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Abstract
Analyzing a large data set of publications drawn from the most competitive journals
in the natural and social sciences we show that research careers exhibit the broad
distributions of individual achievement characteristic of systems in which cumulative
advantage plays a key role. While most researchers are personally aware of the
competition implicit in the publication process, little is known about the levels of
inequality at the level of individual researchers. Here we analyzed both productivity
and impact measures for a large set of researchers publishing in high-impact journals,
accounting for censoring biases in the publication data by using distinct researcher
cohorts defined over non-overlapping time periods. For each researcher cohort we
calculated Gini inequality coefficients, with average Gini values around 0.48 for total
publications and 0.73 for total citations. For perspective, these observed values are
well in excess of the inequality levels observed for personal income in developing
countries. Investigating possible sources of this inequality, we identify two potential
mechanisms that act at the level of the individual that may play defining roles in the
emergence of the broad productivity and impact distributions found in science. First,
we show that the average time interval between a researcher’s successive
publications in top journals decreases with each subsequent publication. Second,
after controlling for the time dependent features of citation distributions, we
compare the citation impact of subsequent publications within a researcher’s
publication record. We find that as researchers continue to publish in top journals,
there is more likely to be a decreasing trend in the relative citation impact with each
subsequent publication. This pattern highlights the difficulty of repeatedly producing
research findings in the highest citation-impact echelon, as well as the role played by
finite career and knowledge life-cycles, and the intriguing possibility that
confirmation bias plays a role in the evaluation of scientific careers.

Keywords: science of science; computational sociology; Matthew effect; career
growth; citation analysis; reputation; success premium

1 Introduction
The business of science is constantly evolving, on multiple levels and time scales, and this
evolution has a profound impact on the institutions and individuals engaged in the pro-
duction of scientific research. Competition plays a central role in pushing science forward,
from the winner-takes-all race for the priority of discovery, to the awarding of research
funds, and the challenge in obtaining a tenure-track faculty position [–]. However, high
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levels of competition and inequality can be detrimental to the overall functioning of the
science system [–], for example by affecting scientists’ decision processes and senti-
ments of ethical responsibility [, –], and by altering the entry rate, the exit rate, and
the overall appeal of careers in science [, –].

Ideally, academia should provide a science career path that is sustainable yet competitive
and efficient [, –]. However, the improvement of the current career system in science
requires a better understanding of how various complex social ingredients - reputation,
cooperation, competition, risk-taking, and creativity - fit together. To begin with, two hall-
marks of complex systems stand out as fundamental to improving our understanding of
the complex science system:

(i) correlated behavior between individuals, due to the competition for finite resources,
the increasing role of collaborative teams in science [, ], and ideation process
arising from the combination of novel versus grounded ideas [],

(ii) systemic memory, whereby cumulative advantage and reputation are known to play
a strong role when integrated across the career [, –].

Here we investigate the high levels of inequality across researcher careers, and then
quantify the role of cumulative advantage by analyzing longitudinal patterns of productiv-
ity and impact. Our focal unit throughout the analysis is the scientific career, even though
we use publication and citation counts as the central quantitative measure. Our data com-
prises , publications drawn from  individual high-impact journals indexed by
Thompson Reuters Web of Knowledge (TRWOK). From these data we extracted the pub-
lication profile of , individual scientists, where each trajectory is defined within a
set of journals.

By analyzing researcher profiles within prestigious journals, we gather insights into the
ascent of top scientists and the operational value of these highly-selective ‘competitive
arenas’. We focus most of the analysis on a case study of two journal sets in parallel,
one representing the natural sciences and the other the economic sciences, each com-
prised of the highest impact journals in each domain. For the natural sciences we aggre-
gated Nature, the Proceedings of the National Academy of Science (PNAS), and Science.
For the economic sciences we aggregated  highly cited journals (e.g. American Eco-
nomic Review, Quarterly Journal of Economics, etc.), selected based on a page-ranking
algorithm applied to journal citation data performed by SCImago Journal & Country Rank
(http://www.scimagojr.com/index.php). Table  lists the journals comprising each journal
set j.

In what follows, we explore at length and depth the statistical patterns that reflect the
complex social processes underlying cumulative advantage in science. Our data are lim-

Table 1 Summary of journal set datasets

Journal set j Years Articles Authors, Rj

Cell 1974-2012 12,349 20,521 (1,006)
Economics (top 14 journals) 1899-2012 44,571 11,882 (1,791)
Management Sci. (top 3 journals) 1954-2012 18,836 6,801 (479)
Nat./PNAS/Sci. 1958-2012 219,656 123,165 (10,317)
New England J. Med. (NEJM) 1958-2012 18,347 34,828 (916)
Phys. Rev. Lett. (PRL) 1958-2012 98,739 61,429 (13,085)

Rj is the number of ‘sufficiently rare’ surnames (see the Data & Methods section) we were able to identify in each journal set j
over the denoted period. The Rj value in parentheses denotes the number of researcher profiles with Li ≥ 5, Np ≥ 5, and
y
j
i,0 ≥ 1960 (Econ.) and y

j
i,0 ≥ 1970 (other).
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ited in the sense that we are not able to pinpoint the specific covariates associated with
cumulative advantage at the individual level (e.g. the emergence of individual reputation
[, ], access to financial and human capital resources [], refinement of talent and
efficiency, collaboration spillovers [, , ], etc.). For an in-depth study using a control
versus treated regression analysis approach, which astutely pinpoints specific covariates
underlying the Matthew effect in science, see []. Here we take an alternative data-science
approach, using longitudinal trends at the individual career level to provide novel insight
into the emergence of cumulative advantage in the context of large number of scientists
competing for limited publication space in prestigious journals.

To this end, we begin in Section . with a visualization of the historical publication
patterns of highly-cited scientists in the natural and economic sciences. Following that,
we present our analysis of the aggregate citation distribution of individual researchers and
observe remarkable statistical regularities in the broad distribution of total citations within
each publication ‘arena’. We then compare these results with the distribution of longevity
and productivity, finding that the skewed productivity distributions persist even among
the scientists with the greatest longevity in each journal set. We also calculate the Gini
inequality indices for both publications and cumulative citations. These initial descriptive
analyses beg the question: How might these skewed distributions, representing relatively
high levels of inequality in science, emerge at the micro level of individual careers?

To address this basic question, we used the longitudinal data for individual researchers
in two complementary analyses to provide evidence for the manifestation of cumulative
advantage. First, in Section . we analyze the waiting times between successive publica-
tions in these highly competitive journals. By analyzing the research profiles of prolific
scientists within elite journals, our quantitative method shows how cumulative advantage
manifests as an increasing publication rate. In Section . we present our second main
result, showing that the relative citation impact of these researchers tends, on average, to
decrease with each subsequent publication.

2 Results
2.1 General evidence of cumulative advantage in scientific careers
Given the complex institutional, economic, and behavioral factors at play in the academic
career system it is no surprise that careers in science demonstrate two of the hallmark
features of complex systems: strong correlations and long-term memory. For evidence of
strong correlations one needs not look further than the collaboration and citation net-
works, which together serve as a backbone for the flow of reputation [, ]. Long-term
systemic memory plays a role in the emergence of researcher reputation, and likely plays
a strong role in social stratification [–]. Consequently, non-linear feedback can am-
plify small, early career, differences into large differences in successful outcomes over the
course of scientific careers, a divergence which follows from integrating the ‘Matthew ef-
fect’ across time [, , ].

In this section we provide a descriptive analysis of research careers defined within two
distinct sets of high-impact journals. The first set of economic researcher profiles are
drawn from  highly-cited journals in political, financial, theoretical, and empirical eco-
nomics. The second set of natural science researchers are drawn from the multidisci-
plinary journals Nature, PNAS, and Science. While we also analyzed other high-impact
journal sets in the management science, cell biology, medicine, and physics domains, in
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the interest of doing a side-by-side comparison, we focus mainly on the economics and
multidisciplinary natural science journals sets. Within each journal set dataset we per-
formed a name disambiguation estimation by analyzing only the research profiles of the
sufficiently ‘rare’ surname + given-name combinations that we aggregated from the au-
thor lists. This disambiguation strategy was recently benchmarked on datasets of similar
size to ours, demonstrating a remarkably high precision given its basic approach []. We
defer our in-depth description of our disambiguation approach to the Appendix.

We start with two motivational questions to help guide our intuition on the path re-
searchers take to success: Are the citation trajectories of top-cited scientists similar? Are
the growth patterns smooth or marked by singular events? To answer these questions we
first calculate the cumulative citation impact achieved by a given researcher, i, via his or
her publications in a given journal set, j. It is important to note that citation counts are time
and discipline dependent, and so we standardized our citation measures by normalizing
each publication’s net citation count by the average total citation count of all publications
published in the same year y in j. This method effectively suppresses the time and disci-
pline dependence [, ].

Hence, the normalized citations of a paper, p, published in a journal belonging to the
journal set j in year y is given by

c̃j
i,p(y) = cj

i,p,Y (y)/
〈
cj

Y (y)
〉
, ()

where cj
i,p,Y (y) is the total number of citations in census year Y to publication p published in

j in year y, and 〈cj
Y (y)〉 is the average citations calculated over all publications in j from the

same year. Y is the year when the citation data was collected from TRWOK (corresponding
to  for Nat./PNAS/Sci. and  for the economics journals, see the Appendix for
further explanation). It is worth mentioning that, despite the fact that Nature, PNAS, and
Science are multidisciplinary journals, for the sake of our analysis, controlling for the base
citation rate is the most important reason for the normalization in Eq. (). Hence, in this
regard, PNAS, Science and Nature are comparable since they each have roughly the same
order of magnitude in their base citations rates (i.e. the total number of times their articles
are cited per year).

Using the normalized citation count c̃, we define a scientist’s net citation count C̃j
i(y) as

the sum,

C̃j
i(y) =

Nj
p(y)∑

p=

c̃j
i,p(y). ()

Here Nj
p(y) represents the scientist’s total publications up to year y. The measure is the

scientist’s cumulative citations measured in units of the mean citation baseline 〈cj
Y (y)〉.

For a given researcher, i, the time variable y runs from the first year yj
i, he/she published

in j to the arbitrary census year Y . Due to the finite citation life cycle of most publications
[], as long as the difference between Y and y is sufficiently long, then the publication p
should have a relative stable ranking amongst the publications from its journal-year co-
hort. In our citation analyses we require the difference Y – y to be at least  years. As
such, C̃j

i(y) is a robust measure of cumulative citation impact. Additional methods have
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Figure 1 Top-cited scientists within the economists and natural sciences journal sets. Top-20
researchers, ranked by C̃ , who had their first publication in the time-period cohort 1970-1980. A trajectory
terminates in the last observed year in which there was a publication within the journal set, and so a single
dot represents a researcher profile with only a single publication. The citation census year Y was 2012
(economics) and 2009 (Nat./PNAS/Sci.). Hence using a 7 year window to allow the citations to properly accrue,
only publications published prior to 2005 for economics and 2002 for Nat./PNAS/Sci. are shown.

also been developed to account for variable team size by further normalizing by coau-
thor number, thus providing a way to aggregate scientists from varying time, discipline,
and even sub-disciplines [, ]. In a very general sense, this detrending approach can
be easily applied to other competitive arenas, such as professional sports, where success
rates can be explicitly era dependent [].

Figure  shows C̃j
i(y) trajectories for top-ranked researchers entering the journal sets

over the decade - (see Figures S and S in Additional file  for researcher rank-
ings using more recent time windows). In the case of economics there appears to be a
greater level of separation (divergence) among the top ranked researches as qualitatively
indicated by the gap between the highest-cited scientists (red curves) and the others. Each
citation trajectory terminates at the year of the final publication within the journal set. In
this way, a single dot corresponds to a scientist with a single publication. Figure  begins to
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Figure 2 Skewed citation impact distributions. The right-skewed P(C̃), which range across more than 4
orders of magnitude, illustrate the wide range of outcomes in scientific winner-takes-all prestige competitions
[1, 41]. To account for censoring bias we show the P(C̃) for the economics arena (A) and for the Nat./PNAS/Sci.
arena (B) by considering non-overlapping scientist cohorts according to when each scientist entered a given
arena by conditioning on his/her first publication being in the indicated time window. In (C) we show the
P(C̃) conditional on the career length within the arena. The dashed grey best-fit curves are calculated using
the log-normal distribution maximum likelihood estimator.

provide an answer to our preliminary questions, showing that the group of highest-cited
scientists are a mixture of individuals whose accomplishments range from a single, mon-
umental, contribution to persistent stream of high-impact publications, and everything
between. However, as we will see below, despite this variability in the paths of ascent,
there are remarkable statistical regularities in the distribution of C̃j

i across all researchers
in each j.

To better understand the relative frequency of ‘superstars’ we calculated the distribution
of normalized career citation counts P(C̃) using logarithmically sized bins to account for
the broad distribution of C̃j

i values. Because C̃j
i controls for the average citation count of

papers published within a specific year cohort, it is particularly well-suited for comparing
achievements which occurred across a broad time range. Figures (A, B) each show three
P(C̃) distributions, one for each of the cohorts indicated in the legend. Figure (C) shows
conditional distributions P(C̃|L), where L is the length of time between the first and last
publication of author i in the journal set j,

Lj
i ≡ yj

i,f – yj
i, + . ()

Interestingly, in each panel the aggregate success distribution is well-described by a log-
normal distribution,

P(C̃) ∝ C̃– exp
[
–(ln C̃ – μ)/σ 

LN
]
, ()
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Table 2 Summary of the Gini index (G) and top-1% share (f1%)

Journal set j Cohort entry years G(C̃) f 1%(C̃) G(Np) f 1%(Np)

Economics 1970-1995 0.80 0.23 0.54 0.09
1970-1980 0.83 0.26 0.56 0.10
1980-1990 0.79 0.21 0.55 0.09
1990-1995 0.74 0.19 0.47 0.07

Nat./PNAS/Sci. 1970-1995 0.69 0.18 0.46 0.10
1970-1980 0.74 0.22 0.53 0.12
1980-1990 0.67 0.15 0.45 0.08
1990-1995 0.63 0.12 0.35 0.06

Inequality measures are calculated from the distribution of citation impact, P(C̃), and from the distribution of productivity,
P(Np ), for the cohorts of scientists whose first publication occurred in the indicated time intervals.

with varying location parameter μ and shape parameter σ , estimated using the log-normal
distribution maximum likelihood estimator method. For small C̃ the log-normal fit has
larger deviations from the empirical data due to fluctuations in the lower bound of C̃
arising from variability in the value of 〈cj

Y (y)〉. Moreover, the poor fit for small C̃ further
indicates that the aggregate empirical distributions are likely mixtures of underlying log-
normal distributions with slightly varying shape and location parameters.

For example, in the - Economics cohort in Figure (A) we calculate μ = .
and σLN = . and for the - Nat./PNAS/Sci. cohort in Figure (B) we calcu-
late μ = . and σLN = .. For contrast, the subset of Nat./PNAS/Sci. scientists in Fig-
ure (C) with L ≥  (with 〈L〉 = , 〈Np〉 = . and 〈C̃〉 = .) have parameters μ = . and
σLN = .. These values can be used to model the growth of C̃ using Gibrat’s stochastic
(proportional) growth model, �C̃t = C̃t–( + η), where η is white noise with mean and
standard deviation depending on the log-normal counterparts, μ and σLN . The limiting
distribution of this multiplicative process is the log normal distribution (see [] for re-
cent empirical and theoretical results on firm growth that provides an appropriate starting
point for the modeling of researchers’ publication portfolios as companies in the small size
limit).

To provide additional intuition regarding the level of ‘inequality’ within these citation
distributions, we calculated the Gini index G as well as the citation share f% of the top %

of researchers in each P(C̃). For example, for the - cohort we observe G = .
(economics) and G = . (Nat./PNAS/Sci.) and found that the top % of researchers
(comprised of  and  researchers, respectively) held a significantly disproportionate
share of % and % of the total C̃ aggregated across all researchers in each distribution.
Table  shows the G(C̃) and f%(C̃) for each cohort group, which indicate for both journal
sets a decreasing trend in the citation inequality over time. We note that our calculations
do not control for the increasing prevalence of large collaborations in science []. There-
fore, because there are correlations between the number of coauthors and the average
citations a publication receives [], and because we did not control for multiple counting
of single publications in the calculation of the total C̃, it is difficult to assess whether the
difference between the inequality values calculated for economics (where coauthorship
effect is weak because the number of coauthors is typically small) and for natural sciences
is attributable to this feature of the data.

For comparison, a recent analysis of US research funding at the institutional level pro-
vides a different picture, indicating a slow but steady increase in the Gini index across U.S.
universities over the last  years, with current estimates of the Gini inequality index for
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Figure 3 Competitive arenas in science. The right-skewed distributions of scientist longevity L and
productivity Np are the starting point for understanding the skewed success distributions in science. Panels A
(Economics) and B (Nat./PNAS/Sci.) address censoring bias in the longevity distributions by considering
separately the cohorts of scientists who entered the Nat./PNAS/Sci. arena in the indicated time window. Panel
C (Nat./PNAS/Sci.) shows the unconditional aggregate longevity distribution. Panels D/E/F show P(≥ Np), the
complementary cumulative distribution function (CCDF) of total publications Np . Panels D/E are analogs of
panels A/B, showing the fixed cohorts of researchers who entered the respective journal arena with their first
publication in the indicated time window. Panel F shows the P(≥ Np|L) distributions conditioned on L, which
indicate that even within the set of ‘iron horse’ researchers with longevity Li ≥ 11 the distribution is still
extremely broad. To guide the eye and emphasize the curvature in P(≥ Np), which is not consistent with a
power-law distribution, we plotted a curve proportional to N–2

p .

university expenditure around G ≈ . []. This increasing trend has also been noted in
data measuring the share of the top % individuals in terms of U.S. income, which has
increased from roughly % to % over the last half century; nevertheless, the  U.S.
income Gini coefficient reported was G = . [], significantly less than what we observed
for these citation distributions.

Success is typically assumed to be strongly correlated with career longevity, but to what
degree does this assumption hold? In Figure , we conditioned the distributions on Li and
find that P(C̃|L) is still well-described by a log-normal distribution, even after controlling
for censoring and survivor bias. Hence, the correlation is somewhat weak, because even
among researchers publishing in Nat./PNAS/Sci. for L ≥  years, the citation distribu-
tions still span a huge range, from C̃ ∼ – to C̃ ∼ , with the maximum value being
roughly  times larger than the characteristic mean value 〈C̃〉 ∼ .

Figures (A, B) show the longevity distributions P(L) conditioned on the first publica-
tion being within a specified time window. Remarkably, roughly half the scientists enter
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and exit the arena in a single year (Lj
i = ), likely with a single publication. At the other

end of the distribution, as indicated by the systemic shift in the tail across cohorts, a rel-
atively small set of prolific scientists steadily publish within the arena throughout their
scientific careers. The tail of the distribution, beginning around the peak in the far right
of the distribution, consists of scientists sustained activity in j for longer than a decade,
representing roughly -% of the researchers analyzed. Aggregating across cohorts, Fig-
ure (C) shows that roughly % of authors enter this arena for the minimum time span
of  year, with only % of the entrants publishing over a period Li ≥  years.

While Figures (A-C) illustrate how long scientists stay active these high-impact arenas,
Figures (D-F) show the productivity distributions P(≥ Np) for the same datasets shown
in (A-C). The top % of the distribution corresponds to individuals publishing roughly
five publications or more, signifying a rather broad productivity distribution even amongst
the researchers with L ≥ . Indeed, comparing P(≥ Np|L) conditioned on career length in
Figure (F), there is a rather large range in Np, e.g. from  to more than  publications
for the subset with L ≥ . We also note that none of the productivity distributions are
consistent with Lotka’s productivity law, P(≥ Np) ∼ N–λ

p , for any value λ.
In order to compare the inequality levels for citation impact to productivity, we also

calculated G and f% for each productivity distribution P(Ñp). For example, for the -
 cohort we calculated G = . (economics) and G = . (Nat./PNAS/Sci.), finding
that the top % of researchers (comprised of  and  researchers, respectively) had
a share of % and % of the total publications. Table  shows the G(Np) and f%(Np)
for each cohort group, which like the citation inequality counterparts G(C̃) and f%(C̃),
suggests that productivity inequality is also becoming more equitable over time. However,
it is worth noting that citation inequality is substantially larger than publication inequality
for each cohort group, arising from the fact that all publications are measured equally and
their value does not increase over time, in contrast to citations which accrue over time.

We conclude this section by noting the similarity and differences between the analysis
performed in ref. []. First, the career citation share and paper share measures defined
in [] normalizes by the number of coauthors (dividing the credit among them equally).
Also, a statistical method to eliminate ‘unfinished’ careers was implemented in [] but
was not used here. Hence, the results in this section, which represent finished and unfin-
ished careers pooled together, neglect the censoring bias arising from including unfinished
careers.

2.2 Decreasing waiting times as quantitative evidence of cumulative advantage
In the previous section we showed that the distributions of impact, productivity, and
longevity are consistent with a highly competitive ‘winner takes all’ system. In this sec-
tion we shift to the longitudinal perspective of researcher trajectories. The schematic in
Figure (A) emphasizes the sequence of accomplishments as they might occur across a
scientist’s complex backdrop of career phases (grad student/postdoctoral fellow → as-
sistant professor → tenured faculty). These career phases are characterized by varying
roles in the research process, shifts in research interests, and the accumulation of various
institutional responsibilities.

Our approach is to measure the longitudinal patterns in the sequence of inter-
publication waiting times of individual researchers. It is important to note that we are
not analyzing the complete publication profile of each researcher, but rather, just the set

http://www.epjdatascience.com/content/3/1/24
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Figure 4 Decreasing inter-publication waiting time τ (n) is quantitative evidence for cumulative
advantage in science. (A) Schematic of a science career, where major accomplishments sustain career
growth. Specifically, publications in high-impact journals serve as a record of scientists capitalizing on
opportunities for success, and the duration τ

j
i (n) between a scientist’s success n and success n + 1 provide a

quantitative method for analyzing cumulative advantage. We search for quantitative evidence of
self-reinforcing social mechanisms by analyzing productivity patterns in specific journal sets that are highly
competitive and widely targeted. (B) The average waiting time 〈τ j(n)〉 between publication n and publication
n + 1 shows a significant decreasing trend as an author continues to publish in a given journal set.
A decreasing τ j(n) between publications suggests that an advanced publication career (larger n) facilitates
future publications by leveraging reputation, expertise, seniority, and other cumulative resources. The values
of 〈τ j(1)〉 are 2.9 yrs. (Cell), 2.4 yrs. (Econ.), 2.8 yrs. (Mgmt. Sci.), 3.6 yrs. (Nat./PNAS/Sci.), 4.3 yrs. (NEJM) and 3.1
yrs. (PRL). The journal PRL exhibits a more rapid decline in τ (n) because of possible rapidity in successive
publications (often by large high-energy experiment collaborations that publish many publications together
in a single issue). Only research profiles with L≥ 5 years and Np ≥ 5 are included in the calculation of these
inter-event waiting-time curves. In order to reduce censoring bias arising form careers that started before the
beginning of each data sample, we only included trajectories with the first publication year yji,0 ≥ 1970 for the
natural and management sciences and yji,0 ≥ 1960 for the economic sciences. (C, D) Complementary
cumulative probability distribution, P(≥ τ (n)), for publications n = 1, . . . , 15 in (C) the Economics and
(D) Nat./PNAS/Sci. journal sets. The distributions are right-skewed, indicating the possibility of a relatively long
waiting time τ (n) for all n. However, by n = 10 the observed likelihood of waiting 3 or more years,
P(≥ 3|n = 10), falls to roughly 0.2 for both Econ. and Nat./PNAS/Sci.

http://www.epjdatascience.com/content/3/1/24
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of publications within each journal set j. Given the significant incentives for publishing in
top journals, both in terms of prestige [, ] and financial benefits [], we assume that
‘if a researcher could publish in one of these journals, he/she would.’ In this regard, the
information contained in the waiting times between successive publications can provide
quantitative insight into the workings of cumulative advantage.

For each i in j we define a sequence of waiting times, τ j
i (n), for which the nth entry is the

number of years between his/her publication n and publication n+ in a given journal set j.
For example, the average time 〈τ j()〉 between an author’s first and second publication in
both NEJM and Nat./PNAS/Sci. is roughly four years, whereas in the biology journal Cell
and the physics journal PRL, the initial mean waiting time is closer to three years.

Figure (B) shows that the average 〈τ j(n)〉 decreases significantly with increasing n for
each journal arena analyzed. Indeed, by the around the th publication the waiting time
τ j() has decreased to roughly / of the initial waiting time τ j(). Moreover the rate of
publications becomes roughly one per year after the th publication in the economics
journal set, and one per year after the th publication in the non-physics journal set, and
on average one per year after the th publication in PRL.

In order to provide new insights beyond what was already shown in [], we have ex-
tended the waiting-time analysis to the research domains of economics and management
science, and have also analyzed the distribution of waiting times P(≥ τ j(n)) which are
shown in Figures (C, D) for n = , . . . , . Notably, the systematic shift towards smaller
τ j(n) is not only reflected by the median and the mean τ j(n) value, but is also visible across
the entire distribution. Indeed, by n =  the observed likelihood P(≥ |n = ) of waiting
 or more years until the next publication ( years being a characteristic time scale asso-
ciated with both a scientific project and a scientific collaboration), falls to roughly . for
both Econ. and Nat./PNAS/Sci. A factor likely contributing to this systemic trend is the
steady exponential growth in the total number of publications per year (recently measured
for physics and cell biology to be around % growth per year []), as well as a slow but
substantial % to % exponential growth in coauthorship size over time depending on the
discipline [], both of which could account for an overall decrease in publication waiting
times.

The significant smaller values for the journal PRL largely reflects the large variations
in team size as well as the type of research design - experimental and theoretical - occur-
ring in physics. To elaborate, we ponder three basic pathways to publishing more than one
publication in this high-impact journal per year. The first pathway involves a theoretical
physicist with a very inspiring year - e.g. Albert Einstein’s  ‘Annus Mirabilis’ - who
is able to rapidly publish more than one (relatively short, ≤ pages) letters in succession.
This pathway, however, is likely unsustainable over the long run. The second pathway in-
volves an experimental physicist working at a large particle collider or national laboratory,
working in large teams that publish results with  or more coauthors. In this situation,
a scientist in a top management position or involved with a critical experimental process
may even be able to consistently publish multiple PRL articles per year; For a peculiar
example consider L. Nodulman who has  PRL publications, but with on average 
coauthors per publication! The third pathway, present to all scientists independent of dis-
cipline, reflects a mixture of the first two pathways, whereby a scientist is embedded in
an efficient medium-sized team environment and capitalizes on collaboration spillovers,
thereby consistently producing highly-cited publications. We should also mention that
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PNAS offers a streamlined publication track (‘contributed paper’) for select US National
Academy of Sciences members, an additional idiosyncratic and rare pathway, which nev-
ertheless contributes to the surprisingly large number of scientists that have numerous
publications in the Nat./PNAS/Sci. journal set.

Overall, Figure  provides evidence that cumulative advantage plays a strong role when
it comes to publishing in elite journals. In fact, the mean waiting time, which can be em-
pirically measured using publication data, also has a simple analytic relation to a position-
dependent progress rate g(n) = /〈τ (n)〉 within a Poisson process framework, where g(n) is
the probability of moving from position n to n +  in a unit time interval. This theoretical
model has been tested on both scientific and sports career data, with the interesting fea-
ture that small modifications to the progress rate g(n) for small n (early career transition
rates) can lead to either a bimodal or a truncated power-law career longevity distributions
[], offering insight into the potential impact of career sustainability policies aimed at
early-career researchers.

2.3 A decreasing longitudinal citation trend
In this section we investigate the longitudinal citation impact trends for the publications in
each researcher profile. This analysis is related to the delicate topic of ‘career predictabil-
ity’ [–], but is distinct in the sense that we focus exclusively on the citation impact
within the most prestigious journals and relative to his/her own citation baseline. Hence,
as a significant number of publications within each scientist’s rank-citation profile [, ]
are missing from our analysis, it is important to note that we do not contend that the ci-
tation trends within the high-impact journal set are representative of the trend within the
scientist’s entire publication portfolio.

We focus on the publication trajectory of individuals within select high-impact jour-
nals, acknowledging that it is likely to reflect factors beyond just the inherent citation
impact of his/her average research output. One possibility is that there is no significant
change in the citation impact of a researcher’s publications over time. A second possi-
bility is that there is an increase in the citation impact with each subsequent publication.
This increasing trend is consistent with a researcher being able to leverage prior success to
improve their research resources [] and to leverage reputation within the community to
increase their base citation rate []. A third scenario is a decrease in the citation impact
over time. This negative trend is consistent with an opportunity premium that is provided
to accomplished scientists via cumulative advantage, such that new opportunities arrive
at effectively a ‘lower cost’ than the base ‘entry cost’.

In order to investigate the longitudinal variation in the citation impact, we map the ci-
tation count cj

i,p,y(n) of the nth publication p of researcher i to a z-score,

zi(n) ≡ ln cj
i,p,y(n) – 〈ln cj

y〉
σ [ln cj

y]
, ()

which allows for a comparison of citation counts across time. The z-score of the log-
citation count in Eq. () is measured relative to the mean (〈· · · 〉) and standard deviation
(σ [· · · ]) of the logarithm of the citations for a given journal set, j, in a given year, y. This
follows naturally since the logarithm of a log-normally distributed variable is a normally
distributed variable (z ∼ N(, )), making the z-score an appropriate statistical measure.
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Figure 5 Empirical distribution of citation impact values conditioned on publication number n.
We aggregate the normalized citation z values of researcher profiles with first publication year yji,0 ≥ 1970 for
Nat./PNAS/Sci. and yji,0 ≥ 1960 for the economic sciences, and with Li ≥ 5 and 5≤ Np ≤ 20. Each panel shows
the probability distribution P(z(n)) conditioned on publication number n = 1, . . . , 10. The z-scores represented
by each P(z(n)) represent a subset of the aggregate set of z values, independent of Li and Np . Because the
unconditional distribution of z values is approximately normal with mean 0 and with units of the standard
deviation (σz = 1), we also plot a normal distribution Normal(0, 1) in each panel for reference (red curve).

We use the convention of replacing cp by  for publications with zero citations; similarly,
the mean 〈ln cj

y〉 and standard deviation σ [ln cj
y] within each journal set are also calculated

excluding publications with no citations. This method of dealing with the logarithm of
zero has a negligible overall effect, since only .% of publications over the time period
- had  citations in the census year  for the Nat./PNAS/Sci. journal set,
and publications in the economics dataset had only twice this frequency.

Figure  shows the distributions of zi(n) conditioned on the publication number n =
, . . . ,  and restricting to researchers with Li ≥  and  ≤ Np ≤ . For example, P(z())
is the distribution of z-scores for the set of first publications, P(z()) is the distribution
for the set of second publications, and so on. Each P(z(n)) is approximately normal, with
a mean and standard deviation that deviates only slightly from the baseline Normal(, )
distribution (red curve) shown for visual comparison.

Next, in order to account for author-specific heterogeneity before we aggregate cita-
tion trajectories across scientists, we centered the z-score around the mean value 〈zi〉 ≡
N–

p
∑

n= zi(n) calculated for the Np publications of a given scientist i. As a result, we ob-
tain the relative citation impact trajectory,

z̃i(n) ≡ zi(n) – 〈zi〉. ()
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Table 3 Summary statistics for two aggregate regression models

Journal set Np A B S p-val. Nfit R2

Economics 4-9 1,090 0.17(3) –0.046(4)  × – 9 0.93
Shuffled 4-9 21,800 –0.003(6) 0.0001(1) 0.68 9 0.03
Economics 10-20 373 0.17(2) –0.021(4)  × – 10 0.87
Shuffled 10-20 7,460 0.01(1) –0.002(2) 0.23 10 0.17

Mgmt. Sci. 5-10 262 0.22(9) –0.05(1)  × – 10 0.63
Shuffled 5-10 5,240 –0.01(3) 0.004(4) 0.40 10 0.09
Mgmt. Sci. 11-20 62 0.5(1) –0.07(2)  × – 10 0.68
Shuffled 11-20 1,240 0.03(2) 0.005(4) 0.20 10 0.19

Nat./PNAS/Sci. 5-10 3,953 0.15(2) –0.035(4)  × – 10 0.93
Shuffled 5-10 79,060 –0.006(8) 0.002(1) 0.28 10 0.16
Nat./PNAS/Sci. 11-20 847 0.23(3) –0.032(4) – 10 0.88
Shuffled 11-20 16,940 0.02(1) –0.003(1) 0.05 10 0.36

Journal set Np Nd b s p-val. A R2

Economics 4-9 6,183 0.19(3) –0.053(7)  1,090 0.012
Economics 10-20 3,730 0.17(3) –0.022(6)  × – 373 0.005

Mgmt. Sci. 5-10 1,710 0.26(4) –0.07(1)  262 0.020
Mgmt. Sci. 11-20 620 0.48(9) –0.07(2) – 62 0.042

Nat./PNAS/Sci. 5-10 26,010 0.19(1) –0.048(3)  3,953 0.013
Nat./PNAS/Sci. 11-20 8,470 0.23(2) –0.032(4)  847 0.013

(Top) The regression model (ii) given by Eq.(8): A denotes the number of individual careers that were aggregated for each
mean impact trajectory 〈z̃(n)〉. B and S are estimated using ordinary least squares, along with the F-test p-value, the number
Nfit of data points, and the R2 correlation value. The number in parentheses represents the standard error in the last digit
shown. The ‘shuffled’ values correspond to the parameter estimations using our citation shuffling scheme (conserving the
empirical citation distribution) that also allows for an increase in the sample size by a factor of 20). We also include the
management science careers for comparison since the dataset contained a sufficient number of researcher profiles to
analyze. Bold-faced p-values indicate the regressions with p≤ 0.01. (Bottom) The fixed-effects linear regression model (iii)
(implemented by the function ‘xtreg, vce(robust) fe’ in STATA11) given by Eq. (9). We used the ‘vce(robust)’ Huber-White
variance estimator to account for possible heteroscedasticity in the model errors. Nd denotes the number of observations,
b and s are the coefficient estimates of the fixed-effects model (value in parenthesis is the robust standard error in the last
significant digit), and p-val. corresponds to the model F-statistic F(1,A – 1).

This normalization also helps in controlling for latent effects arising from disciplinary
variation within each j that can affect the citation potential of a paper over time. Using
these standardized z̃i(n) trajectories, we pooled the data across scientists, noting that z̃i(n)
is still measured in normalized units of the standard deviation σln c.

We also separated the researcher data into two sets of profiles, one with medium Np and
the other with relatively large Np, requiring in both cases that Li ≥  so that increasing n
is more likely to correlate with increasing time. In order to reduce censoring bias arising
from careers that started before the beginning of each data sample, we only analyzed tra-
jectories with the first publication year yj

i, ≥  for Nat./PNAS/Sci. and yj
i, ≥  for

the economic sciences.
For both disciplines and for each Np subset we observed on average a negative trend

in z̃i(n). We show this negative trend at two levels of aggregation outlined below, first at
the individual level in method (i), and then at the systemic level in methods (ii) and (iii).
Table  shows the summary statistics and parameter estimates for models (ii) and (iii).

(i) In order to analyze trends at the researcher level, we first analyzed each individual
z̃i(n) separately by performing an ordinary least squares parameter estimation of the pa-
rameters of the basic linear model

z̃i(n) = bi + sin + ε. ()
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Figure  shows the cumulative distribution P(≤ si) for four scientist subsets (see Fig. S in
Additional file  for the analogous plots for the management science researcher profiles).
In each case, the average value 〈si〉, indicated by the vertical blue line, is negative at the
indicated p-value shown within each sub-panel (using the -sided z-statistic with the null
hypothesis that s = ). The P(≤ ) value, ranging between % to % across the four
panels, indicates the excess proportion of the population with negative si. The asymmetry
towards statistically significant negative si values is even more pronounced. For example,
consider the asymmetry in the large Np subsets: of the  economics profiles we analyzed,
only  (.%) had p-val. < . and si >  whereas  (%) had p-val. < . and si < ; of the
 Nat./PNAS/Sci. profiles we analyzed, only  (%) had p-val. < . and si >  whereas
 (%) had p-val. < . and si < .

(ii) In the first aggregate method we calculated the mean citation impact z-score 〈z̃(n)〉
across all researcher profiles within j for a given n, and then performed the ordinary least
squares parameter estimation of the analogous aggregate model,

〈
z̃(n)

〉
= B + Sn + ε. ()

We plot 〈z̃(n)〉 (solid black curve) and the best-fit regression (dashed green line) for each
researcher subset in Figure . To give an example, Figure (A), which refers to scientists
in the Nat./PNAS/Sci. subset with between  and  publications, shows that the mean
impact trajectory decreases by S = . ± . - roughly % of 〈z̃()〉 - with each sub-
sequent publication. This means that after the th publication, the relative impact typically
is ‘subpar’ with respect to a given scientist’s mean 〈zi〉. Interestingly, for the cohort of sci-
entists in Figure (B) with between  and  publications, the impact trajectory starts at
a higher value, and since the slope is approximately equal to the slope in panel (A), the
publications do not become subpar until after the th publication. We observe the analo-
gous trends for the economics journal set. However, the S value for the relatively low-Np

economics subset in panel (C) is significantly more negative than the value estimated for
the high-Np researcher set in panel (D).

(iii) The previous model doesn’t account for the fact that observations are not inde-
pendent (since z̃(n) values within each subset n also depend on i), and that the data are
unbalanced (since Np vary across researchers in each dataset). Hence, we apply a hierar-
chical approach in this second aggregate method by running an unbalanced fixed-effects
regression with standard errors clustered by author i,

z̃i,p = b + sni,p + εi,p, ()

implemented using the STATA regression ‘xtreg, vie(robust) fe’. We used the
‘vce(robust)’ option to implement the ‘Huber/White/sandwich’ estimate of the standard
errors in order to account for possible heteroscedasticity in z̃i,p. This approach also ac-
counts for time-invariant characteristics of the authors. The parameter estimates in Ta-
ble  of this hierarchical regression model show that the estimated coefficients B and b
estimated in Eqs. () and () are consistent in value. The main difference is the explained
variance provided by each method. Method (ii) indicates a large R because it eliminates
the variance in z̃ by representing only the systemic average, whereas the low R value in
method (iii) is a reminder that there are important hidden covariates affecting citation im-
pact that are not captured by this simple model. Other covariates which have been shown
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Figure 6 Evidence consistent with confirmation bias and a counter-effective role of cumulative
advantage. We test whether the relative citation impact z̃i(n) decreases, increases, or is independent of n.
While repeated publication in a highly competitive journals reflects the underlying quality of the researcher, it
also indicates a strong role played by other factors such as author/institutional reputation and social ties with
the journal editors and the referee base, and in the case of PNAS, membership in the US National Academy of
Sciences. (A) Scientists with between 5 and 10 publications in the Nat./PNAS/Sci. arena. (B) Scientists with
between 11 and 20 publications in the Nat./PNAS/Sci. arena. (C) Economists with between 4 and 9
publications in the top economics journal set arena. (D) Economists with between 10 and 20 publications in
the top economics journal set arena. (A-D) For each cohort analyzed, the top panel shows a significant
negative trend in 〈z̃(n)〉 (black curve) with each successive publication. Linear regression of each 〈z̃(n)〉 is
shown by the dashed green line, with the best-fit slope and regression F-test p-value listed in each panel.
In the lower half of each panel we show the empirical cumulative distribution P(≤ si), and list the number of
trajectories analyzed and the mean value 〈si〉 (indicated by the vertical solid blue line). For comparison, we
also plot the P(≤ si) for the shuffled data (dashed black curve), with the mean shuffled value (vertical dashed
gray line). We apply the Kolmogorov-Smirnov test between the empirical and shuffled distributions, and for
each panel we list the p-values that confirm that the underlying si values belong to different distributions.
Only research profiles with L ≥ 5 years were analyzed. In order to ensure that the relative citation impact zp of
a given publication had sufficient time to stabilize within the journal set dataset, only publications published
prior to 2002 for Nat./PNAS/Sci. (since the publication citation counts used were current as of census year
2009) and 2005 for Economics (since citation counts used were current as of census year 2012) were analyzed.
In order to reduce censoring bias arising form careers that started before the beginning of each data sample,
we only included trajectories with the first publication year yji,0 ≥ 1970 for the Nat./PNAS/Sci. and yji,0 ≥ 1960
for the economic sciences.
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to explain citation impact are team size [], institutional prestige [], conceptual novelty
[], and author reputation [].

Additionally, in order to check that our results are not affected by systematic sampling
bias, we analyzed the same sets of impact trajectories in panels (A-D) using a shuffling
method to destroy the author-specific correlations across time. To be more specific, for a
given scientist i we conserved his/her number of publications within the dataset. However,
we randomly assigned a cj

y to each of his/her publications, replacing the true citation value
with a randomly drawn cj

y value from the same year y and journal set j. Because in our
shuffling algorithm we sampled without replacement, this technique conserves the overall
probability distribution Pj

y(c) of citations within a given journal set within a given year,
and hence 〈ln cj

y〉 and σ [ln cj
y] also remain unchanged, as do each P(z(n)). This shuffling

technique also permits an increase in the number of trajectories analyzed within each
subsample since we can reshuffle the data numerous times. Hence, for each journal set we
increased the sample size by producing  shuffled synthetic datasets, thereby increasing
the number of trajectories we analyzed by the same factor.

With respect to method (i), we tested the likelihood that the original si values and the
shuffled si values arise from the same distribution by applying the Kolmogorov-Smirnov
test between the original and shuffled cumulative distributions, P(≤ si). In each case the
p-value is less than –, rejecting the null hypothesis that the two sets of si values be-
long to the same distribution (values reported within each sub panel of Figure ). With
respect to method (ii), we also tested the model in Eq. () for each shuffled 〈z̃i(n)〉, finding
no significant positive or negative trend (see Table  for F-test p-values). Altogether, the
comparison of the shuffled and empirical trajectories confirms that our estimates of S and
si are not sensitive to systematic sampling artifacts.

Figure  shows a scatter plot which allows for the visual comparison of four descrip-
tive variables for each researcher trajectory: the impact score of the st publication zi(),
the trajectory slope si, the mean impact value 〈zi〉, and the total number of publica-
tions Np,i. This scatter plot indicates an overall negative relation between zi() and si,
indicative of the difficulty in sustaining high-impact research as well as the lack of pre-
dictive information contained in early achievement, zi(). To further investigate their re-
lation, for each journal set we estimated the coefficients of the linear regression model,
si = β + βzi() + β log Np,i + β〈zi〉. Consistent with the scatter plot, we observed the
coefficient for zi() to be negative (β = –. for Econ. and Mgmt. Sci. and –. for
Nat./PNAS/Sci., each estimate statistically significant at the p ≈  level). Consistent with
the S values for the medium versus large Np subsets, we also observed a positive coeffi-
cient for ln Np,i (β = . for Econ., . for Mgmt. Sci., and . for Nat./PNAS/Sci., each
estimate statistically significant at the p = . level). In each regression the coefficient for
〈zi〉 was not statistically significant and the adjusted R was roughly ..

3 Conclusion
What can data science offer to the science of science? By leveraging the rich longitudinal,
geographic, and cross-sectional aspects of large publication and patent datasets, new in-
sights into career growth amidst the unabating competition for scientific credit [] can
provide institutions and policy makers important knowledge on how to assess and react
to paradigm shifts in science.
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Figure 7 Visualizing the covariates underlying si . Scatterplot visualization of the impact score of the 1st
publication zi(1), the trajectory slope si , the mean impact value 〈zi〉 (color of the data point), and the total
number of publications Np (proportional to the size of the data point). These scatter plots demonstrate that
there is an increased likelihood that a decreasing trend (si < 0) starts with a positive above-average citation
value (zi(1) > 0), indicative of how difficult it can be to consistently publish above-average research. A linear
regression model indicates a negative relation between si and zi(1) and a positive relation between si and Np

(see discussion in text).

3.1 Success distributions in science
Here we have provided evidence that research careers exhibit the broad distributions of
individual success characteristic of competitive systems in which cumulative advantage
plays a key role. The inequality in research career activity in high-impact journals can be
appreciated by considering the Gini coefficient calculated from the distribution of individ-
ual researcher productivity and impact. For example, pooling the Nat./PNAS/Sci. publi-
cation profiles that began within the period -, we observed a Gini index G = .
for publications and G = . for citations. For economics we observed even higher lev-
els of inequality, with G = . for publications and G = . for citations. The fraction
f% of the total output produced by the top % further demonstrates the disproportionate
productivity levels even among scientists publishing in top ranked journals: f% = . for
publications and f% = . for citations (economics), and f% = . for publications and
f% = . for citations (Nat./PNAS/Sci.). Hence, it is important to note that the inequality
amongst researchers is much greater when considering impact measures than for produc-
tivity measures. For perspective, the G values we calculated are larger than those observed
for individual income in many developed nations of the world []. Nevertheless, with re-
spect to individual achievement in science, we have provided evidence that the system
became more equitable over the period -.

3.2 On the role of cumulative advantage in academic career evaluation
The role played by the ‘Matthew effect’ is largely considered to be positive []. Indeed, cu-
mulative advantage represents a ‘positive’ feedback mechanism that arises from the func-
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tionally meritocratic system of science, which aptly rewards scientists who succeed in pro-
ducing high-quality research [].

Using a reasonably large and representative number of career profiles that satisfied our
censoring bias criteria, we provided quantitative demonstration of how cumulative ad-
vantage in the publication process emerges, showing that the time between publications
in top journals decreases as function of how many publications a researcher has published
in those journals. This decrease is evident not only in the mean waiting time, but as a sys-
tematic shift in the distribution of waiting times towards smaller τ values.

It is, perhaps, unsurprising to practicing researchers that as a researcher places more
of his or her publications in a top journal that the preexisting publication barriers pro-
gressively decrease. There are a number of anecdotally well-accepted mechanisms that
likely contribute to this phenomena, being as simple as an increase in research funding
resulting from previous high profile publications, the ability to attract the best graduate
students, election into a prestigious academy, or simply an editor spending five additional
minutes evaluating a new submission by a prominent scientist before making the initial
reject or review decision. Nonetheless, it is important that this phenomena be quantified
using longitudinal researcher profiles from distinct research fields.

Our first quantitative observation of a decreasing waiting time between publications is
consistent with the reasonable assumption that, given a researcher’s history of publishing
in high-impact journals, his/her next publication is likely to also be high-impact. However,
this hypothesis is inconsistent with our second quantitative finding that on average there
is a statistically significant decrease in the relative impact of each subsequent publication
(S < ) when conditioning on the publication number n. We also observed this imbalance
at the individual level, finding more researcher trajectories with statistically significant de-
creasing trend (si < ) than with statistically significant increasing trend (si > ), although
this asymmetry contributes less to the overall negative S value than the aggregate trend
across all scientists. In other words, the decreasing trend is not attributable to individual
scientists per se, but rather, is representative of a larger aggregate trend.

Nevertheless, it is important to consider how reputation arising from highly-cited pa-
pers may contribute to a detrimental false-positive rate due to the intrinsic noise as-
sociated with success outliers []. For example, a side-effect of a systematic type-II
confirmation-bias error in the identification of high quality research(ers) may induce a
‘crowding out’ of young and inexperienced scientists. This is not to say that there are not
enough opportunities to go around, but that in light of the broad distribution of Np, it is
important to know what role reputation plays in detecting signal from noise. Interestingly,
in our analysis of 〈z̃(n)〉, we found that the set of researchers with larger Np cross the zero
baseline for a larger n value than the subset with smaller Np, which was also supported by
the positive value of the β coefficient relating si and Np. Together, these two observations
indicate that cumulative advantage is functioning properly in the case of researchers with
large Np. It will be important in follow-up research to add more researcher covariates to
further test the origin of the non-zero si.

So what do our results mean in the context of academic careers? It is difficult to interpret
the decreasing impact trend (S < ) as a desirable property of cumulative advantage in
science. Since it is likely a researcher consistently publishing in high impact journals is
also gaining access to greater resources, it is disappointing that the impact trend is not, at
least, stable, if not increasing. But we also have to be careful in over-interpreting this result,
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since we have shown that impact decreases relative only to the author’s average citation
impact 〈zi〉. Additional explanations for the negative S value and the relative abundance
of individual negative si values are the difficulty in sustaining high-impact research in the
top citation percentile, aging across intrinsic creativity and career life-cycles [, ], and
aging within knowledge life-cycles reflecting the difficulty in staying at the innovative front
of science [–].

More generally it is important to discuss the impact of cumulative advantage upon how
individual careers evolve and are evaluated. In a system with even a subtle feedback loop,
small advantages at an early stage compound over time and can produce stratification at
later stages. In the case of academic careers this stratification process can be accelerated
by the fact that many careers leave academia at a relatively early stage. Recently that com-
petition increased by the emergence of a ‘PhD bubble’ characterized by an unreasonably
high market valuation of graduate education, resulting in an excessive supply of doctoral
degrees. Evidence for this supply-demand imbalance in the US are evident in the number
of PhDs awarded relative to tenure-track openings [–, ].

It is important to keep in mind that a small advantage in the early stage can just as easily
be due to noise as due to signal. To avoid type I and II errors in career evaluation, extra care
should to be taken in evaluating the entire publication portfolio of early stage researchers,
not just their high-impact factor publications, to reduce the possibility that early publi-
cation success is misinterpreted as a signal of high research potential. On the contrary, it
is also important to avoid the scenario in which a scientist is eliminated merely because
he/she failed to publish early and consistently in top journals. For early career researchers,
especially those with relatively few (and recent) publications, quantitative citation metrics
should be used mainly as an initial tool to reduce the candidate pool size [, ].

Furthermore, a decreasing barrier to publication in top journals with increasing achieve-
ment and reputation (here proxied by n) is important to consider for two reasons. First,
one should consider the advantage an early stage researcher has in publishing in top jour-
nals via collaboration with a senior research possessing an outstanding track record. Sec-
ond, the lowering of impact with continued publishing means that, perhaps, higher im-
pact publications by less established researchers are being overlooked by the top journals
in favor of lower impact publications by more established ones. In this sense, due to the
implicit competition for the select publication slots in highly visible and reputable jour-
nals, the current system may be crowding out less established researchers, an inefficiency
within the reward system of science suggesting that ‘the cream may not always rise to the
top’.

It is clear that research careers are multifaceted and complex and in studying them many
aspects must be taken into account. Specifically, it is crucial to better understand the role
that both social and knowledge networks play in the career growth process, and perhaps
one day, understanding how they can be predicted in order to manipulate both research
and career success strategies. The most readily available data source for producing insight
on careers, and scientific progress in general, is publication metadata. However, this data
is shaping how careers are both studied by the science of science community, as well as
how academics ad hoc measure their impact and the impact of colleagues. As a result
citations are pushed to the forefront, again both in terms of how careers are studied and
how researchers view themselves and colleagues. In this regard, we are entering an era
where the ‘hunters become the hunted.’
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3.3 The role of scientometric data science
Moving forward, what can scientometrics offer towards our understanding of careers in
science against the backdrop of implicit competition and reward? On one hand, citation
data are well-suited for developing testable models of longitudinal productivity and impact
dynamics within and across research careers [, ]. On the other hand, it can be quite
technically challenging (ex. overcoming author ambiguity [, ]) to extend these analy-
ses beyond productivity and impact and into the social network even if we use the coarse
proxy of co-authorship. In Merton’s seminal paper ‘The Matthew Effect in Science’ []
he outlines the various specific mechanisms by which the reputation premium (Matthew
effect) is generated in academic careers. Those mechanisms, however, do not manifest
themselves purely in the citation data. Thus it is also important that data outside pub-
lication metadata be accessed to shed further light on the role of cumulative advantage.
For example, it is important to better understand the embedding of researchers in other
advantageous social networks, ones which cannot be captured by co-authorship.

However complex a role cumulative advantage plays in research careers it is a key prob-
lem that must be addressed both by the community of researchers studying careers, as well
as the gatekeepers of the academic profession, which are often researchers themselves. As
with nearly all advances in scientometrics, data must play a critical role and this work rep-
resents a small example of how existing data can be exploited to better understand the vast
issue of cumulative advantage, and raises the important question as to whether or not the
cumulative advantage plays an overall positive roll in the scientific selection process.

Appendix: Data and methods
A.1 Our data-science approach
We defined researcher subsets using several thresholds to account for sources of censor-
ing bias in the data. (a) We removed career profiles with relatively short longevity L < 
years between the first and last publication. (b) We only analyzed profiles with first pub-
lication year yj

i, at least a decade after the starting year of the dataset so that we could be
reasonably confident that the first publication observed was actually the researchers first
publication within the dataset. (c) We conditioned the careers on the number of publica-
tions Np to ensure that there are sufficient statistics to quantify a trend in the citation im-
pact trajectory z̃i(n). (d) In our analysis of the citation impact trajectory we only included
publications that were published at least  years before the TRWOK citation census year
Y (corresponding to the data download date which was Y =  for the economics jour-
nals and Y =  for Nat./PNAS/Sci.) to ensure that each publication had a sufficient
time to accrue citations which we use as a proxy for research impact. With this time lag,
the distribution Pj

y(c) has time to converge to a log-normal distribution, and the ranking
of publications within j is likely to become sufficiently stable that the z value is a robust
measure of relative impact.

A.2 Name disambiguation
The ‘disambiguation problem’ is a major hurdle in the analysis of scientific careers as ca-
reer profiles may be split or aggregated resulting in inaccurate portraits of productivity
and impact. Recent methods have been proposed to solve this problem, ranging from rel-
atively simple name disambiguation methods (as employed here) which provide sufficient
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accuracy within a reasonably small dataset [, ], to more sophisticated network-based
solutions that are more appropriate for comprehensive databases like Thomson Reuters
Web of Knowledge (TRWOK) [] and comprehensive patent office data (e.g. USPTO) [].

From TRWOK we downloaded annual publication data for  high-impact multidisci-
plinary journals Nature, Proceeding of the National Academy of Sciences USA, and Science;
 discipline-specific journals Cell, the New England Journal of Medicine (NEJM), Physical
Review Letters (PRL);  top economics journals, American Economic Review, Economet-
rica, Journal of Political Economy, Journal of Economic Theory, Journal of Econometrics,
Journal of Financial Economics, Journal of Finance, Journal of Economic Growth, Journal
of Economic Perspectives, Journal of Economic Literature, Quarterly Journal of Economics,
Review of Economic Studies, Review of Financial Studies, Review of Economics and Statis-
tics; and  management science journals Management Science, Operations Research, Or-
ganization Science. For the natural science journals we restricted our analysis to publica-
tions denoted as ‘Articles’, which excludes reviews, letters to editor, corrections, and other
content types. For the economics publications we restricted our analysis to the publica-
tion types: ‘Articles,’ ‘Reviews’ and ‘Proceedings Paper’. Natural science journal data were
downloaded and curated in , meaning that the citation counts we analyze do not
include citations arriving afterwards. Similarly, the economics and management science
journal data were downloaded in .

For a given journal set j we aggregate publications together and create a registry of sur-
name and first/middle-initial pairs {Surname, FM} where FM can consist of one, two, or
three alphabetic characters α, hence FM = ααα. For a given journal set, we aggregate
and analyze the publications associated with {Surname, FM} if it is sufficiently rare in the
entire database using the following criteria: if there is only one instance of FM for a given
{Surname, FM} then it is used; however, if there is more than one type of αα for a given
α, then this surname and first/middle-initial pairs is omitted from the analysis. For ex-
ample, we consider Smith, AM and Smith, BM as not being in conflict, but treat {Smith,
AM} and {Smith, A} as indeterminately distinct authors and so we exclude all profiles with
{Smith, Aαα} from our analysis.

For each {Surname, FM} that meets this criteria, we aggregate the corresponding publi-
cations together creating a profile which is assigned to author i in a given journal set j. This
simple initials-based disambiguation method is well-suited for datasets of similar size to
those analyzed here, with demonstrated precision (-‘contamination rate’) ranging from
-% [].

We use this method under the assumption that there is no intrinsic bias associated with
selecting sufficiently rare {Surname, FM} pairs, and hence, the set of ‘rare’ surname pro-
files should provide a representative sample from the entire career distribution []. In-
deed, there are some notable scientists with sufficiently common surnames that are omit-
ted from our analysis, e.g. Stanley HE and Vogelstein B, but we maintain that the number
of profiles analyzed is sufficiently large to include a representative proportion of these
elite careers comprising the tail of the productivity and citation impact distributions. This
assumption appears to be valid, as recent analysis comparing the aggregate h-index dis-
tribution P(h) comprising all scientist profiles within the TRWOK dataset with the P(h)
comprising only the ‘extremely rare’ scientist profiles within the TRWOK dataset shows
that the distributions are remarkably similar except in the extreme right tail, which is only
a finite-size effect due to the difference in dataset sizes [].
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We also note that one source of selection bias arising from the selection of rare surnames
is the bias against common Asian and Anglo-Saxon names and in favor of underrepre-
sented nationalities in science. Correcting for this bias is difficult without information on
the distribution of surnames in science; however, we assume that its affect is negligible
since our simple method was able to extract a significant number of prolific profiles with
 ≤ Np ≤  within each journal set, providing ample statistics in order to analyze the
overall longitudinal trends in citation impact. Future avenues of research in this general
direction may benefit from additional covariates, including gender, nationality, and ethnic
background, in order to better understand the possible sources of bias.
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