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ABSTRACT 

A bacteriophage (T03) which infects the thermophilic bacte rium 

Bacillus stearothermophilus ATCC 8005 was isolated and characterized. 

Infection of the bacterium by the bacteriophage was carried out at 60°C, 

the optimum growth temperature of the host. At 60°C the phage has a 

latent period of 18 minutes and a burst size of about 200. The phage 

is comparatively thermostable in broth. The half life of the phage is 

400 minutes at 60°C, 120 minutes at 65°C, 40 minutes at 70°C and 12 

minutes at 75°C. The activation energy for the heat inactivation of 

T03 is 56,000 cal. The buoyant density of T03 in a cesium ch l oride 

density gradient is 1.526. 

Electron micrographs of T03 indicate that the phage has a regu lar 

hexagonal shaped head 57 mµ long. The morphology of the head is 

compatible with icosahedral symmetry. Each edge of the head i s 29 mµ 

long, and there are 6 or 7 subunits along each edge. The tail of T03 

is 125 mµ long and 10 mµ wide. There are about 30 cross striations that 

are spaced at 3.9 mµ intervals along t he tail. 

The DNA of phage T03 has a melting temperature of 88.5°C . Heat 

denatured T03 DNA can be extensively annealed in a h igh ionic s trength 

environment. The buoyant density of T03 DNA in a cesium chloride 

density gradient is 1.695. T03 DNA contains: 42.7% guanine plus cyto 

sine, as determined from the melting temperature; 43/o guanine plus 

cytosine, as determined from the buoyant density; and 40.2% guanine 

plus cytosine, as determined by chromatographic separation and spectro

photometric estimation of the bases. The molecular weight of r03 

DNA is 16.7 X 106 as determined from the band width of the T03 DNA 
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concentration distribution in a cesium chloride density gradient. Elec-

tron microscopy of T03 DNA revealed a single linear molecule that is 

11.7 µlong. This corresponds to a molecular weight of 22.5 X 106. 

Heat denatured T03 DNA forms two bands in a cesium chloride density 

gradient, one at a density of 1.707 and the other at a density of 1.715. 

After the separated bands are mixed and annealed in the centrifuge cell, 
I 

the renatured T03 DNA forms a single band at a density of 1.699. These 

results indicate that the two complementary strands of T03 DNA have 

different buoyant densities in cesium chloride, presumably because they 

have different base compositions. 

The characteristics of T03 are compared with those of other phages. 

A hypothesis is presented for a relationship between the base composition 

of one strand of T03 DNA and the amino acid composition of the proteins 

of T03. 
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INTRODUCTION 

The ability of certain organisms to grow at elevated temperatures 

has been of interest for many years (1). Organisms that have been 

found living at temperatures of 60° to 98°C include fishes, molluscs, 

arthropods, worms, algae and bacteria (1). The thermophilic micro

organisms have been reviewed by Gaughran (1) and the thermophilic 

aerobic spore-forming bacteria by Allen (2). A book on the thermo

philic fungi has appeared (3). 

The thermophilic species of Bacillus are classified as those 

organisms whose optimum growth temperature is 55°C or above and which 

show slight if any growth at 37°C (4). This classification is some

what arbitrary in that there is much overlapping, e.g. Bacillus subtilus 

may grow at 55°C but its optimum is 30 to 37°C (5). Most strains of 

Bacillus stearothermophilus have an optimum of 60°C; however, several 

have lower optima and wil l grow at temperatures as low as 33°C (5). 

Thermostability of proteins of thermophilic bacteria . 

Recent biochemical work with thermophilic bacteria has been con

cerned with the thermostability of proteins isolated from these organ

isms. Koffler, Mallett and Adye (6) isolated flagella from various 

mesophilic and thermophilic bacteria and studied the viscosity of 

solutions of these flagella under various conditions. They correlated 

a drop in the viscosity of solutions of flagella with the dissociation 

of the flagella into subunits. They found that the viscosity of 

solutions of flagella from thermophilic bacteria remained high at 
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temperatures up to 80°C. On the other hand, the viscosity of solutions 

of flagella from mesophilic bacteria decreased at about 55°C. They 

also found the flagella of thermophiles to be stable and the flagella 

of mesophiles to be unstable to the action of 6 M urea, 10 M acetamide 

or 0.0035 M sodium dodecyl sulfate. They concluded that the structure 

of the flagella of thermophilic bacteria is stabilized by more effec

tive hydrogen and hydrophobic bonds than is the structure of the 

flagella of mesophilic bacteria. Koffler (7) has written a review of 

this and other work up to 1957 in which he supports the thermostable 

protein hypothesis of thermophily. 

Campbell and his co-workers (8, 9, 10, 11) have isolated and in

vestigated the properties of a thermostable a-amylase from Bacillus 

stearothermophilus. This enzyme, recrystallized 8 times, was active at 

temperatures up to 85°C and lost only 29% of its activity when incubated 

for 20 hours at 85°C (8). The enzyme preparation was homogeneous by sedi

mentation criteria (9) . The sedimentation coefficient was found to be 

0.7628 and the molecular weight , as determined by sedimentation-diffu 

sion, was 15,600. Neither the specific rotation nor the enzymatic activ

ity was affected by treatment with 8 M urea or 4 M guanidine hydrochloride, 

both powerful hydrogen bond disruptors . They concluded that this enzyme 

"in the nat i ve state exists as a semi - random- or random-coiled, well 

hydrated molecule, with any secondary (tert i ary) structure due to the 

presence of disulfide bonds . " The amino acid composition was determined 

(10) and the enzyme was found to contain 145 amino acids, twenty two of 

which were glutamic acid, twenty two proline, eleven aspartic acid, 

eleven valine and nine glycine. The enzyme contains no tryptophan but 
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is very r ich in the acidic amino acids and in proline. The molecular 

weight, as determined by the amino acid analysis is 15,600. There are 

two moles of amino-terminal phenylalanine per mole of enzyme (11). 

Proline and alanine were determined to be the carboxyl-terminal amino 

acids with one mole of each per mole of enzyme. Therefore, this a

amylase consists of two polypeptide chains. There were 4 cysteine 

residues found in the amino acid analysis (10), thus the two polypep

tide chains could be held together by one or two disulfide bonds. 

Thermostability of the deoxyribonucleic acid of Bacillus stearothermo

philus. 

Marmur (12) and Marmur and Doty (13) reported the thermal denatur

ation temperature (Tm) of the deoxyribonucleic acid isolated from 

Bacillus stearothermophilus strain 194 to be 87.5 and 88°C, correspond

ing to a base composition for this DNA of 46% guanine plus cytosine. 

Welker and Campbell (14) confirmed this determination but found that 

strain 194 is not a typical strain of this bacterium. They determined 

the Tm of 13 authentic strains of Bacillus stearothermophilus and 

found it to correspond to a base composition of 49 to 52% guanine plus 

cytosine. Their base compositions correspond to melting temperatures 

of 89 to 91°C . This is in the same range as the Tm found for many 

mesophiles (13), and in fact the DNA from many mesophiles has a Tm much 

higher than this (for example the DNA of Micrococcus lysodeikticus has 

a Tm of 99.5°C) . 

Since proteins isolated from this thermophilic organism are 

relatively thermostable whereas the deoxyribonucleic acid is not, the 

proteins are apparently responsible for the thermophilic nature of 
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this organism. 

Bacteriophage for thermophilic bacteria. 

Although there were early reports (15, 16, 17) of bacteriophage 

isolated for thermophilic bacteria, the bacteria involved were not true 

thermophiles. Later reports on bacteriophage include a few for thermo

philic bacteria. White, Georgi and Militizer (18, 19) described a 

bacteriophage for Bacillus stearothermophilus. This phage produced 

plaques optimally at 65°c. It was stable in broth at 70°C. At 75°C 

the titer decreased by a factor of about 30 in 30 minutes. At 80°C 

the titer decreased by a factor of 100 in 30 minutes. The rate of 

inactivation was not constant but decreased with time. A temperature 

of l00°C for 30 minutes did not totally inactivate a lysate (18). The 

phage was less stable in phosphate buffer than in broth (19). In the 

broth used, about 75% of the phage adsorbed to the bacteria in 30 min

utes. A low concentration of calcium chloride enhanced the adsorption. 

Hirano (20) isolated a bacteriophage for an unspecified thermo

philic bacterium. This phage exhibited a half-life in broth of 40 

minutes at 65°C and 8 minutes at 72°C . Onodera (21) reported a phage 

that survived 2 hours at l00°C with no loss in activity. It was also 

reported that this phage contained 42% DNA and 32% RNA. Shafia and 

Thompson (22) investigated a phage for Bacillus stearothermophilus. 

They reported this phage to be very small, only 10 mµ in diameter 

and to have a half-life of 2 hours at 75°. 

Welker and Campbell (14) have induced a temperate phage from 

Bacillus stearothermophilus. They reported a phage that has a 65 mµ 

diameter head, a flexuous tail 240 mµ long and 12 mµ wide. Phage 



-5-

production was optimal at 55°c. 

half-life of 30 minutes at 65°. 

0 The phage was stable at 55 and had a 

The DNA of the phage was reported to 

have a sedimentation coefficient of 24.lS, a molecular weight of 12.1 

X 106 and to contain 42% guanine plus cytosine. Calcium ion was 

required for adsorption of the phage to the bacteria. 

Saunders and Campbell (23) have reported the investigation of the 

DNA of a phage for Bacillus stearothermophilus. This phage has a DNA 

that is 13.9 µlong, has a molecular weight of 26.7 X 106, and a 

sedimentation coefficient of 30.0S. It has a density of 1.705 and a 

base composition of 42% guanine plus cytosine. Upon heat denaturation 

or treatment with alkali the two complementary strands of the DNA can 

be separated. 

Purpose of the present investigation. 

The ordered tertiary structure of many proteins is not stable at 

temperatures above 40°C. Exposure to high temperatures denatures these 

proteins. Scheraga (77) indicates that the disruption of intramolecu-

lar hydrogen bonds is the primary cause of the thermal denaturation 

of proteins. The protein denaturing action of urea, acetamide and 

guanidine hydrochloride is also attributed to the efficiency with 

which they disrupt the hydrogen bonds involved in stabilizing the 

tertiary structure of proteins . The quaternary structure of the 

structural protein of the flagella (6) and the tertiary structure of 

an enzyme , a-amylase (8, 9, 10, 11) , of the thermophilic bacterium, 

Bacillus stearothermophilus, are stabilized by bonds that are not heat 

labile and are not disrupted by hydrogen bond disrupting agents . The 

high praline content of the a-amylase of Bacillus stearothermophilus 
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also indicates that hydrogen bonds are relatively unimportant in 

stabi l izing the tertiary structure of this enzyme. If heat stability 

and stability in the presence of hydrogen bond disrupting agents is a 

general characteristic of the proteins of Bacillus stearothermophilus, 

then the study of the structure of these proteins would augment our 

knowledge of the relationship between the primary amino acid sequence 

and the tertiary structure of proteins in general. 

Our present understanding of the translation of information 

contained in the genetic material, deoxyribonucleic acid, to that 

contained in protein is that the nucleotide sequence in the DNA deter

mines the amino acid sequence in the protein. The position of each 

amino acid in a protein is determined by the position of a correspond

ing nucleotide triplet in one strand of a DNA molecule. Each triplet 

codes for one and only one amino acid but each amino acid may be coded 

for by more than one triplet. The sequence of nucleotides in some of 

the codewords (triplets) has been determined (75). The codewords for 

proline are CCC, CCU, CCA and CCG . If the high proline content of the 

a - amylase of Bacillus stearothermophilus is a reflection of a general 

characteristic of the proteins of this organism, then it would be 

expected that one strand of the DNA of B. stearothermophilus would be 

rich in cytosine . This is of particular significance because methods 

are presently available for the determination of pyrimidine sequences 

in DNA (78). The CCC and CC sequences in one strand of B. stearothermo

philus DNA should correlate directly to the proline content in the 

proteins of this organism. 

The major problem with this type of approach is that a bacterium 
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is too complex, contains too much DNA and too many proteins. A much 

better organism to work with would be a small bacteriophage for a ther

mophilic organism. At the time this investigation was begun several 

phage for thermophilic bacteria had been described (18, 19, 20, 21, 24). 

None of these phage had been described in detail with regard to the 

physical and chemical characteristics of their protein and nucleic 

acids. The purpose of the present investigation was to isolate and 

characterize in detail the chemical and physical properties of the 

protein and nucleic acid of a bacteriophage for Bacillus stearothermo

philus. It was hoped that such a study would lead to a-further under

standing of the relationship between the structure and composition of 

nucleic acids and proteins. 
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MATERIALS AND METHODS 

The host bacterium was selected as a single step mutant of Bacillus 

stearothermophilus ATCC 8005 resistant to 1 mg/ml streptomycin sulfate 

that was included in agar plates. This host is designated Bacillus 

stearothermophilus ATCC 8005 sR. 

Media. 

The TYNGC broth used for liquid bacterial and phage cultures and 

for dilution of phage suspension for assay purposes contained 10 g of 

Bacto-Tryptone (Difeo), 5 g of Bacto Yeast Extract (Difeo), 10 g of 

NaCl and 1000 ml of distilled water. Glucose (1 g) and CaCl2 to 2 X 

lo-3 M were added aseptically after autoclaving. The TYNGCM broth was 

the same as TYNGC except that MnC1 2 to lo-5 M was added aseptically 

after autoclaving. Agar plates contained 20 to 30 ml of either TYNGC 

or TYNGCM plus 2.5% Bacto-Agar (Difeo). Top agar consisted of either 

TYNGC or TYNGCM plus 0.8% Bacto-Agar (Difeo) . TYNGCM medium was used in 

the isolation procedure. Subsequent investigation indicated that Mn2+ 

was not required in the media. All experiments subsequent to the 

isolation utilized TYNGC medium . 

Buffers. 

The buffers used in this investigation are as follows: 

Phage buffer - 0 . 2 M NaCl, 0 . 01 M Tris (Tris(hydroxymethyl)

aminomethane), pH 7.15 at 25°C. 

DNA buffer - 0.1 M NaCl, 0.01 M Tris, 0.001 M EDTA (Ethylene

diaminetetraacetic acid, disodium salt), pH 7.5 at 25°C. 
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ssc - 0.15 M NaCl, 0.015 M trisodium citrate, adjusted to 

pH 7.1 at 25°C with HCl. 

0.1 X SSC - SSC diluted by a factor of 10. 

2.0 X SSC - a stock solution of 1.5 M NaCl, 0.15 M trisodium 

citrate, adjusted to pH 7.1 at 25°C with HCl, diluted by 

a factor of 5 . 

Phage assay. 

The phage were assayed using the agar layer technique of Adams

(25). Unless otherwise noted 0.1 ml of phage suspension was plated 

using 0.5 ml of a log phase culture of Bacillus stearothermophilus ATCC 

8005 sR (5 X 107 cells/ml) as a lawn in 1.5 ml of top agar. The concen-

tration of infective phage particles in a phage suspension, as deter

mined by this method, is reported as phage/ml . 

Incubation. 

Broth cultures were incubated as either 20 to 30 ml in a 125 ml 

screw cap flask or 300 ml in a 1000 ml screw cap flask in a New Bruns

wick Gyrotory water bath shaker. The incubation temperature was 60°C 

unless otherwise noted . Under these conditions the d i vision time of 

the host was 20 min . Bacterial concentrations were determined by 

measuring the optical density at a wavelength of 600 mµ (OD600) . An 

optical density of 1.0 represented 5 X 107 cells/ml for Bacillus 

stearothermophilus ATCC 8005 sR. 

Agar plates for phage assay were incubated 5 to 6 hours at 60°c . 

The atmosphere in the incubator was humidified to prevent drying of 

the plates. 

Phage isolation. 

The isolation procedure used was essentially that used by Romig 

and Brodetsky (26) for the isolation of bacteriophages for Bacillus 
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subtilus. Their procedure was modified for use with Bacillus stearo-

thennophilus. 

Five grams of soil, obtained from various areas around the campus 

of the California Institute of Technology were suspended in 15 ml of 

tap water and stored at room temperature for two days. The soil was 

then resuspended by shaking and allowed to settle for 30 minutes. Five 

ml of the clearer top layer were then added to 5 ml of TYNGCM broth and 

then incubated with shaking for 4 hours at 60°C. Five ml of a log 

h 1 f B ·11 h h'l ATCC 8005 sR (5 x lo- 7 p ase cu ture o aci us stearot ennop i us 

cells/ml) along with streptomycin sulfate to 50 µg/ml were added, and 

the incubation was continued for 6 more hours at 60°C. This final 

culture was plated in 10 X serial dilutions using 0.2 ml of a log phase 

culture of Bacillus stearothennophilus ATCC 8005 sR as a lawn. Isolated 

plaques were usually obtained by the 100 X dilution. Phage from indi-

vidual plaques were picked up with a sterile needle, placed in 1 ml 

TYNGCM broth and again plated in 10 X serial dilutions. This single 

plaque isolation procedure was repeated three times to insure homo-

geneity of the phage stocks. After three successive single plaque 

isolations the final 1 ml of phage suspension was stored at 4°c for 

later use . 

One of three phages that were obtained from a single soil sample was 

selected for further study and was designated T03 (Thennophilic Phage 3). 

Preparation of phage stocks. 

Phage stocks were prepared by infecting a 20 ml culture of the 

host organism, that contained 5 X 106 cells/ml, with 5 X 106 phage/ml. 

Incubation at 60°C was then continued until the OD600 dropped to less 
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than 0.5. The lysate was centrifuged at 10,000 X g for 10 minutes. The 

supernatant was removed with a pipette and filtered through a sterile HA 

Millipore filter. The pellet was discarded. Stocks prepared in this 

manner had a titer of 2 to 3 X 1010 phage/ml and were stable when stored 

at 4°c . 

Purification. 

Large quantities of phage were grown in 5 gallon carboys containing 

15 liters of TYNGC broth per carboy. A temperature of 60°C was main

tained in themediUJ.uby placing two carboys in a hot water bath maintain

ed at 63°C. Themediumwas aerated vigorously with heated filtered air. 

Each 15 liter carboy ·was inoculated with 300 ml of a log phase bacte

rial culture , that had been grown the previous day and had been stored 

overnight at 4°c. When the optical density at 600 mµ reached 0.1 

(5 X 106 cells/ml), the culture was inoculated with phage to a concen

tration of 107 phage/ml . Lysis of the culture began about 180 minutes 

- after infection, and incubation was continued 150 minutes longer. Ly

sate titers were usually about 2 X 1010 phage/ml. 

The cell debris was removed from the lysate by centrifugation in 

the KSB-R Servall Continuous Flow System, for the Servall RC-2 centri

fuge, at 16,500 rpm and at a flow rate of 300 ml/min. The phage were 

then precipitated by the addition of 350 g of ammonium sulfate per liter 

of lysate (55% saturation) . The precipitate was allowed to settle at 

4°c for at least 2 days . Most of the clearer top layer was then siphon

ed off and discarded. The sediment was packed by centrifugation for 45 

min at 14,600 X g. The supernatant was discarded, and the pellet was 

resuspended in 300 ml of a 55% saturated solution of (NH4)2S04. This 
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was then dialyzed against five 6000 ml changes of 0.2 M NaCl. The 

suspension was then removed from the dialysis tubing and treated with 

10 µg/ml of deoxyribonuclease (Sigma Chemical Company), 10 µg/ml of 

ribonuclease (Sigma Chemical Company) and 0.02 M MgCl2 at 37°C for 1 

hour. The suspension was then centrifuged at 10,000 X g for 10 min. 

The sediment was washed with a small volume of 0.2 M NaCl and centri

fuged at 10,000 X g for 10 min. The supernatants were pooled, and the 

sediment was discarded. The phage were then pelleted by centrifugation 

in the number 30 rotor in a Spinco model L ultracentrifuge at 78,000 

X g for 2 hours. The pellets were removed, pooled and resuspended in 

3 ml of phage buffer by stirring with a magnetic stirrer for 2 hours 

at 4°C . 

The phage were then separated from contaminating bacterial protein 

by sedimenting them through a discontinuous CsCl gradient (27). Before 

centrifugation, the Spinco SW39 centrifuge tubes contained the follow

ing : a bottom layer of 1.5 ml of a CsCl solution with a density of 

1.6 , a middle layer of 2.0 ml of a CsCl solution with a density of 1.3 

and a top layer of 1.0 to 1.5 ml of a crude phage suspension . This 

system was centrifuged at 36,000 rpm for 3 hours in the SW39 rotor . 

The tubes were removed and the visible phage band that occurred between 

the p = 1.3 and p = 1.6 layers was collected by the drop collecting 

technique of Weigle, Meselson and Paigen (28). The drops containing 

the visible phage band were collected in a separate container. The 

large brown band of contaminants at the top of the tube was separated 

from the phage band by several centimeters. Several bands collected 

in this manner were pooled. A volume of CsCl solution, with a density 
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of 1.5, was added to bring the total volume up to 10 ml. The phage 

were then banded in a continuous CsCl gradient (29) by centrifugation 

at 36,000 rpm for 20 hours in the SW39 rotor. After the phage band 

had been collected by the drop collecting procedure it was dialyzed 

against 3 changes of phage buffer. Any large debris remaining was 

removed by centrifugation at 10,000 X g for 10 minutes. The purified 

phage suspension was stored at 4°c until used. 

When smaller quantities of purified phage were needed in a shorter 

period of time, an alternate purification procedure was used. The 

bacteria were grown to the same concentration as above, but as 300 ml 

in a one liter flask in the New Brunswick Gyrotory shaker. Phage were 

added at the same concentration and the incubation was continued in the 

same manner . The cell debris was removed by centrifuging at 10,000 X 

g for 10 minutes. The supernatant was treated with deoxyribonuclease 

and ribonuclease as above . The phage were then pelleted by centrifuging 

for 2 hours at 78,000 X g. The procedure was identical from this point 

on. This procedure eliminated the time consuming (NH4)2S04 precipita

tion. The pha$e obtained were identical in all respects with those 

obtained by the ann:nonium sulfate procedure. 

The cesium chloride used in these studies was obtained from two 

sources. The first, produced by Penn Rare Metals Inc., Revere, Penn

sylvania, was designated 99.9% CsCl and was obtained from the Kawecki 

Chemical Co . Solutions of this product developed a slight precipitate 

upon standing. This was filtered out before use. A filtered stock 

solution with a density of 1.51 had an optical density at a wavelength 

of 260 mµ (OD260) of 0.022. Filtered solutions of this CsCl were used 
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in the discontinuous gradients and for the phage buoyant density ex

periments described in the section on the Determination of the buoyant 

dens ity of T03. Optical quality CsCl, obtained from the Harshaw 

Chemical Co. (Harshaw lots 16 and 17), was used in all other experi

ment s. A stock solution of this CsCl at a density of 1.85 had an 

on260 of 0.011. 

El ectron micrographs. 

A diluted purified phage suspension was dialyzed against 3 changes 

of distilled water and then mixed (1:1) with either 4% phosphotungstic 

acid (30), pH 7.0, in 0.4% sucrose solution or a saturated solution of 

uranyl acetate (31, 32). The mixture was then placed on a standard 

electron microscope grid that was coated with a collodion film rein

forced with a thin layer of evaporated carbon. The excess solution 

was removed with the edge of a piece of paper. The preparation was 

then air dried before examination in the Phillips EM200 electron 

microscope. 

Determination of the spectrum of the phage. 

To determine the ultraviolet absorption spectrum of T03, a purified 

phage suspension in phage buffer was diluted to about 100 µg/ml, and 

the spectrum was taken on the Cary model 15 spectrophotometer (Applied 

Physics Corp.). A sample of phage buffer was used as the blank 

reference. 

Determination of the buoyant density of T03. 

The buoyant density of T03 in a cesium chloride density gradient 

(29) was determined as follows. A purified suspension of phage T03 
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and a purified suspension of phage A+ were diluted and mixed to a final 

concentration of 3 X 106 phage T03/ml and 6 X 104 phage A+/ml with a 

CsCl solution whose density was 1.51. The final density of the solution 

was 1.50. Centrifuge tubes for the SW39 rotor of the Spinco model L 

ultracentrifuge were filled with 3.3 ml of mixed phage suspension and 

this suspension was overlayed with paraffin oil. The mixed phage sus-

pension was then centrifuged in the SW39 rotor for 20 hours at 37,000 

rpm at 4°C in the Spinco model L ultracentrifuge. The rotor was 

allowed to slow to a stop without a brake. The tubes were carefully 

removed and the contents were fractionated by the drop collecting 

technique (28). The individual drops were collected into 2.0 ml of 

sterile TYNGC broth except that every 10th drop was collected in a 

screw cap vial, for density determination. The screw cap vials were 

capped immediately after a drop was collected. The refractive index 

of each fraction in the screw capped vials was measured with a Zeiss 

refractometer. The density of these fractions was determined from the 

following relationship : 

.For a solution of CsCl in water, 

p25 = 10.8601 niis - 13.4974 (33), 

where p25 is the density in gm/ml at 25°c 

and n25 is the refractive index at 25°c. D 

The slope of the graph of. p25 vs. fraction number was then determined 

by the method of least squares using density data from every tenth 

fraction from fraction number 20 to fraction number 80. The actual 

density gradient was adjusted so that the density at the A+ peak 

(see below) was 1.508 (34). 
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The position of the T03 phage band was determined by assaying each 

fraction for T03. The position of the A+ band was determined by assay

ing each fraction for A+ using Escherichia coli C600 as a lawn. Plates 

for the A+ assay were incubated overnight at 35°C. The A+ phage and 

Escherichia coli C600 bacteria were the gift of Mr. Elton T. Young of 

the California Institute of Technology. 

Determination of the latent period of T03. 

The latent period of phage T03 was determined by following the one 

step growth curve of the phage (35). The host organism was incubated 

in TYNGC broth at 60°C until the OD600 reached 1.0 (5 X 107 cells/ml). 

Phage to a multiplicity of infection of about 1.4 (7 X 107 phage/ml) 

were added, and the incubation was continued at 60°. Samples were 

taken every five minutes and their titers were determined. 

Determination of the burst size of T03. 

Due to poor adsorption of the phage to the bacterial cell wall the 

one step growth curve does not give an estimate of the burst size of 

T03 . The single burst procedure of Ellis and Delbruck (35) was modified 

for use with this phage . The host bacteria were grown to a density of 

2.5 X 107 cells/ml in TYNGC . Phage were added to a concentration of 

1.5 X 108 phage/ml . The phage. were allowed to adsorb for 10.0 min at 

60°c . The culture was then cooled in an ice bath and centrifuged at 

10,000 X g for 5 minutes . The pellet was washed twice with cold TYNGC 

broth to remove unadsorbed phage . A portion of the resuspended pellet 

was then diluted by a factor of 2.5 X 106 and 0.2 ml samples of this 

diluted culture were placed in each of 60 sterile test tubes. 
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Incubation was then continued at 60° for 50 minutes. Soft agar (1.5 ml) 

and 0.5 ml log phase host were added to each tube. The contents of each 

tube we r e poured into petri d i shes that had been prepared beforehand. 

The plates were incubated as described in the section on Incubation. 

Adsorpt ion of the phage to the host. 

The r elative number of phage adsorbed to the host in 10 minutes 

wa s determined by infecting a culture of the host at a concentration of 

2.5 X 107 cells/ml with 4 X 104 phage/ml. This system was incubated at 

60° for 10 minutes. The culture was cooled in an ice bath and centri-

fuged for 5 minutes at 10,000 g. The supernatant was poured off and 

t he pellet was washed 4 times with cold TYNGC broth. The phage titer 

in each washing and resuspended pellet was determined. 

Thermal stability of T03 . 

The stability of the phage at high temperatures was measured by 

placing 20 ml of phage suspension containing 2 X 103 to 4 X 103 phage/ml 

in a 125 ml screw cap flask in a water bath at the appropriate tempera-

ture. The temperature was allowed to equilibrate for 5 min. One ml 

samples were taken at appropriate times and cooled in an ice bath. The 

titer of each 1 ml sample was then determined. The natural logarithm 

of the ratio of the initial titer to the titer at time t was plotted 

against the time t . A straight line was fitted by least squares to the 

data at each temperature, and the time of one half survival (t~) was 
2 

determi ned from the slope . 

Host r ange. 

A stock of phage containing 2 X 109 phage/ml when assayed using 
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B. stearothermophilus ATCC 8005 sR for the lawn was assayed using ATCC 

strain 7953, 7954, 10149 or 12016 or Escherichia coli strain C or C600 

for the lawn. The conditions for each were the same as that for assay

ing phage using strain 8005 sR except that the growth temperature in 

broth and on plates was 50°C for B. stearothermophilus ATCC 7954 and 

35°c for E. coli C and C600. 

Demonstration of a phage 11 lysozyme 11
• 

To demonstrate the activity of an enzyme that lysed the bacteria, 

a sample of phage stock containing 100 phage per ml was assayed. After 

the initial incubation of 5 hours at 60° the incubation was continued 

at various temperatures for an additional 8 hours. After the 8-hour 

incubation the halos surrounding the plaques on plates incubated at 60° 

were sampled with a sterile needle and the needle was washed with one 

ml sterile TYNGC broth. Each one ml sample was then titered for phage. 

_Extraction of T03 DNA . 

T03 DNA was extracted from purified phage in one volume of phage 

buffer (0.5 mg of phage per ml) by gentle shaking for five minutes with 

an equal volume of redistilled phenol (saturated with phage buffer). 

The mixture was centrifuged at 3,000 g for 2 minutes to break up the 

emulsion. The aqueous layer was removed with a pipet that had an 

inside diameter of 5 nun. The extraction was repeated 2 more times. 

The phenol layers were serially extracted twice with 0.5 volume of 

phage buffer and the aqueous layers were combined. The phenol in the 

combined aqueous layers was removed by 5 extractions with 0.5 volume 

ether. Nitrogen was bubbled through the aqueous layers for 30 minutes 
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at room temperature to remove the ether. The DNA solution was then 

dialyzed against 3 changes of DNA buffer or SSC at 4°c. Any insoluble 

material was removed by centrifugation at 20,000 X g for 10 minutes. 

The DNA solution was then diluted to a concentration of about 75 µg/ml. 

The ultraviolet absorption spectrum of a solution of T03 DNA in SSC was 

determined with the Cary 15 spectrophotometer using an SSC buffer blank. 

DNA solutions were stored at 4°C. The molecular weight of the DNA (as 

determined from the band width in an analytical cesium chloride density 

gradient) of one such solution, did not change over a two-week period. 

Thermal denaturation and renaturation of T03 DNA. 

The thermal denaturation studies of the DNA of bacteriophage T03 

were performed according to the method of Marmur and Doty (13). A 

sample of Escherichia coli DNA used for comparison was the gift of Mr. 

Roger J. Radloff of the California Institute of Technology. The re

naturation studies were performed by allowing the heat denatured samples 

to cool while in the spectrophotometer . . The temperature decrease in the 

renaturation studies was linear from 95°C to 60°C at 3.9°C per min, the 

decrease was then progressively slower. The solvents used were: SSC, 

0.1 X SSC and 2.0 X SSC. These studies were performed using a Cary 15 

spectrophotometer and a Gilford automatic melting curve apparatus. 

Determination of the buoyant density of T03 DNA . 

The buoyant density of T03 DNA in a cesium chloride density grad

ient (29) was determined according to the method of Vinograd and Hearst 

(38). Escherichia coli DNA and Micrococcus lysodeikticus DNA were 

used to provide density references. The buoyant density of E. coli 
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DNA in a CsCl solution was assumed to be 1.704, and the buoyant density 

of M. lysodeikticus DNA in a CsCl solution was assumed to be 1.726 (39). 

Both of these samples of DNA were obtained from Mr. Roger J. Radloff. 

The centrifugation was performed in a 12 mm Kel-F centerpiece in the 

Spinco model E analytical ultracentrifuge. The centrifuge was operated 

at 44,770 rpm and at a temperature of 25°C. Ultraviolet optics includ

ing a corex filter were used. A -1° radial wedge top window was used. 

A series of exposures of from 1 to 5 minutes was made using Kodak Com

mercial film. A record of DNA concentration vs. radius was obtained 

from the developed film with a Joyce-Loebl double beam microdensitometer. 

Band molecular weight of T03 DNA. 

The molecular weight of T03 DNA as determined from the density 

gradient band shape (29), was calculated according to the procedure 

used by Studier for the determination of the molecular weight of the 

DNA of bacteriophage T7 (37). This procedure was devised from that 

given in earlier papers by Hearst and Vinograd (40, 41) and Hearst, Ifft 

and Vinograd (42). The hydration and compression parameters used were 

those determined for T4 DNA (41, 42, 43). The details of this procedure 

are given in the Appendix. The centrifugation was performed as described 

in the section on the Determination of the buoyant density of T03 DNA. 

The method for computing the half-band width cr is described in 

the Appendix. For each density gradient several exposures were analyzed, 

and an average cr was computed. The molecular weight was then computed 

from the cr obtained. 

Electron microscopy of T03 DNA. 

The DNA of bacteriophage T03 was prepared for electron microscopy 
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according to the method of Kleinschmidt et al (44), except that the 

phage were suspended in a solution of 4 M arrnnonium acetate that contain-

ed 0.01% cytochrome c, before being osmotically shocked. The Phillips 

EM200 electron microscope was used. After development the negatives 

were projected onto the ground glass screen of a Nikon model 6 shadow-

graph and the DNA molecules were traced. The length of the tracings 

was then determined with a map measure. The molecular weight was deter-

mined assuming the average molecular weight of the Na+ salt of a nucleo-

tide pair to be 662 and assuming a separation between base pairs of 

0 
3.46 A (B configuration). This leads to a molecular weight to length 

ratio of 1.92 X 106 molecular weight units per micron (45, 46, 47). 

Chemical composition of T03 DNA. 

A. Base analysis. 

The base analysis of T03 DNA was performed utilizing either whole 

phage or isolated DNA. The hydrolysis procedure used was that of 

Wyatt and Cohen (48, 49). Whole phage (0.8 mg) or phage DNA (0.4 mg) 

was dissolved in 98% formic acid in a pyrex tube that had an inside 

diameter of 4 rrnn and was about 30 cm long. The air in the tube was 

replaced with nitrogen and the tube was sealed. Hydrolysis was carried 

out at 175°C for 60 minutes. The tube was allowed to cool and the 

contents were frozen in a dry ice-methyl cellosolve bath. The tube 

was opened with a small flame, and the contents were evaporated to 

dryness by placing the tubes in a 60°C water bath and blowing a stream 

of air over them. The residue was then dissolved in 25 µ1 of 1 N HCl 

and two 10 µ1 portions were taken for chromatography. The bases were 

separated by descending chromatography on Whatman number 1 filter paper 
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that had previously been washed. The solvent for both the washing and 

chromatography was the solvent I of Kirby (SO) and contained methanol: 

concentrated HCl:H20 (70:20:10) by volume. Chromatography was con

tinued until the solvent front had moved about 40 cm. 

The chromatograms were dried and the ultraviolet absorbing spots 

were located with a short wavelength ultraviolet lamp. The spots were 

cut out and eluted with 0.1 N HCl into weighed vials. The weight of 

the vial plus the contents was determined, and from this the volume of 

the contents was determined (assuming a density of -1.00 g/ml). Ultra

violet absorption spectra were taken and the concentration of each base 

was determined from the optical density at the peak of absorbance using 

the extinction coefficients given by Bendich (51). From these data 

the molar ratios of the bases were determined. 

B. From the thermal denaturation temperature. 

The thermal denaturation temperature (Tm) of T03 DNA and the base 

composition corresponding to this Tm were determined according to the 

method of Marmur and Doty (13) . The Tm and composition of a sample of 

Escherichia coli DNA (Tm= 90.5°, GC = 50 % (13)) were used as tempera

ture and composition references . The Escherichia coli DNA was described 

in the section on the Thermal denaturation and renaturation of T03 DNA. 

The solvent used was SSC as described in the section on Buffers. 

C. From the buoyant density. 

The buoyant density of T03 DNA in a CsCl solution and the base 

composition corresponding to this buoyant density were determined 

according to the method of Schildkraut, Marmur and Doty (52). The 

buoyant density of E. coli DNA (1.710) and the buoyant density of 
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M. lysodeikticus DNA (1. 731) were used as density references (52). 

Strand separation and annealing of T03 DNA. 

Separation of the two strands of T03 DNA was demonstrated in the 

following manner . A small sample of T03 DNA in SSC was heated in a 

boiling water bath for 10 minutes. This sample was then quenched in 

an ice bath. A sample containing 0.8 µg of this heat denatured DNA 

and 0.8 µg of T03 native DNA, in a CsCl solution (pH 8.0 with 0.01 M 

Tris) whose density was 1.700, was placed in a 12 nnn Kel-F centerpiece 

and centrifuged in the ultracentrifuge as described in the section on 

the Determination of the buoyant density of T03 DNA. After 24 hours 

photographs were taken. The centrifuge cell was removed and tightened 

to 115 inch lb. The contents of the cell were mixed by inverting the 

cell several times. The annealing was accomplished by placing the in

tact centrifuge cell in distilled water in a 60° C water bath (53). The 

temperature was maintained at 60° for 1 hour and was then slowly de

creased to 30°C over a period of 3 to 5 hours. The cell was then remov

ed from the water bath, dried and retightened to 115 inch lb. Centri

fugation was , then carried out as before. 

In order to increase the height of the peaks, without increasing 

the concentration of the heat denatured material, a 30 nnn Kel-F center

piece was used. In this experiment 2 µg of heat denatured T03 DNA and 

0.5 µg of M. lysodeikticus DNA, in CsCl at a density of 1.705 (pH 8.0 

with 0.01 M Tris), were placed in a 30 nnn cell. A -2° radial wedge 

window was used as the bottom window and a -1° radial wedge was used as 

the top window. The 1st equilibrium run, the annealing and the 2nd 

equilibrium run were the same as those for the 12 nnn cell. 
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RESULTS 

Phage were isolated from four of the eleven soil samples that were 

examined. One of these four soil samples contained three types of 

phage, as distinguished by the morphology of the plaques produced by 

them. One of the three phage from this sample produced large clear 

plaques and was capable of producing a high titer lysate. This phage 

was chosen for further study and was called T03 (Therrnophilic Phage 3). 

Plaques produced by T03 on TYNGC media are shown in Figure 1. 

The size of the plaques varies from pin points up to about 2 rrnn. This 

variation in plaque size is probably due to poor adsorption of the 

phage to the bacterial cell. It could be eliminated by increasing the 

initial concentration of bacteria in the lawn. When the bacterial 

concentration was increased by a factor of 10 (by centrifuging the 

bacterial culture at 10,000 X g for 10 min and then resuspending the 

bacteria in one tenth the original volume) the plaque size became 

uniform, and the apparent titer of the phage suspension being assayed 

increased by a factor of 1.6. Presumably, at the lower bacterial 

concentration some of the phage do not adsorb soon enough to give 

visible plaques. 

Attempts to infect 4 other therrnophilic bacterial strains (Bacil

lus stearotherrnophilus ATCC strains 7953, 7954, 10149 and 12016) and 

two mesophilic strains (Escherichia coli C and C600) with T03 were 

completely unsuccessful. 

Phage morphology. 

The morphology of T03 is illustrated in the electron micrographs 
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Figure 1 

Plaques formed by bacteriophage T03. Five hours incubation at 60°C. 
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shown in Figure 2. Figure 2 A shows T03 and tobacco mosaic virus nega

tively stained with phosphotungstic acid (PTA). The length of the tail 

of the phage was found to be 125 mµ, assuming a length of 298 mµ (76) 

for tobacco mosaic virus. The length of the tail did not vary under the 

various staining conditions used. This length was used as a standard 

for magnification calibration when tobacco mosaic virus was not present. 

Most of the phage particles are disrupted by the PTA negative 

staining technique. App~rently the PTA treatment removes the tail 

from the head and the nucleic acid contained inside the head is re

leased into the surrounding medium. The empty heads appear as ghosts 

in the preparations stained with PTA. When uranyl acetate is used as 

a positive stain it penetrates the head protein and stains the nucleic 

acid inside the intact head as shown in Figure 2 D. None of the pre

parations stained with uranyl acetate contained ghosts. The ghosts 

must therefore be an artifact of the PTA staining technique. In addi

tion to the ghosts the intact phage heads usually appeared swollen 

when a PTA stain was used. 

A high magnification photograph of a PTA stained preparation is 

shown in Figure 2 B. The subunits of the head are resolved in this 

photograph, particularly along the edge of the phage head. There are 

6 or 7 subunits to an edge. The length of the head, as determined from 

electron micrographs of preparations that were negatively stained with 

uranyl acetate, as is illustrated in Fig~re 2 C, is 57 mµ. The length 

of each edge of the regular hexagon-shaped head is 29 mµ. Assuming that 

there are 7 subunits per edge, each subunit has a diameter of approxi

mately 4 mµ. Assuming that the subunits of the head are approximately 
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Figure 2 

Electron micrographs of bacteriophage T03. A, phosphotungstic acid 
negative stain X 121,000; B, phosphotungstic acid negative stain X 
332,000; C, uranyl acetate nega tive stain X 404,000; D, uranyl acetate 
positive stain X 368,000. 
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spherical, each subunit has a molecular weight of about 25,000. The 

dimensions and shape of the head are compatible with those of a regular 

icosahedron. 

The details of the structure of the tail of T03 are also shown in 

Figure 2 C. The tail is 1250 mµ long and 10 mµ wide. The cross stria

tion pattern of the tail is illustrated in this figure. There are about 

30 cross striations that are spaced 3.9 mµ apart. The cross striation 

pattern changes near the junction of the tail and head, indicating that 

some type of collar may be present. The striations, the collar and 

possibly tail fibers at the end of the tail are illustrated in Figure 

2 D. A careful inspection of preparations stained with PTA also indi

cates that tail fibers may be present. 

An interpretation of the morphological characteristics of bacterio

phage T03 is shown in Figure 3. 

Spectrum of T03. 

The ultraviolet absorption spectrum of a purified suspension of 

bacteriophage T03 is shown in Figure 4. The spectrum of the phage 

typically has 260:230:280 absorbance ratios of 1.00:0.75:0.62. The 

maximum absorbance occurs at a wavelength of 259 mµ and the minimum 

at 237 mµ. The ratio of absorbance at 259 to 237 is 0.62. 

Buoyant density of T03. 

The buoyant density of phage T03 was determined from the location 

of the infective phage particles in a cesium chloride density gradient 

(29). When bacteriophage T03 was banded in a cesium chloride density 

gradient a single sharp band of phage occurred at a density of 1.526. 

Three determinations all gave this value for the buoyant density of 
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T03. The results of a density gradient experiment are illustrated in 

Figure 5. The T03 titer of each drop is indicated by a circle, squares 

indicate the phage A+ titer of each drop and triangles indicate the 

density of every tenth drop. 

During the purification of the virus in which large quantities of 

phage were purified by the density gradient technique, a small second 

band sometimes occurred at a density of 1.48. The significance of this 

band has not been determined. 

Latent period. 

The latent period of T03 was determined from a one step growth 

curve as is illustrated in Figure 6. After infection of a bacterial 

culture with T03, the phage titer remained constant for 18 to 20 minutes. 

The titer then began to increase. The increase was rather slow and did 

not level off, as it should have done if all the bacteria had been in

fected at about the same time. Instead, the titer continued to increase, 

and the plateau was obscured by the asynchrony of the infection. 

Burst size. 

The burst size of T03 was determined from the results of a single 

burst experiment (35). In a single burst experiment samples containing, 

on the average, less than one infected bacterium are withdrawn from a 

bacterial culture infected with bacteriophage. The fraction P(r) of 

samples containing r infected bacteria is given by Poisson's formula, 

P(r) = nre-n/r! 

where n is the average number of infected 

bacteria per sample, 

and e is the base of the natural logarithms. 
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Bacteriophage T03 one step growth curve. 
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The average number of infected bacteria per sample, n, is determined 

from P(O), 

P(O) = e-n . 

The results of a single burst experiment for phage T03 are given 

in Table 1. The fraction of plates containing 0 infected bacteria was 

43/60 or 0.717. 

and 

P(O) = e-n, 

0.717 = e-n 

n = 0.332 • 

The average number of infected bacteria per sample was 0.332 . The 

total number of infected bacteria in 60 samples was therefore 60 X 

0.332 = 19.9. The total number of plaques was 4596 and the average 

burst size was 4596/20 = 230. The individual burst ranged from 54 to 

783 with some of the counts being attributed to 2 or more infected 

bacteria in a single burst tube. The average burst size, obtained from 

two experiments, was 203. 

Adsorption of the phage. 

In a phage adsorption experiment in which the initial phage concen

tration was 2.4 X 104 phage/ml, about 2.9 percent of the phage were ad

sorbed in 10 minutes at 60° at a bacterial concentration of 2.5 X 107 

bacteria/ml. The percentage of phage adsorbed was also determined 

from the results of a single burst experiment. The initial phage 

concentration was 1.5 X 108 phage/ml. The concentration of infected 

bacteria after 10 minutes at 60°c was 4.15 X 106 infected bacteria/ml. 

Therefore only (4.15 X 106/1.15 X 108) X 100 = 2.8 percent of the 

phage had been adsorbed. The initial bacterial concentration was 
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TABLE 1 

Variation of the burst size of T03 

Number of plates Number of plaques 

32 0 

8 1 

2 2 

1 5 

17 54 to 783 

Plaque count on plates containing more than 50 plaques. 

54, 57, 125, 146, 161, 193, 198, 209, 221, 247, 

258, 304, 358, 467, 679, 783. 

A. Total number of plates 60 

B. Number of plates containing 0 to 5 plaques 43 

C. Number of plates containing more than 50 plaques 17 

D. Total number of plaques in C 4596 
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2.5 X 107 bacteria/ml. These results indicate that the adsorption rate 

is independent of the phage concentration. 

If calcium ion is not included in the media, the plaques formed 

by T03 are small, and the efficiency of plating is low. This is prob-

ably a reflection of a requirement for calcium ion for adsorption. 

Thermal stability. 

The thermal stability of phage T03 is illustrated in Figure 7. 

In broth the half life of T03 at 60°c is 400 minutes. At higher temp-

eratures the phage is less stable, the half life at 65°C is 120 minutes, 

40 minutes at 70°C and 12 minutes at 75°C. 

The Arrhenius energy of activation for the heat inactivation 

reaction is given by: 

where T is the absolute temperature 

R is the gas constant 

(1.99 cal./deg.mole.), 

tJ:la is the activation energy in 

calories, 

and ~ is the rate constant for 

inactivation. 

The rate constant kn is related to the half life by 

k ln 2 
n =--tk 

2 

where tk is the half life. 
2 

The activation energy, ~Ha, for T03 in broth in the temperature range 

60°c to 75°c is 56,000 cal. 
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Thermal stability of bacteriophage T03 in broth. 
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Phage "lysozyme". 

An enzyme that attacks and breaks down the bacterial cell wall can 

be demonstrated by continuing the incubation of plates containing phage 

T03 on a bacterial lawn for longer than 6 hours at 60°C. As illus-

trated in Figure 8, when this incubation is continued the plaque size 

continues to grow as a turbid halo forms around the clear central 

plaque. This halo is produced rapidly (4 hours) at 60°c, slowly (8 

0 0 0 hours) at 48 C and even more slowly at 35 C and 25 C. At 4°c no halo 

is produced. There is essentially no further bacterial growth after 

the 6 hour initial incubation as judged by the turbidity of the areas 

of bacterial growth. Furthermore, there is practically no bacterial 

growth below 50°C. One phage was found in each of two samples, out 

of a total of 10 samples that were taken from the outer edges of 3 

halos. The remaining eight samples contained no phage particles. 

The interpretation of these results is that an enzyme that is 

active at temperatures of from 25°C to 60°C is produced in the central 

plaque during the initial incubation. During the second incubation 

the enzyme diffuses away from the plaque more rapidly than the phage. 

This enzyme attacks the cell walls of the bacteria that are present 

outside the plaque area. This leaves a turbid halo around the clear 

central plaque. 

Spectrum of T03 deoxyribonucleic acid. 

The ultraviolet absorption spectrum of the phage DNA is shown in 

Figure 9. The lower curve is the spectrum of the native T03 DNA, and 

the upper curve is the spectrum of heat denatured T03 DNA. Native T03 
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Spectrum of bacteriophage T03 DNA. Lower curve, native DNA; upper curve, 
heat . denatured DNA. 
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deoxyribonucleic acid typically has 260:230:280 ratios of 1.00:0.57: 

0.56. The maximum absorbance occurs at a wavelength of 258 mµ and the 

minimum occurs at 233 mµ. Heat denatured T03 deoxyribonucleic acid has 

260:230:280 ratios of 1.00:0.54:0.53. The maximum absorbance occurs at 

a wavelength of 259 mµ and the minimum occurs at 234 mµ. 

Heat denaturation of T03 deoxyribonucleic acid. 

When a solution of DNA is heated to a high temperature the double 

helical structure of the DNA is disrupted and the two polynucleotide 

chains separate (65). This separation results in a greater absorbance 

of ultraviolet light (hyperchromicity) by the DNA. 

The heat denaturation of T03 DNA in three buffers with different 

ionic strengths is represented in Figure 10. As the temperature of 

a solution of T03 DNA increases, the absorbance at a wavelength of 260 

mµ decreases from its value at room temperature to a minimum. The 

absorbance then rises rapidly and reaches a plateau. The midpoint of 

this rapid increase in absorbance is known as the melting temperature 

(Tm)· The Tm of T03 DNA in 0.1 X SSC (circles) is 72.0°C, in SSC 

(squares) it is 88.5°C and in 2.0 X SSC (triangles) it is 92.o0 c. 

If the temperature of a solution of heat denatured DNA, at a high 

temperature, is allowed to decrease slowly, the DNA again assumes the 

native configuration with the two complementary strands specifically 

bonded together. This return to the native state is accompanied by a 

decrease in the absorbance of ultraviolet light (hypochromicity). 

Figure 11 illustrates such a hypochromic effect for T03 DNA in 

various buffers. The samples that were heat denatured to obtain the 

data for Figure 10 were allowed to cool slowly. The annealing process 
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was poor and incomplete in the low salt solvent (O.l X SSC, circles) 

with 33% hypochromic effect. In SSC (squares) the annealing was more 

rapid and more complete with an 88% hypochromic effect. The annealing 

in the high salt solvent (2.0 X SSC, triangles) was the most rapid and 

most complete. The hypochromic effect was 100%; this means that the 

absorbance of the original native DNA solution was regained. This 

extensive renaturation in high salt solvents was used to great advantage 

in later experiments in which the physically separated strands of the 

T03 DNA double helix were annealed in a concentrated CsCl solution in 

an analytical ultracentrifuge cell. 

Figure 12 is a representation of the hyperchromic effect when: 

A, a solution of T03 DNA (circles) in SSC was heated; B, a solution of 

a mixture of T03 DNA and Escherichia coli DNA (triangles) in SSC wa$ 

heated; C, a solution of Escherichia coli DNA (squares) in SSC was 

heated. The Tm of the T03 DNA in SSC was 88.5°c. The solution of a 

mixture of T03 DNA and E. coli DNA had a melting curve that changed 

slope in the middle of the curve. This indicates that at the tempera

ture at which the slope changes, the T03 DNA was almost completely de

natured, and that the remainder of the hyperchromicity was due to the 

denaturation of the E. coli DNA. The Tm of E. coli DNA in SSC was 

91.5°C . The melting profile of T03 DNA was much sharper than that of 

E. coli DNA. This is probably a reflection of the relative composition 

heterogeneity of the E. coli DNA fragments. 

Buoyant density of T03 DNA. 

The buoyant density of T03 DNA was determined from its position, 

relative to the position of DNA with a known density, in a cesium 
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Figure 12 

95 

Thermal denaturation of DNA in SSC. Circles, T03 DNA; triangles, T03 
DNA and Escherichia coli DNA mixture; squares, Escherichia coli DNA. 
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chloride density gradient (29). Figure 13 illustrates photographs that 

were taken utilizing the selective ultraviolet light absorbing proper

ties of DNA. Figure 13 A represents a gradient that was formed from 

an initial solution that contained T03 DNA, Escherichia coli DNA and 

Micrococcus lysodeikticus DNA. T03 DNA formed a band at a density of 

1.695. The gradient represented in Figure 13 B contained T03 DNA and 

Micrococcus lysodeikticus DNA. In the gradient represented in Figure 

13 C only T03 DNA was present. 

For accurate measurement of the relative position of the DNA bands, 

the original negative was analyzed by tracing the relative film exposure 

with a microdensitometer. This procedure gave a direct record of the 

light absorbed (and hence the DNA concentration) vs. radius from the 

rotor center. Densitometer tracings of the negatives used to produce 

Figure 13 are shown in Figure 14. 

Molecular weight of T03 DNA. 

The molecular weight of T03 DNA was determined from the band width 

of the concentration distribution that T03 DNA formed in a cesium 

chloride density gradient. The square of the half band width (cr) of 

the gaussian DNA concentration distribution in a density gradient is 

inversely proportional to the molecular weight of the DNA being studied 

if there is no density heterogeneity present in the DNA sample (29). 

Figure 15 illustrates a densitometer tracing of a T03 DNA band. The 

diagonal line is the record of exposure produced by an exponential 

aperture (66) included in the counterbalance to check the linearity of 

the film response. The half band width, cr, in this determination was 

9.84 X 10-3 cm and the radius at band center, r 0 , was 6.361 cm. For 
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6.520 

RADIUS, centimeters 
Figure 15 

6.550 

Densitometer tracing of a photograph of a T03 DNA band in a cesium 
• 

chloride density gradient at 44,770 rpm. The diagonal line is the 

tracing of an exponential aperture included in the counterbalance 

to check the linearity of the film response. 
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T03 DNA (see Appendix): 

M 7.39 X 104 
Na = 

Thus the molecular weight of the sodium salt of T03 DNA observed in 

this experiment was 17.8 X 106. The average value of the molecular 

weight obtained from two determinations was 16.7 X 106. 

Length and molecular weight of T03 DNA. 

When particles of bacteriophage T03 in a high osmotic strength 

environment (4 M ammonium acetate) are removed from that environment and 

placed in a low osmotic strength environment (distilled water) some of 

the particles osmotically shock and burst, releasing their DNA into the 

surroundingmedium. This DNA can be trapped in a cytochrome c film, 

shadowed and examined in the electron microscope (44). An electron 

micrograph of T03 DNA prepared in this manner is shown in Figure 16. 

The average of 12 measurements of the length of different T03 DNA 

molecules was 11.7 t 0.3 µ. The measured length of individual T03 DNA 

molecules ranged from 11.25 µ to 12.2 µ. Assuming 1.92 X 106 molecular 

weight units per µ, the molecular weight of the DNA of T03 is 22.5 X 

106. The single DNA molecule of phage T03 has a mass of 3.73 X lo-11 

µg and a volume of 3.7 X lo-5 µ3. 

The process of osmotically shocking the phage and trapping the DNA 

in a cytochrome c film yields three distinct configurations for the DNA 

molecule. The free random coil form, the compact form that crosses 

back over itself in a typical flower shape, and the form in which the 

DNA has not been completely released from the phage head. The first 

two forms are illustrated in Figure 16, and the 3rd form is illustrated 
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F i gure 16 

Electron micr ograph of T03 and T03 DNA (treated with cytochrome c and 

shadowed with platinum) , X 40 ,200. 
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in Figure 17. In some preparations it appeared that the DNA was being 

extruded through the tail while in others the tail was absent or it 

was attached to the end of the DNA molecule. 

Base composition of T03 DNA. 

A photograph of a paper chromatograph of formic acid hydrolyzed 

T03 phage is shown in Figure 18. The spots that absorbed ultraviolet 

light are outlined. The spots representing the bases present in the 

phage DNA are at the left. Control spots of adenine, guanine, thymine 

and cytosine are at the right. The two spots marked F are fluorescent 

spots that were present when whole phage was hydrolyzed but were not 

present when phage DNA was analyzed. The positions of the four bases 

present in the phage DNA match the positions of the control spots. The 

ultraviolet absorption spectra of the four bases present in T03 DNA 

matched the spectra of the corresponding control bases. 

The results of the base analysis of T03 DNA are contained in 

Table 2 . Based upon 3 determinations the DNA of T03 contains 29.0 + 

0.6% adenine, 19.4 ± 0.2% guanine, 30.8 ± 0.8% thymine and 20.8 ± 0.3% 

cytosine. The guanine plus cytosine content is 40.2%. The ratio of 

adenine to thymine is 0.94 and that of guanine to cytosine is 0.93. 

The melting temperature of DNA has been found to be a function 

of its base composition (13). To utilize a marker DNA in the Tm 

determination a modified form of the equation of Marmur and Doty (13) 

was used. The difference in the Tm and the difference in the guanine 

plus cytosine content between two samples of DNA are related according 

to the equation: 
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Figure 17 

Elec tron micrograph of the DNA of bacteriophage T03 be ing extruded 

from the tail of the phage (treated with cytochrome c and shadowed 

with platinum), X 93,500. 
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f:/ /' •/' 'i tc: \ ~ 8 y ! 
CONTROLS 

T C. 

Figure 18 

Photograph of a paper chromatogram of hydrolyzed bacteriophage T03. 
The spots that absorb ultraviolet light have been outlined. Spots 
representing the bases; A, adenine; G, guanine; T, thymine; C, cyto
s ine are shown to the right and spots from T03 a re on the left. The 
spots marked F are fluo.rescent. 
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.. 

TABLE 2 

Base composition of T03 DNA as determined by chromatographic 

separation of the bases (averages obtained from 3 determinations). 

Base 

A 

G 

T 

c 

Total 

Mole percent 

A/T = 0.94 

G/C = 0.93 

29.0 -t 0.6 

19.4 t 0.2 

30.8 + 0.8 -
20.8 + 0.3 -

100.0 

Molar ratio 

1.00 

0.69 

1.06 

o. 72 

Purines (A+G)/Pyrimidines (T+c) = 0.94 

(GC) = 40.2% 
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where 6Tm is the difference of the melting 

temperature of the marker DNA and 

of the DNA of unknown composition, 

and 6CX:. is the percent difference of the 

guanine plus cytosine content of 

the marker DNA and of the DNA of 

unknown composition. 

The Tm of Escherichia coli DNA was found to be 91.5°C and for T03 DNA 

it was 88.5°c. The 6CX:. for these two samples of DNA is therefore: 

6CX:. = 2.44(3.0) = 7.3% 

Since E. coli DNA contains 50% G + C it follows that T03 DNA contains 

42.7% G + C. 

The buoyant density of DNA also depends upon its base composition 

in a known manner (52). If the density of T03 DNA is computed according 

to the methods of Schildkraut, Marmur and Doty, using their buoyant den

sities of 1.710 for Escherichia coli DNA and 1.731 for Micrococcus lyso

deikticus DNA, a density of 1.702 is obtained for T03 DNA. The density 

of T03 DNA cor~esponds to a guanine plus cytosine content of 43%. 

The base composition of T03 DNA obtained by three independent meth

ods is presented in Table 3. Analysis by chromatographic separation of 

the bases gave 40.3% guanine plus cytosine. The melting temperature 

indicated a composition of 42.7% guanine plus cytosine . Finally, the 

buoyant density of T03 DNA corresponded to a guanine plus cytosine 

content of 43%. 

Separation of the two complementary strands of T03 DNA. 

According to the generally accepted Watson-Crick model for the 
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TABLE 3 

Base composition of T03 DNA, sunnnary. 

Method 

Heat Denaturation, Tm 

Buoyant Density 

Chromatography 

Mole percent G + C 

42.7 

43 

40.2 
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structure of deoxyribonucleic acid (67, 68), individual molecules of 

DNA are composed of two complementary polynucleotide chains. For every 

adenine on one chain there is a thymine on the other chain. For every 

cytosine there is a guanine on the other chain. This model dictates 

that the mole fraction of adenine must equal the mole fraction of 

thymine. The same relationship also must hold between guanine and 

cytosine. However, no such relationships between the bases are nec

essary for bases in a single polynucleotide chain. The usual base 

equivalence does not hold for the single stranded DNA of phage 0Xl74 

(54). The two strands of the DNA of bacteriophage a have been shown 

to have different but complementary base compositions (55). The heat 

denatured DNA from phage a shows two bands in a cesium chloride density 

gradient (56), indicating that the two strands have different buoyant 

densities. The two strands of the DNA of the thermophilic bacteriophage 

TP-84 have different buoyant densities in cesium chloride. These two 

strands also have different but complementary base compositions (23). 

As was illustrated in Figures 13 and 14, native DNA from phage 

T03 bands as a single peak at a density of 1.695 in a cesium chloride 

density gradient. Heat denatured T03 DNA forms two bands at densities 

of 1.707 and 1.715 as is indicated in the photographs in Figure 19, 

experiments 1 A and 2 A, and the densitometer tracings in Figure 20, 

experiments 1 A and 2 A. When the two separated strands are mixed 

together and annealed, the renatured DNA forms a single band at a 

density of 1.699. Photographs of the renatured band are shown in 

Figure 19, experiments 1 B and 2 B, and densitometer tracings are 

illustrated in Figure 20, experiments 1 B and 2 B. In experiment 1, 
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IA 

18 

2A 

28 

1.695 1.699 1.707 1.715 1.726 

DENSITY 
Figure 20 

Densitometer tracings of photographs of bands formed by DNA in a cesium 
chloride density gradient at 44,770 rpm. 1 A, T03 DNA and T03 heat 
denatured DNA; 1 B, the material in 1 A, annealed and rebanded. 2 A, 
T03 heat denatured DNA and Micrococcus lysodeikticus DNA; 2 B, the 
material in 2 A, annealed and rebanded. 
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as illustrated in Figures 19 and 20, native T03 DNA was used to provide 

a density reference. The renatured DNA shows as a shoulder on the 

heavy side of the native peak in Figure 19 (1 B) and Figure 20 (1 B). 

In experiment 2, as illustrated in Figures 19 and 20, Micrococcus lyso

deikticus DNA was used to provide a density reference. It is apparent 

that native T03 DNA is dissociated by heat denaturation into two sub

units whose buoyant densities differ. These two subunits can be annealed 

together under conditions that are optimal for the renaturation of the 

separated complementary strands of the DNA double helix. 

In the experiment from which Figures 19 (2 A) and 20 (2 A) were 

taken, a series of photographs taken after equilibrium was reached 

indicated that a shoulder was forming on the light side of the band of 

the light strand of T03 DNA. This shoulder appeared at the density of 

the renatured T03 DNA shown in Figures 19 (2 B) and 20 (2 B). In the 

region between the light and heavy peaks the concentrations of the two 

strands were high enough to promote some renaturation of the LNA. As 

the renaturation process was completed for an individual DNA molecule, 

the renatured DNA molecule would move in the gradient to a position 

corresponding to its new buoyant density. The renatured molecules thus 

migrated through the light strand peak region and increased the ultra

violet absorbance accordingly. The band representing the light strand 

is slightly darker than the band representing the heavy strand. 

Several attempts were made to increase the height of the peaks, 

as seen in experiment 1 of Figures 19 and 20, by increasing the concen

tration of DNA. All attempts failed due to extensive renaturation of 

the DNA during the experiment. The use of the 30 rrnn centrifuge cell, 
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to increase the length of the light path through the cell, solved this 

problem by allowing the same concentration of heat denatured T03 DNA to 

be used as was used in experiment 1. In experiment 2 a 30 rran cell was 

used. · The light path and hence the absorbance of ultraviolet light, by 

the DNA in the bands, increased by a factor of 2.5. 

The separation of the strands was observed only when a fresh pre

paration of heat denatured DNA was used. One preparation that had been 

heat denatured and stored at 4°C for 1 week showed extensive renaturation. 

Additional observations. 

During the course of this study several phenomena were observed 

that were not really pertinent to the problems being investigated at 

that time. They were not studied in detail and are thus listed here 

as observations that might be of interest. 

The purification procedure for T03 involves centrifuging the 

lysate to remove the bacterial cell debris. When this cell debris was 

examined with a hand spectroscope, two dark absorption bands were 

observed, one at a wavelength of 570 mµ and the other at a wavelength 

of 533 mµ. These bands are a characteristic of a reduced cytochrome. 

Much lighter bands were present when uninfected bacteria from a control 

culture were examined. Apparently the cell debris from a phage lysate 

contains a higher concentration of cytochrome than the bacteria from 

an uninfected culture. It is not known if the presence of large amounts 

of cytochrome is the result of induction of a bacterial cytochrome by 

the phage infection, the synthesis of phage specific cytochrome or just 

the uncontrolled synthesis of cytochrome that was set off by the phage 

infection. 
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While performing some experiments to determine the effect that 

various ions and sugars have on bacterial growth and phage infection, 

it was observed that a medium in which sodium ion was replaced by 

potassium ion and glucose by sucrose, gave much better adsorption of 

T03 to its host than the usual TYNGC medium. However, no burst occurred 

during the 35 minutes of the experiment. In another experiment in 

which just the sodium ion was replaced by potassium a normal latent 

period was observed. Potassium or sucrose may enhance adsorption, but 

apparently sucrose either prevents or delays the burst. 

It was found that a bacterial culture that had been grown over

night, well into the stationary phase of growth, gave uniform plaques 

when used as a lawn for titering phage preparations. The bacterial 

concentration in the lawn in these experiments was the same as in the 

usual phage assay. The apparent titer of the phage stock being assayed 

increased by 60% when stationary phase bacteria were used in the lawn. 

This increase in efficiency of plating was discovered too late to be 

of any use in the experiments reported here. 

The optimum growth temperature of the host organism in TYNGC medium 

was found to be 60°c. The division times at various temperatures were: 

so0 c, 90 min; 60°c, 20 min; 65°c, 21 min; 70°c, 70 min. 
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DISCUSSION 

Bacteriophage T03 is a virus that infects the thermophilic bac-

terium, Bacillus stearothermophilus, at a relatively high temperature 

of 60°c. The physical dimensions of phage T03 are similar to those of 

the E . coli phage A (57). The size of T03 places it in a range between 

the larger phages of E. coli such as the T-even phages (57, 58) and the 

small phages of E. coli such as 0Xl74 (59). T03 is strikingly similar 

to phage a (60), a bacteriophage that infects Bacillus megaterium. The 

morphology of other bacteriophages for Bacillus stearothermophilus is 

not known in detail. Phage 0µ-4 is known to be very small with a re-

ported diameter of 10 mµ (22), however, electron micrographs of this 

phage have not been published. Phage TP-1 has a head diameter of 

approximately 65 mµ and a tail 240 mµ long and 12 mµ wide (14). T03 

is thus in a size range in between those two thermophilic phages . 

The regular hexagonal appearance of the head of T03 probably indi-

cates that the head has the form of an icosahedron, however, more de-

/ 

tailed work is necessary to verify this. Although the head appears as 

a regular hexagon in all three staining procedures used (PTA negative, 

uranyl acetate positive and uranyl acetate negative) the actual size 

of the head varies considerably with the staining procedure. The 

length of the head when stained negatively with PTA was 65 mµ. The 

length when stained positively with uranyl acetate was 47 mµ. With a 

uranyl acetate negative stain it was 57 mµ long. The heads appeared 

swollen and there were many ghosts in the PTA preparations and the head 

outline was quite indefinite in the uranyl acetate positive stained 

preparations. Since the head outline was well defined and no ghosts 
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were present in the uranyl acetate negative stained preparations, 

measurements for the head are those taken from preparations stained 

in this manner . 

The details of the structure of the tail of T03 were revealed by 

the urany l acetate negative staining procedure . Further study is 

necessary to determine if the tail has a helical form as is probably 

the case of the E. coli phages, T2 (61) and TS (62). 

As wou l d be expected T03 is more thermostable than are phage of 

mesophiles . In broth, for example, the half life of the E. coli phage 

Tl is about 12 minutes at 65°C (69), as compared to 120 minutes for 

T03 . Another E . coli phage, T7, is less stable , having a half life of 

less than one minute at 60°C. The half life of T03 at 60°C is 400 

minutes. At 65°C T03 is about 4 times as stable as the thermophilic · 

phage TP-1 (14) . The thermophilic phage isolated by Onodera was 

reported to be stable at l00°C (21). Phage T03 of course is not stable 

at this high temperature. 

The rather normal melting tempera ture of the T03 DNA, taken togeth-

er with the high 6Ha for heat inactivation of the phage, indicate that 

the proteins of the T03 are primarily responsible for the thermostabil-

ity characteristics (25) of T03. Many proteins of mesophilic organisms 

0 are denatured rapidly at temperatures above 40 C. The relative thermo-

stability of the proteins of T03 is an indication that they have rather 

unique structural characteristics. These characteristics might con-

sist of a unique amino acid composition, as is the case of the ~-amylase 

of Bacillus stearothermophilus, or of a folding arrangement of the 

polypeptides that is particularly resistant to thermal denaturation. 
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Thus a further study of the proteins of T03 could yield some insight 

into the relationship between the primary amino acid sequence and the 

tertiary structure of proteins in general. 

The study of the enzyme that is responsible for lysis of a T03 

infected bacterium would also yield valuable information with regard to 

the relationship between structure and function of enzymes in general. 

Further study of the genetics and structure of T03 "lysozyme" would be 

even more meaningful in view of current research on the genetic control 

of the structure of T4 phage lysozyme (63, 64) and on the structural 

characteristics of egg white lysozyme (70, 71). However, T03 "lysozyme" 

may not be a lysozyme at all. In strict terms lysozyme is N-acetylmura

mide glycanohydrolase and is known as muramidase. It has not been 

shown that T03 "lysozyme" is a muramidase. Until the enzymatic charac

teristics of T03 "lysozyme" are known, its relationship to T4 lysozyme 

should be taken as rather preliminary. This however in no way reduces 

the significance of this phage enzyme for it is of great interest in 

and of itself. 

The poor adsorption of the T03 to the bacterial cell wall under 

all of the conditions studied may indicate that the present host is 

not the true host for this phage. On the other hand it may also mean 

that the proper envirorunent for good adsorption has not been found. 

That the latter might be the case is strengthened by the fact that 

adsorption could be improved by utilizing various cation and sugar 

combinations in the media. This is also indicated by the finding that 

stationary phase bacteria serve as a better lawn than log phase bac

teria. The effect that temperature has on adsorption could probably 
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be investigated to advantage once a system is found that allows good 

adsorption. Since no burst was found when potassium ion and sucrose 

were used in the media, their precise effect on the infected cell could 

be fruitfully investigated. This could presumably yield a good method 

for synchronizing the maturing process. 

The deoxyribonucleic acid of T03 has proven to be extremely inter

esting. The determination of the molecular weight from the shape of 

the band in a cesium chloride density gradient indicates that this 

method can be used to determine DNA molecular weights to within 20%, 

provided the DNA is homogeneous with regards to density. This con

clusion was also reached by Studier in his study on the molecular 

weight of the DNA of bacteriophage T7 (37). The 20% inaccuracy of 

this method also indicates that independent measurements of the molecu

lar weight should be made in conjunction with any made by band width. 

Any density heterogeniety that was present in the sample of T03 DNA, 

that was used for the band molecular weight determination, would have 

broadened the band. The molecular weight that was determined from this 

broadened band would have been less than the actual molecular weight of 

native T03 DNA . Any degradation of the DNA in the sample would yield 

a similar result, a lower molecular weight than the molecular weight 

of native T03 DNA . The true molecular weight of T03 DNA must there

fore be greater than or equal to the molecular weight that was deter

mined from the band width . 

The measurement of the length of the DNA molecule probably gives 

the best estimate of the actual molecular weight of a particular DNA 

molecule that can be made at the present time (45). The largest error 
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that is present in this type of determination is the calibration of 

~ 

the magnification; this amounts to about 10%. The length measurements 

using the map measure could be reproduced to within 3%. 

The base composition of T03 DNA, as determined from the buoyant 

density and the Tm of T03 DNA, is probably more accurate than the 

composition that was determined in the spectrophotometric base analysis. 

The reason for this is the relative simplicity of the buoyant density 

and thermal denaturation experiments and the relative control that is 

possible when compared to the chromatographic isolation of the bases 

and the spectrophotometric determination of the base composition. This 

does not mean however, that these two methods should supplant the 

latter, for when a new system is being investigated, the isolation and 

identification of the bases is invaluable for the detection of bases 

other than the four that are usually present in DNA. The small incon-

sistancy that exists in the base composition, as determined by the Tm 

and buoyant density measurements on the one hand and the spectrophoto-

metric base analysis on the other hand, could be an indication of the 

presence of small quantities of other bases in addition to the four 

that were detected. Any base, other than adenine, guanine, thymine and 

cytosine, that is present in T03 DNA would have to be present in small 

amounts because of the agreement between the base compositions that were 

determined from the Tm and the buoyant density. It should be mentioned 

that at the concentrations 'utilized in the chromatography, a base, other 

than adenine, guanine, thymine or cytosine, that was present in small 

amounts, would not have been recognized. 

The increase in the melting temperature of T03 DNA with an increase 
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in the ionic strength of the solvent is analogous to the results that 

have been obtained with the DNA of other organisms (13). The enhance-

ment of renaturation of DNA with increasing ionic strength of the 

solvent has also been observed for the DNA of other organisms (37, 79). 

The complete renaturation of heat denatured T03 DNA that was observed 

' in a high ionic strength solvent (2.0 X SSC) is similar in extent to 

the renaturation of the DNA of other viruses (80). Bacterial DNA and 

mannnalian DNA do not renature completely (80). That T03 DNA could 

~ctually be 100% annealed was shown ~n the strand separation and an-

nealing experiments in which the bands representing denatured material 

were completely absent in the annealed samples. This is a good indi-

cation that the original sample of DNA was homogeneous and that the 

majority of the DNA molecules, obtained by the phenol extraction tech-

nique , contained few single strand breaks. 

The separation of the two strands of the DNA of T03 yields addi-

tional evidence that the native DNA molecule consists of two subunits. 

The fact that the two separated strands can be reunited by annealing 

requires that the base compositions of the two separated strands be 

specifically complementary to each other . The finding that the two 

strands have different buoyant densities suggests that they also have 

different base compositions . The other alternative is that there is 

some molecule preferentially bound to one of the two strands that alters 

the density of that strand . This alternative would appear to be ruled 

out by the close agreement of the buoyant density, melting temperature 

and base analysis data. If the two bands do represent the two strands 

of the Watson-Crick double helix then their base compositions would 
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complement each other as is the case with phage a DNA (55). 

Present evidence indicates that only one strand of the DNA double 

helix is used to supply information for protein synthesis (72, 73, 74). 

The amino acid analysis of the a-amylase of Bacillus stearothermophilus 

indicated that this protein is very rich in particular amino acids (10). 

Indeed more than 15% of the amino acid residues in this protein are 

proline. The messenger RNA coding triplets for proline are CCC, CCU, 

CCA and CCG (75). The DNA strand that codes for the messenger RNA of 

a protein that is rich in proline should be rich in the base comple

mentary to cytosine. Thus the coding strand should contain more guanine 

than the non-coding strand. If this high proline content is a general 

characteristic of the proteins of thermophilic organisms then it would 

be expected that the proteins of T03 should also exhibit this feature. 

If an amino acid analysis of the proteins of T03 confirms this then it 

would be expected that one of the strands of T03 DNA would be rich in 

guanine . This particular strand should also be the one that would annea l 

to the messenger RNA of the infected bacterium. 

The a-amylase of Bacillus stearothermophilus is also rich in the 

acidic amino acids, glutamic acid (15%) and aspartic acid (7.5%). The 

RNA coding triplets for glutamic acid are GAA and GAG, those for aspar

tic acid are GAU and GAC (75). If the RNA coding triplets of proline, 

glutamic acid and aspartic acid are considered together, they are con

spicuously deficient in uracil . If the proteins of T03 are rich in 

these three amino acids then it would be expected that the coding 

strand of T03 DNA would be deficient in adenine, the complement of the 

uracil in the messenger RNA. Since the overall base composition of 
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T03 DNA does not show a deficiency in adenine, the non-coding strand 

should contain most of the adenfne in T03 DNA. The coding strand of 

T03 should therefore be rich in thymine. One of the strands of the DNA 

of the thermophilic phage TP-84 is indeed richer in thymine than is the 

complementary strand (23) . 

If the proteins of T03 are rich in praline, glutamic acid and 

aspartic acid, the coding strand of T03 DNA should be rich in a) guanine, 

because the RNA codewords for praline are rich in cytosine, and b) 

thymine, because of the RNA codewords for praline, glutamic acid and 

aspartic acid are deficient in uracil. Preliminary evidence (81) 

suggests that one strand of T03 DNA is very rich in thymine and guanine. 

Genetic experiments with either the isolated strands of T03 DNA or 

with heat denatured and annealed T03 DNA, in which one strand possesses 

one genetic marker and the other strand possesses another genetic marker, 

await the development of an infective DNA system utilizing T03 DNA. 

Once developed this whole system could provide support for the messenger 

hypothesis, the one strand transcription hypothesis, the MR.NA-DNA 

hybridization experiments and the codeword determinations . 

Another aspect of interest concerning the nucleic acids of thermo

philic organisms is their transfer RNA . As has already been mentioned 

the a-amylase of Bacillus stearothermophilus is very rich in several 

amino acids . If this is a general characteristic of the proteins of 

this organism, Bacillus stearothermophilus could serve as a rich source 

of transfer RNA of specific amino acids, namely glutamic acid transfer 

RNA and praline transfer RNA. 
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APPENDIX 

Calculation of the molecular weight of T03 DNA. 

The molecular weight of a macromolecule is related to the width of 

the concentration distribution it forms in a density gradient by the 

equation: 

Ms o 
' 

RT 
(40), 

where Ms,o is the solvated molecular weight 

of the macromolecule, 

R is the gas constant 

(8.314 X 107 erg deg-1 mole-1), 

T is the absolute temperature 

(298° K), 

cr is the standard deviation of the 

concentration distribution at 

equilibrium, 

Vs 0 is the solvated partial specific 
' 
volume of the macromolecule, 

(dp/dr)eff is the effective dens i ty 

gradient, 

(.,.) is the angular velocity, 

and r
0 

is the radius at the center of the 

concentration distribution. 

The value of l/vs,o = p0 = 1.695 for T03 DNA, used in the calculations 

neglects pressure and introduces an error in Ms 0 of less than 1% (37). 
' 

The effective density gradient, (dp/dr)eff, is: 
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(dp/dr)eff = ( l//)• + f p
02

) (1-a) w 2r (40,41,42), 

where l/(} 0 is 8.40,,- X lo-10 (33), 

1/J is 23. 3 X 10-6 atm-1 (42) 

or 2.3 X lo-11 cm2 dyne-1, 

po is the density at band center at 

atmospheric pressure, set equal 

Po = 1.695, the buoyant density 

of T03 DNA. 

and a is 0.24 (41). 

(dp/dr)eff 6.89 x 

and Ms 0 ' 
6.10 x 1019 
cr2 (w 2ro)2 

lo-10w 2r, 

to 

The anhydrous molecular weight of the Cs salt of the DNA is: 

However, 

Mes = Ms ,of (1 + r') (40)' 

where r' is the solvation of the DNA in 

grams of H20 per gram Cs DNA. 

1/po = (v3 + r ·v1)/(l + r·) 
or r· = (l-p0v3)/(v1p

0
-l), 

(40)' 

where v3 is the specific volume of anhydrous 

Cs DNA, taken to be 1/2.12 (41)' 

v1 is the specific volume of solvated 

H20, taken to be 1.0. 

r ' Thus 0.283, 

and Mes 4.75 x 1019 
= 

The molecular weight of the sodium salt of the DNA is found by 
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multiplying this by the ratio of the average molecular weight of a 

sodi~m deoxyribonucleotide to that of a cesium deoxyribonucleotide: 

MNa = Mes (]31/441) 

At 44,770 rpm, for T03 DNA, 

~a 

Determination of er. 

0.751 Mes 

3.57 x 1019 
cr2 ( w 2r ) 2 

0 

7.39 x 104 
0"2 ro2 

A graph of the equation for a gaussian distribution, 

y 

where the maximum value of y is 1, has a width of 2cr at y = e-~, e being 

the base of the natural logarithms . A graph of y vs. r on gaussian 

graph paper yields a straight line . If Y2 is chosen at the center of 

the distribution (y2 

The concentration distribution of macromolecules obtained in a 

density gradient at equilibrium is gaussian (29) if the macromolecules 

are homogeneous with respect to density . A plot of the concentration 

of the macromolecule (normalized so that the maximum concentration is 

1) vs . the radius, on gaussian graph paper should yield a straight 

line . The half band width cr can be determined from this plot . This 

procedure eliminates the necessity of an independent determination 
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of the radius at band center. 

\ 
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