iteration, using

high-precision numbers while the numerical diagonalization
of the Arnoldi representation matrix can still be done using
standard double-precision arithmetic. We also observe that
even for the case with lowest precision of 52 binary digits the
eigenvalues obtained by the Arnoldi method are numerically
accurate provided that there are well outside the circle (or
cloud) of numerically incorrect eigenvalues.

C. High-precision spectrum of the whole CNPR

Based on the observation that a high-precision implementa-
tion of the Arnoldi method is useful for the triangular CNPR,
we now apply the high-precision Arnoldi method with 256,
512, and 756 binary digits and nA = 2000 to the original
CNPR. The results for the core space eigenvalues are shown in
Fig. 7, where we compare the spectrum of the highest precision
of 756 binary digits with lower-precision spectra of 52, 256,
and 512 binary digits. As in Fig. 6 for the triangular CNPR, for
CNPR we also observe that the radius and angular extension
of the cloud or circle of incorrect Jordan block eigenvalues
decrease with increasing precision. Despite the lower number
of nA = 2000 as compared to nA = 8000 of Fig. 3 the number
of accurate eigenvalues with 756-bit precision is certainly
considerably higher.

The higher-precision Arnoldi method certainly improves
the quality of the smaller eigenvalues, e.g., for |λ| < 0.3 − 0.4,
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FIG. 7. (Color online) Comparison of the core space eigenvalue
spectrum of S of CNPR, obtained by the high-precision Arnoldi
method using 768 binary digits (blue/black squares, all panels), with
lower-precision data of the Arnoldi method (red/gray crosses). In
both top panels the red/gray crosses correspond to double precision
with 52 binary digits [extended range in (a) and zoomed range in (c)].
In the bottom (b) [or (d))] panel red/gray crosses correspond to the
numerical precision of 256 (or 512) binary digits. In these two cases
only a zoomed range is shown. The eigenvalues outside the zoomed
ranges coincide for both data sets up to graphical precision. In all cases
the Arnoldi dimension is nA = 2000. High-precision calculations are
done with the library GMP [30].
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FIG. 8. (Color online) Modulus |λj | of the core space eigenval-
ues of S of CNPR, obtained by the Arnoldi method, shown versus
level number j . (a) Data for standard double precision with 52 binary
digits with different Arnoldi dimensions 1000 � nA � 8000. (b) Data
for Arnoldi dimension nA = 2000 with different numerical precisions
between 52 and 768 binary digits.

but it also implies a strange shortcoming as far as the
degeneracies of certain particular eigenvalues are concerned.
This can be seen in Fig. 8, which shows the core space
eigenvalues |λj | versus the level number j for various values
of the Arnoldi dimension and the precision. In these curves
we observe flat plateaux at certain values |λj | = 1/

√
n with

n = 2, 3, 4, 5, . . . corresponding to degenerate eigenvalues
which turn out to be real but with positive or negative values:
λj = ±1/

√
n. For fixed standard double-precision arithmetic

with 52 binary digits the degeneracies increase with increasing
Arnoldi dimension and seem to saturate for nA � 4000.
However, at the given value of nA = 2000 the degeneracies
decrease with increasing precision of the Arnoldi method.
Apparently the higher-precision Arnoldi method is less able to
determine the correct degeneracy of a degenerate eigenvalue.

This point can be understood as follows. In theory, assuming
perfect precision, the simple version of the Arnoldi method
used here (in contrast to more complicated block Arnoldi
methods) can determine only one eigenvector for a degenerate
eigenvalue. The reason is that for a degenerate eigenvalue we
have a particular linear combination of the eigenvectors for
this eigenvalue which contribute in any initial vector (in other
words “one particular” eigenvector for this eigenvalue), and
during the Arnoldi iteration this particular eigenvector will
be perfectly conserved and the generated Krylov space will
contain only this and no other eigenvector for this eigenvalue.
However, due to round-off errors we obtain at each step new
random contributions from other eigenvectors of the same
eigenvalue, and it is due only to these round-off errors that
we can see the flat plateaux in Fig. 8. Obviously, increasing
the precision reduces this round-off error effect, and the flat
plateaux are indeed considerably smaller for higher precisions.

The question arises about the origin of the degenerate
eigenvalues in the core space spectrum. In other examples,
such as the WWW for certain university networks [10], the
degeneracies, especially of the leading eigenvalue 1, could be
treated by separating and diagonalizing the exact subspaces,
and the remaining core space spectrum contained much less
or nearly no degenerate eigenvalues. However, here for the
CNPR we have “only” 27 subspaces with maximal dimension
of 6 containing 71 nodes in total. The eigenvalues due to
these subspaces are 1, − 1, − 0.5, and 0 with degeneracies
27, 18, 4, and 22 (see blue dots in the upper panels of Fig. 3).
These exact subspaces exist due only to the modest number

of future citation links. Even when we take care that in all
cases the Arnoldi method is applied to the core space without
these 71 subspace nodes, there still remain many degenerate
eigenvalues in the core space spectrum.

In Appendix C we explain how the degenerated core space
eigenvalues of S can be obtained as degenerate subspace
eigenvalues of S0 (i.e., neglecting the dangling node con-
tributions when determining the invariant subspaces). To be
precise it turns out that the core space eigenvalues of S

are decomposed in two groups: the first group is related to
degenerate subspace eigenvalues of S0 and can be determined
by a scheme described in Appendix C, and the second group
of eigenvalues is given as zeros of a certain rational function
((D1),) which can be evaluated by the series (D3) which
converges only for |λ| > ρ1 with ρ1 ≈ 0.902. To determine the
zeros of the rational function, outside the range of convergence,
one can employ an argument of analytical continuation using a
new method, called “rational interpolation method” described
in detail in Appendix D. Without going into much detail
here, we mention that the main idea of this method is to
evaluate this rational function at many support points on the
complex unit circle where the series (D3) converges well and
then to use these values to interpolate the rational function
(D1) by a simpler rational function for which the zeros can
be determined numerically well even if they are inside the
unit circle (where the initial series does not converge). For
this scheme it is also very important to use high-precision
computations. Typically for a given precision of p binary
digits one may chose a certain number nR of eigenvalues to be
determined choosing the appropriate number of support points
(either 2nR + 1 or 2nR + 2 depending on the variant of the
method; see also Appendix D). Provided that nR is not neither
too small nor too large (depending on the value of p) one
obtains very reliable core space eigenvalues of S of the second
group.

For example, as can be seen in Fig. 9, for p = 1024
we obtain nR = 300 eigenvalues for which the big majority
coincides numerically (error ∼ 10−14) with the eigenvalues
obtained from the high-precision Arnoldi method for 768
binary digits, and furthermore both variants of the rational
interpolation method provide identical spectra.

However, for nR = 340 some of the zeros do not coincide
with eigenvalues of S, and most of these deviating zeros lie
close to the unit circle. We can even somehow distinguish
between “good” zeros (associated to eigenvalues of S) being
identical for both variants of the method and “bad” artificial
zeros, which are completely different for both variants (see
Fig. 9). We note that for the case of too large nR values the
artificial zeros are extremely sensitive to numerical round-off
errors (in the high-precision variables) and that they change
strongly, when slightly modifying the support points (e.g., a
random modification ∼ 10−18 or simply changing their order
in the interpolation scheme) or when changing the precise
numerical algorithm (e.g., between a direct sum or Horner
scheme for the evaluation of the series of the rational function).
Furthermore, they do not respect the symmetry that the zeros
should come in pairs of complex conjugate numbers in case of
complex zeros. This is because Thiele’s rational interpolation
scheme breaks the symmetry due to complex conjugation once
round-off errors become relevant.
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FIG. 9. (Color online) (a) Comparison of nR = 340 core space
eigenvalues of S for CNPR obtained by two variants of the rational
interpolation method (see text) with the numerical precision of
p = 1024 binary digits, 681 support points (first variant, red/gray
crosses), or 682 support points (second variant, blue/black squares).
(d) Comparison of the core space eigenvalues of CNPR obtained
by the high-precision Arnoldi method with nA = 2000 and p = 768
binary digits (red/gray crosses, same data as blue/black squares in
Fig. 7) with the eigenvalues obtained by (both variants of) the rational
interpolation method with the numerical precision of p = 1024
binary digits and nR = 300 eigenvalues (blue/black squares). Here
both variants with 601 or 602 support points provide identical
spectra (differences below 10−14). (b, e) Same as panels (a) and (d)
with a zoomed range: −0.5 � Re(λ), Im(λ) � 0.5. (c) Comparison
of the core space spectra obtained by the high-precision Arnoldi
method (red/gray crosses, nA = 2000 and p = 768) and by the ra-
tional interpolation method with p = 12 288, nR = 2000 eigenvalues
(blue/black squares). (f) Same as (c) with p = 16 384, nR = 2500 for
the rational interpolation method. Both panels (c) and (f) are shown
in a zoomed range: −0.1 � Re(λ), Im(λ) � 0.1. Eigenvalues outside
the shown range coincide up to graphical precision, and both variants
of the rational interpolation method provide numerically identical
spectra.

However, we have carefully verified that for the proper
values of nR not being too large (e.g., nR = 300 for p = 1024)
the obtained zeros are numerically identical (with 52 binary
digits in the final result) with respect to small changes of
the support points (or their order) or with respect to different

numerical algorithms and that they respect perfectly the
symmetry due to complex conjugation.

This method, despite the necessity of high-precision cal-
culations, is not very expensive, especially for the memory
usage, if compared with the high-precision Arnoldi method.
Furthermore, its efficiency for the computation time can be
improved by the trick of summing up the largest terms
in the series (D3) as a geometrical series which allows
to reduce the cutoff value of l by a good factor 3, i.e.,
replacing ρ1 ≈ 0.902 by ρ2 = 1/

√
2 ≈ 0.707 in the estimate

(D4) of l which gives l ≈ 2 p + const. We have increased
the number of binary digits up to p = 16 384, and we find
that for p = 1024,2048,4096,6144,8192,12 288,16 384 we
may use nR = 300,500,900,1200,1500,2000,2500 and still
avoid the appearance of artificial zeros. In Fig. 9 we also
compare the result of the highest precisions p = 12 288
(and p = 16 384) using nR = 2000 (nR = 2500) with the
high-precision Arnoldi method with nA = 2000 and p = 768,
and these spectra coincide well apart from a minor number
of smallest eigenvalues. In general, the complex isolated
eigenvalues converge very well (with increasing values of p

and nR), while the strongly clustered eigenvalues on the real
axis have more difficulties to converge. Comparing the results
between nR = 2000 and nR = 2500 we see that the complex
eigenvalues coincide on graphical precision for |λ| � 0.04 and
the real eigenvalues for |λ| � 0.1. The Arnoldi method has
even more difficulties on the real axis (convergence roughly
for |λ| � 0.15) since it implicitly has to take care of the highly
degenerate eigenvalues of the first group and for which it has
difficulties to correctly find the degeneracies (see also Fig. 8).

In Fig. 10 we show as a summary the highest-precision
spectra of S with core space eigenvalues obtained by the
Arnoldi method or the rational interpolation method (both
at best parameter choices) and taking into account the
direct subspace eigenvalues of S and the above determined
eigenvalues of the first group (degenerate subspace eigenvalues
of S0).

III. FRACTAL WEYL LAW FOR CNPR

The concept of the fractal Weyl law [31–33] states that the
number of states Nλ in a ring of complex eigenvalues with
λc � |λ| � 1 scales in a polynomial way with the growth of
matrix size:

Nλ = aNb, (5)

where the exponent b is related to the fractal dimension of
underlying invariant set df = 2b. The fractal Weyl law was
first discussed for the problems of quantum chaotic scattering
in the semiclassical limit [31–33]. Later it was shown that
this law also works for the Ulam matrix approximant of the
Perron-Frobenius operators of dissipative chaotic systems with
strange attractors [6,7]. In Ref. [11] it was established that the
time growing Linux Kernel network is also characterized by
the fractal Weyl law with the fractal dimension df ≈ 1.3.

The fact that b < 1 implies that the majority of eigenvalues
drop to zero. We see that this property also appears for the
CNPR if we test here the validity of the fractal Weyl law by
considering a time reduced CNPR of size Nt including the
Nt papers published until the time t (measured in years) for
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FIG. 10. (Color online) The most accurate spectrum of eigen-
values of S for CNPR. (a) Red/gray dots represent the core space
eigenvalues obtained by the rational interpolation method with
the numerical precision of p = 16 384 binary digits, nR = 2500
eigenvalues; green (light gray) dots on the y = 0 axis show the
degenerate subspace eigenvalues of the matrix S0, which are also
eigenvalues of S with a degeneracy reduced by one (eigenvalues of
the first group, see text); blue/black dots show the direct subspace
eigenvalues of S (same as blue/black dots in left upper panel in
Fig. 3). (c) Red/gray dots represent the core space eigenvalues
obtained by the high-precision Arnoldi method with nA = 2000 and
the numerical precision of p = 768 binary digits, and blue dots show
the direct subspace eigenvalues of S. Note that the Arnoldi method
also determines implicitly the degenerate subspace eigenvalues of S0,
which are therefore not shown in another color. b, d) Same as in top
panels (a) and (c) with a zoomed range: −0.4 � Re(λ), Im(λ) � 0.4.

different times t in order to obtain a scaling behavior of Nλ

as a function of Nt . The data presented in Fig. 11 show that
the network size grows approximately exponentially as Nt =
2(t−t0)/τ with the fit parameters t0 = 1791, τ = 11.4. The time
interval considered in Fig. 11 is 1913 � t � 2009 since the
first data point corresponds to t = 1913 with Nt = 1500 papers
published between 1893 and 1913. The results for Nλ show
that its growth is well described by the relation Nλ = a (Nt )b

for the range when the number of articles becomes sufficiently
large 3 × 104 � Nt < 5 × 105. This range is not very large,
and probably due to that there is a certain dependence of the
exponent b on the range parameter λc. At the same time we
note that the maximal matrix size N studied here is probably
the largest one used in numerical studies of the fractal Weyl
law. We have 0.47 < b < 0.6 for all λc � 0.4 that is definitely
smaller than unity, and thus the fractal Weyl law is well
applicable to the CNPR. The value of b increases up to 0.7
for the data points with λc < 0.4, but this is due to the fact the
here Nλ also includes some numerically incorrect eigenvalues
related to the numerical instability of the Arnoldi method at
standard double precision (52 binary digits) as discussed at the
beginning of the previous section.
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FIG. 11. (Color online) Data for the whole CNPR at different
moments of time. (a) [or (c)] Number Nλ of eigenvalues with
λc � λ � 1 for λc = 0.50 (or λc = 0.65) versus the effective network
size Nt where the nodes with publication times after a cut time
t are removed from the network. The green/gray line shows the
fractal Weyl law Nλ = a (Nt )b with parameters a = 0.32 ± 0.08
(a = 0.24 ± 0.11) and b = 0.51 ± 0.02 (b = 0.47 ± 0.04) obtained
from a fit in the range 3 × 104 � Nt < 5 × 105. The number Nλ

includes both exactly determined invariant subspace eigenvalues and
core space eigenvalues obtained from the Arnoldi method with double
precision (52 binary digits) for nA = 4000 (red/gray crosses) and
nA = 2000 (blue/black squares). (b) Exponent b with error bars
obtained from the fit Nλ = a (Nt )b in the range 3 × 104 � Nt <

5 × 105 versus cut value λc. (d) Effective network size Nt versus cut
time t (in years). The green/gray line shows the exponential fit 2(t−t0)/τ

with t0 = 1791 ± 3 and τ = 11.4 ± 0.2 representing the number of
years after which the size of the network (number of papers published
in all Physical Review journals) is effectively doubled.

We think that the most appropriate choice for the description
of the data is obtained at λc = 0.4, which from one side
excludes small, partly numerically incorrect, values of λ and
on the other side gives sufficiently large values of Nλ. Here we
have b = 0.49 ± 02 corresponding to the fractal dimension
d = 0.98 ± 0.04. Furthermore, for 0.4 � λc � 0.7 we have
a rather constant value b ≈ 0.5 with df ≈ 1.0. Of course, it
would be interesting to extend this analysis to a larger size N

of CNPR, but for that we still should wait about 10 years until
the network size will be doubled compared to the size studied
here.

IV. PROPERTIES OF EIGENVECTORS

The results for the eigenvalue spectra of CNPR presented in
the previous sections show that most of the visible eigenvalues
on the real axis (except for the largest one) in Figs. 9 and 10 are
due to the effect of future citations. They appear either directly
due to 2 × 2 subblocks of the type (C2) with a cycle where
two papers mutually cite each other giving the degenerate
eigenvalues of the first group, or indirectly by eigenvalues
of the second group, which are also numerous on the real
axis. On the other hand, as can be seen in Fig. 6, for the
triangular CNPR, where all future citations are removed, there
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is only the leading eigenvalue λ = 1 and a small number of
negative eigenvalues with −0.27 < λ < 0 on the real axis. All
other eigenvalues are complex, and a considerable number of
the largest ones are relatively close to corresponding complex
eigenvalues for the whole CNPR with future citations.

The appearance of future citations is quite specific and is not
a typical situation for citation networks. Therefore we consider
the eigenvectors of complex eigenvalues for the triangular
CNPR, which indeed represent the typical physical situation
without future citations. There is no problem in evaluating
these eigenvectors by the Arnoldi method, either with double
precision, provided the eigenvalue of the eigenvector is situated
in the region of numerically accurate eigenvalues, or with the
high-precision variant of the Arnoldi method. However, for
the triangular CNPR we have, according to the semianalytical
theory presented above, the explicit formula

ψ ∝ (λ1 − S0)−1 e/N =
l−1∑
j=0

λ−(1+j ) S
j

0 e/N, (6)

where the normalization is given by
∑

i |ψ(i)| = 1. This
expression is quite convenient, and we verified that it provides
the same eigenvectors (up to numerical errors) as the Arnoldi
method.

In Fig. 12 we show two eigenvectors of S: one ψ0 for
the leading eigenvalue λ0 = 1 and another ψ39 for a complex
eigenvalue at |λ39| < 1. The eigenvector of λ0 gives the
PageRank probability for the triangular CNPR (at α = 1).
We also consider the eigenvector for the complex eigenvalue
λ39 = −0.3738799 + i 0.2623941 (eigenvalues are ordered by
their absolute values starting from λ0 = 1). In this figure the
modulus of |ψj (Nt )| is shown versus the time index Nt as
introduced in Fig. 11. We also indicate the positions of five
famous papers: BCS 1957 [34] at K = 6, Anderson 1958 [35]
K = 63, Benettin et al. 1976 [36] K = 441, Thouless 1977
[37] K = 256, and Abrahams et al. 1979 [38] K = 74. In
the first eigenvector for λ0 = 1 all of these papers have quite
dominating positions, especially BCS 1957 and Abrahams
et al. 1979, which are the most important ones if compared
to papers of comparable publication date. Only considerably
older papers have higher positions in this vector.
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FIG. 12. (Color online) Two eigenvectors of the matrix S for the
triangular CNPR. Both panels show the modulus of the eigenvector
components |ψj (Nt )| versus the time index Nt (as used in Fig. 11) with
nodes/articles ordered by the publication time (small red/gray dots).
The blue/black points represent five particular articles: BCS 1957 (+),
Anderson 1958 (×), Benettin et al. 1976 (∗), Thouless 1977 (�), and
Abrahams et al. 1979 (�). The left (right) panel corresponds to the real
(complex) eigenvalue λ0 = 1 (λ39 = −0.3738799 + i 0.2623941).

For the second eigenvector with complex eigenvalue the
older papers (with 103 < Nt < 104 corresponding to publica-
tions times between 1910 and 1940) are strongly enhanced
in its importance, while the above five famous papers lose
their importance. The top three positions of largest amplitude
|ψ39(i)| correspond to DOI 10.1103/PhysRev.14.409 (1919),
10.1103/PhysRev.8.561 (1916), and 10.1103/PhysRev.24.97
(1917). These old articles study the radiating potentials of
nitrogen, ionization impact in gases, and the abnormal low
voltage arc, respectively. It is clear that this eigenvector selects
a certain community of old articles related to a certain older
field of interest. This fact is in agreement with the studies
of eigenvectors of Wikipedia network [13] showing that the
eigenvectors with 0 < |λ| < 1 select specific communities.

It is interesting to note that the top node of the vector ψ0

appears in the position K39 = 39 in local rank index of the
vector ψ39 (ranking in decreasing order by modulus of |ψ(i)|).
On the other side the top node of ψ39 appears at position
K0 = 30 of vector ψ0. This illustrates how different nodes
contribute to different eigenvectors of S.

It is useful to characterize the eigenvectors by their inverse
participation ratio (IPR) ξi = (

∑
j |ψi(j )|2)2/

∑
j |ψi(j )|4,

which gives an effective number of nodes populated by an
eigenvector ψi (see, e.g., Refs. [8,13]). For the above two
vectors we find ξ0 = 20.67 and ξ39 = 10.76. This means that
ξ39 is mainly located on approximately 11 nodes. For ξ0 this
number is twice larger in agreement with data of Fig. 12, which
show a clearly broader distribution comparing to ξ39.

We also considered a few tens of eigenstates of S of the
whole CNPR. They are mainly located on the complex plane
around the largest oval curve well visible in the spectrum (see
Fig. 10 top right panel). The IPR value of these eigenstates
with |λ| ∼ 0.4 varies in the range 4 < ξ < 13, showing that
they are located on some effective quasi-isolated communities
of articles. About 10 of them are related to the top article of
ψ39 shown in Fig. 12, meaning that these 10 vectors represent
various linear combinations of vectors on practically the same
community. In global terms, we can say that the eigenstates
of G are well localized since ξ � N . A similar situation was
seen for the Wikipedia network [13].

Of course, in addition to ξ it is also useful to consider
the whole distribution of ψ amplitudes over the nodes. Such
consideration has been done for the Wikipedia network in
Ref. [13]. For the CNPR we leave such detailed studies for
further investigations.

V. CHEIRANK VERSUS PAGERANK FOR CNPR

The dependence of PageRank probability P (K) on PageR-
ank index K is shown in Fig. 13. The results are similar to
those of Refs. [20–23]. We note that the PageRank of the
triangular CNPR has the same top nine articles as for the whole
CNPR (both at α = 0.85 and with a slight interchanged order
of positions 7, 8, 9). This confirms that the future citations
produce only a small effect on the global ranking.

Following previous studies [25–27], in addition to the
Google matrix G we also construct the matrix G∗ following the
same definition (1) but for the network with inverted direction
of links. The PageRank vector of this matrix G∗ is called the
CheiRank vector with probability P ∗(K∗

i ) and CheiRank index

052814-10



GOOGLE MATRIX OF THE CITATION NETWORK OF . . . PHYSICAL REVIEW E 89, 052814 (2014)

10-7

10-6

10-5

10-4

10-3

10-2

100 101 102 103 104 105 106

P
, P

*

K, K*

PageRank P
CheiRank P*

FIG. 13. (Color online) Dependence of probability of PageRank
P (CheiRank P ∗) on corresponding index K (K∗) for the CNPR at
α = 0.85.

K∗. The dependence of P ∗(K∗
i ) is shown in Fig. 13. We find

that the IPR values of P and P ∗ are ξ = 59.54 and 1466.7,
respectively. Thus P ∗ is extended over significantly larger
number of nodes comparing to P . A power law fit of the decay
P ∝ 1/Kβ , P ∗ ∝ 1/K∗β , done for a range K,K∗ � 2 × 105,
gives β ≈ 0.57 for P and β ≈ 0.4 for P ∗. However, this is only
an approximate description since there is a visible curvature
(in a double logarithmic representation) in these distributions.
The corresponding frequency distributions of ingoing links
have exponents μ = 2.87, while the distribution of outgoing
links has μ ≈ 3.7 for out-degree k � 20, even if the whole
frequency dependence in this case is rather curved and a power
law fit is rather approximate in this case. Thus the usual relation
β = 1/(μ − 1) [4,8,26] approximately works.

The correlation between PageRank and CheiRank
vectors can be characterized by the correlator κ =
N

∑N
i=1 P (i)P ∗(i) − 1 [25,27]. Here we find κ = −0.2789

for all CNPR, and κ = −0.3187 for CNPR without Review
of Modern Physics. This is the most strong negative value of
κ among all directed networks studied previously [27]. In a
certain sense the situation is somewhat similar to the Linux
Kernel network where κ ≈ 0 or slightly negative (κ > −0.1
[25]). For CNPR, we can say that due to an almost triangular
structure of G and G∗ there is a very little overlap of top
ranking in K and K∗ that leads to a negative correlator value,
since the components P (i)P ∗(i) of the sum for κ are small.

Each article i has two indexes Ki,K
∗
i so that it is convenient

to see their distribution on a 2D PageRank-CheiRank plane.
The density distribution W (K,K∗) = dNi/dKdK∗ is shown
in Fig. 14. It is obtained from 100 × 100 cells equidistant
in log scale (see details in Refs. [26,27]). For the CNPR the
density is homogeneous along lines K = −K∗ + const, which
corresponds to the absence of correlations between P and P ∗
[26,27]. For the CNPR without Review of Modern Physics we
have an additional suppression of density at low K∗ values.
Indeed, Review of Modern Physics contains mainly review
articles with a large number of citations that place them on
top of CheiRank. At the top three positions of K∗ of CNPR
we have DOI 10.1103/PhysRevA.79.062512, 10.1103/Phys-
RevA.79.062511, and 10.1103/RevModPhys.81.1551 of
2009. These are articles with long citation lists on K shell
diagram 4d transition elements, hypersatellites of 3d transition
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FIG. 14. (Color online) Density distribution W (K,K∗) =
dNi/dKdK∗ of Physical Review articles in the PageRank-CheiRank
plane (K,K∗). Color bars show the natural logarithm of density,
changing from minimal nonzero density (dark) to maximal one
(white); zero density is shown by black. (a) All articles of CNPR; (b)
CNPR without Rev. Mod. Phys.

metals, and superconducting phases of f electron compounds,
respectively. For CNPR without Review of Modern Physics
the first two articles are the same, and the third one has
DOI 10.1103/PhysRevB.80.224501 being about models for
the coexistence of d wave superconducting and charge density
wave order in high-temperature cuprate superconductors. We
see that the most recent articles with long citation lists are
dominating.

The top PageRank articles are analyzed in detail in
Refs. [20–23], and we do not discuss them here.

It is also useful to consider two-dimensional rank 2DRank
K2 defined by counting nodes in order of their appearance on
ribs of squares in (K,K∗) plane with the square size growing
from K = 1 to N [26]. It selects highly cited articles with a
relatively long citation list. For CNPR, we have the top three
such articles with DOI 10.1103/RevModPhys.54.437 (1982),
10.1103/RevModPhys.65.851 (1993), and 10.1103/RevMod-
Phys.58.801 (1986). Their topics are electronic properties
of two-dimensional systems, pattern formation outside of
equilibrium, and spin glasses facts and concepts, respectively.
The first one located at K = 183, K∗ = 49 is well visible
in the left panel of Fig. 14. For CNPR without Review of
Modern Physucs we find at K2 = 1 the article with DOI
10.1103/PhysRevD.54.1 (1996) entitled “Review of particle
physics” with much information on physical constants.

For the ranking of articles about persons in Wikipedia
networks [14,26,39], PageRank, 2DRank, and CheiRank
highlight in a different manner various aspects of human
activity. For the CNPR, these three ranks also select different
types of articles; however, due to a triangular structure of G,G∗
and absence of correlations between PageRank and CheiRank
vectors, the useful side of 2DRank and CheiRank remains less
evident.

VI. IMPACTRANK FOR INFLUENCE PROPAGATION

It is interesting to quantify how an influence of a given
article propagates through the whole CNPR. To analyze this
property we consider the following propagator acting on an
initial vector v0 located on a given article:

vf = 1 − γ

1 − γG
v0, v∗

f = 1 − γ

1 − γG∗ v0. (7)
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FIG. 15. (Color online) Dependence of impact vector vf proba-
bility P and P ∗ (a, b) on the corresponding ImpactRank index K and
K∗ for an initial article v0 as BCS [34] and Anderson [35] in CNPR,
and Napoleon in the English Wikipedia network from Ref. [39]. Here
the impact damping factor is γ = 0.5.

Here G,G∗ are the Google matrices defined above, γ is a new
impact damping factor in a range γ ∼ 0.5–0.9, and vf in the
final vector generated by the propagator (7). This vector is
normalized to unity

∑
i vf (i) = 1, and one can easily show

that it is equal to the PageRank vector of a modified Google
matrix given by

G̃ = γ G + (1 − γ ) v0 eT , (8)

where e is the vector with unit elements. This modified
Google matrix corresponds to a stochastic process where at
a certain time a given probability distribution is propagated
with probability γ using the initial Google matrix G, and with
probability (1 − γ ) the probability distribution is reinitialized
with the vector v0. Then vf is the stationary vector from
this stochastic process. Since the initial Google matrix G has
a similar form, G = αS + (1 − α)e eT /N with the damping
factor α, the modified Google matrix can also be written as

G̃ = α̃ S + (1 − α̃) vp eT , α̃ = γα, (9)

with the personalization vector [4]

vp = γ (1 − α)e/N + (1 − γ )v0

1 − γα
, (10)

which is also sum normalized:
∑

i vp(i) = 1. Obviously
similar relations hold for G∗ and v∗

f .
The relation (7) can be viewed as a Green function with

damping γ . Since γ < 1 the expansion in a geometric series
is convergent, and vf can be obtained from about 200 terms
of the expansion for γ ∼ 0.5. The stability of vf is verified by
changing the number of terms. The obtained vectors vf , v∗

f can

be considered as effective PageRank, CheiRank probabilities
P , P ∗, and all nodes can be ordered in the corresponding rank
index K , K∗, which we will call ImpactRank.

The results for two initial vectors located on BCS [34]
and Anderson [35] articles are shown in Fig. 15. In addition
we show the same probability for the Wikipedia article
“Napoleon” for the the English Wikipedia network analyzed
in Ref. [39]. The direct analysis of the distributions shows that
the original article is located at the top position, and the next
steplike structure corresponds to the articles reached by first
outgoing (ingoing) links from v0 for G (G∗). The next visible
step correspond to a second link step.

The top 10 articles for these three vectors are shown in
Tables I, II, III, IV, and V. The analysis of these top articles
confirms that they are closely linked with the initial article,
and thus the ImpactRank gives relatively good ranking results.
At the same time, some questions for such ImpactRanking
still remain to be clarified. For example, in Table IV we
find at the third position the well-known Review of Modern
Physics article on Anderson transitions, but the paper of
Abrahams et al. [38] appears only on far positions K∗ ≈ 300.
The situation is changed if we consider all CNPR links as
bidirectional, obtaining a nondirectional network. Then the
paper [38] appears on the second position directly after initial
article [35]. We think that such a problem appears due to
triangular structure of CNPR, where there is no intersection of
forward and backward flows. Indeed, for the case of Napoleon
we do not see such difficulties. Thus we hope that such an
approach can be applied to other directed networks.

VII. MODELS OF RANDOM PERRON-FROBENIUS
MATRICES

In this section we discuss the spectral properties of
several random matrix models of Perron-Frobenius operators
characterized by non-negative matrix elements and column
sums normalized to unity. We call these models random
Perron-Frobenius matrices (RPFM). To construct these models
for a given matrix G of dimension N we draw N2 inde-
pendent matrix elements Gij � 0 from a given distribution
p(G) [with p(G) = 0 for G < 0] with average 〈G〉 = 1/N

and finite variance σ 2 = 〈G2〉 − 〈G〉2. A matrix obtained
in this way obeys the column sum normalization only in
average but not exactly for an arbitrary realization. Therefore

TABLE I. Spreading of impact of “Theory of superconductivity” paper by J. Bardeen, L. N. Cooper, and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G with α = 0.85 and γ = 0.5.

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity
2 10.1103/PhysRev.78.477 Isotope effect in the superconductivity of mercury
3 10.1103/PhysRev.100.1215 Superconductivity at millimeter wave frequencies
4 10.1103/PhysRev.78.487 Superconductivity of isotopes of mercury
5 10.1103/PhysRev.79.845 Theory of the superconducting state. I. The ground ...
6 10.1103/PhysRev.80.567 Wave functions for superconducting electrons
7 10.1103/PhysRev.79.167 The hyperfine structure of Ni61

8 10.1103/PhysRev.97.1724 Theory of the Meissner effect in superconductors
9 10.1103/PhysRev.81.829 Relation between lattice vibration and London ...
10 10.1103/PhysRev.104.844 Transmission of superconducting films ...
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TABLE II. Spreading of impact of “Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G with α = 0.85 and γ = 0.5.

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices
2 10.1103/PhysRev.91.1071 Electronic structure of f centers: Saturation of ...
3 10.1103/RevModPhys.15.1 Stochastic problems in physics and astronomy
4 10.1103/PhysRev.108.590 Quantum theory of electrical transport phenomena
5 10.1103/PhysRev.48.755 Theory of pressure effects of foreign gases on spectral lines
6 10.1103/PhysRev.105.1388 Multiple scattering by quantum-mechanical systems
7 10.1103/PhysRev.104.584 Spectral diffusion in magnetic resonance
8 10.1103/PhysRev.74.206 A note on perturbation theory
9 10.1103/PhysRev.70.460 Nuclear induction
10 10.1103/PhysRev.90.238 Dipolar broadening of magnetic resonance lines ...

we renormalize all columns to unity after having drawn
the matrix elements. This renormalization provides some
(hopefully small) correlations between the different matrix
elements.

Neglecting these correlations for sufficiently large N the
statistical average of the RPFM is simply given by 〈Gij 〉 =
1/N , which is a projector matrix with the eigenvalue λ = 1
of multiplicity 1 and the corresponding eigenvector being
the uniform vector e (with ei = 1 for all i). The other
eigenvalue λ = 0 is highly degenerate of multiplicity N − 1,
and its eigenspace contains all vectors orthogonal to the
uniform vector e. Writing the matrix elements of a RPFM
as Gij = 〈Gij 〉 + δGij we may consider the fluctuating part
δGij as a perturbation, which only weakly modifies the
unperturbed eigenvector e for λ = 1, but for the eigenvalue
λ = 0 we have to apply degenerate perturbation theory which
requires the diagonalization of δGij . According to the theory
of nonsymmetric real random Gaussian matrices [5,40,41] it
is well established that the complex eigenvalue density of such
a matrix is uniform on a circle of radius R = √

Nσ with σ 2

being the variance of the matrix elements. One can also expect
that this holds for more general, non-Gaussian, distributions
with finite variance provided that we exclude extreme long tail
distribution where the typical values are much smaller than σ .
Therefore we expect that the eigenvalue density of a RPFM
is determined by a single parameter being the variance σ 2 of
the matrix elements, resulting in a uniform density on a circle
of radius R = √

Nσ around λ = 0, in addition to the unit

eigenvalue λ = 1, which is always an exact eigenvalue due to
sum normalization of columns.

We now consider different variants of RPFM. The first
variant is a full matrix with each element uniformly distributed
in the interval [0,2/N [, which gives the variance σ 2 =
1/(3N2) and the spectral radius R = 1/

√
3N . The second

variant is a sparse RPFM matrix with Q nonvanishing elements
per column and which are uniformly distributed in the interval
[0,2/Q[. Then the probability distribution is given by p(G) =
(1 − Q/N)δ(G) + (Q/N) χ[0,2/Q[(G) where χ[0,2/Q[(G) is the
characteristic function on the interval [0,2/Q[ (with values
being 1 for G in this interval and 0 for G outside this
interval). The average is indeed 〈G〉 = 1/N , and the variance
is σ 2 = 4/(3NQ) (for N � Q) providing the spectral radius
R = 2/

√
3Q. We may also consider a sparse RPFM where we

have exactly Q nonvanishing constant elements of value 1/Q

in each column with random positions resulting in a variance
σ 2 = 1/(NQ) and R = 1/

√
Q. The theoretical predictions

for these three variants of RPFM coincide very well with
numerical simulations. In Fig. 16 the complex eigenvalue
spectrum for one realization of each of the three cases is shown
for N = 400 and Q = 20, clearly confirming the circular
uniform eigenvalue density with the theoretical values of R.
We also confirm numerically the scaling behavior of R as a
function of N or Q.

Motivated by the Google matrices of DNA sequences
[42], where the matrix elements are distributed with a power
law, we also considered a power law variant of RPFM with

TABLE III. Spreading of impact of “Theory of superconductivity” paper by J. Bardeen, L. N. Cooper, and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G∗ with α = 0.85 and γ = 0.5.

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity
2 10.1103/PhysRevB.77.104510 Temperature-dependent gap edge in strong-coupling ...
3 10.1103/PhysRevC.79.054328 Exact and approximate ensemble treatments of thermal ...
4 10.1103/PhysRevB.8.4175 Ultrasonic attenuation in superconducting molybdenum
5 10.1103/RevModPhys.62.1027 Properties of boson-exchange superconductors
6 10.1103/PhysRev.188.737 Transmission of far-infrared radiation through thin films ...
7 10.1103/PhysRev.167.361 Superconducting thin film in a magnetic field—Theory of ...
8 10.1103/PhysRevB.77.064503 Exact mesoscopic correlation functions of the Richardson ...
9 10.1103/PhysRevB.10.1916 Magnetic field attenuation by thin superconducting lead films
10 10.1103/PhysRevB.79.180501 Exactly solvable pairing model for superconductors with ...
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TABLE IV. Spreading of impact of “Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G∗ with α = 0.85 and γ = 0.5.

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices
2 10.1103/PhysRevA.80.053606 Effects of interaction on the diffusion of atomic ...
3 10.1103/RevModPhys.80.1355 Anderson transitions
4 10.1103/PhysRevE.79.041105 Localization-delocalization transition in hessian ...
5 10.1103/PhysRevB.79.205120 Statistics of the two-point transmission at ...
6 10.1103/PhysRevB.80.174205 Localization-delocalization transitions ...
7 10.1103/PhysRevB.80.024203 Statistics of renormalized on-site energies and ...
8 10.1103/PhysRevB.79.153104 Flat-band localization in the Anderson-Falicov-Kimball model
9 10.1103/PhysRevB.74.104201 One-dimensional disordered wires with Poschl-Teller potentials
10 10.1103/PhysRevB.71.235112 Critical wave-packet dynamics in the power-law bond ...

p(G) = D(1 + aG)−b for 0 � G � 1 and with an exponent
2 < b < 3. The condition G � 1 is required because of the
column sum normalization. The parameters D and a are
determined by normalization and the average 〈G〉 = 1/N .
In the limit Nb−2 � 1 we find a ≈ N/(b − 2) and D ≈
N (b − 1)/(b − 2). For b > 3 the variance would scale with
∼ N−2 resulting in R ∼ 1/

√
N as in the first variant with

uniformly distributed matrix elements. However, for b < 3
this scaling is different, and we find (for Nb−2 � 1)

R = C(b) N1−b/2, C(b) = (b − 2)(b−1)/2

√
b − 1

3 − b
. (11)

Figure 17 shows the results of numerical diagonalization for
one realization with N = 400 and b = 2.5 such that we expect
R ∼ N−0.25. It turns out that the circular eigenvalue density
is rather well confirmed and the “theoretical radius” is indeed
given by R = √

Nσ if the variance σ 2 of matrix elements is
determined by an average over the N2 matrix elements of the
given matrix. A study for different values of N with 50 �
N � 2000 also confirms the dependence R = C N−η with fit
values C = 0.67 ± 0.03 and η = 0.22 ± 0.01. The value of
η = 0.22 is close to the theoretical value 1 − b/2 = 0.25 but
the prefactor C = 0.67 is smaller than its theoretical value
C(2.5) ≈ 1.030. This is due to the correlations introduced by
the additional column sum normalization after drawing the
random matrix elements. Furthermore for the power law model
with b < 3 we should not expect a precise confirmation of the
uniform circular density obtained for Gaussian distribution

matrix elements. Actually, a more detailed numerical analysis
of the density shows that the density for the power law model
is not exactly uniform, in particular for values of b close to 2.

The important observation is that a generic RPFM (full,
sparse, or with power law distributed matrix elements) has a
complex eigenvalue density rather close to a uniform circle of
a quite small radius (depending on the parameters N , Q, or
b). The fact, that the realistic networks (e.g., certain university
WWW networks) have Google matrix spectra very different
from this [10] shows that in these networks there is indeed a
subtle network structure and that slight random perturbations
or variations already immediately result in uniform circular
eigenvalue spectra. This was already observed in Refs. [8,9],
where it was shown that certain modest random changes in the
network links already provide such circular eigenvalue spectra.

We also determine the PageRank for the different variants
of the RPFM, i.e., the eigenvector for the eigenvalue λ = 1. It
turns out that PageRank vector has practically equal probabili-
ties on each node. This is natural since this eigenvector should
be close to the uniform vector e, which is the “PageRank” for
the average matrix 〈Gij 〉 = 1/N . This also holds when we use
a damping factor α = 0.85 for the RPFM.

Following the above discussion about triangular networks
(with Gij = 0 for i � j ) we also study numerically a triangular
RPFM where for j � 2 and i < j the matrix elements Gij are
uniformly distributed in the interval [0,2/(j − 1)[, and for
i � j we have Gij = 0. Then the first column is empty, which
means it corresponds to a dangling node and it needs to be
replaced by 1/N entries. For the triangular RPFM the situation

TABLE V. Spreading of impact of the article “Napoleon” in English Wikipedia by Google matrix G and G∗ with α = 0.85 and γ = 0.5.

ImpactRank Articles (G case) Articles (G∗ case)

1 Napoleon Napoleon
2 French Revolution List of orders of battle
3 France Lists of state leaders by year
4 First French Empire Names inscribed under the Arc de Triomphe
5 Napoleonic Wars List of battles involving France
6 French First Republic Order of battle of the Waterloo Campaign
7 Saint Helena Napoleonic Wars
8 French Consulate Wagram order of battle
9 French Directory Departments of France
10 National Convention Jena-Auerstedt Campaign Order of Battle
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FIG. 16. (Color online) (a) Spectrum (red/gray dots) of one
realization of a full uniform RPFM with dimension N = 400 and
matrix elements uniformly distributed in the interval [0,2/N [; the
blue/black circle represents the theoretical spectral border with
radius R = 1/

√
3N ≈ 0.02887. The unit eigenvalue λ = 1 is not

shown due to the zoomed presentation range. (c) Spectrum of one
realization of triangular RPFM (red/gray crosses) with nonvanishing
matrix elements uniformly distributed in the interval [0,2/(j − 1)[
and a triangular matrix with nonvanishing elements 1/(j − 1)
(blue/black squares); here j = 2,3, . . . ,N is the index number of
nonempty columns and the first column with j = 1 corresponds
to a dangling node with elements 1/N for both triangular cases.
(b, d) Complex eigenvalue spectrum (red/gray dots) of a sparse
RPFM with dimension N = 400 and Q = 20 nonvanishing elements
per column at random positions. Panel (b) [or (d)] corresponds
to the case of uniformly distributed nonvanishing elements in the
interval [0,2/Q[ (constant nonvanishing elements being 1/Q); the
blue/black circle represents the theoretical spectral border with radius
R = 2/

√
3Q ≈ 0.2582 (R = 1/

√
Q ≈ 0.2236). In panels (b) and (d)

λ = 1 is shown by a larger red dot for better visibility. The unit circle
is shown by green/gray line [panels (b), (c), and (d)].

changes completely since here the average matrix 〈Gij 〉 =
1/(j − 1) (for i < j and j � 2) has already a nontrivial
structure and eigenvalue spectrum. Therefore the argument of
degenerate perturbation theory which allowed us to apply the
results of standard full nonsymmetric random matrices does
not apply here. In Fig. 16 one clearly sees that for N = 400 the
spectra for one realization of a triangular RPFM and its average
are very similar for the eigenvalues with large modulus but
both do not have at all a uniform circular density in contrast to
the RPRM models without the triangular constraint discussed
above. For the triangular RPFM the PageRank behaves as
P (K) ∼ 1/K with the ranking index K being close to the
natural order of nodes {1,2,3, . . .}, which reflects the fact that
the node 1 has the maximum of N − 1 incoming links and so
on.
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FIG. 17. (Color online) (a) Spectrum (red/gray dots) of one
realization of the power law RPFM with dimension N = 400 and
decay exponent b = 2.5 (see text); the unit eigenvalue λ = 1 is
shown by a large red/gray dot, the unit circle is shown by a
green/gray curve; the blue/black circle represents the spectral border
with theoretical radius R = ≈0.1850 (see text). (b) Dependence of
the spectrum border radius on matrix size N for 50 � N � 2000;
red/gray crosses represent the radius obtained from theory (see text);
blue/black squares correspond to the spectrum border radius obtained
numerically from a small number of eigenvalues with maximal
modulus; the green/gray line shows the fit R = C N−η of red/gray
crosses with C = 0.67 ± 0.03 and η = 0.22 ± 0.01.

The study of above models shows that it is not so simple to
find a good RPFM model which reproduces a typical spectral
structure of real directed networks.

VIII. DISCUSSION

In this study we presented a detailed analysis of the spec-
trum of the CNPR for the period 1893–2009. It happens that
the numerical simulations should be done with a high accuracy
(up to p = 16 384 binary digits for the rational interpolation
method or p = 768 binary digits for the high-precision Arnoldi
method) to determine correctly the eigenvalues of the Google
matrix of CNPR at small eigenvalues λ. Due to the time
ordering of citations, the CNPR G matrix is close to the
triangular form with a nearly nilpotent matrix structure. We
show that special semianalytical methods allow us to determine
efficiently the spectrum of such matrices. The eigenstates with
large modulus of λ are shown to select specific communities
of articles in certain research fields, but there is no clear way
on how to identify a community one is interested in.

The obtained results show that the spectrum of CNPR
is characterized by the fractal Weyl law with the fractal
dimension df ≈ 1 and the growth exponent b ≈ 0.5 being
significantly smaller than unity. We think that the Physical
Review network has a structure which is typical for other
citation networks, and thus our result shows that the fractal
Weyl law is a typical feature of citation networks.

The ranking of articles is analyzed with the help of
PageRank and CheiRank vectors corresponding to forward
and backward citation flows in time. It is shown that the
correlations between these two vectors are small and even
negative, which is similar to the case of Linux Kernel networks
[27] and significantly different from networks of universities
and Wikipedia. The 2DRanking on the PagRank-CheiRank
plane allows us to select articles which efficiently redistribute
information flow on the CNPR.

052814-15



FRAHM, EOM, AND SHEPELYANSKY PHYSICAL REVIEW E 89, 052814 (2014)

To characterize the local impact propagation for a given
article we introduce the concept of ImpactRank, which
efficiently determines its domain of influence.

Finally we perform the analysis of several models of
RPFM showing that such full random matrices are very far
from the realistic cases of directed networks. Random sparse
matrices with a limited number Q of links per nodes seem
to be closer to typical Google matrices concerning the matrix
structure. However, such random models give a rather uniform
eigenvalue density with a spectral radius ∼ 1/

√
Q and a flat

PageRank distribution. Furthermore they do not capture the
existence of quasi-isolated communities, which generates a
quasidegenerate spectrum at λ = 1. Further development of
RPFM models is required to reproduce the spectral properties
of real modern directed networks.

In summary, we developed powerful numerical methods
which allowed us to determine numerically the exact eigenval-
ues and eigenvectors of the Google matrix of Physical Review.
We demonstrated that this matrix is close to triangular matrices
of large size where numerical errors can significantly affect
the eigenvalues. We show that the techniques developed in
this work allow us to resolve such difficulties and obtain the
exact spectrum in a semianalytical manner. The eigenvectors
of eigenvalues with |λ| < 1 are located on certain communities
of articles related to specific scientific research subjects. We
point that the random matrix models of Google matrices are
still awaiting their detailed development. Indeed, matrices
with random elements have a spectrum being very different
from the real one. Thus, while the random matrix theory of
Hermitian and unitary matrices has been very successful (see,
e.g., Ref. [5]), a random matrix theory for Google matrices still
waits its development. It is possible that the case of triangular
matrices, which is rather similar to our CNPR case, can be a
good starting point for development of such models.
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APPENDIX A: THEORY OF TRIANGULAR
ADJACENCY MATRICES

Let us briefly mention the analytical theory of Ref. [19] for
pure triangular networks with a nilpotent matrix S0 such that
Sl

0 = 0. For integers [19] the adjacency matrix is defined as
Amn = k where k is a multiplicity defined as the largest integer
such that mk is a divisor of n and if 1 < m < n, and k = 0 if
m = 1 or m = n or if m is not a divisor of n. Thus, we have
k = 0 if m is not a divisor of n and k � 1 if m is a divisor
of n different from 1 and n. The total size N of the matrix
is fixed by the maximal considered integer. Then the Google
matrix is constructed from Amn following the standard rules
described above. This network of integers gives an important
example of a triangular Google matrix with similar features

also appearing in the Physical Review citation network. Below
we discuss the general properties of such matrices.

For this we define the coefficients:

cj = dT S
j

0 e/N, bj = eT S
j

0 e/N, (A1)

which are nonzero only for j = 0, 1, . . . , l − 1. The fact that
the nonvanishing columns of S0 are sum normalized and that
the other columns (corresponding to dangling nodes) are zero
can be written as eT S0 = eT − dT implying dT = eT (1 − S0).
Using this identity and the fact that Sk

0 = 0 for k � l we find

l−1∑
k=j

ck = dT (1 − S0)−1S
j

0 e/N = eT S
j

0 e/N = bj , (A2)

and in particular for j = 0 we obtain the sum rule
∑l−1

k=0 ck = 1
and for j = l − 1 the identity bl−1 = cl−1.

Consider now a right eigenvector ψ of S with eigenvalue λ.
If dT ψ = 0 we find from (4) that ψ is also an eigenvector
of S0, and since S0 is nilpotent the eigenvalue must be
λ = 0. Therefore for λ �= 0 we have necessarily dT ψ �= 0, and
with the appropriate normalization of ψ we have dT ψ = 1,
which implies together with the eigenvalue equation ψ =
(λ1 − S0)−1 e/N where the matrix inverse is well defined for
λ �= 0. The eigenvalue is determined by the condition

0 = λl(1 − dT ψ) = λl

(
1 − dT 1

λ1 − S0
e/N

)
. (A3)

Since S0 is nilpotent we may expand the matrix inverse in a
finite series, and therefore the eigenvalue λ is the zero of the
reduced polynomial of degree l:

Pr (λ) = λl −
l−1∑
j=0

λl−1−j cj , (A4)

where the coefficients cj are given by (A1). Using dT =
eT (1 − S0) we may rewrite (A3) in the form

0 = λl

(
1 − eT 1 − S0

λ1 − S0
e/N

)
= (λ − 1)λl eT 1

λ1 − S0
e/N,

(A5)

which gives another expression for the reduced polynomial:

Pr (λ) = (λ − 1)
l−1∑
j=0

λl−1−j bj , (A6)

using the coefficients bj and confirming explicitly that λ = 1
is indeed an eigenvalue of S. The expression (A6) can also be
obtained by a direct calculation from (A2) and (A4).

Since the reduced polynomial has at most l zeros λj

( �= 0 since cl−1 = bl−1 �= 0) we find that there are at most l

nonvanishing eigenvalues of S given by these zeros. They can
also be obtained as the eigenvalues of a “small” l × l matrix.
To see this let us define the following set of vectors vj for
j = 1, . . . , l by vj = c−1

j−1 S
j−1
0 e/N , where we have chosen

to apply the prefactor c−1
j−1 to the vector S

j−1
0 e/N [43]. From

(4) and (A1) one finds that Svj can be expanded in the other
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vectors vk as

Svj = cj

cj−1
vj+1 + c0 v1 =

l∑
k=1

S̄kj vk, (A7)

where S̄kj are the matrix elements of the l × l representation
matrix

S̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

c0 c0 · · · c0 c0

c1/c0 0 · · · 0 0

0 c2/c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · cl−1/cl−2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A8)

Note that for the last vector vl we have Svl = c0 v1 since
cl = 0, and therefore the matrix S̄ provides a closed and
mathematically exact representation of S on the l-dimensional
subspace generated by v1, . . . , vl . Furthermore one can easily
verify (by a recursive calculation in l) that the characteristic
polynomial of S̄ coincides with the reduced polynomial
(A4). Therefore numerical diagonalization of S̄ provides an
alternative method to compute the nonvanishing eigenvalues
of S. In principle one can also determine directly the zeros
of the reduced polynomial by the Newton-Maehly method,
and in Ref. [19] this was indeed done for cases with very
modest values of l � 29. However, here for the triangular
CNPR we have l = 352 and the coefficients cj become very
small, especially cl−1 ≈ 3.6 × 10−352, a number which is
(due to the exponent) outside the range of 64-bit standard
double-precision numbers (IEEE 754) with 52 bits for the
mantissa, 10 bits for the exponent (with respect to 2), and two
bits for the signs of mantissa and exponent. This exponent
range problem is not really serious and can, for example,
be circumvented by a smart reformulation of the algorithm
to evaluate the ratio Pr (λ)/P ′

r (λ) using only ratios cj /cj−1,
which do not have this exponent range problem. However,
it turns out that in this approach the convergence of the
Newton-Maehly method using double-precision arithmetic is
very bad for many zeros and does not provide reliable results.
In Appendix B we show how this problem can be solved
using high-precision calculations, but we mention that one
may also try another approach by diagonalizing numerically
the representation matrix S̄ given in (A8), which also depends
on the ratios cj /cj−1.

APPENDIX B: EFFECTS OF NUMERICAL ERRORS AND
HIGH-PRECISION COMPUTATIONS

We note that the Arnoldi method determines an orthonormal
set of vectors ζ1, ζ2, ζ3, . . . , ζnA

where the first vector ζ1

is obtained by normalizing a given initial vector and ζj+1

is obtained by orthonormalizing Sζj to the previous vectors
determined so far. It is obvious due to (A7) that for the initial
uniform vector e each ζj is given by a linear combination of
the vectors vk with k = 1, . . . , j . Since the subspace of vk for
k = 1, . . . , l is closed with respect to applications of S the
Arnoldi method should, in theory, break off at nA = l with
a zero coupling element. The latter is given as the norm of
Sζl othogonalized to ζ1, . . . , ζl , and if this norm vanishes the

vector ζl+1 cannot be constructed and the Arnoldi method has
completely explored an S-invariant subspace of dimension l.

However, due to a strong effect of round-off errors and
the fact that the vectors vj are numerically “nearly” lin-
early dependent the last coupling element does not vanish
numerically (when using double precision) and the Arnoldi
method produces a cloud of numerically incorrect eigenvalues
due to the Jordan blocks, which are mathematically outside
the representation space (defined by the vectors vj ) but
which are still explored due to round-off errors and clearly
visible in Fig. 5. The double-precision spectrum of S̄ seems
to provide well-defined eigenvalues in the range where the
Arnoldi method produces the “Jordan block cloud,” but outside
this cloud both spectra coincide only partly, mainly for the
eigenvalues with a largest modulus and positive real part. For
the eigenvalues with a negative real part there are considerable
deviations. As can be seen in Fig. 6 the eigenvalues produced
by the Arnoldi method at double precision are reliable
provided that they are well outside the Jordan block cloud
of incorrect eigenvalues. Therefore the deviations outside the
Jordan block cloud show that the numerical double-precision
diagonalization of the representation matrix S̄ is not reliable as
well, but here the effect of numerical errors is quite different
as for the Arnoldi method, as is explained below.

In order to obtain an alternative and reliable numerical
method to determine the spectrum of the triagonal CNRP
we have also tried to determine the zeros of the reduced
polynomial using higher-precision numbers with 80 or even
128 bits (quadruple precision), which helps to solve the
(minor) exponent range problem (mentioned in Appendix A)
because these formats use more bits for the exponent. However,
there are indeed two other serious numerical problems. First,
it turns out that in a certain range of the complex plane
around Re(λ) ≈ −0.1 to −0.2 and Im(λ) � 0.1 the numerical
evaluation of the polynomial suffers in a severe way from
an alternate sign problem with a strong loss of significance.
Second, the zeros of the polynomial depend in a very sensitive
way on the precision of the coefficients cj (see below). We
have found that even 128-bit numbers are not sufficient to
obtain all zeros with a reasonable graphical precision.

Therefore we use the very efficient GNU Multiple Precision
Arithmetic Library (GMP library) [30]. With this library one
has 31 bits for the exponent, and one may chose an arbitrary
number of bits for the mantissa. We find that using 256 bits
(binary digits) for the mantissa the complex zeros of the
reduced polynomial can be determined with a precision of
10−18. In this case the convergence of the Newton-Maehly
method is very nice, and we find that the sum (and product)
of the complex zeros coincide with a high precision with the
theoretical values c0 [respectively: (−1)l−1cl−1] due to (A4).
We have also tested different ways to evaluate the polynomial,
such as the Horner scheme versus direct evaluation of the sum
and for both methods using both expressions (A4) and (A6).
It turns out that with 256 binary digits during the calculation
the zeros obtained by the different variants of the method
coincide very well within the required precision of 10−18.
Of course, the coefficients cj or bj given by (A1) also need
to be evaluated with the precision of 256 binary digits, but
there is no problem of using high-precision vectors since
the nonvanishing matrix elements of S0 are rational numbers,
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which allow us to perform the evaluation of the vectors S
j

0 e/N

with arbitrary precision. We also tested a random modification
of cj according to cj → cj (1 + 10−16X) where X is a random
number in the interval ] − 0.5, 0.5[. This modification gives
significant differences of the order of 10−2 to 10−1 for
some of the complex zeros and which are very visible in
the graphical representation of the spectra. Therefore, the
spectrum depends in a very sensitive way on these coefficients,
and it is now quite clear that numerical double-precision
diagonalization of S̄, which depends according to (A8) on the
values cj , cannot provide accurate eigenvalues simply because
the double-precision round-off errors of cj imply a sensitive
change of eigenvalues. In particular some of the numerical
eigenvalues of S̄ differ quite strongly from the high-precision
zeros of the reduced polynomial.

In order to study more precisely the effect of the numerical
instability of the Arnoldi method due to the Jordan blocks
we also use the GMP library to increase the numerical
precision of the Arnoldi method. To be precise we implement
the first part of this method, the Arnold iteration, in which
the nA × nA Arnoldi representation matrix is determined by
the Gram-Schmidt orthogonalization procedure, using high-
precision numbers, while for the second step, the numerical
diagonalization of this representation matrix, we keep the
standard double precision. It turns that only the first step is
numerically critical. Once the Arnoldi representation matrix
is obtained in a careful and precise way, it is numerically well
conditioned, and its numerical diagonalization works well with
only double precision.

APPENDIX C: THEORY OF DEGENERATE EIGENVALUES

In order to understand the mechanism of the degenerate core
space eigenvalues visible in Fig. 8 we extend the argumentation
of Appendix A for triangular CNPR to the case of nearly
triangular networks. Consider again the matrix S given by
Eq. (4), but now S0 is not nilpotent. There are two groups
of eigenvectors ψ of S with eigenvalue λ. The first group is
characterized by the orthogonality dT ψ = 0 of the eigenvector
ψ with respect to the dangling vector d, and the second
group is characterized by the nonorthogonality dT ψ �= 0. In
the following, we describe efficient methods to determine all
eigenvalues of the first group and a considerable number
of eigenvalues of the second group. We note that for the
case of a purely triangular network the first group contains
only eigenvectors for the eigenvalue 0, and the second group
contains the eigenvectors for the l nonvanishing eigenvalues
as discussed in Appendix A. In principle there are also
complications due to generalized eigenvectors (associated to
nontrivial Jordan blocks), but they appear mainly for the
eigenvalue zero, and for the moment we do not discuss these
complications.

First, we note that the subspace eigenvectors of S belong to
the first group because the nodes of the subspaces of S cannot
contain dangling nodes, which, by construction of S, are linked
to any other node and therefore belong to the core space. Since
any subspace eigenvector ψ has nonvanishing values only for
subspace nodes being different from dangling nodes we have
obviously dT ψ = 0. We also note that an eigenvector of S of

the first group with dT ψ = 0 is due to (4) also an eigenvector
of S0 with the same eigenvalue.

For the remaining eigenvectors in the first group one might
try to diagonalize the matrix S0 and check for each eigenvector
of S0 if the identity dT ψ = 0 holds, in which case we would
obtain an eigenvector of S of the first group but generically, and
apart from the subspace eigenvectors, there is no reason that
eigenvectors of S0 with isolated nondegenerate eigenvalues
obey this identity. However, if we have an eigenvalue of S0

with a degeneracy m � 2 we may construct by suitable linear
combinations m − 1 linearly independent eigenvectors of S0

which also obey dT ψ = 0, and therefore this eigenvalue with
degeneracy m of S0 is also an eigenvalue with degeneracy m −
1 of S. In order to determine the degenerate eigenvalues of S0

it is useful to determine the subspaces of S0, which (in contrast
to the subspaces of S) may contain dangling nodes. Actually,
each dangling node is a trivial invariant subspace (for S0)
of dimension 1 with a network matrix of size 1 × 1 and being
zero. Explicitly we have implemented the following procedure:
first, we determine the subspaces of S (with 71 nodes in total)
and remove these nodes from the network. Then we determine
all subspaces of S0 whose dimension is below 10. Each time
such a subspace is found its nodes are immediately removed
from the network. When we have tested in a first run all nodes
as potential subspace nodes the procedure is repeated until
no new subspaces of maximal dimension 10 are found since
removal of former subspaces may have created new subspaces.
Then the limit size of 10 is doubled to 20, 40, 80, etc., to
ensure that we do not miss large subspaces. However, for the
CNPR it turns out that the limit size of 10 allows us to find
all subspaces. In our procedure a subsequently found subspace
may potentially have links to a former subspace leading to a
block-triangular structure (and not block-diagonal structure as
was done in Ref. [10]). This method to determine “relative”
subspaces of a network already reduced by former subspaces is
more convenient for the CNPR, which is nearly triangular, and
it allows us also to determine correctly all subspace eigenvalues
by diagonalizing each relative subspace network. The removal
of subspace nodes of S and S0 reduces the network size from
N = 463 348 to 404 959. In the next step we remove in the
same way the subspaces of the transpose ST

0 of S0 (since the
eigenvalues of ST

0 and S0 are the same), which reduces the
network size further to 90 965. In total this procedure provides
a block-triangular structure of S0 as

S0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1 ∗ · · · · · · ∗
0 S2 ∗ ...
...

. . .
. . .

. . .
...

0 B ∗
... 0 T1 ∗ ...
... 0 T2 ∗
0 · · · · · · . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

where S1, S2, . . . represent the diagonal subblocks associated
to the subspaces of S and S0 and T1, T2, . . . represent the
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diagonal subblocks associated to the subspaces of ST
0 , and B is

the “bulk” part for the remaining network of 90 965 nodes. The
stars represent potential nonvanishing entries whose values
do not influence the eigenvalues of S0. The subspace blocks
S1, S2, . . . and T1, T2, . . ., which are individually of maximal
dimension 10, can be directly diagonalized, and it turns
that out of 372 382 eigenvalues in these blocks only about
4000 eigenvalues (counting degeneracies) or 950 eigenvalues
(noncounting degeneracies) are different from zero. Most of
these eigenvalues are not degenerate and are therefore not
eigenvalues of S, but there are still quite many degenerate
eigenvalues at λ = ±1/

√
n with n � 2 taking small integer

values and that are also eigenvalues of S with a degeneracy
reduced by one.

Concerning the bulk block B we can write it in the form
B = B0 + f1 eT

1 , where f1 is the first column vector of B

and eT
1 = (1, 0, . . . , 0). The matrix B0 is obtained from B by

replacing its first column to zero. We can apply the above
argumentation between S and S0 in the same way to B and
B0; i.e., the degenerate eigenvalues of B0 with degeneracy
m are also eigenvalues of B with degeneracy m − 1 (with
eigenvectors obeying eT

1 ψ = 0) and therefore eigenvalues of
S with degeneracy m − 2. The matrix B0 is decomposed in
a similar way as in (C1) with subspace blocks, which can
be diagonalized numerically, and a new bulk block B̃ of
dimension 63 559 and which may be treated in the same way by
taking out its first column. This procedure provides a recursive
scheme which after nine iterations stops with a final bulk
block of zero size. At each iteration we keep only subspace
eigenvalues with degeneracies m � 2 and which are joined
with reduced degeneracies m − 1 to the subspace spectrum of
the previous iteration. For this joined spectrum we keep again
only eigenvalues with degeneracies m � 2 which are joined
with the subspace spectrum of the next higher level and so on.

In this way we have determined all eigenvalues of S0 with
a degeneracy m � 2 which belong to the eigenvalues of S

of the first group. Including the direct subspace of S there
are 4999 nonvanishing eigenvalues (counting degeneracies)
or 442 nonvanishing eigenvalues (noncounting degeneracies).
The degeneracy of the zero eigenvalue (or the dimension
of the generalized kernel) is found by this procedure to be
455 789, but this would only be correct assuming that there
are no general eigenvectors of higher order (representation
vectors of nontrivial Jordan blocks), which is clearly not the
case. The Jordan subspace structure of the zero eigenvalue
complicates the argumentation. Here at each iteration step
the degeneracy has to be reduced from m to m − D where
D > 1 is the dimension of the maximal Jordan block since each
generalized eigenvector at a given order has to be treated as
an independent vector when constructing vectors obeying the
orthogonality with respect to the dangling vector d. Therefore
the degeneracy of the zero eigenvalue cannot be determined
exactly, but we may estimate its degeneracy of about ∼455 000
out of 463 348 nodes in total. This implies that the number
of nonvanishing eigenvalues is about ∼8000–9000, which is
considerably larger than the value of 352 for the triangular
CNPR but still much smaller than the total network size.

In Table VI we provide the degeneracies for some of the
eigenvalues ±1/

√
n for integer n in the range 1 � n � 25.

TABLE VI. Degeneracies of the eigenvalues with
largest modulus for the whole CNPR whose eigen-
vectors ψ belong to the first group and obey the
orthogonality dT ψ = 0 with the dangling vector d .

λ Degeneracy

1 27
−1 18
±1/

√
2 27

±1/
√

3 20
1/2 58
−1/2 52
±1/

√
5 20

±1/
√

6 52
±1/

√
7 6

±1/
√

8 44
1/3 47
−1/3 39
±1/

√
10 33

±1/
√

11 1
±1/

√
12 85

±1/
√

14 15
±1/

√
15 46

1/4 52
−1/4 42
±1/

√
18 29

±1/
√

20 60
±1/

√
21 30

±1/
√

22 3
±1/

√
24 69

1/5 20
−1/5 11

The degeneracies for +1/
√

n and −1/
√

n are identical for
nonsquare numbers n (with noninteger

√
n) and different for

square numbers (with integer
√

n). Apparently for nonsquare
numbers the eigenvalues are only generated from effective
2 × 2 blocks:(

0 1/n1

1/n2 0

)
⇒ λ = ± 1√

n1 n2
(C2)

with positive integers n1 and n2 such that n = n1 n2, while
for square numbers n = m2 they may be generated by such
blocks or by simple 1 × 1 blocks containing 1/m such
that the degeneracy for +1/

√
n = +1/m is larger than the

degeneracy for −1/
√

n = −1/m. Furthermore, statistically
the degeneracy is smaller for prime numbers n or numbers
with less factorization possibilities and larger for numbers with
more factorization possibilities. The Arnoldi method (with 52
binary digits for double-precision arithmetic and nA = 8000)
provides according to the sizes of the plateaux visible in Fig. 8
the overall approximate degeneracies ∼60 for |λ| = 1/

√
2

(i.e., ±1/
√

2 counted together), ∼50 for |λ| = 1/
√

3, and ∼
115 for |λ| = 1/2. These values are coherent with (but slightly
larger than) the values 54, 40, and 110 taken from Table VI.
Actually, as we will see below, the slight differences between
the degeneracies obtained from Fig. 8 and from Table VI are
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indeed relevant and correspond to some eigenvalues of the
second group which are close but not identical to ±1/

√
2,

±1/
√

3, or ±1/2 and do not contribute in Table VI.

APPENDIX D: RATIONAL INTERPOLATION METHOD

We now consider the eigenvalues λ of S for the eigenvectors
of the second group with nonorthogonality dT ψ �= 1 or
dT ψ = 1 after proper renormalization of ψ . Now ψ cannot
be an eigenvector of S0, and λ is not an eigenvalue of S0.
Similarly as in Appendix A the eigenvalue equation Sψ = λψ ,
the condition dT ψ = 1 and (4) imply that the eigenvalue λ of
S is a zero of the rational function

R(λ) = 1 − dT 1

λ1 − S0
e/N = 1 −

∑
j,q

Cjq

(λ − ρj )q
, (D1)

where we have formally expanded the vector e/N in eigen-
vectors of S0 and with ρj being the eigenvalues of S0 and q

is the order of the eigenvector of ρj used in this expansion,
i.e., q = 1 for simple eigenvectors and q > 1 for generalized
eigenvectors of higher order due to Jordan blocks. Note that
even the largest possible value of q for a given eigenvalue may
be (much) smaller than its multiplicity m. Furthermore the case
of simple repeating eigenvalues (with simple eigenvectors)
with higher multiplicity m > 1 leads only to several identical
terms ∼ (λ − ρj )−1 for any eigenvector of this eigenvalue,
thus all contributing to the coefficients Cjq and whose precise
values we do not need to know in the following. For us the
important point is that the second identity in (D1) establishes
that R(λ) is indeed a rational function whose denominator and
numerator polynomials have the same degree and whose poles
are (some of) the eigenvalues of S0.

We mention that one can also show by a simple determinant
calculation (similar to a calculation shown in Ref. [19] for
triangular networks with nilpotent S0) that

PS(λ) = PS0 (λ)R(λ), (D2)

where PS(λ) [or PS0 (λ)] is the characteristic polynomial of
S (S0). Therefore those zeros of R(λ) which are not zeros
of PS0 (λ) (i.e., not eigenvalues of S0) are indeed zeros of
PS(λ) (i.e., eigenvalues of S) since there are not poles of R(λ).
Furthermore, generically the simple zeros PS0 (λ) also appear as
poles in R(λ) and are therefore not eigenvalues of S. However,
for a zero of PS0 (λ) (eigenvalue of S0) with higher multiplicity
m > 1 (and unless m is equal to the maximal Jordan block
order q associated to this eigenvalue of S0) the corresponding
pole in R(λ) only reduces the multiplicity to m − 1 (or m − q

in case of higher order generalized eigenvectors), and we also
have a zero of PS(λ) (eigenvalue of S). Some of the eigenvalues
of S0, whose eigenvectors ψ are orthogonal to the dangling
vector (dT ψ = 0) and do not contribute in the expansion in
(D1), are not poles of R(λ) and therefore also eigenvalues of
S. This concerns essentially the direct subspace eigenvalues
of S, which are also direct subspace eigenvalues of S0 as
already discussed in Appendix C. In total the identity (D2)
confirms exactly the above picture that there are two groups
of eigenvalues and with the special role of direct subspace
eigenvalues belonging to the first group.

Our aim is to determine numerically the zeros of the rational
function R(λ). In order to evaluate this function we expand

the first identity in (D1) in a matrix geometric series, and we
obtain

R(λ) = 1 −
∞∑

j=0

cjλ
−1−j (D3)

with the coefficients cj defined in (A1) and provided that this
series converges. In Appendix A, where we discussed the case
of a nilpotent matrix S0 with Sl

0 = 0, the series was finite, and
for this particular case we had R(λ) = λ−lPr (λ) where Pr (λ)
was the reduced polynomial defined in (A4) and whose zeros
provided the l nonvanishing eigenvalues of S for nilpotent S0.

However, for the CNPR the series are infinite since all cj are
different from zero. One may first try a crude approximation
and simply replace the series by a finite sum for j < l and
using some rather large cutoff value for l and determine the
zeros in the same way as for the nilpotent case (a high-precision
calculation of the zeros of the reduced polynomial of degree
l). It turns that in this way we obtain correctly the largest core
space eigenvalue of S as λ1 = 0.999 751 822 283 878 which is
also obtained by (any variant of) the Arnoldi method. However,
the other zeros obtained by this approximation lie all on a
circle of radius ≈ 0.9 in the complex plane and obviously
do not represent any valid eigenvalues. Increasing the cutoff
value l does not help either, and it increases only the density
of zeros on this circle. To understand this behavior we note
that in the limit j → ∞ the coefficients cj behave as cj ∝ ρ

j

1
where ρ1 = 0.902 448 280 519 224 is the largest eigenvalue of
the matrix S0 with an eigenvector nonorthogonal to d. Note
that the matrix S0 also has some degenerate eigenvalues at +1
and −1, but these eigenvalues are obtained from the direct
subspace eigenvectors of S (which are also direct subspace
eigenvectors of S0) and which are orthogonal to the dangling
vector d and do not contribute in the rational function (D1).
It turns actually out that the eigenvalue ρ1 is also the largest
subspace space eigenvalue of S0 (after having removed the
direct subspace nodes of S). By analyzing explicitly the
small-dimensional subspace related to this eigenvalue one
can show that ρ1 is given as the largest solution of the
polynomial equation x3 − 2

3x − 2
15 = 0 and can therefore

be expressed as ρ1 = 2 Re [(9 + i
√

119)1/3]/(135)1/3. The
asymptotic behavior cj ∝ ρ

j

1 is also confirmed by the direct
numerical evaluation of cj . Therefore the series (D3) converges
only for |λ| > ρ1, and a simple (even very large) cutoff in the
sum implies that only eigenvalues |λj | > ρ1 can be determined
as a zero of the finite sum. The only eigenvalue respecting this
condition is the largest core space eigenvalue λ1 given above.

One may try to improve this by a “better” approximation,
which consists of evaluating the sum exactly up to some
value l and then to replace the remaining sum as a geometric
series with the approximation cj ≈ clρ

j−l

1 for j � l and with
ρ1 determined as the ratio ρ1 = cl/cl−1 (which provides a
sufficient approximation) or taken as its exact (high preci-
sion) value. This improved approximation results in R(λ) ≈
λ−l(λ − ρ1)−1P(λ) with a polynomial P(λ) whose zeros
provide in total four correct eigenvalues. Apart from λ1 it also
gives λ2 = 0.902 445 536 212 661 (note that this eigenvalue of
S is very close but different to the eigenvalue ρ1 of S0) and
λ3,4 = 0.765 857 950 563 684 ± i 0.251 337 495 625 571 such
that |λ3,4| = 0.806 045 245 100 386. All these four core space
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eigenvalues coincide very well with the first four eigenvalues
obtained from the Arnoldi method. However, the other zeros
of the polynomial P(λ) lie again on a circle, now with a
reduced radius ≈ 0.7, and do not coincide with eigenvalues
of S. This can be understood by the fact that the coefficients
cj obey for j → ∞ the more precise asymptotic expression
cj ≈ C1ρ

j

1 + C2ρ
j

2 + C2ρ
j

3 + · · · with the next eigenvalues
ρ2 = 1/

√
2 ≈ 0.707 and ρ3 = −ρ2. Here the first term C1ρ

j

1
is dealt with analytically by the replacement of the geometric
series, but the other terms create a new convergence problem.
Therefore the improved approximation allows us only to
determine the four core space eigenvalues with |λj | > |ρ2,3| =
1/

√
2. To obtain more valid eigenvalues it seems to be

necessary to sum up by geometric series many of the next
terms, not only the next two terms due to ρ2 and ρ3, but also
the following terms of smaller eigenvalues ρj of S0. In other
words the exact pole structure of the rational function R(λ)
has be kept as best as possible.

Therefore due to the rational structure of the function R(λ)
with many eigenvalues ρj of S0 that determine its precise pole
structure we suggest the following numerical approach using
high-precision arithmetic. For a given number p of binary
digits, e.g., p = 1024, we determine the coefficients cj for
j < l where the cutoff value

l ≈ ln(1 − ρ1) − p ln(2)

ln(ρ1)
≈ 6.753 p + const (D4)

is sufficiently large to evaluate the sum (D3) accurately in the
given precision of p binary digits (error below 2−p) for all
complex values λ on the unit circle, i.e., |λ| = 1, where the
series converges well. Furthermore we choose a number nR

of “eigenvalues” we want to calculate, e.g., nR = 300, and
evaluate the rational function R(z) at nS = 2nR + 1 support
points zj = exp(2πi j/nS) (j = 0, . . . , nS − 1) uniformly
distributed on the unit circle using the series (D3). Then we
calculate the rational function RI (z) which interpolates R(z)
at the nS support points zj , RI (zj ) = R(zj ), using Thiele’s
interpolation formula. Then the numerator and denominator
polynomials of RI (z) are both of degree nR . Thiele’s inter-
polation formula expresses RI (z) in terms of a continued
fraction expansion using inverse differences. This method
is quite standard and well described in the literature of
numerical mathematics; see, for example, Ref. [44]. After
having evaluated a table of nS inverse differences (with n2

S/2
operations) one can evaluate arbitrary values of RI (z) using
the continued fraction expansion (with nS operations). It
is not very difficult to derive from the continued fraction
expansion a recursive scheme to evaluate the values of the
numerator and denominator polynomials separately as well
as their derivatives. Using this scheme we determine the
nR complex zeros of the numerator polynomial using the
(high-precision variant of the) Newton-Maehly method. These
zeros correspond to the zeros of the rational functional R(z)
and are taken as approximate eigenvalues of the matrix S of the
second group. The main idea of this approach is to evaluate
these zeros from the analytical continuation of R(z) using
values for |z| = 1 to determine its zeros well inside the unit
circle.

We also consider a second variant of the method where
the number of support points nS = 2nR + 2 is even (instead
of nS = 2nR + 1 being odd as for the first variant). In this
case the numerator polynomial is of degree nR + 1 (instead of
nR) while the denominator polynomial is of degree nR , and
we choose to interpolate the inverse of the rational function
1/R(z) [instead of R(z) itself] by RI (z) such that the zeros of
R(z) are given by the nR zeros of the denominator (instead of
the numerator) polynomial of RI (z).

The number nR must not be too small in order to well
approximate the second identity in (D1) by the fit function.
On the other hand for a given precision of p binary digits
the number of nR must not be too large as well because
the coefficients cj , which may be written as the expansion
cj = ∑

ν Cν ρ
j
ν , do not contain enough information to resolve

its structure for the smaller eigenvalues ρj of S0. Therefore
for too large values of nR (for a given precision), we obtain
additional artificial zeros of the numerator polynomial (or of
the denominator polynomial for the second variant) of RI (z),
mostly close to the unit circle, somehow as additional nodes
around the support points.

It turns out that for the proper combination of p and nR

values the method provides highly accurate eigenvalues and
works astonishingly well. In particular for values of nR below a
certain threshold (depending on the precision p) both variants
of the method with odd or even number of support points
provide numerically identical zeros (with final results rounded
to 52 binary digits), which indeed coincide very accurately (for
most of them) with the eigenvalues of S we want to determine.

We note that the rational interpolation method allows us
only to determine the eigenvalues of S of the second group,
i.e., the eigenvalues which are not eigenvalues of S0 and whose
eigenvectors obey dT ψ �= 0. The eigenvalues of the first group
(with dT ψ = 0) have to be determined separately by the
scheme of degenerate subspace eigenvalues of S0 described
in Appendix C. In particular the eigenvalues given in Table VI
and belonging to the first group are not zeros of the rational
function R(z) (they are actually poles of this function), but it
turns out that there are some zeros ofR(z) which are very close
but not identical to some of the values in Table VI. For example,
the rational interpolation method provides the following
zeros: 1/2 + 3.134 010 98 × 10−5, 1/2 + 1.327 9300 × 10−7,
1/

√
2 − 1.1597 × 10−10 or 1/

√
2 − 6.419 004 × 10−8, which

are indeed accurate in the given precision since they are stable
for all values of p � 1024 and the corresponding maximal
value of nR , and we have stopped the Newton iteration when
the error of a zero was clearly below 10−18. These zeros are also
found with the same precision in the data of the high-precision
Arnoldi method for the three different values of 256, 512,
or 768 binary digits. However, based only on results of the
Arnoldi method it is not really clear if the small corrections to
1/2 or 1/

√
2 are real and exact or numerically artificial since

the Arnoldi method has indeed problems with degenerate and
clustered eigenvalues [17]. Therefore the rational interpolation
method provides an independent and strong confirmation of
the accuracy of these type of eigenvalues. We attribute their
existence to a quasisubspace structure, similarly as discussed
in Ref. [10], with a matrix subblock as in (C2) but which is
still very weakly coupled (by many indirect network links) to
the core space.
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[31] J. Sjöstrand, Duke Math. J. 60, 1 (1990).
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