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With the advancement in the information age, people are using electronic media more frequently for com-
munications, and social relationships are also increasingly resorting to online channels. While extensive studies
on traditional social networks have been carried out, little has been done on online social networks. Here we
analyze the structure and evolution of online social relationships by examining the temporal records of a
bulletin board system �BBS� in a university. The BBS dataset comprises of 1908 boards, in which a total of
7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the
appearance of the name of a student in the from- and to-field in each message. This yields a weighted network
between the communicating students with an unambiguous group association of individuals. In contrast to a
typical community network, where intracommunities �intercommunities� are strongly �weakly� tied, the BBS
network contains hub members who participate in many boards simultaneously but are strongly tied, that is,
they have a large degree and betweenness centrality and provide communication channels between communi-
ties. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure,
which has never been empirically characterized in the past, might provide a new perspective on the social
opinion formation in this digital era.
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I. INTRODUCTION

With the advancement in the information age, people are
using electronic media for communication more frequently,
and social relationships between people are also increasingly
resorting to online communications. For example, the advent
of online bulletin board systems �BBS� made it possible to
develop a new type of an online social relationship and so-
cial consensus. Very similar to the Usenet service, which was
fairly popular during the earlier days of the internet, BBS is
based on the communication between people sharing com-
mon interests; the topic of interest is usually identified by the
board itself. People with common interests post messages on
a certain board and a response is conveyed by posting an-
other message, thereby forming a thread. Thus, a thread in
the BBS roughly represents a dialogue between people, and
such a dialogue constitutes the basic relationship among the
people participating in it. In the BBS, dialogues or discus-
sions usually proceed with little restriction on message writ-
ing and discrimination based on personal information,
thereby forming the so-called “warm” discussions as de-
scribed in psychosociology �1�. Therefore, the pattern of
such online social relationships may be different from that of
traditional social relationships based on face-to-face contact
or online communication involving an exchange of personal
information, such as e-mail transactions �2–6� and instant
messaging �7�. Thus, it would be interesting to study the
structure of online social relationship networks constructed

by people in warm discussions; this would be useful in re-
solving diverse sociological and political issues and under-
standing the manner in which social opinion is formed in the
digital era �8–12�. Extensive studies on traditional social net-
works have been carried out �13–15�; however, few studies
exist on online social networks. Here, we investigate the
structure of online social networks by studying BBS net-
works, which are familiar to university students.

From the graph theoretical perspective, the BBS network
offers distinct features such as weighted and modular net-
work structure. Since the number of times a given pair of
people exchange dialogues can be counted explicitly, a
weighted network is naturally obtained �16�. Moreover, since
people are sharing a board corresponding to their common
interests, BBS provides an unambiguous way of defining
modules or communities �17�. This is unlike other examples
of accessible protocols, including the sibling and/or peer re-
lationship in the online community �18� and trackback in the
blog system �19�. In fact, the BBS network constructed by us
differs in crucial aspects from other affiliation networks such
as the collaboration network �20� and student course regis-
tration network �21�. In these examples, the relationship be-
tween people is not explicitly defined but is indicated indi-
rectly by their affiliation. Such an indirect definition
generates several cliques, completely connected subgroups,
which may result in an artifact particularly in the case of
large-sized affiliations. Thus, to obtain a network of people
with explicit pairwise interaction strength together with a
distinct community definition is crucial for an appropriate
description of the social system. The BBS network provides
such ingredients.

The BBS network has interesting structural features and
implications. It contains hub members who participate in dia-
logues across a large number of boards, thereby connecting
one group of people at one board to another group at a dif-
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ferent board. Further, their degrees, which are the numbers of
people that they have exchanged dialogues with, are large,
thereby influencing other people throughout different com-
munities. As a result, the hub members act as weak ties in
connecting different communities; however, their links are
strong during an actual activity. On the other hand, intra-
board connections are rather homogeneous in degree. Such a
network feature is in contrast to traditional social networks
maintained by the ties bridging disparate communities,
which tend to be weak, as proposed by Granovetter �14�. The
difference is schematically depicted in Fig. 1. We also at-
tempt to understand the BBS network from the perspective
of a simple network model. In the model, we take into ac-
count the empirical fact that the BBS network contains
groups of which size are inhomogeneous. In addition, the
link density of each group is not uniform, however decreases
with increasing group size, which has been usually neglected
when a model is constructed. The model constructed in this
way is successful in reproducing the BBS network.

II. BBS NETWORK

We mainly examined the BBS system at the Korea Ad-
vanced Institute of Science and Technology; it is named as
loco.kaist.ac.kr. The characteristics of the network
structure obtained from this BBS system also appear in an-
other system, bar.kaist.ac.kr. The data comprise
records of all the threads posted from 9 March 2000 to 2
November 2004, thus corresponding to a duration of around
three and a half years. As of November 2004, the system
comprised 1908 boards with a total of 7446 participating
students. In order to ensure privacy, we are only allowed to
access the information on “from,” “to,” the date of posting,
and the name of the board it was posted on, for each mes-
sage. Most of large boards in this BBS are found to be of
personal blog-type, but it also include community or topical
boards, such as a university club or alumni union. Based on
this information, we constructed the network between stu-
dents such that for each message, an edge was assigned be-
tween two students appearing as from and to. Alternatively,
an arc �a directed edge� can be assigned for each message;
however, we found that the communications are largely re-
ciprocal: Approximately a half of the postings are accompa-
nied by another one with its from and to fields reversed, for
example, a “Re:” message. Subsequently, we shall consider
the network as undirected for simplicity.

Our network construction naturally yields a weighted net-
work in which the weight wij of the edge between two stu-

dents i and j is determined by the number of messages they
exchanged during the period. The detailed statistics of the
BBS are listed in Table I.

III. STRUCTURE OF THE BBS NETWORK

A. Student network

The global snapshot of the student network in Fig. 1 re-
veals the inhomogeneity among the students. The degree ki
of a student i, which is the number of students he and/or she
has exchanged dialogues with, is distributed according to a
power law with an exponent of around −1 followed by an
exponential cutoff, as shown in Fig. 2�a�. This feature is
similar to that of the scientific collaboration network �20�.
The strength si of a student i is the sum of the weight of each
edge attached to i. Therefore, si=� j

Naijwij, where aij is the
component of the adjacent matrix; its value is 1 if an edge is
connected between vertices i and j and 0 otherwise. wij is the
weight of the edge between i and j. The strength and degree
of a student exhibit a scaling behavior s�k��k� with �
�1.4; however, the fluctuation is quite strong,particularly for
a small k �Fig. 2�b��. The strength distribution exhibits a
behavior that is similar to that of the degree distribution;
however, the value of the cutoff is larger �Fig. 2�a��. The
nonlinear relationship between s and k implies that the hub
members tend to post messages considerably more fre-
quently than the other people, as is evident in Table II.

Other standard measures of network topology are also
obtained. The local clustering coefficient ci is the local
density of transitive relationships, defined as the number
of triangles formed by its neighbors, cornered by itself,
i, divided by the maximum possible number of these,
ki�ki−1� /2. The average of ci over vertices with a given
degree k is referred to as the clustering function C�k�. For
the student network, C�k� decays as �k−0.5 for large k,
and its weighted version defined in Ref. �16�1 behaves as

1In Ref. �16�, the local weighted clustering coefficient was defined
as ci

�w�=� j,h�wij +wih�aijaihajh / �2si�ki−1��. C�w��k� is the average of
ci

�w� over vertices with degree k. The weighted average nearest-
neighbors degree of vertex i was defined as knn,i

�w� =� j=1
N aijwijkj /si.

knn
�w��k� is the average of knn,i

�w� over the vertices with degree k.

TABLE I. Statistics of the BBS network as of November 2004.
The numbers in parentheses are the statistics for non-self-dialogs.

Number of students N 7446 �7421�
Number of links L 103 498 �103 473�
Number of dialogs W 1 299 397 �1 267 292�
Number of boards G 1908 �1872�
Size of the largest cluster N1 7350

Average size of the boards S̄ 32.0 �32.6�

Average board memberships of

a student B̄

8.2

Average path length D 3.3

Mean degree �k	 27.8 �27.9�

FIG. 1. �Color online� Schematic network snapshots of the BBS
network �a� and traditional social network �b�.
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C�w��k��k−0.3, as shown in Fig. 2�c�. The clustering coeffi-
cient C, which is the average of ci over all vertices with
k�1, is �0.48. This is one order of magnitude greater than
Crandom�0.04 of its typical randomized counterpart with an
identical degree sequence �22�. The average nearest-neighbor
degree function knn�k�, which is defined by the average
degree of the neighbors of vertices of degree k, is almost
flat for the student network; nevertheless, its weighted ver-
sion defined in �16� shows a slightly upward curvature for
large k �Fig. 2�d��. The assortativity coefficient �23� for the
binary network and the Spearman rank correlation of the
degrees are measured to be close to zero, as r�0.011 and
rSpearman�0.024, respectively. This almost neutral mixing,
which is in contrast to the common belief that social net-
works are assortative, has also been observed in another on-
line social network �18�.

The number of boards that a student participates in is
likely to be larger for students with a larger degree, as shown

in Fig. 2�e�. Its distribution follows a skewed functional form
in Fig. 2�f�. These results imply an important fact that a
group of people with a large degree tend to participate in
diverse dialogues on different boards and will play a domi-
nant role in drawing social consensus on diverse issues.
Moreover, they work as mediators between different groups
in an online social community.

The betweenness centrality �BC� or load �24–26�, which
is defined as the effective number of paths or packets passing
through a given vertex when every pair of vertices gives and
receives information, is also measured. The BC distribution
follows a power law with an exponent �2.2, as shown in
Fig. 3�a� and the BC of a given vertex � is strongly corre-
lated to its degree k as ��k1.6 as shown in Fig. 3�b�. This
implies that the hub members have a large BC and have a
strong influence on the remaining people.

In other words, the student network is extremely hetero-
geneous, highly clustered, and yet, almost neutrally mixed,

FIG. 2. Structure of the BBS network. �a� The
degree distribution Pd�k� ��� and the strength dis-
tribution Ps�s� ��� of the entire network. The
straight line is a guideline with a slope of −1. �b�
The degree-strength scaling relation s�k�. The
straight line is a guideline with a slope of 1.4. �c�
The clustering function C�k� ��� and its weighted
version ���. The straight lines are guidelines
with slopes of −0.5 �lower� and −0.3 �upper�, re-
spectively. �d� The average nearest-neighbor de-
gree function knn�k� and its weighted version
���. �e� The correlation between the degree and
the membership number B. The dotted line is a
guideline with a slope of 1. �f� The membership
number distribution of the vertices PB�B�, where
B is the number of boards that a student partici-
pates in. The straight line is a guideline with a
slope of −1.
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thereby exhibiting a strong nonlinear relationship between
the strength and degree.

B. Board network

The procedure for constructing the board network is simi-
lar to the usual projection method of the bipartite affiliation
network. We create a link between two boards if they share
at least one common member. In other words, each student
participating in more than one board contributes a complete
subgraph—a clique—to the board network. Thus, the board
network is the superposition of cliques, each of which origi-
nates from the crossboard activities of a student. Such cross-
board activities will provide channels for information trans-
mission across the boards. In order to assign meaningful
weights to these channels, all the links in each clique are
assigned a weight that is equal to the inverse of the number
of vertices in that clique. In other words, the communication
channels created by the students posting on fewer boards are
stronger. Therefore, the weight of an edge between two
boards increases with the number of comembers; however,
the contributions of “ubiquitous persons” would only be
moderate. The strength of a board is the sum of the weights

of its edges. Such a strength distribution along with the de-
gree distribution, which does not account for the weight, is
shown in Fig. 4�a�. The relation between the strength and
degree is shown in Fig. 4�b�.

The board network is quite highly clustered with a clus-
tering coefficient of �0.61, and the clustering function de-
creases with k �Fig. 4�c��. However, it is worth noting that
such a high clustering may result from the generation of
cliques by the projection procedure. Moreover, even the ran-
domized board network has a clustering coefficient as high
as �0.48. The average nearest-neighbor degree initially in-
creases with k but decreases for larger k. However, its
weighted version increases monotonically with k, as shown
in Fig. 4�d�.

IV. STUDENT NETWORK WITHIN A BOARD

Upon examining the networks within a board, we were
presented with a different scenario. As shown in Fig. 5�a�,
the degree distributions of the student networks within the
boards are rather homogeneous. They exhibit a peak fol-
lowed by an exponential tail, which overall fits well into the
gamma distribution. Here, the degree k must be specified in
further detail. Consider a case where two students A and B
on a given board do not communicate directly with each
other. However, this communication between A and B can
occur on a different board. In this case, the two students are
regarded to be connected for the definition of degree in Fig.
5�a�. When such a pair is regarded to be disconnected, the
degree k0 is redefined and its distribution exhibits fat tails, as
shown in Fig. 5�b�; this was also observed in another BBS
system �27�.

The size of the board, which denotes the number of stu-
dents posting messages on it, has a broad distribution �Fig.
5�c��—a power law followed by a rapidly decaying tail. The
edge density � inside a given board scales with its size M as
��M��M−0.65, as shown in Fig. 5�d�. Such a behavior can-
not be observed in the random sampling of populations of
different sizes, thereby indicating that the communications
between students are indeed strongly constrained within each
board rather than across them. Further, the power-law scaling
behavior suggests that the BBS network is organized in a
self-similar manner. From this result, it is evident that the
usual projection method involving the creation of cliques by

TABLE II. The fraction of the dialogs contributed by hub mem-
bers with a degree larger than 80 in the first ten longest threads. The
degree value of 80 is chosen approximately in Fig. 2�a�; beyond this
degree, the power law for the degree distribution fails.

Rank
Thread
length

Number of dialogs
contributed by
hub members

Fraction
�%�

1 229 181 79

2 121 70 58

3 92 92 100

4 74 45 61

5 67 16 24

6 66 45 68

7 65 27 41

8 64 34 53

9 54 54 100

10 50 50 100

FIG. 3. �a� The betweenness centrality �BC�
distribution of the BBS network. The dotted line
is a guideline with a slope of −2.2. �b� The rela-
tion between BC ��� and degree �k� of the BBS
network. The dotted line is a guideline with a
slope of 1.6.
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FIG. 4. Structure of the board network. �a�
The degree distribution Pd�k� ��� and strength dis-
tribution Ps�s� ��� of the board network. �b� The
degree-strength relation in the board network.
The straight line is a guideline with a slope of 1.
�c� The clustering function C�k� ��� and its
weighted version ���. �d� The average nearest-
neighbor degree function knn�k� ��� and its
weighted version ���.

FIG. 5. Properties of the board subnetwork.
�a� The degree distributions of subnetworks
within the five largest boards. Symbols used are
���, ���, ���, ���, and ��� in the decreasing
order of board size. The fitted curves with the
gamma distribution ka−1e−k/b / ���a�ba� are
shown. �b� The degree distributions of subnet-
works within the five largest boards with degrees
redefined as discussed in the text. �c� The size
distribution of the boards PM�M�. The straight
line is a guideline with a slope of −0.7. �d� The
link density ��M� within a board as a function of
its size M. The straight line is a guideline with a
slope of −0.65.
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bipartite affiliation graphs cannot provide an appropriate de-
scription of the BBS system. Moreover, such a size-
dependent scaling of edge density within groups has not been
realized thus far in a simple model of a clustered network
�28�.

V. EVOLUTION OF THE BBS NETWORK

The daily record of the BBS network also allows us to
examine the temporal evolution of the network. The number
of vertices �students� N grows exponentially after the tran-
sient period; however, the continuously moderated growth
rate appears to attain a steady state �Fig. 6�a��. Similar be-
havior is observed in the case of the number of links L and
the number of dialogues W. The number of boards G grows
at a rather steady rate over the period. Preliminary analysis
of the temporal evolution at the individual level shows a
tendency that older nodes may acquire more degrees on av-
erage but with a distributed growth rate. A detailed analysis
will be presented elsewhere �29�.

Despite its continuous evolution, the structural properties
of the network seem to be in a stationary state. In other
words, the overall network characteristics such as the degree
distribution and clustering function achieve their forms in the
initial period �after �1 year�, and do not change consider-
ably with time, as shown in Figs. 6�c� and 6�d�. The cross-
over time scale of approximately 1 year can also be observed
in terms of the evolution of the number of vertices N: Their
growth patterns change qualitatively after �10 months, as
seen in Figs. 6�a� and 6�b�. We also found that the hubs
became rather stable, in that most of hub nodes identified

from the whole history remain to be hubs identified from the
last year’s activity only.

VI. SIMPLE MODEL

Having identified the main statistical characteristics of the
BBS network, we attempt to understand them from the per-
spective of a simple network model. First, we consider a
simple extension of the model of a clustered network intro-
duced by Newman �28�. The original model of Newman is
specified with two fundamental probability distributions, rm
and sM. rm represents the probability that an individual be-
longs to m groups �PB�B� in our notation; �see Fig. 5�d��� and
sM, the probability that the group size is M �PM�M� in our
notation�. By assuming that the link density within the
groups is given by a constant parameter p, it is possible to
obtain several of formulas for the network structure using the
generating function method. For example, the degree distri-
bution of the network can be written as follows:

Pd�k� = 
 1

k!

dk

dzk f0�g1�pz + q��

z=0

, �1�

where f0�z� and g1�z� are appropriate generating functions
defined as f0�z�=�m=0

� rmzm and g1�z�= �M	−1�M=0
� MsMzM−1,

and q=1− p.
However an obvious shortcoming of the model is that in

real data, the link densities are not uniform across the boards
and they strongly depend on the board size, as shown in Fig.
5�d�. In fact, by simply applying this model with the average
link density p�0.3 along with rm and sM, directly measured

FIG. 6. Evolution of the BBS network. �a�
The temporal evolution of the number of students
N �solid�, number of links L �dashed�, total num-
ber of dialogs W �dotted�, and the number of
boards G �dot-dashed�. �b� The same plot as �a� in
the double logarithmic scale. �c� The evolution of
the degree distribution Pd�k� of the student net-
work. The degree distribution for each year is
shown. The symbols ���, ���, ���, and ��� cor-
respond to each year from 2001 to 2004, respec-
tively, and ��� represents the final configuration.
�d� The clustering function C�k� for each year.
The same symbols as those in �c� are used.

GOH et al. PHYSICAL REVIEW E 73, 066123 �2006�

066123-6



from the data, the degree distribution of the BBS network
cannot be reproduced. Therefore, we modify the model by
allowing p to vary across the group, based on the empirical
formula ��M��M−0.65. Such a modification complicates the
mathematical formulas and they must be solved numerically.
The resulting degree distribution of the modified model
along with that of the real data is shown in Fig. 7. Although
it is imperfect, the agreement improved significantly. Thus, it
is crucial to incorporate the nonuniform link density into the
realistic modeling of the BBS network.

The manner in which the group size distribution, group
membership distribution, and group density scaling, which
are the input parameters of the model, achieve their present
forms, as shown in Figs. 5�c� and 5�d�, is a topic for future
study.

VII. CONCLUSIONS AND DISCUSSION

The BBS network contains hub members who participate
in dialogues across a large number of boards, thereby con-
necting one group of people at one board to another group at
a different board. Further, their degrees are large, thereby
influencing other people throughout different communities.
As a result, the hub members act as weak ties in connecting
different communities; however, their links are strong during
on actual activity. Such a feature has recently been observed
also in the bug-reporting communication patterns in online
software development community �30�. On the other hand,
intraboard connections are rather homogeneous in degree.
Such a network feature is in contrast to traditional social
networks maintained by the ties bridging disparate commu-
nities, which tend to be weak. In the BBS network, the
strength s, i.e., the total number of dialogues each individual
participates in has a nonlinear relationship with the degree k
as s�k1.4. This implies that the hub members tend to post
messages at considerably more frequently than the other

people with small degrees. The neutrality in the assortative
mixing is another feature of the BBS network compared with
the assortativity in traditional social networks. Such a behav-
ior may originate due to the absence of personal information
on the partner during online social communication. Thus,
hub members are democratic in their connections to the re-
maining people, and they are indeed “ubiquitous persons.”
Since the hub members play a dominant role in providing
communication channels across different boards, it might be
more efficient to use a BBS-like online media for persuading
people and drawing social consensus than traditional social
networks based on person-to-person relationships. We at-
tempt to understand the BBS network from the perspective
of a simple network model. In the model, we take into ac-
count the empirical fact that the BBS network contains
groups of which size are inhomogeneous. In addition, the
link density of each group is not uniform, however it de-
creases with increasing group size, which has been usually
neglected when a model is constructed.

It would be interesting to implement the present work in
the context of a previous study involving a psychosociologi-
cal experiment on group discussions and the resulting con-
sensus �1�, in which, group discussions are distinguished into
two types, “warm” and “cold.” In the former type, people
express their thoughts freely without any restriction, while in
the latter, group discussions are restricted by some constraint
either explicitly or implicitly, for example, the hierarchy in
group members. The experimental study concludes that the
consensus measured after group discussions can be different
from that before the discussions depending on the type. In
the former, the consensus after discussions shifts to an ex-
treme opinions, while in the latter, it leads to a trade-off
average group consensus. From the perspective of the experi-
ment, we might state that the dialogues in the BBS are warm
because no restriction is imposed on posting messages and
little information on the personal background of the partner
is provided. Thus, the dialogues in the BBS may lead to
radicalized consensus, violent group behaviors, or imagina-
tive and creative solutions to a given issue. Since students
still in the process of developing a value system are vulner-
able to negative influences, and have more opportunities to
be influenced by their peers through online networks in this
digital era than in the past, the proposed network pattern we
report here will be useful in guiding them in the right direc-
tion. Moreover, the BBS network data will be helpful in
understanding the manner in which diverse opinions are syn-
chronized from the psychosociological perspective.
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