
Schulz et al. EPJ Data Science 2014, 2014:11
http://www.epjdatascience.com/content/2014/1/11

R E G U L A R A R T I C L E Open Access

Exploiting citation networks for large-scale
author name disambiguation
Christian Schulz1, Amin Mazloumian1, Alexander M Petersen2, Orion Penner2 and Dirk Helbing1*

*Correspondence:
dhelbing@ethz.ch
1Department of Humanities and
Social Sciences, Chair of Sociology,
in particular of Modeling and
Simulation, ETH Zurich,
Clausiusstrasse 50, CH-8092 Zurich,
Switzerland
Full list of author information is
available at the end of the article

Abstract
We present a novel algorithm and validation method for disambiguating author
names in very large bibliographic data sets and apply it to the full Web of Science
(WoS) citation index. Our algorithm relies only upon the author and citation graphs
available for the whole period covered by the WoS. A pair-wise publication similarity
metric, which is based on common co-authors, self-citations, shared references and
citations, is established to perform a two-step agglomerative clustering that first
connects individual papers and then merges similar clusters. This parameterized
model is optimized using an h-index based recall measure, favoring the correct
assignment of well-cited publications, and a name-initials-based precision using WoS
metadata and cross-referenced Google Scholar profiles. Despite the use of limited
metadata, we reach a recall of 87% and a precision of 88% with a preference for
researchers with high h-index values. 47 million articles of WoS can be disambiguated
on a single machine in less than a day. We develop an h-index distribution model,
confirming that the prediction is in excellent agreement with the empirical data, and
yielding insight into the utility of the h-index in real academic ranking scenarios.

Keywords: name disambiguation; citation analysis; clustering; h-index; science of
science

1 Introduction
The ambiguity of author names is a major barrier to the analysis of large scientific pub-
lication databases on the level of individual researchers [, ]. Within such databases re-
searchers generally appear only as they appear on any given publication i.e. by their sur-
name and first name initials. Frequently, however, hundreds or even thousands of individ-
ual researchers happen to share the same surname and first name initials. Author name
disambiguation is therefore an important prerequisite for the author level analyses of pub-
lication data. While many important and interesting problems can be examined without
individual level data [, ] a great many other require such data to get to the real heart
of the matter. Good examples include the role of gender in academic career success [],
whether ideas diffuse through the popularity of individual publications or the reputation
of the authors [, ], how the specific competencies and experience of the individual au-
thors recombine to search the space of potential innovations [, ], and whether one can
predict scientific carriers [–]. Indeed, the importance of getting individual level data
has been widely acknowledged, as can be seen in recent large scale initiatives to create
disambiguated researcher databases [, ].
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Algorithmic author name disambiguation is challenging for two reasons. First, existing
disambiguation algorithms have to rely on metadata beyond author names to distinguish
between authors with the same name, much like some administrative institutions do when
they distinguish citizens with the same name based on attributes such as date and place of
birth. However, in existing large-scale publication databases – such as Thomson Reuter’s
Web of Science (WoS) – metadata is often sparse, especially for older publications. Sec-
ond, disambiguation algorithms may draw false conclusions when faced with incomplete
metadata. For instance, when researchers change disciplines they transition to an entirely
different part of the citation graph. Therefore, disambiguation algorithms that heavily rely
on journal metadata to reconstruct researchers’ career trajectories can easily represent
such researchers with two different researcher profiles. This issue can be present in any
case where an individual metadata (disciplinary profile, collaborators, affiliation) is not
consistent over time.

Existing disambiguation algorithms typically exploit metadata like first and middle
names, co-authors, publication titles, topic keywords, journal names, and affiliations or
email addresses (for an overview see []). Reference [] (and enhanced in []) presents
a comprehensive method that includes all metadata of the MEDLINE database. The use
of citation graph data is less common however, since only a few databases include this
information. Previous examples to exploit such data include [] which mainly relies on
self-citations, and [] that used shared references, but only for the disambiguation of
two author names. Both retrieve data from the WoS, which is also used in [] and [],
however, without exploiting the citation graph. Reference [] had access to a manually
maintained database of Italian researchers as a gold standard, while [] found a ground
truth in Dutch full professor publication lists.

Here, we develop and apply a novel author disambiguation algorithm with the explicit
goal of measuring the h-index of researchers using the entire WoS citation index database.
Introduced by Hirsch in , the h-index is the most widely used measure of an individ-
ual’s scientific impact. An individual’s h-index is equal to the number h of publications
that are cited at least h times. It is increasingly used in both informal and formal eval-
uation and career advancement programs []. However, despite its rapidly increasing
popularity and use, very little is known about the overall distribution of h-indices in sci-
ence. While an h-index of  is certainly less frequent than an h-index of , it is unknown
how much less frequent. Models have been developed to estimate the distribution based
upon some simple assumptions, but at best, they relied on incomplete data. Perhaps the
most straightforward starting point for considering the distribution of h-index would be
Lotka’s law scientific for productivity [], however in the results section we will show that
the empirical data deviates significantly from a Pareto power-law distribution.

The most complete data-centric work to date is that of [], who calculated a proba-
bility distribution P(h) of h-indices using over , career profiles acquired via Google
Scholar. Indeed this work represents a critical step forward in terms of understanding
the overall distribution of h-indices and the high level dynamics that shape it. However,
Google Scholar profiles are biased towards currently active and highly active researchers.
As a consequence, their approach may underestimate the number of individuals with low
h-index. A proper understanding of the entire h-index distribution P(h) is critical to shap-
ing policies and best practices of using it for scientific performance. Furthermore, as re-
search becomes more interdisciplinary, the variation of h-index distribution across disci-
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plines must be better understood to prevent biased evaluations. To tackle these and simi-
lar challenges, we present an algorithm that is optimized towards reproducing the correct
h-index of researchers, makes use of the citation network, and is applicable for the entire
dataset of WoS.

This manuscript will be laid out in the following manner. First, we will describe our
algorithm, novel validation & optimization approach, and implementation details. Then
we will present the results of our optimization procedure and the empirical h-index dis-
tribution produced by our algorithm. We will compare the empirical distribution to the
predictions of a simple theoretical h-index model, which together show excellent agree-
ment.

2 Methodology
2.1 The disambiguation algorithm
As discussed above, the goal of a disambiguation algorithm is to generate sets of publi-
cations that can be attributed to specific, individual, researchers. Our algorithm accom-
plishes this by a two step agglomerative approach (see Figure ).

In the first step the goal is to determine if two papers were likely coauthored by the same
individual. To that aim, we are using a similarity score approach to cluster papers. We first
calculate the pairwise similarity between all pairs of papers in the dataset of ambiguous
names. The similarity score (sij) between two papers i and j is calculated as follows:

sij = αA

( |Ai ∩ Aj|
min(|Ai|, |Aj|)

)
+ αS

(|pi ∩ Rj| + |pj ∩ Ri|
)

+ αR
(|Ri ∩ Rj|

)
+ αC

( |Ci ∩ Cj|
min(|Ci|, |Cj|)

)
. ()

For each paper pi we denote the reference list as Ri; the co-author list as Ai; the set of
citing papers as Ci. Hence in this instantiation of the algorithm, these are the only three
pieces of information one must have available for each paper. The ∩-operator together
with the enclosing | |-operator count the number of common attributes. The first term
in Eq. () measures the number of co-authors shared by two papers. The second term
detects potential self-citations, a well recognized indicator of an increased probability of
authorship by the same individual []. The third term is the count of common references
between the two papers. The fourth term represents the number of papers that cite both
publications. The first and last terms are normalized by a technique known as overlap
coefficient []. It accounts for the higher likelihood of finding similarities when both co-
author lists are very long or both publications are well-cited.

Figure 1 For a given set of publications, a measure for publication similarity is used to identify
clusters that ideally represent unique researchers. First, the clustering creates strongly connected
components. Second, well-linked clusters are merged.
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Once all pairwise similarities have been calculated, our algorithm moves on to the first
of two clustering processes (see Figure ). In this first clustering we start by establishing
a link between each pair of papers (i, j), for which the similarity score sij is greater than a
threshold β. Then, each connected component (set of papers that can be reached from
each other paper by traversing the previously created links) is labeled as a cluster. The goal
is, of course, that all papers in any given cluster belong to one specific author.

In the second clustering process a new similarity score is calculated between all clusters
generated in the previous step. Labeling one cluster by γ and another by κ the similarity
between the clusters is calculated as follows:

Sγ ,κ =
∑

i∈γ j∈κ

sij�(sij > β)
|γ ||κ| . ()

Here |γ | is the number of publications in cluster γ , similarly for |κ|. For this step we cal-
culate the similarity between publications in separate clusters. The overall cluster-cluster
similarity is the sum of the sij similarity weights that are above a certain threshold β, nor-
malized by the number of papers of the two clusters. A link is then established between
the two clusters if the new cluster similarity score (Sγ ,κ ) is greater than a threshold β.
Each connected component (set of clusters that can be reached from each other cluster
by traversing links) is then merged into a single cluster. Remaining individual papers are
added to a cluster if they have a similarity score sij above a threshold β with any paper in
that cluster. We denote the set of clusters {Ki} finally resulting from our algorithm. Each
cluster is a set of papers and should ideally contain all papers published by one specific
researcher.

2.2 Optimization and validation
The output of such an algorithm must be validated thoroughly by establishing error rates,
specifying their dependence on the size of the researcher profiles produced. Here we de-
velop two techniques for estimating the rates of the two types of statistical errors: (i) Type I
errors (“splitting”), which split an individual’s publications across two or more clusters,
and (ii) Type II errors (“lumping”), which fail to distinguish between two or more author
publication sets, i.e. an author mistakenly gets assigned papers from another author. Pa-
rameter optimization is a key step in arriving at a functional algorithm (see Figure ). Our
optimization approach differs from many other algorithms in that our optimization pro-
cedure does not only seek to minimize “lumping” and “splitting”, but also to optimize an
additional specified dimension defined by the research question one wishes to investigate
with the disambiguated data. For this work, the dimension of interest is reproducing the
h-index of individual researchers with high accuracy. Below we describe the details of our
algorithm, and then we explain the optimization and validation procedures that we have
developed with a specific focus on how to reach the h-index accuracy objective.

To assess lumping errors we start by extracting from the WoS database all papers in
which a given surname appears in the author field. We then apply our algorithm to this
set, ignoring the initials or first names associated with each instance of the given surname.
This differs from the typical starting point of previous disambiguation efforts, where the
underlying algorithms would be applied to the set of papers in which a given surname
together with specific first initial. However, by omitting the first initial information we
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Figure 2 Optimization and validation procedure. (a) Parameters of the name disambiguation algorithm
(shown in Figure 1) are optimized using Google Scholar Profiles (GSP) for measuring recall and first name
initials for measuring precision. (b) For disambiguating the whole Web of Science (WoS), family names
complemented by first initials.

determine an upper bound for the lumping error, as measured by precision. We define
precision of a cluster i which contains various first name initials indexed by j:

Pi =
maxj(Frequency[FirstNameInitial(j, Ki)])

|Ki| . ()

Take the surname “Smith”, for example. Applying the algorithm to all papers with that
surname we get a set of clusters. We can assume that in each cluster the initial that appears
on most papers is the “correct” initial, and all other initials are likely errors. For example in
the cluster where “J” is the most frequent initial for “Smith” the precision can be estimated
as the number of papers with the initial “J” divided by the overall number of papers in the
cluster. Not all papers with “J” may correspond to the same person (“Jason” versus “John”),
but in the absence of an absolute gold standard this serves as a proxy.

To assess the rate of splitting errors we draw upon Google Scholar Profile (GSP) data.
Within an individual’s Google Scholar Profile all of an author’s publications (indexed by
Google Scholar) can be found and we use these profiles as a gold standard. Currently, we
have acquired GS profiles for , surnames. As one would expect, some errors exists
within these profiles and papers can be mis-assigned. However, as we discuss below by
optimizing for the reconstruction of the h-index, this is not a big concern. Before a GSP
can be used as a gold standard the contents of the profile must first be cross-referenced
to the WoS database by measuring distances in year, title, author list and journal infor-
mation. A publication is cross-referenced if there is sufficient similarity in multiple fields
and if there is no other publication that would also qualify as a match. Once a gold stan-
dard publication list has been arrived at, it is straightforward to use it to calculate our
algorithm’s recall for that profile:

Rα =
max(|Ki ∩ GSProfileα|)
|GSProfileα ∩ WoS| . ()
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This is the recall value for a specific GSP (researcher α). It corresponds to the percentage
of papers in the given profile (that we managed to cross-reference to WoS) that are also in
the algorithm-generated cluster which contains most papers of that profile.

The recall value is a measure of how completely we have captured an individual’s pub-
lication list. However, this does not, necessarily, indicate how well we have captured the
portion of an individual’s publication list that is relevant to our objective of accurately
reproducing the h-index. Specifically, when the goal is to measure the h-index it is more
important to assign every paper that contributes to an individual’s h-index (the most cited)
to his or her cluster, rather than to assign every single paper correctly. Of course, this am-
plifies the importance of correctly assigning highly cited papers. To measure the extent to
which our algorithm can reproduce the h-index, we introduce a measure of the h-index
recall:

Rh
α =

h(max(|Ki ∩ GSProfileα|))
h(|GSProfileα ∩ WoS|) . ()

With the objective of producing the highest quality h-index estimates, this measure seam-
lessly replaces the typical recall measure as a way to evaluate the completeness of clusters.
Thus we use it for our optimization and validation procedure instead of Eq. (). However,
it is necessary we make clear that in using this h-index centric measure the resulting dis-
ambiguation is optimized with regards to reproducing h-index distribution, but may not
be optimal with regards to other criteria. Indeed if a reader were to apply our algorithm,
or one like it, with a different goal in mind we advise them to adapt the recall measure to
their specific goal.

2.3 Implementation
With about  million papers (for the analyzed period from  to ),  million co-
author entries, and  million citations referring to other articles within the database,
the WoS is one of the largest available metadata collections of scientific articles and thus
needs to be processed efficiently. While we concentrated on a few features (co-authors and
citation graph), our framework can be extended to further metadata as well. We also do
not make use of the full citation and co-author network when evaluating a single paper,
in the sense that we do not traverse the graph to another paper node which is not directly
connected to the paper in question. As a pre-processing step, we compute all publication
similarity terms without applying concrete disambiguation parameters. For the complete
WoS, we created . billion links between pairs of papers that have significant similarity
and a common name (surname plus first initial). Publication similarity has a computa-
tional complexity of O(n), where n is the number of papers of the ambiguous name. To
reduce the cost of a single paper pair comparison, all information related to a single name
is loaded into memory, whereas all feature data (mainly integer IDs) are stored in sorted
arrays. For papers that have a publication year difference greater than , the computation
is skipped to decrease the number of comparisons. This process took  hours on standard
laptop hardware. Disambiguating the . million author names, i.e. weighting the similar-
ity links and performing the two-step clustering took less than an hour. For the validation,
we kept data for the  name networks in memory (consuming less than  GB) to test
multiple parameter configurations subsequently, so that each parameter test (disambigua-
tion and validation of the  names) could be executed in about  seconds.
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3 Results
3.1 Optimizing disambiguation parameters
For the seven model parameters (αA, αS , αR, αC , β, β, β, while β is fixed to ), we want
to find a configuration that minimizes both mean h-index error and mean precision error:

Rh
error =

〈
 – Rh〉, Perror =

〈
( – P)

√|K |〉. ()

This mean Perror can be artificially small because it is averaged over (mostly) small clusters
which easily achieve high precision. Hence, in the definition of our optimization scheme
we introduce a counterbalancing statistical weight that accounts for size by requiring the
algorithm to preferentially optimize the large clusters due to the cost incurred if any large
cluster’s precision error value,  – P, is high. Relying on basic statistical arguments, the
natural weight that we should give the large clusters is the statistical fluctuation scale at-
tributable to size, which is proportional to square root of the size of the cluster. This weight
also compensates for the fact that there are more smaller clusters than large clusters. In
practice, this means that for two clusters of different sizes K+ = fK– (with f > ), then the
larger cluster with K+ will need to have a precision error equal to ( – P–)/

√
f in order to

contribute the same to the overall Perror value which must be minimized by the algorithm.
Due to the simplicity of our algorithm, we can conduct an extensive sampling over the

whole parameter space. The results in Figure (a) show that there is a clear trade-off be-
tween the two types of errors and a lower limit that can be reached by our implemen-
tation. Our test data consists of , surnames that were randomly selected from WoS
and where at least one profile could be found on Google Scholar. To further improve the
result, we did an iterative local search on a -dimensional sphere around the best previous
parameter configurations, starting with the best results from the random parameter sam-
pling. For efficiency reasons and for cross-validation, we drew four random subsets with
 surnames each and optimized them individually. In Figure (a), we aim at an error

Figure 3 Optimizing disambiguation parameters. (a) 10,000 random disambiguation parameters were
tested for the 3,000 family names which we can validate with Google Scholar profiles. Results (indicated as
black dots) close to the origin (0, 0) yield the best trade-off between precision and h-index correctness. For
samples A, B, C and D (consisting of 500 family names each), parameters were further optimized
independently and cross-validated. (b) Curves represent a lower hull estimate for the results of a random
parameter sampling when using only certain features of the metadata (C – Citations, R – References, A –
Authors, S – Self-citations). The closer the curves come to the origin, the smaller the error. The combination of
all four features lead to the best h-index reconstruction.
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that equally prefers a high h-index and precision correctness. We find

αA = ., αS = ., αR = ., αC = .,

β = ., β = ., β = .

which leads to a precision error of .% and an h-index error of .%. Co-authorship
αA comes out as a strong indicator for disambiguation, although co-author names are not
disambiguated beforehand and hence represent a potential source of errors. Self-citations
αS are also highly weighted, but a self-citation link alone is not sufficient to exceed the
threshold β =  to form clusters.

Figure (b) shows how much the individual features (terms of Eq. ()) contribute to the
optimal solution. We fitted curves to the best results of a random sampling for a varying
error trade-off, when only certain features are used (i.e. parameter of the other features are
set to ). Individual features cannot reach low error rates on their own. Combining features
of the co-author and citation graph work best. Including more features like affiliations,
topical features extracted from titles, summaries or keyword lists could potentially further
improve the solution.

Size dependent biases can skew aggregate algorithm performance measures especially
when there is a broad underlying heterogeneity in the data. Hence, stating mean error
rates is not sufficient to fully understand the strengths and weaknesses of a disambigua-
tion algorithm. In Figure (a) we show that our algorithm works better for larger profiles,
i.e. researchers that have a higher h-index, which is not a surprising result since there
is much more co-author and citation graph information than for people with only a few
papers. On the other hand, precision is slowly decreasing for more common names, see
Figure (b), which becomes an issue when disambiguating very large databases, where
certain combinations of surname plus first initial can result in initially undisambiguated
clusters comprising around ten thousand publications.

Figure 4 Validation results of the 3,000 family names with an optimal parameter configuration.
(a) The mean h-index error (bin width = 20, error bars displaying standard deviation) is decreasing for clusters
with higher h-index. (b) The precision error is increasing with more common names (bin width = 2,000).
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3.2 Further validation
We further evaluated the performance of our disambiguation method with four additional
tests using different data or techniques. While each measures recall or precision, these
performance indicators have different definitions and deviate here from our previous val-
idation, but fit better with measures typically reported in past disambiguation work.

We performed a manual disambiguation validation similar to the one in [].  pub-
lication pairs were randomly chosen from all pairs of publications that our algorithm co-
clustered. Another  random pairs were selected from the set in which each pair belongs
to the same name, but were placed in different clusters. Students were asked to determine
for an author name and a given pair of publications, if they were written by the same au-
thor or different authors. When uncertain, the student could choose “Not sure”. Although
all resources could be used, this is often a challenging task and especially voting for “Dif-
ferent authors” frequently required evidence beyond that was easily available. From 
answers, we obtained  “Same authors”, of which  were in the same clusters (a recall of
about .%), and  times “Different authors”, of which all were correctly disambiguated
to different clusters (a precision of %). We point out that a manual disambiguation
may be biased towards easy cases that could receive a confident answer, however, it does
provide further evidence of the suitability of our algorithm.

Another test for precision can be constructed from second initials metadata which we
do not consider for our disambiguation algorithm (only first initials when clustering the
whole WoS). Indeed, about . million clusters contain at least two second initial names.
Here, for each cluster the most common second initial forms the set of correctly disam-
biguated publications (names that omit the second initial were ignored). We measure a
mean precision of about .%.

As a third way to evaluate precision, we “artificially” generated ground truth data by
merging the sets of publications with two random names and then cluster them. The idea
is that while we cannot say something about the correctness of the resulting clusters for
one name, we can definitely show that the clustering is wrong when a cluster is generated
from publications from both names. About , name pairs led to , clusters of
which  clusters contained both names.

Our final additional validation is an estimate of recall, again for the whole disambiguated
WoS. We evaluated about , arXiv.org publications, their metadata and fulltexts.
From the PDFs more than half of all publications contained one or more email addresses.
An email address is assumed to be a good indicator that, when two publications also share
an author name, that this refers to the same unique researcher. Both arXiv and WoS pro-
vide DOIs for newer publications (starting around the year ), so cross-referencing
was not an issue. We generated , “email” clusters, i.e. sets of publications that we also
wanted to see for our disambiguation being put in one cluster. The mean recall was .%.

3.3 Empirical h-index distribution and theoretical model
Using the optimized parameters, we disambiguated the complete WoS database contain-
ing about . million author names that have a unique surname plus first initial. While
the true h-index distribution is not exactly known, we can compare it to the subset of rare
names – names for which we assume require little if any disambiguation. We define rare
names as surnames where for the whole WoS there is only one type of initial and that initial
is itself very rare (q, x, z, u, y, o, and w), which results in , author names. The dis-
ambiguation of the rare names tells us that they indeed represent to a large extent unique
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researchers. Unfortunately, for higher h-index values h >  (values in the top % when
excluding clusters with h = , ) the rare surnames are underrepresented with respect to
the whole database (see Figure  for the comparison between the rare dataset and the full
dataset h-index distributions). However, this difference is consistent with deviations aris-
ing from finite-size effects, since the rare dataset is significantly smaller than the entire
dataset.

The empirical distribution P(h) is a mixture of h-indices of scientists with varying disci-
pline citation rates and varying longevity within mixed age-cohort groups. Hence, it may
at first be difficult to interpret the mean value 〈h〉 as a representative measure for a typi-
cal scientist, since a typical scientist should be conditioned on career age and disciplinary
factors. Nevertheless, in this section we develop a simple mixing model that predicts the
expected frequencies of h, hence providing insight into several underlying features of the
empirical “productivity” distribution P(h).

Our h-index distribution model is based on the following basic assumptions:
. The number of individuals of “career age” t in the aggregate data sample is given by

an exponential distribution P(t) = exp[–t/λ]/λ. We note that in this large-scale
analysis we have not controlled for censoring bias since a large number of the
careers analyzed are not complete, and so the empirical data likely overrepresent
the number of careers with relatively small t.

. The h-index growth factor gi ≈ 〈hi(t + ) – hi(t)〉 is the characteristic annual change
in hi of a given scientist, and is distributed according to an exponential distribution
P(g) = exp[–g/λ]/λ. The quantity g captures unaccounted factors such as the
author-specific citation rate (due to research quality, reputation, and other various
career factors), as well as the variation in citation and publication rates across
discipline. For sake of simplicity, we assume that gi is uncorrelated with ti.

Hence, the index hi = giti of an individual i is simply given by the product of a career age ti

and growth factor gi. The aggregate h-index distribution model Pm(h) is derived from the
distribution of a product of two random variables, t and g , each distributed exponentially
by P(t;λ) and P(g;λ), respectively. Since both g ≥  and t > , the distribution P(h) is
readily calculated by

Pm(h) =
∫ ∞



dx
x

P(x)P(h/x) =


λλ
K

(

√

h/(λλ)
)
,

where K(x) is the Modified Bessel function of the second kind. The probability density
function Pm(h) has mean 〈h〉 = λλ, standard deviation

√
〈h〉, and asymptotic behavior

Pm(h) ∼ exp[–
√

h/〈h〉]/h/ for h � .
Figure (a) shows the empirical distribution P(h) for  datasets, analyzing only clusters

with h ≥  in order to focus on clusters that have at least two cited papers which satisfy
our similarity threshold with at least one other paper. Surprisingly, each P(h) is well fit by
the theoretical model Pm(h;λλ) with varying λλ parameter. The λλ parameter value
was calculated for each binned P(h) using a least-squares method, yielding λλ = .
(Rare), . (Rare-Clustered), . (All), and . (All-Clustered). The inset demonstrates
data collapse for all four P(h/〈h〉) distributions following from the universal scaling form
of K(x).

How do these findings compare with general intuition? Our empirical finding signifi-
cantly deviates from the prediction which follows from combining Lotka’s productivity
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Figure 5 Empirical and theoretical h-index distribution. (a) Testing the predictions of a stochastic h-index
model with empirical data. Shown for each dataset is the empirical probability density function P(h), using
logarithmic binning for h > 10. We fit each P(h) to the model distribution Pm(h), parametrized by only the
distribution average, which is related to the mixing model parameters as 〈h〉 = λ1λ2. (Inset) Data collapse of
the empirical distributions along the universal curve K0(

√
h;λ1λ2 = 1) (dashed grey curve) using the scaled

variable x = h/〈h〉. (b) 6,498,286 clusters with h ≥ 2 were identified for the entire WoS disambiguation. Plotted
are the probability distribution P(h) (green circles), the best-fit model Pm(h) with λ1λ2 = 3.49, and the
complementary cumulative distribution P(≥ h) (solid black curve). The numbers indicate the value associated
with the percentile 100× (1 – P(h)), e.g. 1 per 1,000 clusters (corresponding to the 99.9th percentile) has
h-index of 64 or greater.

law [], which states that the number n of publications follows a Pareto power-law dis-
tribution Pp(n) ∼ n–, and the recent observation that the h-index scales as h ∼ n/ [],
which together imply that Pp(h) ∼ h– (corresponding to Pp(≥ h) = h–).

Figure (b) compares the empirical complementary cumulative distribution P(≥ h) for
both empirical data (representing the ,, clusters with h ≥  identified by applying
the disambiguation algorithm to the entire WoS dataset) and for the theoretical Pareto
distribution Pp(≥ h) = /h. There is a crossover between the two P(≥ h) curves around
h ≈  (corresponding to the .th percentile) which indicates that for h >  we observe
significantly fewer clusters with a given h value than predicted by Lotka’s productivity law.
For example, the Lotka law predicts a -fold increase in the number of scientific profiles
with h larger than the  per million frequency, h ≥ . This discrepancy likely reflects
the finite productivity lifecycle of scientific careers, which is not accounted for in models
predicting scale-free Pareto distributions.

So how do these empirical results improve our understanding of how the h-index should
be used? We show that the sampling bias encountered in small-scale studies [], and
even large-scale studies [], significantly discounts the frequency of careers with rela-
tively small h. We observe a monotonically decreasing P(h) with a heavy tail, e.g. only
% of the clusters also have h ≥ . This means that the h-index is a noisy comparative
metric when h is small since a difference δh ∼  can cause an extremely large change in
any ranking between scientists in a realistic academic ranking scenario. Furthermore, our
model suggests that disentangling the net h-index from its time dependent and discipline
dependent factors leads to a more fundamental question: controlling for age and disci-
plinary factors, what is the distribution of g? Does the distribution of g vary dramatically
across age and disciplinary cohorts? This could provide better insight into the interplay
between impact, career length [] and the survival probability of academics [, ].

http://www.epjdatascience.com/content/2014/1/11
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4 Conclusion
The goal of this work was to disambiguate all author names in the WoS database. We found
that existing methods relied on metadata that are not available or not complete in WoS,
or were not specifically developed for an application to such a huge database. Second,
we needed a test dataset which is not limited to certain research fields or geographical
regions, and large enough to be representative for WoS. As previous work had shown
that even under less demanding conditions perfect disambiguation is not achievable, we
concentrated on the most influential work to correctly disambiguate papers that are most
cited.

We achieved our goal by disambiguating author names based on the citation graph,
which is the main feature of WoS. This approach exploits the fact that, on average, there is
much more similarity between two publications written by the same author than between
two random publications from different authors who happen to have the same name. We
maximized the separation between these two classes, which can be seen as positive or
wanted links and unwanted links in a publication network that connects papers written
by the same unique researcher. Counting shared outgoing references and incoming cita-
tions are a much more fine-grained disambiguation criterion than for example journal or
affiliation entries. Our disambiguation method does not assume any specific feature distri-
bution, but is parameterized and trainable according to a suitable “gold standard”. It turns
out that Google Scholar author profiles, one of the emerging collections of user editable
publication lists, can reasonably serve as such a standard.

Our proposed method consists of three main components that could be altered or im-
proved while still keeping the same validation framework: the error measure, the similarity
measure and the clustering algorithm. The error measure we presented was specifically
developed for reproducing h-indices; we believe other goals could be accomplished as
well. The similarity measure could be easily extended by further metadata. Furthermore,
our clustering algorithm, while intuitive and computationally efficient, could potentially
be replaced by some more sophisticated community detection.

Comparing our results with previous work is difficult, as there is no common bench-
mark available. There are several studies that analyze small subsets of authors names,
which is certainly useful to understand the mechanisms of the respectively proposed algo-
rithms and sometimes unavoidable in lack of a massive test dataset. We realized, however,
that this does not allow for generalization across disciplines, time, career age, and varying
metadata availability. We also point out that there are differences in the error reporting,
mainly in the way how the mean of errors is calculated. The vast majority of authors has
only one or two publications, making it likely that the low error rates for precision and
recall are underestimated. Some publications report error rates lower than -%. We do
not claim such an excellent result, since even our gold standard (cross-referenced publi-
cations from Google Scholar profiles, and name initials from WoS) cannot be assumed to
have error rates significantly better than that. We have shown instead that using author
and citation graph information only, we can disambiguate huge databases in a computa-
tionally efficient way and at the same time being flexible regarding the objectives one like
to optimize for.
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