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In this paper we develop a model for the evolution of multiple networks which is able to replicate the
concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment
growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every
country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing
more trade opportunities at a given level of complexity and of starting to trade more complex goods are both
proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative
results. A calibration exercise shows that our model replicates the same concentration level of world trade as well
as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple
networks.
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I. INTRODUCTION

The analysis of global systems has progressively moved
from considering single networks such as trade, finance,
transportation, and communication to analyzing them jointly
as multiple interdependent networks. Our work contributes to
this line of research by developing a new description of interna-
tional trade as a set of interdependent multiple networks. The
work combines two streams of the recent literature: the former
studies the empirical regularities characterizing international
trade flows, especially those that are puzzling for standard
economic models [1–5]; the latter relates to the increasing
use of network concepts to describe economic systems [6,7].
Our approach is able to replicate a set of properties of the
world trade web, including the large fraction of missing trade
relationships one observes across countries.

The sparse nature of trade data, resulting in a large
proportion of zero-trade flows, has received a good deal of
attention in recent years [8]. Evidence put forward in Ref. [4]
shows that over the period 1970–1997 only half of all possible
country-pair links are ever activated (either in one or the
other direction). The percentage of missing links grows even
larger when we consider multiple trade networks, one for each
product traded: 82% of potential product-partner trade flows
are actually zero for U.S. trade data, when export product
categories are defined according to the 10-digit Harmonized
System (HS) [2]. Such a percentage is even larger for U.S.
imports (92%). A similar behavior is observed for all countries
with a percentage of zero-trade flows that ranges between 69%
and 99.5%, with a mean value of 96% (based on UN-Comtrade
data at the HS-6 level [9]).
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A second interesting regularity, partly related to the previ-
ous one, pertains to the large disparities in trade participation.
Trade concentration can be appreciated by looking at the
distribution of the number of destinations served by each
exporting country, the number of products shipped, or the
number of product-destination pairs. Several studies have
documented the skewness of such distribution: This feature
appears to be stable across the different data sets used and
over time [9–13].

In the network literature, very skewed connectivity distri-
butions are found to characterize many real-world applications
besides trade (e.g., the Internet, worldwide air transportation,
mobile communication, and interbank payments, to name just
a few), so a network approach appears well placed to account
for the two features of international trade data discussed so
far. One of the most successful null models to account for the
power-law connectivity distribution of real-world networks is
the preferential attachment (PA) growth model [14]. However,
to generate skewed connectivity and sparse network structures,
the PA regime must be complemented by a constant inflow of
new nodes. Such a model does not fit well with the international
trade network, where the set of nodes (i.e., countries) is almost
constant in time. To solve this puzzle, one approach is to rely
on some node-specific attributes, such as, for instance, country
gross domestic product and population in a gravity approach.
However, this approach does not account for differences across
product-specific trade networks, unless one assumes that coun-
tries have some intrinsic fitness in the product space [15,16].

In this paper, we go back to a purely stochastic approach
to propose a generalization of the PA model which is able
to describe the topological structure of bilateral trade flows
across countries. Since the number of traded products is large
relative to the number of countries, in order to re-create a
process matching the large number of zeros observed in the
data, the trade network has to be decomposed into subnetworks
of different dimensions. Each submatrix represents a trade
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FIG. 1. Rank correlations between out-degree of each country across (96) different two-digit HS chapters. Data refer to 2001: Correlations
range between 0.369 and 0.983, with mean values equal to 0.8339 (Spearman) and 0.6689 (Kendall).

network where some specific products are traded and not
all countries are simultaneously active in trading all goods.
This formal treatment of the problem suggests a learning
process whereby many countries trade the most basic products,
whereas only a few of them manage to produce and export the
most sophisticated manufactured goods [6]. In other words,
we keep fixed the set of countries and consider multiple trade
networks sorted by the complexity of traded goods. The PA
regime is active across all networks and we model the entry
probability of a country in high-tech trade as proportional to
the total number of trade relationships it has already activated.

The approach we follow entails decomposing the adja-
cency matrix describing the world trade network in nested
submatrices of different dimensions and allocating in each
of them a number of links warranting an adequate sparsity
structure. The cheaper computational costs of this procedures
also reflect an inferior mathematical complexity in writing the
distributions of the simulated quantities of interest. This allows
us to derive useful analytical properties of the process we want
to reproduce.

The paper is structured as follows. Section II illustrates the
empirical properties of the real-world trade network that we
aim at reproducing. Section III describes our decomposition
procedure, and the criteria to establish both the dimensions of
the subnetworks and the number of links to allocate in each
of them. In Sec. IV we describe some probabilistic properties
of our approach whereas in Sec. V the procedure is applied
to trade data. Finally, Sec. VI concludes and discusses further
research directions.

II. DESCRIPTIVE DATA ANALYSIS

From an empirical point of view, we refer to the BACI data
set maintained by CEPII and reporting bilateral trade flows
among a large number of countries over the years 1995–2011
[17]. The data are organized according to the HS classification,
and each bilateral flow (from source to destination country)
is attached a six-digit product code based on the physical

characteristics of the goods traded.1 Hence, each observation
in our data set is defined by the source and destination country,
product code, and dollar value. Since we are mainly interested
in the number of zeros and the connectivity distribution, we
disregard the information on the value of trade and reaggregate
the data at the country level by counting how many six-digit
products are exported from country i to country j . After
dropping some small countries and territories, for each year
we end up with a 189 × 189 matrix A, whose (i,j )-th entry
Kij represents the number of products exported from i to j .
A can be seen as the adjacency matrix of a weighted and
directed graph, with integer weights, representing the number
of exported and imported products.

From the data, we calculate the percentage of zeros in each
trade matrix: The average over the whole 1995–2009 period is
about 42%, ranging from 52% in 1995 to 36% percent in 2007.2

Most countries export a small number of products to a few
destinations, while only a few players are extremely connected.
Indeed, this is consistent with previous findings pointing to a
core-periphery structure of world trade [18]. Data for 2001,
for instance, tell that the number of (product-destination) links
for each country Nr ranges between 35 and 322 064 (mean
30 075, standard deviation 59 144). We also notice that leading
countries tend to dominate trade in every product category:
Figure 1 plots the density function of (rank) correlation
coefficients among the number of destinations served by

1HS is the standard classification for international trade in all major
countries and is maintained by the World Customs Organization.
Products are initially assigned to 99 broad two-digit categories (e.g.,
Chapter 87 - Vehicles other than railway), which are then further
broken out into more detailed six-digit codes (e.g., code 871110 -
Motorcycles, with internal combustion engine not exceeding 50 cc,
or code 871120 - Motorcycles, with internal combustion engine
between 50 and 250 cc).

2Since the structural properties of the resulting network are rather
stable over time (see, for instance, Ref. [18]), the specific year
analyzed is irrelevant.
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FIG. 2. (Color online) In-degree (import) and out-degree (export) of countries in the world trade web. Each link is a product-specific trade
relationship between two countries.

each country across different products (defined as two-digit
HS chapters, of which we have 96 in the data) in the year
2001. First, for each of the 189 countries in the sample, and
each product, we count the number of destinations served
(out-degree), and then we compute the pairwise correlations
across the 96 product categories, obtaining 4560 (96 × 95/2)
coefficients. The evidence summarized in Fig. 1 supports the
view that most central nodes tend to play a relevant role (i.e.,
serve many destinations) in all product networks.

Finally, it is worth noticing that the connectivity distribution
of the trade network is extremely skewed, especially for
exports (see Fig. 2).

III. A GENERALIZED PREFERENTIAL ATTACHMENT
MODEL FOR MULTIPLE NETWORKS

To replicate the sparsity pattern and the connectivity
distribution of world trade we start from a pure PA model
[14]: Countries establish new trade links based on the number
of connections they already have. Hence, more active exporters
are more likely to export new products and/or reach new
markets.3 This mechanism of network formation and growth
is consistent with the view that exporting represents a key
engine of economic growth thanks to the endogenous forces
set in motion by learning effects in the manufacturing sector.
A more recent framing of this old idea can be found in
Ref. [19], where the search for viable export industries is
described as a process of “self-discovery”: Attempts to set up
new businesses and export new products to new destinations
generate valuable public information as they signal profitable
opportunities or dead ends. Linked to this is the idea that by
producing a given set of goods each country accumulates a
number of capabilities: The more capabilities are present, the

3Elsewhere [5,8] we have shown that this setup can effectively
replicate the main structural properties of the trade network, such as
the skewed connectivity distribution.

easier it is to recombine them and put them to novel use [20].
A more micro-based account of PA is offered in Refs. [7]
and [21]. The former postulates that firms can establish links
with suppliers either at random at via already established
connections (meeting friends of friends); the latter assumes
that the fixed costs associated with penetrating a foreign
market is decreasing in the number of firms already exporting
there (from a given source country) due to the presence of
(information) spillover effects. Here we do not take a specific
position regarding the precise source of PA but rather focus on
its effects in terms of the number of zeros and the connectivity
distribution.

In our network model we start from a given set of active
players (countries) w0, each trading one product to a single
destination. In our application we have w0 = 189, thus there
is no entry of new countries. Starting from this 189 × 189
matrix, Ntot trade links are allocated (each representing a
product-destination pair), one at each step, according to the
following procedure: The outgoing (incoming) link is assigned
proportionally to the export (import) connectivity of countries,
that is, the probability of catching a new outgoing (incoming)
connection is proportional to the node out-degree (in-degree).
This pure PA mechanism with no entry fills up the trade matrix
too rapidly (i.e., the share of zeros is too low).4 Figure 3 shows
that the share of zeros decreases as the number of links grows:
It goes down very quickly for small values of Ntot, while it
stabilizes for large Ntot.

In reproducing trade data, we are interested in values of the
probability of having a zero entry of A, PA[0] ∈ (0.36,0.52).
Values in such a range can be obtained by limiting the number
of links to be allocated: Ntot ∈ (55 000,130 000). However, this
is much smaller than the real number of links observed in the
data, which are in the order of Ntot ≈ 5–7 × 106.

4Conversely, if we set w0 = 0 and let the country enter with a
constant probability α the share of zeros will be too high.
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FIG. 3. Probability of missing links in international trade, 189 × 189 country matrix.

To address this issue, we propose a generalized PA
mechanism for the growth of multiple networks that consists
in allocating products to different subnetworks, i.e., we
group products into different categories. More precisely, to
implement our method we must decide (a) how to split the
total network into product-specific subnetworks, (b) how to
determine the number of products to be allocated in each
subnetwork, and (c) how to reaggregate subnetworks to obtain
the aggregate world trade network. In choosing the different
submatrices, we aim at reproducing the allocation dynamics
related to different types of products, due, for instance, to
their different levels of technological intensity. In this context,
products with the lowest complexity are those exported,
or generally traded, by all countries, whereas the most
sophisticated goods are produced and sold by a small number
of countries. This idea is similar to the method of reflections
used by Ref. [20] to infer the complexity of a product from
the number of countries exporting it and the capabilities of a
country from the ubiquity of its export mix: The more products
a country exports, the more capabilities it has. The authors
describe “each capability as a building block or Lego piece
[...], a product is equivalent to a Lego model, and a country is
equivalent to a bucket of Legos.” Hence, a further connection
to our approach comes from the proportionality implied by this
view: by exporting more products a country cumulates more
capabilities and therefore manages to produce and export even
more products. This is exactly the PA mechanism that lies at
the heart of our own approach.

Formally, differentiating among goods based on their com-
plexity implies a progressive narrowing of the dimension of
the adjacency matrices where we allocate products. Our model
generalizes the PA model by differentiating two dimensions:
(1) the probability to catch a new trade opportunity for a given
product is proportional to the number of links a country already

has and (2) the probability to start trading a new product is
proportional to the total number of connections a country
has across all products. Once we have chosen number and
dimensions of the submatrices of the original N × N matrix
describing the trade network, we have to establish the number
of products to be allocated in each submatrix. The number of
zeros is decreasing with respect to the aggregation operation,
as the latter adds items to cells but cannot remove them. This
fact offers a first criterion for establishing an upper bound for
the number of objects to be allocated in the lowest layer.

Among the possible criteria for choosing number and
dimensions of the submatrices and the numbers of products to
be allocated in each of them, we use a decomposition method,
based on P (zeros) quantiles, keeping (as much as possible)
constant the percentage of zeros in the different submatrices.
To this aim, we simulate the number of allocations required in
order to obtain a given percentage of zeros α in a matrix of a
given dimension n (number of countries), n = 10, . . . ,189.

More in detail, we count how many (units of) HS6 products
are exported by exactly one country, how many ones by two,
and so on (see Fig. 4). In order to obtain a certain percentage of
zeros in any matrix, we have to combine the dimension of the
matrix and number of objects to be allocated. For example, for
filling a 189 × 189 matrix with 50% zeros, we need to allocate
about 6 × 104 units. This number is obtained by looking at
the number of units of HS6 products exported by exactly x

countries, with x ranging between about 160 and 189. By
means of such a grouping procedure, we identify overlapping
groups of countries with different cardinality. For each group
of nations, we count the number of units of HS6 products
exported by each country. Such a number coincides with the
sum of out-degrees of the countries belonging to the group,
where the out-degree of a node is meant as the sum of the
weights of the tail end points adjacent to a node.
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FIG. 4. (Color online) We consider the adjacency matrix A of the world trade web in 2001. There are about 5.7 million entries in the
matrix (links) corresponding to different products traded by countries. We sort the matrix by the centrality of countries, as measured by the
total number of incoming and outgoing links. Next we count the number of entries in the top-left submatrix of size “dim.” The plot reports the
number of products added to the network by increasing the size of the submatrix dim, including more peripheral countries. We also report the
graphs of Prodα(dim), the number of links to be allocated for having a share of zeros α = 1/2 in a matrix of size dim.

The idea is the following: Looking at Fig. 4, starting from
the right of the horizontal axis, we sum the number of units
until such a sum reaches the curve corresponding to the desired
share of zeros α. Formally, we have

N1 = N, Nh+1 = inf

{
x|

Nh∑
c=x+1

ex(c) < Prodα(Nh)

}
(1)

and

nh =
Nh∑

c=Nh+1+1

ex(c), h = 1, . . . ,b − 1. (2)

where Prodα(Nh) is the number of links to be allocated for
having a share of zeros α = 1/2 in a matrix of size Nh and
ex(c) is the number of additional links to be inserted. We obtain
a decomposition of the adjacency matrix A into b submatrices
M1, . . . ,Mb, whose dimensions are, respectively, N1, . . . ,Nb,

and, in each submatrix Mh, we have to allocate nh links.5

The subnetworks must next be aggregated to obtain the
world trade matrix. Since we assume that the probability to
enter new trade networks is proportional to total connectivity,
we aggregate the matrices be means of the operation �,
consisting in a sum operation after having ordered columns
and rows of the submatrices according to their connectivity.

5Submatrices could be rectangular, whereby few countries export
products but all of them import. This extension would complicate the
mathematical treatment of the problem without adding much to the
current results.

Given that connectivity is strongly correlated across products
(see Fig. 1), this aggregation procedure is both theoretically
and empirically grounded. Such an ordering concentrates the
nonempty entries in the left upper corner and minimizes the
probability that a nonempty entry of Mi+1 is summed to an
empty entry of the matrix M1 � · · · � Mi . This method allows
us to generate a higher concentration than the classical PA
model without entry, which would lead to a too-low share of
zeros and to matrices too uniformly filled up. Our aggregation
procedure instead makes the most connected countries, i.e.,
the ones in the left upper corner, benefit from the PA in any
technology level where they are active and from a sort of PA
across different layers. In other words, such countries “attract”
products and, in any market, they “attract” trade opportunities.

Let be N1, . . . ,Nb the dimensions of the submatrices
M1, . . . ,Mb, with b the number of the submatrices and
N1 > · · · > Nb and α1, . . . ,αb the proportions of zeros in any
submatrix. We define the aggregated matrix by

M = M1 � · · · � Mb.

We denote by PM [0](α) and EM [0](α) the probability of a
cell to be empty (missing link) and the expected number of
zeros in M , respectively. We provide here some formulas
that allow us to compute PM [0],EM [0] in terms of given
b,N1, . . . ,Nb, α1, . . . ,αb. Conversely, these formulas can be
used for calibrating the share of zeros α1, . . . ,αb (or, for
the sake of simplicity, α = α1 = · · · = αb), to obtain a given
percentage of zeros in the aggregated matrix M . With the
following propositions, we provide the analytical expression
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of the function linking the disaggregate share of zeros to the
aggregate one.

Proposition 1.

EM [0](α) = α1N
2
1

b∏
i=2

[
1 − (1 − αi)

(
Ni

N1

)2]
. (3)

In this context the probability that a given entry contains
a zero can be seen as a binomial probability, therefore it can
be simply obtained by its expected value by dividing by the
number of trials N2

1 ,

PM [0](α) = α1

b∏
i=2

[
1 − (1 − αi)

(
Ni

N1

)2]
. (4)

The advantage of dealing with expected values in place of
probabilities is due to the linearity of the expected value.
Equation (4) can be used both to compute PM [0](α), by
assigning α1, . . . ,αb, and, conversely, to obtain, numerically,
the α1, . . . ,αb to be assigned in order to get a fixed PM [0](α).
In our application, we consider, for any i = 1, . . . ,b, αi = α.
Notice that 1 − (1 − αi)(

Ni

N1
)2 < 1. By replacing αi = α in

Eq. (4) we get PM [0](α) < α. Heuristically, this fact implies
that, in order to obtain an aggregated matrix with percentage
of zeros PM [0](α), we have to assign to the disaggregated
matrices a higher percentage of zeros α. We provide a formula
for the needed percentage α in the following two cases, which
is useful to find a suitable α to be inserted in the simulation.

The relation

Ni � (1 − αi−1)Ni−1 for any i = 2, . . . ,b (5)

implies that, for any i = 2, . . . ,b, (1 − αi)Ni < (1 −
αi−1)Ni−1. In this case, since M2 is contained in the upper
[(1 − α1)N1]2 block of M1, any result of the allocations in the
sub-matrices M2, . . . ,Mb does not affect the number of zeros
of M1. Therefore it is sufficient to compute these last ones,
amounting to αN2

1 and trivially giving

PM [0](α) = α. (6)

Proposition 2. Let be αi = α1 = α and Ni > (1 − α)Ni−1

for any i = 2, . . . ,b. Then

PM [0](α) = 2α − α2 − 1 − α

N2
1

b̄∑
i=1

Ni

2i−1
(Ni − (1 − α)N1).

(7)

Remark 1. Equation (7) no longer holds if we drop the
condition αi = α. In this case, indeed, we are no more able to
order the terms (1 − αi)Ni for the different i’s.

Actually, objects falling in the upper square occupy an
empty entry with a probability greater than 0. In such a case,
however, given a greater complexity and variety of situations,
we can provide for PM [0](α) only an upper bound, reflecting
on a lower bound for α.

Proposition 3. For any fixed α ∈ [0,1], let M1 be the con-
nectivity ordered (square) matrix, with the zeros’ percentage α.
Let 1 − β be the zeros’ percentage in the upper [(1 − α)N1]2

block and 1 − β̃ be the zeros’ percentage in the rectangular

blocks (1 − α)N1 × (N1 − (1 − α)N1). Then

PM [0](α) � 1 − 2

N2
1

(1 − α)

{ b̄∑
i=1

(1 − β̃)i−1N2
i

×
[
β̃ + (1 − α)

(
β − β̃

N1

Ni

)]

+ (1 − α)β̃
b̄∑

i=2

Ni

i∑
h=2

(1 − β̃)h−2(1 − β)i−h+1

× (Ni−h+1 − Ni−h+2)

}
. (8)

An analog of Eq. (6), when β �= 1 �= 2β̃, can be obtained
by dropping in Eq. (8) the part corresponding to the nonzeros
added in the rectangular blocks of M1 and modifying the part
corresponding to its upper square block, in the light of the
condition (1 − αi)Ni < Ni < (1 − αi−1)Ni−1.

IV. PROBABILISTIC ASPECTS AND ANALYTICAL
PROPERTIES OF THE ALLOCATION PROCESS

In this section we want to study some analytical properties
of the processes involved in the simulation. To this purpose, we
give, first, some definitions that will be useful in the following.

Definition 1 (Sufficient statistic). Let X a sample on
(�,B,P), taking values in X, and let F = {fX(·,θ ) : θ ∈ �}
be a family of probability densities for X, depending on the
parameter θ ∈ �. A statistic T = T (X) is sufficient if two
functions g,h exist, such that, for any θ ∈ � and for almost
any x ∈ X,

fX(x,θ ) = h(x)g(T (x),θ ).

Intuitively a sufficient statistic is a function of data
containing all the information they can give. For further details
and examples, see, e.g., Ref. [22].

Definition 2 (Counting process). A stochastic process
{Nt }t∈[0,+∞) is a counting process if, for any t , Nt satisfies the
following properties:

(i) Nt ∈ N;
(ii) P (Ns � Nt ) = 1 for any s < t ;
(iii) for any s < t , Nt − Ns is the number of events

occurred during the interval (s,t].
A counting process is said to be simple if N0 = 0 and

lim
δ→0

P (Nt+δ − Nt > 1) = 0.

Definition 3 (Markov process). A stochastic process
{Xt }t∈[0,+∞) with discrete state space E is a Markov
process if, for any 0 � s1, . . . ,sk < s < t and for any
i1, . . . ,ik,i,j ∈ E,

P (Xt = j |Xs = i,Xs1 = i1, . . . ,Xsk
= ik)

= P (Xt = j |Xs = i). (9)

Definition 4. A simple counting process satisfying Eq. (9)
(Markov property) is called a pure birth process.

Let Mt = (M(1)
t , . . . ,M

(N)
t ) = (m(1)

t , . . . ,m
(N)
t ) be the ob-

served configuration of the countries’ masses at time t ∈ N.
M

(c)
t is the random variable counting the number of products
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allocated to country c until time t . The process {M(c)
t }t∈N,

by construction, is a simple counting process (i.e., it cannot
have multiple jumps at a time). The value m

(c)
t is a realization

of the random variable M
(c)
t . According to the implemented

procedure, we suppose m
(c)
0 = 1 for any c ∈ {1, . . . ,N}.

Let us consider trade flows directionally, that is, let us
consider only export or import flows, that is, M

(i)
t = N (i)

c (t)
or M

(i)
t = N (i)

r (t). In such a way, assigning a product to the
country c means inserting it into some entry on the c-th row
of the exchange matrix. Let Pc(+1,t) be the probability that,
at the instant t (i.e., at the t-th iteration of the procedure), the
country c gets the newly inserted product and let Pc(+k,[t1,t2])
denote the probability that the country c gets k new products
in the time interval [t1,t2].

Proposition 4. For any c and t ,

Pc(+1,t) = Pc(+1,1) = 1

n
. (10)

Corollary 1. {M(c)
t }t∈N has stationary increments.

Remark 2. Since at any instant exactly one product is
drawn, for any t and for any k > 1, Pc(+k,t) = 0. Conse-
quently, Pc(+k,[s,t]) > 0 only if k � t − s + 1.

Let us assume now that a general initial configuration M0

is allowed. In general, Pc(+1,t) depends now on the country
c for which it has to be computed and on Mt−1, only through
m

(c)
t−1. We have

Pc(+1,1|M0) = m
(c)
0∑n

j=1 m
(j )
0

.

Furthermore, the following can be proven.
Proposition 5. For any s < t ,

Pc(+1,t |Ms) = Pc

( + 1,t |M(c)
s

) = m(c)
s∑n

j=1 m
(j )
s

= nm(c)
s∑n

j=1 m
(j )
s

P (+1,t).

Remark 3. The previous results hold by replacing in them
Pc(+1,t) with Pc(+1,t |Ms), that is, by multiplying Pc(+1,t)

by nm
(c)
s∑n

j=1 m
(j )
s

, where Ms is the last observed mass configuration.

Corollary 2. For any k,t,s,s ′ such that k < t − s ′, s < s ′,

P (+k,[s ′,t]|Ms) =
k−1∏
i=0

m(c)
s + i∑N

j=1 m
(j )
s + i

×
t−s ′∏
i=k

∑N
j=1,j �=c m

(j )
s + i − k∑N

j=1 m
(j )
s + i

. (11)

Remark 4. {M(c)
t }t∈N has no independent increments.

In fact, P (M(c)
t+s − M(c)

s = k|M(c)
s = h) = h

n+s
P (+k,[1,t]) �=

P (+k,[1,t]) = P (M(c)
t+s − M(c)

s = k). Therefore

P
(
M

(c)
t+s − M(c)

s = k,M(c)
s = h

)
�= P

(
M

(c)
t+s − M(c)

s = k
)
P (M(c)

s = h).

Theorem 1. For any c ∈ {1, . . . ,N}, {M(c)
t }t∈N is a homo-

geneous Markov process, i.e.,

Pc

(+1,t |M(c)
t−1, . . . ,M

(c)
0

) = Pc

( + 1,t |M(c)
t−1

)
.

Theorem 2. For any c ∈ {1, . . . ,N}, {M(c)
t }t∈N is a sub-

martingale, i.e.,

E
[
M

(c)
t+1

∣∣M(c)
t , . . . ,M

(c)
0

]
� M

(c)
t .

Some consequences of the formulas provided in the
theorems and propositions above concern the probability of
assigning to a same country products in a certain number of
categories, i.e., allocating products in a same row of a certain
number of submatrices, as well as the analytical expression for
the zeros’ probability.

Let us again start with a uniform configuration (one product
per country in any matrix). The probability that one product
for each of the r lowest levels of technology is assigned to a
same fixed country is(

1

N

)(
1

N2

N2

N

)(
1

N3

N2

N

N3

N2

)
· · · · = 1

Nr
, (12)

where, in any factor 1
Nl

N2
N

N3
N2

· · · Nl

Nl−1
, 1

Nl
is the probability

that, in the submatrix Ml , the product is assigned to the given
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FIG. 5. (Color online) Share of zeros in the real-world data (solid
lines) and simulation results (dashed and dotted lines). Real and
simulated adjacency matrices have been reordered according to the
centrality of countries (most central nodes are at the bottom-left of
the matrix). We report the share of zeros in the squared matrices
of size n at the top-left and bottom-right of the adjacency matrix.
The dotted line shows the results of the simulation when there is no
correlation among products. In such a case the total share of zeros
is well reproduced, but large departures are detected in the sparsity
pattern of the matrix both in the core and the periphery of the network.
A far better result is obtain in the second simulation regime (dashed
lines) when we impose the same cross-product correlation as in the
real data. In such a case, both the share of zeros and the sparsity
pattern are well replicated. α = 1/2.
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FIG. 6. (Color online) Adjacency matrix of the real-world trade network in the year 2001 (a), and the simulated network (b). The simulated
network is based on our model with the same correlation level as in the real data (simulation 2). The two networks have a similar sparsity
structure but the simulated one is slightly less disassortative than the real one [−0.30 (real network) vs −0.24 (simulated network)].

country, while any term Nh

Nh−1
is the probability that that country

is active in the technology level h, given that it is active in the
technology level h − 1. Since 1

Nl

N2
N

N3
N2

· · · Nl

Nl−1
= 1

N
, Eq. (12)

is also the probability that one product for each of r given
levels of technology is assigned to the same country.

The analytical expression for the zeros’ probability can be
computed in two different (consistent) ways.

At the first step of the allocation procedure,

P (Kij = 0)

= [Prob(selecting a row �= i) + Prob(selecting row i)

× Prob(selecting a column �= j |row i)]P (Kij (0) = 0)

=
(

N − 1

N
+ 1

N

N − 2

N − 1

)(
1 − 1

N

)
.

Such a probability can also be computed as the one of the
complementary events of observing a product to be allocated
in the entry (i,j ), i.e.,

P (Kij = 0) =
(

1 − 1

N

)(
1 − 1

N

1

N − 1

)
,

P (Kij = 0|[0,t]) =
(

1 − 1

N

)(
1 − 1

N

1

N − 1

)t

.

V. SIMULATION RESULTS

Since it is not possible to invert Eq. (7), in order to compute
a suitable α for our simulation, we have to (a) start from an
arbitrary value of α, representing the percentage of zeros in
each submatrix; (b) find a suitable number and dimensions
of the submatrices given α; (c) check which condition,
between Ni = (1 − αi−1)Ni−1 and Ni > (1 − α)Ni−1 for any
i = 2, . . . ,b, our data satisfy; (d) compute the share of zeros,
as it results from Eq. (7); and (d) accept or not such a value
and possibly repeat the procedure.

Applying it to trade data for 2001, we obtain a decom-
position in 156 submatrices, each with a percentage of zeros
α = 0.575. The actual share of zeros in the aggregate matrix
amounts to 0.437, instead of the expected PM [0](0.575) = 0.4.
This is a consequence of the fact that, contrary to what happens
in the data, in the simulations the connectivity reordering
concentrates nonzero entries in the upper square of each
matrix but is not able to fully move zeros in other blocks.
However, as the simulated data show, we can assume in a good
approximation β = 1, β̃ = 1/2 and use, for a lower bound on
α, Eq. (7). Actually, Eq. (7) provides an imprecise lower bound
for α but a locally optimal solution: The share of zeros further
decreases to 0.34 for α = 0.625, while, for α = 0.75, it rises
again to 0.35.6

In our simulation exercises we consider two scenarios.
The first assumes the absence of any within country cross-
correlation in trading different products (simulation 1). As
shown in Fig. 5 this approach is able to reproduce the share of
missing links but fails in reproducing the sparsity pattern of the
trade network. Therefore we run another simulation exercise
in which we apply the same correlation among products as
observed in the data. Figure 5 shows that this is indeed a
crucial aspect to generate the same sparsity structure of the
real network. This evidence is further confirmed by inspecting

6We also compared the two solutions in terms of the deviation
of the resulting connectivity distribution from the empirical one. In
terms of relative frequencies, yi

r , yi
r (0.575), yi

r (0.75), computed on a
histogram with 100 bins, we have

189∑
i=1

|yi
r − yi

r (0.575)| =
189∑
i=1

|yi
r − yi

r (0.75)| = 66.

The reason for such a similarity is that the smaller number of objects
allocated in each submatrix for α = 0.75 is counterbalanced by a
more refined partition of the matrix (173 instead of 156 submatrices).
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the adjacency matrices in Fig. 6. All in all, our model does a
good job of replicating some of the main structural properties
of the world trade data, especially if we consider that we do not
account for some crucial features of the real-world trade web,
such as distance among countries. However, we also noticed
that our model generates a network which is less disassortative
than the real one. Further work is needed to fully resolve this
aspect. In particular, one major limitation of our approach is
that countries have the same likelihood to start importing and
exporting a new product. As is evident in Fig. 2, this is not
the case in real data: To export a large number of products is
clearly more difficult than to import them. Better results could
be obtained by differentiating import from export in future
work.

VI. CONCLUDING DISCUSSION

In this paper we presented a generalized version of the PA
model [14] which is able to account for the sparsity structure
of the world trade network. Our model is based on the idea
that almost every country takes part in the trade of low-tech
products, while only a few of them have the capabilities to
export sophisticated goods. We define a lower bound for the
share of zeros in trade networks by considering no correlation
between countries’ capabilities in trading different products.
However, since we know that trade in different products is
correlated [20], we also consider more realistic assumptions
about the product space. Our approach is able to replicate
the sparsity structure of the trade network by combining a
generalized version of the preferential attachment model to
the case of multiple networks with more realistic assumptions
about the probability to jointly trade related products. From
a computational point of view we also contribute to the
existing literature by providing a new method to generate
large sparse networks. Indeed, our methodology allows us to
generate in parallel multiple (product-specific) networks, thus
reducing the computational time to simulate the evolution of
large trade networks. The decomposition greatly reduces the
complexity of the procedure and allows for a reaggregation
of different layers to obtain the desired aggregate properties.
Different assumptions about cross-layer correlations can be
implemented by modifying the aggregation function.
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APPENDIX A: AN OVERVIEW ON DECOMPOSITION
AND RE-AGGREGATION METHODS

The choice of both the decomposition and reaggregation
methods is not unique. Our choice derives from having
experimented further possible methods.

The most natural reaggregation method consists in simply
summing up the entries of the different submatrices. However,
we should apply the matrices’ sum operation to any possible
permutation of the entries of the submatrices. In our case,
we would obtain N2! × N2

2 ! × · · · × N2
b ! different ways of

summing up. This process would have huge computational
costs. However, all these situations are bounded by two of
them: the reaggregation method representing the greatest
positive dependence among the different levels of technology
and the one representing independence.

The first is just the one based on the connectivity ordering,
which we treat in detail in the paper. The second method is the
most randomized, consisting in randomly permuting rows and
columns of each Mi and them summing them up. We expect
that such a method underestimates both the number of zeros
and the cells’ values and that therefore it can provide a lower
bound for such quantities. Actually, it gives a trivial lower
bound in that the zeros completely vanish and the values are
uniformly distributed in the cells. This fact is also confirmed by
the shape of the resulting distribution of export connectivity,
which is much less concentrated than the empirical one (see
Fig. 7).

Remark 5. We did not consider instead, as a lower bound,
a summing rule representing negative dependence among
different levels of technology. In fact it is not possible that
more than two variables are all pairwise negative dependent.
This fact is also confirmed by the trivial lower bound obtained
in the case of independence.
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FIG. 7. Export connectivity distribution obtained by reaggregation via randomly permuting rows and columns of each Mi (a) and the
empirical export connectivity distribution (b).
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The bad performance of the random permutation method is
also confirmed by the fact that, in calibrating α, summing
the submatrices obtained by the simulation without any
transformation, that is, by considering � = +, we obtain
PM [0](α) < α

2 . This means that, even by taking a high value
for α, we obtain a too-low PM [0].

One of the criteria adopted in the choice of the decomposi-
tion method is a kind of “connectivity-based” distance. Indeed,
we could consider the decomposition in b = N sub-matrices in
such a way that Nh = b + 1 − h, h = 1, . . . ,b and compute
nh by (2). We cannot use Eq. (7) for establishing whether
such a uniformly spaced decomposition performs better or
worse than the one we have adopted, because it holds under
the hypothesis, no more warranted, of αh = α for any h =
1, . . . ,b. Furthermore, computing such αh’s would require
simulation of the allocation in all the N matrices.

The cheapest procedure we can adopt is to simulate the
allocation in M1, reorder it, and compute (1 − α1)N1 and then
continuing the simulation to the matrix Mb̄ such that Nb̄ = b +
1 − b̄ � (1 − α1)N1. We can now stop the procedure, since,
from this point onward, the probability of filling a zero entry
is nil.

Another decomposition, made attractive by the use of the
reaggregation operator �, according to condition (5), consists
in choosing N2 � (1 − α1)N1. Since the behavior of the
allocation in the upper block [(1 − α1)N1]2 does not affect
the number of zeros of the aggregate matrix, we could even
choose b = 2. In this case, the zeros’ probability is 0.3351,
even if we start with α1 = 0.55. When we simulate the
allocation in M1, in fact, the number of products is too
low to guarantee β̃ ≈ β, so the allocation in M2 affects the
number of zeros by filling up all the zeros in the upper
square block of M1. Furthermore, the resulting connectivity
distribution would not be as smooth as the empirical one.
More precisely, in terms of relative frequencies, the deviation
from the empirical connectivity distribution is 94; in terms
of absolute frequencies, it amounts to 5 676 742; hence it is
worse than the ones resulting from our simulation method of
decomposition.

We could make it smoother by choosing b ∈ {3, . . . ,N2 +
1} and/or controlling the (decreasing) sequence of αh’s.
However, the decomposition associated with each b would
be not unique. Considering, for each b, all the possible strictly
decreasing sequences {N3, . . . ,Nb}, N3 < N2, Nb � 1, is too
expensive. We could choose the decomposition obtained by
imposing some regularity conditions on the sequence of the
αh’s.

We should solve the following nonlinear system of equa-
tions:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N2 = �(1 − α1)189	,
αi = α1

b−i
b−1 , i = 2, . . . ,b − 1,

Ni = N2 − ⌊
N2 − Nb

b−2

⌋
(i − 2), i = 3, . . . ,b − 1,

ni = Prodαi
(Ni), i = 1, . . . ,b − 1,

nb = Ntot − ∑b−1
i=1 ni,

(A1)

where Prodα(Ni) is the number of units of prod-
ucts to be allocated in a Ni × Ni matrix, needed
to have a probability of zeros equal to α, while

Ntot, and α1 are exogenously given. We also need to
fix Nb.

In spite of the formalization we provide, the choice of such
a partition is not unique. In fact, in order to bring the number
of unknowns to be equal to the number of equations, some of
the conditions we impose in Eq. (A1) are arbitrary.

Therefore, we test only the two cases associated with a
unique decomposition, b = 2 and b = N , and the further
relevant one b = N2 + 1, where we set N2 = �(1 − α1)N1	.
As a consequence of this position, the decomposition is unique.

APPENDIX B: PROOFS

Proposition 1. Let us separately consider the matrices
M1, . . . ,Mb. The expected number of zeros any Mi contains
is αiN

2
i and therefore any Mi contains (1 − αi)N2

i nonzero
entries. Aggregating by using the coordinatewise matrices’
sum plus (i.e., without reordering in advance the elements of
the submatrices) the first two matrices, M1,M2, any nonzero
entry of M2 has a probability α1 to occupy a zero entry of M1.
The expected number of zeros of M1 + M2 is

EM1+M2 [0](α) = α1N
2
1 − (1 − α2)N2

2 α1

= α1N
2
1

[
1 − (1 − α2)

(
N2

N1

)2]
. (B1)

A nonzero entry of M3 has a probability
EM1+M2 [0](α)

N2
1

to
occupy a zero entry of M1 + M2, so

EM1+M2+M3 [0](α) = α1N
2
1

[
1 − (1 − α2)

(
N2

N1

)2]

×
[

1 − (1 − α3)

(
N3

N1

)2]
. (B2)

By iteration, we obtain the thesis. �
Proposition 2. Let us consider the increasing

sequence N = {(1 − α)Nb,(1 − α)Nb−1, . . . ,Nb, . . . ,(1 −
α)N1,Nb̄ . . . ,N2,N1}, where b̄ = max{i|Ni > (1 − α)N1}
and the partition of the N1 × N1 matrix determined by the
Cartesian product N2.

All the squares contained in the upper square (1 − α)N1 ×
(1 − α)N1 are nonzero with probability 1. All the squares
contained in the lower square αN1 × αN1 are zero with
probability 1.

We focus on the squares generated by the Cartesian
product {(1 − α)Nb,(1 − α)Nb−1, . . . ,Nb, . . . ,(1 − α)N1} ×
{(1 − α)N1,Nb̄ . . . ,N2,N1}. The rectangle αN1 × (1 − α)N1,
belonging only to the largest matrix, M1, has nonzero entries
with probability 1/2. The rectangle N2 − (1 − α)N1 × (1 −
α)N2 is also contained in the matrix M2. We already observe
therein a probability 1/2 of nonzero entries due to the
allocation of objects in the matrix M1. The allocation process
in the matrix M2 generates in such a rectangle a nonzero with
probability (1/2)2. By iteration, we obtain that the number of
nonzeros of the aggregate matrix M is given by

(1 − α)2N2
1 + (1 − α)

b̄∑
i=1

Ni

2i−1
(Ni − (1 − α)N1).

�
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Proposition 3. We divide M1 into two regions: the square
where the probability of nonzeros is β and the rectangles where
the probability of nonzeros is β̃.

In each rectangle, the number of nonzeros added at any
step i, by adding the (ordered) matrix Mi , is proportional
to the number of entries of the rectangle, amounting to
(1 − α)Ni[Ni − (1 − α)N1]; each of these entries is “filled”
with probability β̃ conditionally on this entry remaining empty
to the i-th step; this conditioning event has probability (1 −
β̃)i−1. The already-filled entries have been counted recursively
at the previous steps.

The behavior in the square block is more complicated. The
submatrices Mi , i = 2, . . . ,b̄, contain the block and each of
them adds, in the (nested) square [(1 − α)Ni]2, nonzero entries
with probability β conditionally on this entry having remained
to the i-th step; this conditioning event has probability
(1 − β)i−1.

From this block, we divide the rectangular block of each
matrix Mi , where the nonzeros’ percentage is β̃, in strips of
width (1 − α)(Ni−h+1 − Ni−h+2), i = 2, . . . ,b̄, h = 2, . . . ,i.
In each strip, the nonzeros probability is β̃(1 − β̃)h−2(1 −
β)i−h+1. The superposition of the submatrices Mi , i = 2, . . . ,b̄

increases the number of nonzeros in the rectangular blocks of

2β̃(1 − α)2
b̄∑

i=2

Ni

i∑
h=2

(1 − β̃)h−2(1 − β)i−h+1

× (Ni−h+1 − Ni−h+2).

By summarizing the amounts of zeros in the different regions
and dividing by the total number of entries of the aggregate
matrix, we obtain Eq. (8).

For i,j = b̄ + 1, . . . ,b, we no longer know the relation
between Nj and (1 − α)Ni and therefore are no longer able
to compute the expected number of added nonzeros. Thus
Eq. (8) comes from an underestimation of the nonzeros’
probability, that is, an overestimation of the zeros’ probability,
and therefore it gives a lower bound for α. �

Proposition 4. Since allocations are proportional to the
initial masses, Pc(+1,1) = 1

n
obviously follows.

We prove the second equality, Pc(+1,t) = Pc(+1,1), by
induction.

For t = 2, Eq. (10) holds. In fact,

Pc(+1,2) = Pc(+1,2| + 0,1)Pc(+0,1) + Pc(+1,2| + 1,1)

×Pc(+1,1) = 1

n + 1

n − 1

n
+ 1

n

2

n + 1
= 1

n
.

Let us now suppose Eq. (10) to hold for t − 1 and let us
prove it for t .

We want to use the total probabilities formula by condition-
ing on events of the kind

t−2⋂
s=1

{(+ωs,s)},

where ωs ∈ {0,1}, ω0 = 1 for all the countries. We have a dif-
ferent event for each different disposition ω = (ω1, . . . ,ωt−2),
amounting to a number of 2t−2. Actually we are interested
in the sufficient statistic of ω, S(ω) = ∑t−2

s=1 ωs , consisting in
the number of 1’s contained in the vector ω. In other words,

it is not important to know the times when a country gets a
product, i.e., it is not relevant the product’s age but only the
mass of the country. We will condition then on events of the
kind {S(ω) = v}. By the inductive hypothesis,

P (S(ω) = v) =
(

t − 2
v

)
1

nv

(
n − 1

n

)t−2−v

and

P (+1,t − 1) =
t−2∑
v=0

P (+1,t − 1|S(ω) = v)P (S(ω) = v)

=
t−2∑
v=0

(
t − 2

v

)
1

nv

(
n − 1

n

)t−2−v

× v

n + t − 2
= 1

n
,

P (+1,t) =
t−2∑
v=0

[P (+1,t | + 0,t − 1,S(ω) = v)

×P (+0,t − 1|S(ω) = v) + Pc(+1,t | + 1,t − 1,

×S(ω) = v)P (+1,t−1|S(ω) = v)]P (S(ω) = v)

=
t−2∑
v=0

(
t − 2

v

)
(n − 1)t−2−v

nt−2

[
v + 1

n + t − 1

× v

n + t − 2
+ v

n + t − 1

(
1 − v

n + t − 2

)]

= P (+1,t − 1) = 1

n
.

Hence Pc(+1,t) = Pc(+1,1). �
Corollary 1. It follows from Proposition 4. Notice that, for

any c, M
(c)
t = ∑t

s=1 ωs is a sufficient statistic of the history
until time t of the attributions of products to the country c,

P
(
M

(c)
t = k + 1

) = Pc(+k,[1,t]) =
(

t

k

)
1

nk

(
1 − 1

n

)t−k

,

Pc(+k,[s + 1,t + s]) = P
(
M

(c)
t+s − M(c)

s = k
)

= P

⎛
⎝ t+s∑

q=1

ωq −
s∑

q=1

ωq = k

⎞
⎠

= P

⎛
⎝ t+s∑

q=s+1

ωq = k

⎞
⎠ =

(
t + s − (s + 1) + 1

k

)
1

nk

×
(

1 − 1

n

)t−k

.

�
Theorem 1.

Pc

(+1,t |M(c)
t−1, . . . ,M

(c)
0

) = Pc

(+1,t |m(c)
t−1, . . . ,m

(c)
0

)
= Pc

(
m

(c)
t−1 − m

(c)
t−2 + 1,[t − 1,t]|m(c)

t−2, . . . ,m
(c)
0

)
Pc

(
m

(c)
t−1 − m

(c)
t−2,t − 1

∣∣m(c)
t−2, . . . ,m

(c)
0

) .
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By iteration, we obtain

Pc

(
m

(c)
t−1 − m

(c)
0 + 1,[1,t]|m(c)

0

)
Pc

(
m

(c)
t−1 − m

(c)
0 ,[1,t − 1]|m(c)

0

) .

By Corollary 2, we get ∏m
(c)
t−1−m

(c)
0

i=0
m

(c)
0 +i∑N

j=1 m
(j )
0 +i

∏t−1
i=m

(c)
t−1−m

(c)
0 +1

∑N
j=1,j �=c m

(j )
0 +i−m

(c)
t−1−1+m

(c)
0∑N

j=1 m
(j )
0 +i∏m

(c)
t−1−m

(c)
0 −1

i=0
m

(c)
0 +i∑N

j=1 m
(j )
0 +i

∏t−2
i=m

(c)
t−1−m

(c)
0

∑N
j=1,j �=c m

(j )
0 +i−m

(c)
t−1+m

(c)
0∑N

j=1 m
(j )
0 +i

.

By changing the index in the product in the denominator, we finally obtain

m
(c)
t−1∑N

j=1,j �=c m
(j )
0 + m

(c)
t−1

×
∑N

j=1,j �=c m
(j )
0 + m

(c)
t−1∑N

j=1 m
(j )
0 + t − 1

= m
(c)
t−1∑N

j=1 m
(j )
t−1

.

�
Theorem 2. First, in view of the Markov property,

E
[
M

(c)
t+1

∣∣M(c)
t , . . . ,M

(c)
0

] = E
[
M

(c)
t+1

∣∣M(c)
t

]
.

Therefore, we can more easily compute

E
[
M

(c)
t+1

∣∣M(c)
t

] = M
(c)
t P

( + 0,t + 1|M(c)
t

) + (
M

(c)
t + 1

)
P

( + 1,t + 1|M(c)
t

) = M
(c)
t + P

( + 1,t + 1|M(c)
t

)
> M

(c)
t .

�
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Phys. Rev. Lett. 89, 258702 (2002).
[16] A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, and

L. Pietronero. Sci. Rep. 2, 723 (2012).
[17] www.cepii.fr/anglaisgraph/bdd/baci.htm.
[18] G. Fagiolo, J. Reyes, and S. Schiavo, Phys. Rev. E 79, 036115

(2009).
[19] R. Hausmann and D. Rodrik, J. Dev. Econ. 72, 603 (2003).
[20] C. A. Hidalgo and R. Hausmann, Proc. Natl. Acad. Sci. USA

106, 10570 (2009).
[21] S. Krautheim, J. Int. Econ. 87, 27 (2012).
[22] F. Spizzichino. Subjective Probability Models for Life-Times

(Chapman & Hall/CRC, Boca Raton, FL, 2001).

022817-12

http://dx.doi.org/10.1257/aer.104.7.2127
http://dx.doi.org/10.1257/aer.104.7.2127
http://dx.doi.org/10.1257/aer.104.7.2127
http://dx.doi.org/10.1257/aer.104.7.2127
http://www.nber.org/papers/w13214
http://elibrary.worldbank.org/doi/pdf/10.1596/1813-9450-5081
http://dx.doi.org/10.1162/qjec.2008.123.2.441
http://dx.doi.org/10.1162/qjec.2008.123.2.441
http://dx.doi.org/10.1162/qjec.2008.123.2.441
http://dx.doi.org/10.1162/qjec.2008.123.2.441
http://dx.doi.org/10.1088/1367-2630/12/2/023003
http://dx.doi.org/10.1088/1367-2630/12/2/023003
http://dx.doi.org/10.1088/1367-2630/12/2/023003
http://dx.doi.org/10.1088/1367-2630/12/2/023003
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1093/comnet/cnu025
http://dx.doi.org/10.1093/comnet/cnu025
http://dx.doi.org/10.1016/j.physa.2008.01.050
http://dx.doi.org/10.1016/j.physa.2008.01.050
http://dx.doi.org/10.1016/j.physa.2008.01.050
http://dx.doi.org/10.1016/j.physa.2008.01.050
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1103/PhysRevLett.93.188701
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1103/PhysRevE.68.015101
http://dx.doi.org/10.1103/PhysRevE.68.015101
http://dx.doi.org/10.1103/PhysRevE.68.015101
http://dx.doi.org/10.1103/PhysRevE.68.015101
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1038/srep00723
http://dx.doi.org/10.1038/srep00723
http://dx.doi.org/10.1038/srep00723
http://dx.doi.org/10.1038/srep00723
http://www.cepii.fr/anglaisgraph/bdd/baci.htm
http://dx.doi.org/10.1103/PhysRevE.79.036115
http://dx.doi.org/10.1103/PhysRevE.79.036115
http://dx.doi.org/10.1103/PhysRevE.79.036115
http://dx.doi.org/10.1103/PhysRevE.79.036115
http://dx.doi.org/10.1016/S0304-3878(03)00124-X
http://dx.doi.org/10.1016/S0304-3878(03)00124-X
http://dx.doi.org/10.1016/S0304-3878(03)00124-X
http://dx.doi.org/10.1016/S0304-3878(03)00124-X
http://dx.doi.org/10.1073/pnas.0900943106
http://dx.doi.org/10.1073/pnas.0900943106
http://dx.doi.org/10.1073/pnas.0900943106
http://dx.doi.org/10.1073/pnas.0900943106
http://dx.doi.org/10.1016/j.jinteco.2011.11.004
http://dx.doi.org/10.1016/j.jinteco.2011.11.004
http://dx.doi.org/10.1016/j.jinteco.2011.11.004
http://dx.doi.org/10.1016/j.jinteco.2011.11.004



