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Abstract

Finite thickness interfaces, such as structural adhesives, are often simplified from the modelling point of view by introducing

ideal cohesive zone models that do not take into account the finite thickness properties in the evaluation of the interface stiffness

and inertia. In the present work, the nonlinear dynamic response of those layered systems is numerically investigated according

to the finite element method. The weak form of the dynamic equilibrium is written by including not only the contribution of

cohesive interfaces related to the virtual work exerted by the cohesive tractions for the corresponding relative displacements, but

also considering the work done by the dynamic forces of the finite thickness interfaces resulting from their inertia properties. A

fully implicit solution scheme both in space and in time is exploited and the numerical results for the double cantilever beam test

show that the role of finite thickness properties is remarkable as far as the crack growth kinetics and the dynamic strength increase

factor are concerned.
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1. Introduction

There are several systems in nature and technology where different materials are separated by interfaces with a

not negligible thickness. Often this property is neglected in numerical simulations and the interface is simplified as a

geometrical entity with zero-thickness (a line in 2D or a surface in 3D) where displacement discontinuities may take

place. The transmitted tractions are on the other hand continuous across the interface due to equilibrium considerations

and are usually nonlinear functions of the relative opening and sliding displacements via the so-called cohesive zone
models (CZMs) (Elices et al. (2002)).

However, the thickness of interfaces is not always negligible and it has been proven to have a significant effect

on the overall quasi-static properties of heterogeneous materials. In spite of that, the study of these systems is still

partially unchallenged. The complexity relies in the difficulty of modeling nonlinear phenomena taking place within a
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very narrow zone, often at least one order of magnitude smaller than the joined material regions. In Paggi and Wriggers

(2011a,b), the interface region was treated as a continuum with a physically-defined finite thickness. A damage

mechanics formulation was introduced to model its nonlinear behavior under tension, shear and their combination.

The non locality of damage was also properly taken into account by using a damage variable dependent on the relative

displacements evaluated at the boundary of the finite thickness region, which are by definition nonlocal quantities

since they are the integral of the strain field inside the interfacial zone. Inelastic stress-relative displacement relations

were determined and their nonlinear shape was dependent on the evolution of damage. To simplify the computational

burn, an equivalence between the finite thickness interface with damage mechanics and a zero thickness interface

whose mechanical response is ruled by a novel type of CZM was also put forward in Paggi and Wriggers (2011a,b).

This modeling strategy was particularly effective for interpreting numerical studies aiming at extracting CZMs from

molecular dynamics and atomistic simulations (Spearot et al. (2004); Yamakov et al. (2006); Wolf et al. (2005)) on

systems with finite thickness regions. Moreover, applications to polycrystalline materials with standard or hierarchical

microstructures were proposed in Paggi and Wriggers (2011b, 2012).

Regarding the dynamic behavior of finite thickness interfaces, much less contributions are available in the literature.

The concept of structural interface introduced by Bigoni and Movchan (2002) was pioneeringly proposed to model a

real structure possessing a finite thickness which joins continuous materials. With special regard to fiber reinforced

interfaces leading to bridged cracks, Bertoldi et al. (2007a,b) have shown that the introduction of structural interfaces

involves a nonlocal mechanical behavior. Independent results supporting the findings by Bertoldi et al. (2007a,b)

have been presented by Tang et al. (2005), with reference to the problem of adhesion, and by Sumigawa et al. (2008),

who provided experimental observation of imperfect interfaces consisting of nano-springs. Bigoni and Movchan

(2002) and Brun et al. (2010) noticed that a thick interface possesses a mass that can strongly influence dynamic

characteristics, both for structural interfaces and for interfaces made up of inertial elastic layers.

In the present study, a progress on the research on the behavior of finite thickness interfaces is made with regard to

their dynamic regime.

2. Equations of motion, cohesive zone model and finite element approximation

Dynamic equilibrium of a solid body with volume V , external boundary ∂V and internal cohesive cracks S is

provided by the principle of virtual work:

∫
V

(∇η)TσdV −
∫

V
ηTρvη̈dV −

∫
∂V
ηTf dS −

∫
S

gTt dS −
∫

S
ηTρ t η̈dS = 0 (1)

where the first term is the internal virtual work of deformation given by the tensorial product between stresses and

strains, the second term is the work by dynamic forces (ρV is the mass density of the bonded layers and η̈ are the

accelerations), the third term is the virtual work of the tractions f acting on the boundaries of the body ∂V , the

forth term represents the virtual work of the interface normal and tangential cohesive tractions t = (τ, σ)T for the

corresponding relative sliding and opening displacements g = (gT, gN)T at cohesive interfaces S , and the last term is

the finite thickness interface contribution to the work by dynamic forces (ρ and t are, respectively, the mass density

and the thickness of the adhesive).

To simulate the phenomenon of layer debonding in laminated composites by taking into account the finite thickness

properties of the adhesive, we introduce here a CZM whose shape is characterized by a linear ascending branch

followed by an exponential softening. The slope of the linear branch, K, can be estimated by the ratio between the

Young modulus of the adhesive, Eadh, and the adhesive thickness, tadh, i.e., K = Eadh/tadh. This is usually put forward

in the literature to estimate the properties of an adhesive layer modeled as a bed of linear springs (Camanho and

Davila (2002); Li et al. (2005)). In the present model, the selection of the initial stiffness of the CZM depending

on the adhesive properties can be made by varying the internal parameter l0, which defines the opening and sliding

displacements corresponding to the peak CZM tractions before the onset of exponential softening. The resulting
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expression for the normal cohesive tractions is:

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σmax exp

(−l0 − |gT|
R

)
gN

l0
, if

gN

R
<

l0
R

σmax exp

(−gN − |gT|
R

)
, if

l0
R
≤ gN

R
<

gNc

R
0, if

gN

R
≥ gNc

R

(2)

The other parameters entering the formulation are the critical opening displacement, gNc, corresponding to com-

plete debonding in pure Mode I loading, and the root mean square of the heights of the microscopically rough crack

profile, R.

Due to vibrations induced by stress waves traveling through the body in the transient regime, partial or complete

crack closure with contact may frequently take place (Carpinteri et al. (2008)). In this instance, we consider a linear

elastic unloading and reloading from the point of the CZM corresponding to the maximum experienced relative dis-

placement to zero, and viceversa. In case of crack contact, a penalty formulation is used, with a penalty parameter pn
equal to the same stiffness K as in tension.

Upon discretization of Eq.(1) with finite elements, the governing equations in matrix form become:

Mη̈ + Fint = Fext, (3)

where M is a lumped mass matrix, Fint is the internal force array arising from the current state of stress (equal to the

stiffness matrix times the vector of nodal displacements) and Fext is the external force array including surface tractions

acting on the boundary ∂V and on the cohesive interfaces S .

Hence, cohesive interfaces contribute to Eq.(3) for all of the three terms. By using interface elements to discretize

cohesive interfaces as in Paggi and Wriggers (2011b, 2012) and considering an implicit solution scheme, their internal

force array contribution is given by the tangent stiffness matrix multiplied by the nodal displacement vector. In

particular, a 4-nodes linear interface element has been implemented as a new user element in the finite element

programme FEAP. All the details of the implementation can be found in Paggi and Wriggers (2011b, 2012).

Regarding the mass matrix of the interface element, which, to the best of the authors’ knowledge, is always ne-

glected in the literature, is given by a lumped approximation:

M =
ρtl
4

I (4)

where I is a 8× 8 identity matrix, ρ is the mass density of the adhesive, t is the adhesive thickness and l is the element

length.

3. Numerical investigation

As a test problem, let us consider a double cantilever beam (DCB) test, which is frequently used in experiments

to assess the bonding strength of adhesives. The sketch of the test and the dimensions are shown in Fig.1. The

mechanical properties of the linear elastic laminae are those of Aluminum, EAl = 70 GPa, νAl = 0.3 and ρAl = 2700

kg/m3. The parameters of the adhesive (CZM) are: Young modulus Eadh = 0.42 GPa, tensile strength σpeak = 8.5
MPa, critical Mode I debonding length gNc = 0.3 mm, fracture energy GF = 600 N/m. Parametric analyses will be

performed by varying the line-loading displacement velocity, v, the adhesive thickness, tadh, and the adhesive mass

density, ρ.
A plane stress FE model is considered with 4-nodes isoparametric finite elements for the discretization of the

continuum. At least 10 elements are employed through each layer thickness and the finite element size is 75 × 100

μm to resolve with the necessary accuracy the cohesive tractions in the process zone, which has a size approximately

equal to 3 mm. The computation is performed under the assumption of small displacements. At each time step, the

solution of the equilibrium equations is achieved by the Newton-Raphson method. Integration in time is performed

by a Newmark constant-average-acceleration scheme (β = 0.5, γ = 0.25) and a time step of t = 0.5 μs, which is less

than the time that a longitudinal wave would need to cross the process zone size, which is about 2 μs.
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Fig. 1. Sketch of the double cantilever beam test.

The numerical simulations are performed by imposing a load-line displacement at the beam tip with a prescribed

velocity v. However, instead of imposing the prescribed constant velocity from the very beginning of the simulation,

a ramp function is considered to provide a smooth transition from the initial configuration to the steady-state velocity.

The introduction of this ramp function was found to be essential to avoid spurious vibrations in the layered beam,

without the need of introducing any damping in the model.

The first set of numerical results concerns the effect of the load-line displacement velocity on the mechanical

response as compared to the quasi-static case. For this test we select t = 0.5 mm, ρ = 2700 kg/m3 and different

load-line displacement velocities, v = 5, 10, 15 or 20 m/s. The line-load, given by the reaction force under the point

of application of the displacement, is plotted vs. the load-line displacement in Fig.2(a). By increasing the velocity

v, an increase in the peak load due to dynamic effects is clearly observed. This is the result of the interplay between

the CZM properties and the inertia forces and it not related to rate-dependent parameters. By plotting the line-load

vs. the fictitious crack-tip position, Fig.2(b), we also notice that the process zone size at the peak load shrinks by

increasing the line-loading velocity. The fictitious crack-tip position is set at the point along the interface where the

peak cohesive traction takes place. Finally, the crack-tip velocity is an increasing function of the line-displacement

velocity v, as shown in Fig.2(c). In particular, it is important to note that the crack velocity is highly dependent on the

fictitious crack-tip position, with a maximum followed by a descending branch down to an asymptotic value for very

long cracks. The dynamic increase factor, DIF, is computed as the ratio between the peak load in the dynamic case

and the peak load from the quasi-static simulation and it is plotted in Fig.2(d) vs. v. Dynamic effects lead nearly to

40% of peak load increase for the highest velocity tested.

These results show that the dynamic properties of the system can provide an explanation to the observed strength

increase as compared to the quasi-static regime. However, for very high strain rates, a yet unexplained dramatic

increase in strength is often found in experiments (Malvar and Ross (1998); Caveran et al. (2013)). Since pure inertia

effects are not enough to explain this phenomenon, rate-dependent CZMs are employed, where the fracture energy

is empirically related to the crack-tip velocity (Zhou et al. (2008)) or to the crack opening rate (Corigliano et al.

(2006)). In the present problem where the crack path is defined a priori without the occurrence of crack branching,

the application of those rate-dependent models would be easy to implement.

The effect of the adhesive thickness is investigated in Fig.3 for an adhesive with ρ = 2700 kg/m3. A change of

adhesive thickness results into a modification of the interface element stiffness K. In particular, since K = Eadh/tadh,

thicker adhesives are more compliant than thinner ones. We explore thicknesses of 0.5 mm, 1.0 mm and 2.0 mm.

The peak cohesive tractions and the fracture energy of the adhesive are kept the same in all the simulations. Since

a change of adhesive thickness influences the linear branch of the CZM, thickness effects are already observed in

the quasi-static regime, see the load vs. the load-line displacement diagram in Fig.3(a). Considering t = 0.5 mm

as a reference value, the peak load slightly increases by increasing the layer thickness, as shown with square dots in

Fig.3(d). In the dynamic regime with, e.g., v = 10 m/s, this increase is much more pronounced, see Figs.3(b) and

3(d). By increasing t, the process zone size at the peak load is reduced, as shown in Figs.3(c).

4. Conclusions

In the present work, the inertia properties of finite thickness interfaces have been properly modeled by augmenting

the classical interface element used for quasi-static analysis with a lumped mass matrix. Moreover, the parameters of

the proposed CZM have been related to the adhesive thickness and to the adhesive Young modulus, quantities that can
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(a) Load vs. load-line displacement (b) Load vs. fictitious crack-tip position

(c) Crack-tip velocity vs. fictitious crack-tip position (d) DIF vs. velocity

Fig. 2. Effect of the load-line displacement velocity v, t = 0.5 mm, ρ = 2700 kg/m3.

(a) Quasi-static (b) Dynamic, v = 10 m/s

(c) Load vs. fictitious crack-tip pos. (v = 10 m/s) (d) Strength increase factor vs. adhesive thickness

Fig. 3. Effect of the adhesive thickness t (ρ = 2700 kg/m3).
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be ascertain with precision in composite materials testing. Examining a DCB test where the adhesive layer thickness

is not negligible with respect to the other layers thickness, numerical results show that the interface stiffness and mass

are important in the dynamic regime. Their effect regard both the dynamic strength increase factor, which is further

increased as compared to the case when interface thickness effects are neglected, and the energy dissipated during the

post-peak response.
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