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Abstract

Climate change is arguably the most critical issue facing our generation and the

next. As we move towards a sustainable future, the grid is rapidly evolving with

the integration of more and more renewable energy resources and the emergence of

electric vehicles. In particular, large scale adoption of residential and commercial

solar photovoltaics (PV) plants is completely changing the traditional slowly-varying

unidirectional power flow nature of distribution systems. High share of intermittent

renewables pose several technical challenges, including voltage and frequency control.

But along with these challenges, renewable generators also bring with them millions

of new DC-AC inverter controllers each year. These fast power electronic devices

can provide an unprecedented opportunity to increase energy efficiency and improve

power quality, if combined with well-designed inverter control algorithms. The main

goal of this dissertation is to develop scalable power flow optimization and control

methods that achieve system-wide efficiency, reliability, and robustness for power

distribution networks of future with high penetration of distributed inverter-based

renewable generators.

Proposed solutions to power flow control problems in the literature range from

fully centralized to fully local ones. In this thesis, we will focus on the two ends of

this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal so-

lutions to voltage control problems provided a centralized architecture with complete

information. These solutions are particularly important for better understanding the

overall system behavior and can serve as a benchmark to compare the performance

of other control methods against. To this end, we first propose a branch flow model

(BFM) for the analysis and optimization of radial and meshed networks. This model
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leads to a new approach to solve optimal power flow (OPF) problems using a two

step relaxation procedure, which has proven to be both reliable and computation-

ally efficient in dealing with the non-convexity of power flow equations in radial and

weakly-meshed distribution networks. We will then apply the results to fast time-

scale inverter var control problem and evaluate the performance on real-world circuits

in Southern California Edison’s service territory.

The second half (chapters 4 and 5), however, is dedicated to study local control

approaches, as they are the only options available for immediate implementation on

today’s distribution networks that lack sufficient monitoring and communication in-

frastructure. In particular, we will follow a reverse and forward engineering approach

to study the recently proposed piecewise linear volt/var control curves. It is the aim

of this dissertation to tackle some key problems in these two areas and contribute by

providing rigorous theoretical basis for future work.
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solutions. The inverse projection hθ is defined in Section V. . . . . . . 27

2.5 Model of a phase shifter in line (i, j). . . . . . . . . . . . . . . . . . . 42
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Chapter 1

Introduction

As one of the greatest innovations in human history, the power grid is a complex

interconnected network of generators, transmission lines, and distribution facilities,

designed to deliver electricity from suppliers to consumers. The traditional archi-

tecture of the grid consists of large centralized plants, each injecting hundreds of

megawatts of power through a mesh of high-voltage transmission lines over long dis-

tances, towards low-voltage radial distribution networks that supply electricity to

slowly-varying customer loads. With this perspective in mind, distribution networks

were originally built to carry power oneway , and to cope with slow changes in

loading conditions.

Electricity grids, particularly power distribution networks, are rapidly evolving as

a result of the growing concerns for the environment and the shift towards renewables,

as well as the emergence of new types of controllable loads, such as electrical vehicles

(EVs). Worldwide supportive policies have put a strong preference on sustainable

energy sources and encouraged fast emergence of related technological advances. The

cost of renewables, led by solar photovoltaic (PV) and wind, is already competitive

with fossil fuels in some markets around the world, and the prices are expected to

further decline in coming decades. Renewable energy resources are highly intermit-

tent and very hard to predict, thus making it difficult to balance real time electricity

demand and supply. Figure 1.1 shows plots of solar irradiance data for two typical

clear and cloudy days. This kind of volatility introduces several technical issues in

renewable integration and limits their penetration. These challenges include regu-
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Figure 1.1: Solar irradiance variation on typical clear and cloudy days, respectively.

lating the voltage and frequency, and maintaining the grid stability and the power

quality. In this thesis, we will mostly be focused on energy optimization and steady

state voltage regulation in radial distribution networks.

With the increased deployment of intermittent distributed resources, the grid

does no longer look like a unidirectional network with few large generators. This

challenges the classical design paradigms and motivates the need to implement new

operation, protection, and control schemes to cope with fast variation in generation,

and bi-directional flows from thousands to millions of new active nodes of all sizes,

integrated at every level of the grid. To illustrate the idea, Fig. 1.2 shows the

schematic of a real-world distribution network within the Southern California Edison

(SCE) service territory, where the red dots represent distributed solar PV installations

on this circuit in projection of a possible near future situation.

1.1 Emerging challenges in voltage regulation of

distribution networks

As discussed, distributed generation (DG) from intermittent sources presents a num-

ber of challenges for voltage regulation. For instance, clouds could drop the outputs

of solar panels by as much as 80% in a minute [1], only to spike them back up again

when they clear away. The voltage and frequency levels in the distribution feeder

can severely fluctuate when large flows of active power are brought on-line and then
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Figure 1.2: Schematic of a distribution network within the Southern California Edison
(SCE) service territory filled with distributed rooftop solar PV installations (red dots),
in a projection of a possible near future situation.

taken off-line, posing a treat to the system stability. Utility companies are required to

continuously regulate the voltage at the distribution level within the ±5% ANSI stan-

dard range (0.95 p.u. to 1.05 p.u.), under normal operating conditions. Conventional

voltage control equipments, such as switched capacitors and load tap changers, are

slow, and work under the assumption that line voltage change slowly and predictably

along the feeder. In a traditional unidirectional distribution feeder, the voltage mag-

nitude typically drops with the distance from the substation due to line impedance.

However, this is no longer true when DG is present. Conversely, when a generator

unit is interconnected to a distribution circuit, the real power it injects causes a local

voltage rise at the point of connection. If this rise is too large, it may not be feasi-

ble to maintain the line voltage within the desired range. Figure 1.3 illustrates the

voltage profile of a distribution feeder with a large DG unit. Notice how the voltage

drops along the feeder due to the loads until the point of DG interconnection.

In case of a long feeder with a high concentration of DG units installed towards the

end, there will be significant current injection at points where the voltage is normally

the lowest. If the load is sufficiently low, current will flow in the reverse direction,

i.e., towards the substation and from there into the transmission level, resulting in a
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Figure 1.3: Typical voltage profile of a line in a radial distribution feeder. The
voltage magnitude typically drops due to the connected loads and rises due to the
power injection from the DG units.

voltage profile that increases with distance from the substation. This inverted volt-

age profile may confuse conventional controls. In such a scenario, load tap changers

expecting voltage to decrease with distance from the substation may choose an op-

erating point that in fact causes voltage down the line to exceed operating limits.

Later in chapter 3, we will investigate in detail one such example in a realistic rural

distribution feeder on the SCE service territory. Voltage fluctuations due to inter-

mittent DG units can also cause the controlling devices such as line regulators and

capacitors to operate too frequently, resulting in a reduced life span. What makes

the above mentioned issues even worst is the fact that utility companies generally

own very little observability and control capabilities along distribution lines. In prac-

tice, the scarcity of information about the topology, loading and the generation

condition, and the absence of sufficient communication infrastructure makes it dif-

ficult to make control decisions within operating limits of the controlling devices in

distribution networks. This motivates design of decentralized control algorithms to

make optimal decisions only based on the available local measurements . Although

distributed generators from intermittent sources pose a number of significant chal-

lenges for voltage regulation at the distribution level, if combined with smart power

electronics , these DG units can actually contribute to the health of the grid and

also serve to save energy. As demonstrated in this work, one such example is solar

PV installations connected to the grid through inverters combined with appropriate

volt/var control algorithms.
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1.2 DC-AC inverters can takeover the control

As investigated in this thesis, DC-AC inverters can potentially address the challenges

in integration of high levels of variable renewable resources, if combined with smart

and well-designed control algorithms. Inverters are power electronic devices that are

used to couple DC or variable-frequency power sources to the AC grid. In practice,

all renewable generators are integrated to the grid through inverter interfaces. In

this respect, the primary function of the inverter is to deliver the DC power to the

AC side as efficiently as possible. Traditionally, inverters were designed with only

the basic control functions necessary to perform this primary task, but increasingly

now they are expected to also sense the grid’s health locally, and react accordingly.

In addition to frequency conversion and basic real power delivery, inherent control

capabilities of these inverters can also help in maintaining the grid stability during

under/over voltage events, by injecting or absorbing reactive power into or from

the grid, respectively. Although the term “advanced” inverters in the literature may

seem to imply a special type of inverter, many of the inverters already deployed today

can provide advanced functionality with some minor software upgrades or parameter

adjustments.

Power system loads require a combination of real power (watts) and reactive

power, measured in volt-ampere reactive (vars). Control of reactive power flow is

the main approach in power systems to regulate line voltages at desirable levels, in

order to efficiently transfer active power through transmission and distribution lines.

Traditionally, utilities have used switched capacitor banks, inductors, and rotating

synchronous condensers to control reactive power flows, all of which are very slow and

can take minutes to fully react. Though relatively inexpensive, capacitors/inductors

can only inject/absorb fixed amounts of var. On the other hand, though synchronous

condensers can absorb vars continuously, they incur high energy losses. The unique

advantage of inverters in the world of var regulating devices is that not only they can

change their reactive power output continuously, but they also are extremely fast.

To be more precise, inverters can sense and reach their full output in milliseconds ,
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and this fast response property makes them a great candidate to cope with rapid

voltage fluctuations due to high renewable penetration levels. Indeed, a large number

of recent studies [2, 3, 4, 5, 6, 7] in the literature have explored the possibility of

utilizing inverter-based distributed generators (DGs) to control voltage fluctuations

in distribution systems with high renewable penetration levels, and recognized it as

a viable solution. As the share of these intermittent sources increase in the future,

inverters are likely to take over more and more of the grid control tasks.

1.3 New opportunities for grid optimization

Since 1960s, mathematical optimization approaches have been developed to increase

the power system efficiency. Optimal Power Flow (OPF) is an optimization problem

over the decision variables of a power system (e.g., voltage magnitudes at generator

buses, status of the capacitor banks, transformer taps, etc), subject to the physical

laws of the circuit, and the operational constraints of the network. In practice, these

approaches have traditionally been mainly applied to OPF problems at the transmis-

sion level. The reason, as discussed earlier, is due to the lack of sufficient monitoring,

communication, and controlling elements installed on distribution networks.

But the stakes are high, and the opportunity is there! Indeed, the majority of the

5-8% energy loss in a power system typically occurs in highly resistive lines of distri-

bution networks. It is well-known that the installation of DG units can significantly

cut these losses by feeding the loads locally and avoiding long distance power trans-

fers. Conservation voltage reduction (CVR) can further reduce energy consumption

without impacting the customer loads. In short, the utility companies prefer to push

customer voltages to the lower half of the ANSI C84.1 range for CVR purposes. Stud-

ies have shown that doing so reduces the overall system demand by a factor of about

0.7%–1.0% for every 1% reduction in voltage, depending on the nature of the loads.

But this is difficult to achieve with traditional voltage controllers such as capacitor

banks, as they tend to create non-smooth voltage profiles.

The emergence of renewable energy sources provides a big opportunity to re-
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imagine the optimization at the distribution level. One major change will be the

implementation of smart inverter volt/var control functionalities to minimize energy

consumption while regulating the voltages within the specified system constraints.

In chapter 3, we will formally formulate the inverter var control problem and use

the relaxation-based algorithm developed in chapter 2 to solve it. We demonstrate,

through experimental studies on two real-world distribution feeders on SCE service

territory that the optimal inverter var control algorithms can result in an overall 2%–

4% reduction in distribution network energy consumption by carefully flattening the

voltage profile curve (using the continuous var control capability of the inverters) and

then lowering it. However, it is important to note that these benefits are achieved at

the cost of increasing the internal losses in inverters when they actively participate

in volt/var control. In chapter 3, we also provide a model to formally account for

this type of loss and weigh it against the overall energy saving benefits in different

scenarios. Our findings suggest that, contrary to the common beliefs, there’s no

simple solution due to the fact that the components of objective work against each

other. The key message is that the optimal inverter var control is a highly non-trivial

problem that needs to be properly formulated and rigorously solved. We will see how

the additional cost of the internal inverter losses may completely offset the benefits

in some scenarios.

1.4 The big picture

With the shift toward distributed renewable generators, inverters are being rapidly

added to the distribution networks. While it is broadly accepted that the ability of

inverters to regulate the reactive power flow is a useful feature that can be managed

to the benefit of distribution networks, there has been little consensus on how this

capability should be deployed. Furthermore, the implementation of this idea requires

a departure from our current standards for interconnection of DG units in a long,

multi-year process [8]. Indeed, a series of IEEE SCC21 1547 standard development

initiatives [9, 10] have been underway to identify the best practices in upgrading the
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inverter’s role in providing ancillary services to facilitate more reliable integration

of renewable resources. Proposed approaches to inverter-based voltage control in

distribution networks can be broadly divided into the following three main categories:

(i) Approaches that propose a centralized control scheme by solving a global

optimal power flow (OPF) problem. These methods implicitly assume an un-

derlying complete two-way communication system between a central computing

authority and the controlled nodes [4, 11, 12];

(ii) Distributed message-passing algorithms in which communications are lim-

ited to neighboring nodes [5, 13, 12, 14];

(iii) Local control methods that require no communications and rely only on

local measurements and computations [3, 6, 15]. These include reactive power

control based on local real power injection (referred to as Q(P)), power factor

control, and the more common voltage based reactive power control (referred

to as Q(V)).

In our opinion, solutions at the two ends of this spectrum are more applicable today

and should be given a higher priority in research. On one hand, optimal centralized

solutions are critical for the purpose of analytical analysis and better understanding

of the impact of renewables on the grid. And on the other hand, fully decentralized

local control methods are the only approaches available for immediate implementa-

tion in today’s distribution networks, due to the lack of sufficient telecommunication

infrastructure. It is the goal of this thesis to identify some key problems in these two

areas and contribute by providing rigorous theoretical basis for further work.

1.5 Thesis overview and contributions

The main body of this thesis is divided into three chapters. In this section, we will

summarize each, and highlight the contributions of this dissertation.
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1.5.1 Branch Flow Model: relaxations and convexification

In this chapter, we start by providing a general framework for efficiently solving

centralized optimization problems in distribution networks. The content is based on

the results published in [16, 17, 4, 18]. We propose a branch flow model (BFM) for

the analysis and optimization of radial as well as meshed networks. The model is

based on the branch power and current flows in addition to nodal voltages, and it

leads to a new approach to solving optimal power flow (OPF) problems. It consists

of two relaxation steps: the first step eliminates the voltage and current angles and

the second step approximates the resulting problem by a conic program that can

be solved efficiently. For radial networks, we prove that both relaxation steps are

always exact, provided there are no upper bounds on loads. For mesh networks, the

conic relaxation is always exact and we provide a simple way to determine if a relaxed

solution is globally optimal. We propose a simple method to convexify a mesh network

using phase shifters so that both relaxation steps are always exact and OPF for the

convexified network can always be solved efficiently for a globally optimal solution.

We prove that convexification requires phase shifters only outside a spanning tree of

the network graph and their placement depends only on network topology, and not

on power flows, generation, loads, or operating constraints. We present simulation

results on phase shifter ranges required for the covexification of various IEEE and

other test networks.

The proposed relaxation method based on the BFM model has proven to be

very reliable and efficient in dealing with distribution system optimization problems.

Its success is essentially due to the fact that it explores the radial nature of the

distribution networks to improve the computational efficiency of a standard SDP

relaxation based methods formulated using the bus injection model (BIM). It reduces

the computational complexity from SDP to Conic programming, and avoids the ill-

conditioned operations to achieve numerical stability of SDP [12]. These factors

are both critical in solving the fast time-sacale optimal inverter var control problem

formulated in chapter 3
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1.5.2 Voltage control in distribution systems with high PV

penetration

In this chapter, a practical viewpoint is adopted and the goal is to apply the theoretical

results of the previous chapters to study the distribution system level impacts of high-

penetration photovoltaic (PV) integration and propose mitigating solutions. The

content of this chapter is based on our published work in [4, 21]

We will start by formulating a volt/var optimization problem in distribution net-

works and use the relaxation-based algorithm developed in chapter 2 to solve it. We

demonstrate, through experimental studies on two real-world distribution feeders on

SCE service territory, that the optimal inverter var control algorithms can result in

an overall 2%–4% reduction in distribution network energy consumption by carefully

flattening the voltage profile curve (using the continuous var control capability of the

inverters) and then lowering it. It is important to note that these benefits are achieved

at the cost of increasing the internal losses in inverters when they actively participate

in volt/var control. Therefore, we include a model to account for this type of loss

and weigh it against the overall energy saving benefits in different scenarios. Our

findings suggest that, contrary to the common beliefs, there’s no simple solution: the

optimal inverter var control is a highly non-trivial problem that needs to be properly

formulated and rigorously solved. We will see how the additional cost of the internal

inverter losses may completely offset the benefits in some scenarios.

1.5.3 Equilibrium and dynamics of local voltage control in

distribution networks

This chapter is motivated by lack of sufficient theoretical understanding of the be-

havior of local voltage control methods in distribution networks. These are the only

options available for immediate implementation in today’s distribution networks due

to scarcity of the information and the lack of sufficient communication infrastructure.

The content is based on our published work in [19].

We start by formally modeling inverter-based local volt/var schemes where the
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decision on the reactive power at a bus depends only on locally measured bus volt-

age. These local control algorithms essentially form a closed-loop dynamical system

whereby the measured voltage determines the reactive power injection, which in turn

affects the voltage. There has been only a limited rigorous treatment of the equilib-

rium and dynamical properties of such feedback systems. We show that the dynamical

system has a unique equilibrium by interpreting the dynamics as a distributed algo-

rithm for solving a certain convex optimization problem whose unique optimal point

is the system equilibrium. Moreover, we show that the objective function serves as a

Lyapunov function implying global asymptotic stability of the equilibrium. We essen-

tially follow a reverse-engineering approach in this chapter, which not only provides

a way to characterize the equilibrium, but also suggests a principled way to engineer

the control. We then apply the results to study the parameter setting for the piece-

wise linear local volt/var control curves proposed in the latest draft of the new IEEE

1547.8 standard document.

1.5.4 Incremental local voltage control algorithms

It has been reported in the literature that in some practical circumstances, the pre-

viously studied class of piecewise linear local voltage control curves can lead to un-

desirable oscillatory behaviors even in the case of a single inverter unit. This moti-

vates us to forward-engineer these commonly adopted non-incremental voltage con-

trol algorithms using the results of chapter 4. We first propose an incremental con-

trol algorithms that demand less restrictive condition for convergence based on the

(sub)gradient method and provide a sufficient condition to ensure convergence. Then,

motivated by the shortcomings of this algorithm, we propose a new pseudo-gradient

based voltage control algorithm for the distribution network that does not constrain

the allowable control functions but admits much lower implementation complexity.

We compare these two proposed algorithms against each other and also the original

local control dynamic in terms of the convergence condition and the convergence rate.

The results are evaluated through simulations using a real-world distribution feeder
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in Southern California with multiple large PV generation units. The content is based

on our published work in [20, 87].
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Chapter 2

Branch Flow Model: Relaxations
and Convexification

In this chapter, we propose a branch flow model for the analysis and optimization

of mesh as well as radial networks. The model leads to a new approach to solving

optimal power flow (OPF) problems that consists of two relaxation steps. The first

step eliminates the voltage and current angles and the second step approximates

the resulting problem by a conic program that can be solved efficiently. For radial

networks, we prove that both relaxation steps are always exact, provided there are no

upper bounds on loads. For mesh networks, the conic relaxation is always exact and

we provide a simple way to determine if a relaxed solution is globally optimal. We

propose a simple method to convexify a mesh network using phase shifters so that both

relaxation steps are always exact and OPF for the convexified network can always

be solved efficiently for a globally optimal solution. We prove that convexification

requires phase shifters only outside a spanning tree of the network graph and their

placement depends only on network topology, not on power flows, generation, loads, or

operating constraints. We present simulation results on phase shifter ranges required

for the covexification of various IEEE and other test networks.

2.1 Background and literature review

The bus injection model is the standard model for power flow analysis and optimiza-

tion. It focuses on nodal variables such as voltages, current, and power injections,
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and does not directly deal with power flows on individual branches. A key advantage

is the simple linear relationship I = Y V between the nodal current injections I and

the bus voltages V through the admittance matrix Y . Instead of nodal variables, the

branch flow model focuses on currents and powers on the branches. It has been used

mainly for modeling distribution circuits, which tend to be radial, but has received

far less attention. In this chapter, we advocate the use of branch flow model for both

radial and mesh networks, and demonstrate how it can be used for optimizing the

design and operation of power systems.

One of the motivations for our work is the optimal power flow (OPF) problem.

OPF seeks to optimize a certain objective function, such as power loss, generation

cost, and/or user utilities, subject to Kirchhoff’s laws, power balance as well as ca-

pacity, stability and contingency constraints on the voltages and power flows. There

has been a great deal of research on OPF since Carpentier’s first formulation in 1962

[22]; surveys can be found in, e.g., [23, 24, 25, 26, 27]. OPF is generally nonconvex

and NP-hard, and a large number of optimization algorithms and relaxations have

been proposed. A popular approximation is the DC power flow problem, which is a

linearization and therefore easy to solve, e.g. [28, 29, 30, 31]. An important observa-

tion was made in [32, 33] that the full AC OPF can be formulated as a quadratically

constrained quadratic program and therefore can be approximated by a semidefinite

program. While this approach is illustrated in [32, 33] on several IEEE test systems

using an interior-point method, whether or when the semidefinite relaxation will turn

out to be exact is not studied. Instead of solving the OPF problem directly, [12]

proposes to solve its convex Lagrangian dual problem and gives a sufficient condition

that must be satisfied by a dual solution for the duality gap to be zero and for an

optimal OPF solution to be recoverable. Importantly, this provides a way to deter-

mine for sure if a power flow solution is globally optimal for the nonconvex problem.

This result is extended in [34] to include other variables and constraints and in [35]

to exploit the sparsity of power networks and phase shifters for convexification of

OPF. In [36, 37], it is proved that the sufficient condition of [12] always holds for a

radial (tree) network, provided the bounds on the power flows satisfy a simple pat-
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tern. See also [38] for a generalization. These results confirm that radial networks

are computationally much simpler. This is important as most distribution systems

are radial.

The limitation of semidefinite relaxation for OPF is studied in [39] using mesh

networks with 3, 5, and 7 buses. They show that as a line-flow constraint is tightened,

the sufficient condition in [12] fails to hold for these examples and the duality gap

becomes nonzero. Moreover, the solutions produced by the semidefinite relaxation

are physically meaningless in those cases. Indeed, examples of nonconvexity have

long been discussed in the literature, e.g., [40, 39, 41]. Hence it is important to

develop systematic methods for solving OPF involving mesh networks when convex

relaxation fails. See, e.g., [42] for branch-and-bound algorithms for solving OPF when

the duality gap is nonzero.

The papers above are all based on the bus injection model. In this chapter, we

introduce a branch flow model on which OPF and its relaxations can also be defined.

Our model is motivated by a model first proposed by Baran and Wu in [43, 44]

for the optimal placement and sizing of switched capacitors in distribution circuits

for Volt/VAR control. By recasting their model as a set of linear and quadratic

equality constraints, [4, 21] observes that relaxing the quadratic equality constraints

to inequality constraints yields a second-order cone program (SOCP). It proves that

the SOCP relaxation is exact when there are no upper bounds on the loads. This

result is extended here to mesh networks with line limits, and convex, as opposed

to linear, objective functions (Theorem 2.1). See also [45, 46] for various convex

relaxations of approximations of the Baran-Wu model.

Other branch flow models have also been studied, e.g., in [47, 48, 11], all for radial

networks. Indeed, [47] studies a similar model to that in [43, 44], using receiving-end

branch powers as variables instead of sending-end branch powers as in [43, 44]. Both

[48] and [11] eliminate voltage angles by defining real and imaginary parts of ViV
∗
j

as new variables and defining bus power injections in terms of these new variables.

This results in a system of linear quadratic equations in power injections and the new

variables. While [48] develops a Newton-Raphson algorithm to solve the bus power
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injections, [11] solves for the branch flows through an SOCP relaxation for radial

networks, though no proof of optimality is provided.

This set of papers [43, 44, 47, 48, 11, 45, 4, 46, 21] all exploit the fact that power

flows can be specified by a simple set of linear and quadratic equalities if voltage angles

can be eliminated. Phase angles can be relaxed only for radial networks and generally

not for mesh networks, as [49] points out for their branch flow model, because cycles in

a mesh network impose nonconvex constraints on the optimization variables (similar

to the angle recovery condition in our model; see Theorem 2.2 below). For mesh

networks, [49] proposes a sequence of SOCP where the nononvex constraints are

replaced by their linear approximations and demonstrates the effectiveness of this

approach using seven networks. In this chapter we extend the Baran-Wu model from

radial to mesh networks and use it to develop a solution strategy for OPF for mesh

as well as radial networks, as we now summarize.

2.2 Summary

Our purpose is to develop a formal theory of branch flow model for the analysis and

optimization of mesh as well as radial networks. As an illustration, we formulate

OPF within this alternative model, propose relaxations, characterize when a relaxed

solution is exact, prove that our relaxations are always exact for radial networks when

there are no upper bounds on loads but may not be exact for mesh networks, and

show how to use phase shifters to convexify a mesh network so that a relaxed solution

is always optimal for the convexified network. A similar set of results have been

proved in the sequence of papers [12, 36, 37, 35] for the bus injection model, even

though the results have distinct characters in each model and the proof techniques

are completely different. Indeed, it can be shown that the two models are equivalent

and both help deepen our understanding of OPF.

Specifically, we first formulate in Section 2.3 the OPF problem using branch flow

equations involving complex bus voltages and complex branch current and power

flows. In Section 2.4 we describe our solution approach, which consists of two relax-
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ation steps, as illustrated in Figure 2.1:

• Angle relaxation: relax OPF by eliminating voltage and current angles from

the branch flow equations. This yields the (extended) Baran-Wu model and a

relaxed problem OPF-ar which is still nonconvex.

• Conic relaxation: relax OPF-ar to a cone program OPF-cr that is convex and

hence can be solved efficiently.
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Figure 2.1: Proposed solution strategy for solving OPF.

In Section 2.5 we prove that the conic relaxation OPF-cr is always exact even

for mesh networks, provided there are no upper bounds on real and reactive loads,

i.e., an optimal solution of OPF-cr is also optimal for OPF-ar. Given an optimal

solution of OPF-ar, whether we can derive an optimal solution to the original OPF

depends on whether we can recover the voltage and current angles correctly from

the given OPF-ar solution. In Section 2.6 we characterize the exact condition (the

angle recovery condition) under which this is possible, and present two angle recovery

algorithms. It turns out that the angle recovery condition always holds for a radial

network and hence solving OPF-cr always produces an optimal solution for OPF. For
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a mesh network, the angle recovery condition may not hold, and our characterization

can be used to check if a relaxed solution yields an optimal solution for OPF.

In Section 2.7 we prove that, by placing phase shifters on some of the branches,

any relaxed solution of OPF-ar can be mapped to an optimal solution of OPF for the

convexified network, with an optimal cost that is no higher than that of the original

network. Phase shifters thus convert an NP-hard problem into a simple problem. Our

result implies that when the angle recovery condition holds for a relaxed branch flow

solution, not only is the solution optimal for the OPF without phase shifters, but the

addition of phase shifters cannot further reduce the optimal cost. On the other hand,

when the angle recovery condition is violated, then the convexified network may have

a strictly lower optimal cost. Moreover, this benefit can be attained by placing phase

shifters only outside an arbitrary spanning tree of the network graph.

These results suggest an algorithm for solving OPF (2.11)–(2.12) as summarized

in Figure 2.1.
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Figure 2.2: Proposed algorithm for solving OPF (2.11)–(2.12). The details are ex-
plained in Sections 2.3–2.7.

Since power networks in practice are very sparse, the number of lines not in

a spanning tree can be relatively small, as demonstrated in simulations in Section

2.8 using the IEEE test systems with 14, 30, 57, 118, and 300 buses, as well as a
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39-bus model of a New England power system and two models of a Polish power

system with more than 2,000 buses. Moreover, the placement of these phase shifters

depends only on network topology, but not on power flows, generations, loads, or

operating constraints. Therefore only one-time deployment cost is required to achieve

subsequent simplicity in network operation.

2.3 Branch flow model

Let R denote the set of real numbers and C denote the set of complex numbers. A

variable without a subscript usually denotes a vector with appropriate components,

e.g., s := (si, i = 1, . . . , n), S := (Sij, (i, j) ∈ E). For a complex scalar or vector

a, a∗ denotes its complex conjugate. For a vector a = (a1, . . . , ak), a−i denotes

(a1, . . . , ai−1, ai+1, ak). For a matrix A, At denotes its transpose and A∗ its complex

conjugate transpose. All angles should be interpreted as modulo (being projected

into) [−π, π].

2.3.1 Branch flow model

Let G = (N,E) be a connected graph representing a power network, where each node

in N represents a bus and each link in E represents a line (condition A1). We index

the nodes by i = 0, 1, . . . , n. The power network is called radial if its graph G is a

tree. For a distribution network, which is typically radial, the root of the tree (node

0) represents the substation bus. For a (generally meshed) transmission network,

node 0 represents the slack bus. We use node n to represent ground so that if bus i

has a shunt impedance, then node i is connected to node n, i.e., (i, n) ∈ E.

We regard G as a directed graph and adopt the following orientation for con-

venience. Pick any spanning tree T := (N,ET ) of G rooted at node 0, i.e., T is

connected and ET ⊆ E has n links. All links in ET point away from the root. For

any link in E \ ET that is not in the spanning tree T , pick an arbitrary direction.

Denote a link by (i, j) if it points from node i to node j. We will use e and (i, j)

interchangeably to refer to a link in E. We write i ∼ j if i and j are connected, i.e.,
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if either (i, j) ∈ E or (j, i) ∈ E (but not both). For each link (i, j) ∈ E, we will call

node i the parent of node j and j the child of i. Let π(j) ⊆ N be the set of all parents

of node j and δ(i) ⊆ N the set of all children of node i. Henceforth we will assume

without loss of generality that G and T are directed graphs as described above1.

The basic variables of interest can be defined in terms of G. For each (i, j) ∈ E,

let Iij be the complex current from buses i to j and Sij = Pij+iQij be the sending-end

complex power from buses i to j. For each node i ∈ N , let Vi be the complex voltage

on bus i. Let si be the net complex power, which is load minus generation on bus

i. For power flow analysis, we assume si are given. For optimal power flow, VAR

control, or demand response, si are control variables. We use si to denote both the

complex number pi + iqi and the pair (pi, qi) depending on the context. Finally, let

zij = rij + ixij be the complex impedance on the line connecting buses i and j. Recall

that zin represents the shunt impedance on bus i.

Then these quantities satisfy the Ohm’s law:

Vi − Vj = zijIij, ∀(i, j) ∈ E (2.1)

the definition of branch power flow:

Sij = ViI
∗
ij, ∀(i, j) ∈ E (2.2)

and power balance at each bus:

∑
i∈π(j)

(
Sij − zij|Iij|2

)
−
∑
k∈δ(j)

Sjk = sj, ∀j (2.3)

We will refer to (2.1)–(2.3) as the branch flow model/equations. As customary, we

assume that the complex voltage V0 is given and the corresponding complex net load

s0 is a variable. Recall that the cardinality |N | = n+ 1 and let m := |E|. The branch

flow equations (2.1)–(2.3) specify 2m + n + 1 nonlinear equations in 2m + n + 1

1The orientation of G and T are different for different spanning trees T , but we often ignore this
subtlety in this chapter.
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complex variables (S, I, V, s0) := (Sij, Iij, (i, j) ∈ E, Vi, i = 1, . . . , n, s0), when other

bus power injections s := (si, i = 1, . . . , n) are specified.

We will call a solution of (2.1)–(2.3) a branch flow solution with respect to a given

s, and denote it by x(s) := (S, I, V, s0). Let X(s) ⊆ C2m+n+1 be the set of all branch

flow solutions with respect to a given s:

X(s) := {x := (S, I, V, s0) |x solves (2.1)–(2.3) given s}

(2.4)

and let X be the set of all branch flow solutions:

X :=
⋃
s∈Cn

X(s) (2.5)

For simplicity of exposition, we will often abuse notation and use X to denote either

the set defined in (2.4) or that in (2.5), depending on the context. For instance, X

is used to denote the set in (2.4) for a fixed s in Section 2.6 for power flow analysis,

and to denote the set in (2.5) in Section 2.5 for optimal power flow where s itself is

also an optimization variable. Similarly for other variables such as x for x(s).

2.3.2 Optimal power flow

Consider the optimal power flow problem where, in addition to (S, I, V, s0), each

si = (pi, qi), i = 1, . . . , n, is also an optimization variable. Let pi := pci − pgi and

qi := qci − q
g
i where pci and qci are the real and reactive power consumption at node i,

and pgi and qgi are the real and reactive power generation at node i. The active and

reactive power generation and consumption at each node can be either positive or zero

depending on whether the node represents a generator, a load, a shunt capacitor, or a

storage device, etc. For instance, [43, 44] formulate a Volt/VAR control problem for

a distribution circuit where qgi represent the placement and sizing of shunt capacitors.

In addition to (2.1)–(2.3), we impose the following constraints on power generation:
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for i = 0, 1, . . . , n,

pg
i
≤ pgi ≤ pgi , qg

i
≤ qgi ≤ qgi (2.6)

In particular, any of pgi , q
g
i can be a fixed constant by specifying that pg

i
= pgi and/or

qg
i

= qgi . For instance, in the inverter-based VAR control problem of [4], pgi are the

fixed (solar) power outputs and the reactive power qgi are the control variables. For

power consumption, we require, for i = 0, 1, . . . , n,

pc
i
≤ pci , qc

i
≤ qci (2.7)

i.e., there cannot be upper bounds on pci , q
c
i for our proof below to work2. The voltage

magnitudes must be maintained in a tight range: for i = 1, . . . , n,

vi ≤ |Vi|2 ≤ vi (2.8)

Finally, we impose line flow limits: for all (i, j) ∈ E,

|Sij| ≤ Sij (2.9)

We allow any objective function that is convex and does not depend on the angles

∠Vi,∠Iij of voltages and currents nor on consumptions pci , q
c
i . For instance, suppose

we aim to minimize real power losses rij|Iij|2, minimize real power generation costs

cip
g
i , and maximize energy savings through conservation voltage reduction (CVR).

Then the objective function takes the form (see [4])

∑
(i,j)∈E

rij|Iij|2 +
∑
i∈N

cip
g
i +

∑
i∈N

αi|Vi|2 (2.10)

for some given constants ci, αi ≥ 0. We also allow the cost to be quadratic in real

power as is commonly assumed.

2This is equivalent to the “over-satisfaction of load” condition in [12, 36]. As we show in the
simulations below, this condition is sufficient but not necessary for the conic relaxation OPF-cr to
be exact with respect to OPF-ar. See [50] for exact conic relaxation of OPF-cr for radial networks
where the “over-satisfaction” assumption is replaced with an alternative set of assumptions.
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To simplify notation, let `ij := |Iij|2 and vi := |Vi|2. Let sg := (sgi , i = 1, . . . , n) =

(pgi , q
g
i , i = 1, . . . , n) be the power generations, and sc := (sci , i = 1, . . . , n) =

(pci , q
c
i , i = 1, . . . , n) the power consumptions. Let s denote either sc − sg or (sc, sg)

depending on the context. Given a branch flow solution x := x(s) := (S, I, V, s0)

with respect to a given s, let ŷ := ŷ(s) := (S, `, v, s0) denote the projection of x that

have phase angles ∠Vi,∠Iij eliminated. This defines a projection function ĥ such

that ŷ = ĥ(x), to which we will return in Section 2.4. Then our objective function is

f
(
ĥ(x), sg

)
. We assume f (ŷ, sg) is convex (condition A2); in addition, we assume f

is strictly increasing in `ij, (i, j) ∈ E (condition A3). Finally, let

S := { (v, s0, s) | (v, s0, s) satisfies (2.6)− (2.9) }

All quantities are optimization variables except V0, which is given.

The optimal power flow problem is

OPF:

min
x,s

f
(
ĥ(x), sg

)
(2.11)

subject to x ∈ X, (v, s0, s) ∈ S (2.12)

where X is defined in (2.5). To avoid triviality, we assume the problem is feasible

(condition A4).

The feasible set is specified by the nonlinear branch flow equations and hence OPF

(2.11)–(2.12) is in general nonconvex and hard to solve. The goal of this chapter is to

propose an efficient way to solve OPF by exploiting the structure of the branch flow

model.

2.3.3 Notations and assumptions

The main variables and assumptions are summarized in Table 2.1 and below for ease

of reference:
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Table 2.1: Notations.

G, T (directed) network graph G and a spanning tree T of G
B, BT reduced (and transposed) incidence matrix of G and the

submatrix corresponding to T
Vi, vi complex voltage on bus i with vi := |Vi|2
si = pi + iqi net complex load power on bus i
pi = pci − p

g
i net real power equals load minus generation;

qi = qci − q
g
i net reactive power equals load minus generation

Iij, `ij complex current from buses i to j with `ij := |Iij|2
Sij = Pij + iQij complex power from buses i to j (sending-end)
X set of all branch flow solutions that satisfy (2.1)–(2.3)

either for some s, or for a given s (sometimes denoted
more accurately by X(s));

Ŷ set of all relaxed branch flow solutions that satisfy
(2.13)–(2.16) either for a given s or for some s;

Y convex hull of Ŷ, i.e., solutions of (2.13)–(2.15) and
(2.24);

X, XT set of branch flow solutions that satisfy (2.3), (2.43),
(2.2), for some phase shifter angles φ and for some φ ∈
T⊥;

x = (S, I, V, s0) ∈ X vector x of power flow variables

ŷ = (S, `, v, s0) ∈ Ŷ and its projection ŷ;

ŷ = ĥ(x); x = hθ(ŷ) projection mapping ŷ and an inverse hθ
zij = rij + ixij impedance on line connecting buses i and j

f objective function of OPF, of the form f
(
ĥ(x), sg

)
A1 The network graph G is connected.

A2 The cost function f(ŷ, sg) for optimal power flow is convex.

A3 The cost function f(ŷ, sg) is strictly increasing in `ij, (i, j) ∈ E.

A4 The optimal power flow problem OPF (2.11)–(2.12) is feasible.

These assumptions are standard and realistic. For instance, the objective function in

(2.10) satisfies conditions A2–A3. A3 holds if the cost function is increasing in power

loss in the lines.
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2.4 Relaxations and solution strategy

We now describe our solution approach.

2.4.1 Relaxed branch flow model

Substituting (2.2) into (2.1) yields Vj = Vi−zijS∗ij/V ∗i . Taking the magnitude squared,

we have vj = vi + |zij|2`ij − (zijS
∗
ij + z∗ijSij). Using (2.3) and (2.2) and in terms of

real variables, we therefore have

pj =
∑
i∈π(j)

(Pij − rij`ij)−
∑
k∈δ(j)

Pjk, ∀j (2.13)

qj =
∑
i∈π(j)

(Qij − xij`ij)−
∑
k∈δ(j)

Qjk, ∀j (2.14)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij

∀(i, j) ∈ E (2.15)

`ij =
P 2
ij +Q2

ij

vi
, ∀(i, j) ∈ E (2.16)

Branch flow variables are shown in figure 2.3. We will refer to (2.13)–(2.16) as

the relaxed (branch flow) model/equations and a solution a relaxed (branch flow) so-

lution. These equations were first proposed in [43, 44] to model radial distribution

circuits. They define a system of equations in the variables (P,Q, `, v, p0, q0) :=

(Pij, Qij, `ij, (i, j) ∈ E, vi, i = 1, . . . , n, p0, q0). We often use (S, `, v, s0) as a short-

Figure 2.3: Illustration of the branch flow variables
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hand for (P,Q, `, v, p0, q0). Since we assume the original branch flow model has a

solution, the relaxed model also has a solution.

In contrast to the original branch flow equations (2.1)–(2.3), the relaxed equa-

tions (2.13)–(2.16) specifies 2(m + n + 1) equations in 3m + n + 2 real variables

(P,Q, `, v, p0, q0), for a given s. For a radial network, i.e., G is a tree, m = |E| =

|N | − 1 = n. Hence the relaxed system (2.13)–(2.16) specifies 4n + 2 equations in

4n + 2 real variables. It is shown in [51] that there are generally multiple solutions,

but for practical networks where V0 ' 1 and rij, xij are small p.u., the solution of

(2.13)–(2.16) is unique. Exploiting structural properties of the Jacobian matrix, ef-

ficient algorithms have also been proposed in [52] to solve the relaxed branch flow

equations.

For a connected mesh network, m = |E| > |N | − 1 = n, in which case there are

more variables than equations for the relaxed model (2.13)–(2.16), and therefore the

solution is generally nonunique. Moreover, some of these solutions may be spurious,

i.e., they do not correspond to a solution of the original branch flow equations (2.1)–

(2.3).

Indeed, one may consider (S, `, v, s0) as a projection of (S, I, V, s0) where each

variable Iij or Vi is relaxed from a point in the complex plane to a circle with a radius

equal to the distance of the point from the origin. It is therefore not surprising that

a relaxed solution of (2.13)–(2.16) may not correspond to any solution of (2.1)–(2.3).

The key is whether, given a relaxed solution, we can recover the angles ∠Vi,∠Iij

correctly from it. It is then remarkable that, when G is a tree, indeed the solutions

of (2.13)–(2.16) coincide with those of (2.1)–(2.3). Moreover for a general network,

(2.13)–(2.16) together with the angle recovery condition in Theorem 2.2 below are

indeed equivalent to (2.1)–(2.3), as explained in Section 2.6.

To understand the relationship between the branch flow model and the relaxed

model and formulate our relaxations precisely, we need some notations. Fix an s.

Given a vector (S, I, V, s0) ∈ C2m+n+1, define its projection ĥ : C2m+n+1 → R3m+n+2
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by ĥ(S, I, V, s0) = (P,Q, `, v, p0, q0) where

Pij = Re Sij, Qij = Im Sij, `ij = |Iij|2 (2.17)

pi = Re si, qi = Im si, vi = |Vi|2 (2.18)

Let Y ⊆ C2m+n+1 denote the set of all y := (S, I, V, s0) whose projections are the

ĥ

h!

C2m+n+1 R3m+n+2

ŶY

X ĥ X( )

Figure 2.4: X is the set of branch flow solutions and Ŷ = ĥ(Y) is the set of relaxed
solutions. The inverse projection hθ is defined in Section V.

relaxed solutions3:

Y :=
{
y := (S, I, V, s0)|ĥ(y) solves (2.13)–(2.16)

}
(2.19)

Define the projection Ŷ := ĥ(Y) of Y onto the space R2m+n+1 as

Ŷ := { ŷ := (S, `, v, s0) | ŷ solves (2.13)–(2.16) }

Clearly

X ⊆ Y and ĥ(X) ⊆ ĥ(Y) = Ŷ
3As mentioned earlier, the set defined in (2.19) is strictly speaking Y(s) with respect to a fixed s.

To simplify exposition, we abuse notation and use Y to denote both Y(s) and
⋃

s∈Cn Y(s), depending

on the context. The same applies to Ŷ and Y etc.
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Their relationship is illustrated in Figure 2.4.

2.4.2 Two relaxations

Consider the OPF with angles relaxed:

OPF-ar:

min
x,s

f
(
ĥ(x), sg

)
(2.20)

subject to x ∈ Y, (v, s0, s) ∈ S (2.21)

Clearly, this problem provides a lower bound to the original OPF problem since

Y ⊇ X. Since neither ĥ(x) nor the constraints in Y involves angles ∠Vi,∠Iij, this

problem is equivalent to the following

OPF-ar:

min
ŷ,s

f (ŷ, sg) (2.22)

subject to ŷ ∈ Ŷ, (v, s0, s) ∈ S (2.23)

The feasible set of OPF-ar is specified by a system of linear-quadratic equations.

Hence OPF-ar is in general still nonconvex and hard to solve directly. The key to

our solution is the observation that the only source of nonconvexity is the quadratic

equalities in (2.16). Relax them to inequalities:

`ij ≥
P 2
ij +Q2

ij

vi
, (i, j) ∈ E (2.24)

and define the convex hull Y ⊆ R2m+n+1 of Ŷ as

Y := {ŷ := (S, `, v, s0) | ŷ solves (2.13)–(2.15) and (2.24)}
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Consider the following relaxation of OPF-ar:

OPF-cr:

min
ŷ,s

f (ŷ, sg) (2.25)

subject to ŷ ∈ Y, (v, s0, s) ∈ S (2.26)

Clearly OPF-cr provides a lower bound to OPF-ar since Y ⊇ Ŷ.

2.4.3 Solution strategy

In the rest of this chapter, we will prove the following results:

1. OFP-cr is convex. Moreover the conic relaxation is exact so that any optimal

solution (ŷcr, scr) of OPF-cr is also optimal for OPF-ar (Section 2.5, Theorem

2.1).

2. Given a solution (ŷar, sar) of OPF-ar, if the network is radial, then we can

always recover the phase angles ∠Vi,∠Iij uniquely to obtain an optimal solution

(x∗, s∗) of the original OPF (2.11)–(2.12) through an inverse projection (Section

2.6, Theorems 2.2 and 2.3).

3. For a mesh network, an inverse projection may not exist to map the given

(ŷar, sar) to a feasible solution of OPF. In that case, however, the network can

be convexified so that (ŷar, sar) can indeed be mapped to an optimal solution

of OPF for the convexified network. Moreover, convexification requires phase

shifters only on lines outside an arbitrary spanning tree of the network graph

(Section 2.7, Theorem 2.4 and Corollary 2).

These results motivate the algorithm in Figure 2.1.

2.5 Exact conic relaxation

Our first key result says that OPF-cr is exact.
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Theorem 2.1. OPF-cr is convex. Moreover, it is exact, i.e., any optimal solution of

OPF-cr is also optimal for OPF-ar.

Proof. The feasible set is convex since the nonlinear inequalities in Y can be written

as the following second order cone constraint:∥∥∥∥∥∥∥∥∥
2Pij

2Qij

`ij − vi

∥∥∥∥∥∥∥∥∥
2

≤ `ij + vi

Since the objective function is convex, OPF-cr is a conic optimization4. To prove

that the relaxation is exact, it suffices to show that any optimal solution of OPF-cr

attains equality in (2.24).

Assume for the sake of contradiction that (ŷ∗, s∗) := (S∗, `∗, v∗, s
g
∗0, s

c
∗0, s

g
∗, s

c
∗) is

optimal for OPF-cr, but a link (i, j) ∈ E has strict inequality, i.e., [v∗]i[`∗]ij > [P∗]ij
2+

[Q∗]ij
2. For some ε > 0 to be determined below, consider another point (ỹ, s̃) =

(S̃, ˜̀, ṽ, s̃g0, s̃
c
0, s̃

g, s̃c) defined by:

ṽ = v∗, s̃g = sg∗

˜̀
ij = [`∗]ij − ε, ˜̀−ij = [`∗]−ij

S̃ij = [S∗]ij − zijε/2, S̃−ij = [S∗]−ij

s̃ci = [sc∗]i + zijε/2, s̃cj = [sc∗]j + zijε/2

s̃c−(i,j) = [sc∗]−(i,j)

where a negative index means excluding the indexed element from a vector. Since

˜̀
ij = [`∗]ij − ε, (ỹ, s̃) has a strictly smaller objective value than (ŷ∗, s∗) because of

assumption A3. If (ỹ, s̃) is a feasible point, then it contradicts the optimality of

(ŷ∗, s∗).

4If the objective function is linear, such as (2.10), then OPF-cr is an SOCP. This is the case
proved in [4] for radial networks. This result is extended here to mesh networks with line limits and
convex objective functions.
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It suffices then to check that there exists an ε > 0 such that (ỹ, s̃) satisfies (2.6)–

(2.9), (2.13)–(2.15) and (2.24), and hence is indeed a feasible point. Since (ŷ∗, s∗) is

feasible, (2.6)–(2.9) hold for (ỹ, s̃) too. Similarly, (ỹ, s̃) satisfies (2.13)–(2.14) at all

nodes k 6= i, j and (2.15), (2.24) across all links (k, l) 6= (i, j). We now show that

(ỹ, s̃) satisfies (2.13)–(2.14) also at nodes i, j, and (2.15), (2.24) across link (i, j):

• Proving (2.13)–(2.14) is equivalent to proving (2.3). At node i, we have

s̃i = s̃ci − s̃
g
i = [sc∗]i + zijε/2− [sg∗]i

=
∑
k∈π(i)

([S∗]ki − zki[`∗]ki)−
∑

j′∈δ(i),j′ 6=j

[S∗]ij′

−[S∗]ij + zijε/2

=
∑
k∈π(i)

(
S̃ki − zki ˜̀ki

)
−

∑
j′∈δ(i),j′ 6=j

S̃ij′

−
(
S̃ij + zijε/2

)
+ zijε/2

=
∑
k∈π(i)

(
S̃ki − zki ˜̀ki

)
−
∑
j′∈δ(i)

S̃ij′

At node j, we have

s̃j = s̃cj − s̃
g
j = [sc∗]j + zijε/2− [sg∗]j

=
∑

i′∈π(j),i′ 6=i

([S∗]i′j − zi′j[`∗]i′j) + [S∗]ij

−zij[`∗]ij −
∑
k∈δ(j)

[S∗]jk + zijε/2

=
∑

i′∈π(j),i′ 6=i

(
S̃i′j − zi′j ˜̀i′j

)
+ S̃ij + zijε/2

−zij(˜̀
ij + ε)−

∑
k∈δ(j)

S̃jk + zijε/2

=
∑
i′∈π(j)

(
S̃i′j − zi′j ˜̀i′j

)
−
∑
k∈δ(j)

S̃jk

Hence (2.13)–(2.14) hold at nodes i, j.

• For (2.9) across link (i, j), we have |S̃ij|2 = |Sij|2− ε
4

(
2(z∗ijSij + zijS

∗
ij)− ε|zij|2

)
≤
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|Sij|2 ≤ S
2

ij for small enough ε > 0.

• For (2.15) across link (i, j), we have

ṽj = [v∗]i − 2(rij[P∗]ij + xij[Q∗]ij)

+(r2
ij + x2

ij)[`∗]ij

= ṽi − 2(rijP̃ij + xijQ̃ij) + (r2
ij + x2

ij)
˜̀
ij

• For (2.24) across link (i, j), we have

ṽi ˜̀ij − P̃ 2
ij − Q̃2

ij

= [v∗]i ([`∗]ij − ε)− ([P∗]ij − rijε/2)2

− ([Q∗]ij − xijε/2)2

=
(
[v∗]i[`∗]ij − [P∗]

2
ij − [Q∗]

2
ij

)
−ε ([v∗]i − rij[P∗]ij − xij[Q∗]ij

+ ε(r2
ij + x2

ij)/4
)

Since [v∗]i[`∗]ij − [P∗]
2
ij − [Q∗]

2
ij > 0, we can choose an ε > 0 sufficiently small

such that ˜̀
ij ≥ (P̃ 2

ij + Q̃2
ij)/ṽi.

This completes the proof.

Remark 2.1. Assumption A3 is used in the proof here to contradict the optimality

of (ŷ∗, s
g
∗). Instead of A3, if f(ŷ, sg) is nondecreasing in `, the same argument shows

that, given an optimal (ŷ∗, s
g
∗) with a strict inequality [v∗]i[`∗]ij > [P∗]ij

2 + [Q∗]ij
2,

one can choose ε > 0 to obtain another optimal point (ỹ, s̃g) that attains equality

and has a cost f(ỹ, s̃g) ≤ f(ŷ∗, s
g
∗). This implies that, in the absence of A3, there is

always an optimal solution of OPF-cr that is also optimal for OPF-ar, even though

it is possible that the convex relaxation OPF-cr may also have other optimal points

with strict inequality that are infeasible for OPF-ar. This is the case for semidefinite

relaxation in the bus injection model, e.g., in [34, 36, 38], i.e., the relaxation generally
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may also have optimal solutions that are infeasible for the original OPF problem.

2.6 Angle relaxation

Theorem 2.1 justifies solving the convex problem OPF-cr for an optimal solution of

OPF-ar. Given a solution (ŷ, s) of OPF-ar, when and how can we recover a solution

(x, s) of the original OPF (2.11)–(2.12)? The issue boils down to whether we can

recover a solution x to the branch flow equations (2.1)–(2.3) from ŷ, given any nodal

power injections s.

Hence, for the rest of this section, we fix an s. We abuse notation in this section

and write x, ŷ, θ,X,Y, Ŷ instead of x(s), ŷ(s), θ(s),X(s),Y(s), Ŷ(s), respectively.

2.6.1 Angle recovery condition

Fix a relaxed solution ŷ := (S, `, v, s0) ∈ Ŷ. Define the (n+ 1)×m incidence matrix

C of G by

Cie =


1 if link e leaves node i

−1 if link e enters node i

0 otherwise

(2.27)

The first row of C corresponds to node 0, the reference bus with a given V0 = |V0|eiθ0 .

In this chapter we will only work with the m×n reduced incidence matrix B obtained

from C by removing the first row (corresponding to V0) and taking the transpose,

i.e., for e ∈ E, i = 1, . . . , n,

Bei =


1 if link e leaves node i

−1 if link e enters node i

0 otherwise

,
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Since G is connected, m ≥ n and rank(B) = n [53]. Fix any spanning tree T =

(N,ET ) of G. We can assume without loss of generality (possibly after re-labeling

some of the links) that ET consists of links e = 1, . . . , n. Then B can be partitioned

into

B =

BT

B⊥

 (2.28)

where the n×n submatrix BT corresponds to links in T and the (m−n)×n submatrix

B⊥ corresponds to links in T⊥ := G \ T .

Let β := β(ŷ) ∈ [−π, π]m be defined in terms of the given ŷ by

βij := ∠
(
vi − z∗ijSij

)
, (i, j) ∈ E (2.29)

Write β as

β =

βT
β⊥

 (2.30)

where βT is n× 1 and β⊥ is (m− n)× 1.

Recall the projection mapping ĥ : C2m+n+1 → R3m+n+2 defined in (2.17)–(2.18).

For each θ := (θi, i = 1, . . . , n) ∈ [−π, π]n, define the inverse projection hθ : R3m+n+2 →

C2m+n+1 by hθ(P,Q, `, v, p0, q0) = (S, I, V, s0) where

Sij := Pij + iQij (2.31)

Iij :=
√
`ij e

i(θi−∠Sij) (2.32)

Vi :=
√
vi e

iθi (2.33)

s0 := p0 + iq0 (2.34)

These mappings are illustrated in Figure 2.4.

By definition of ĥ(X) and Ŷ, a branch flow solution in X can be recovered if a

given relaxed solution ŷ is in ĥ(X) and cannot be recovered if ŷ is in Ŷ \ ĥ(X). In
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other words, ĥ(X) consists of exactly those points ŷ ∈ Ŷ for which there exist θ

such that their inverse projections hθ(ĥ) are in X. Our next key result characterizes

the exact condition under which such an inverse projection exists, and provides an

explicit expression for recovering the phase angles ∠Vi,∠Iij from the given ŷ.

A cycle c in G is a set {i1, . . . , ik} of nodes in V such that ij ∼ ij+1 and ik ∼ i1,

i.e., nodes ij, ij+1 is in c if either (ij, ij+1) ∈ E or (ij+1, ij) ∈ E (but not both). We

write e ∈ c when e = (ij ∼ ij+1) or e = (ik ∼ i1). Let β̃ be the extension of β from

directed links to undirected links: if (i, j) ∈ E then β̃ij := βij and β̃ji := −βij.

Theorem 2.2. Let T be any spanning tree of G. Consider a relaxed solution ŷ ∈ Ŷ

and the corresponding β defined by (2.29)–(2.30) in terms of ŷ.

1. There exists a unique θ∗ ∈ [−π, π]n such that hθ∗(ŷ) is a branch flow solution

in X if and only if

B⊥B
−1
T βT = β⊥ (2.35)

2. The angle recovery condition (2.35) holds if and only if for every cycle c in G

∑
e∈c

β̃e = 0 (2.36)

3. If (2.35) holds then θ∗ = B−1
T βT .5

Remark 2.2. Given a relaxed solution ŷ := (S, `, v, s0), Theorem 2.2 prescribes a

way to check if a branch flow solution can be recovered from it, and if so, the required

computation. The angle recovery condition (2.35) is a condition on ŷ and depends

only on the network topology through the reduced incidence matrix B. The choice of

spanning tree T corresponds to choosing n linearly independent rows of B to form BT

and does not affect the conclusion of the theorem.

Remark 2.3. When it holds, the angle recovery condition (2.36) has a familiar in-

terpretation (due to Lemma 1 below): the voltage angle differences (implied by ŷ) sum

5Recall that all angles should be interpreted as modulo (being projected into) [−π, π]n.
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to zero around any cycle.

Remark 2.4. A direct consequence of Theorem 2.2 is that the relaxed branch flow

model (2.13)–(2.16) together with the angle recovery condition (2.35) is equivalent to

the original branch flow model (2.1)–(2.3). That is, x satisfies (2.1)–(2.3) if and only

if ŷ = ĥ(x) satisfies (2.13)–(2.16) and (2.35).

The proof of Theorem 2.2 relies on the following important lemma that describes

when any arbitrary inverse projection hθ(ŷ) is a branch flow solution in X.

Lemma 1. Given ŷ := (S, `, v, s0) in Ŷ and θ ∈ [−π, π]n, the vector hθ(ŷ) defined by

(2.31)–(2.34) is in X if and only if θ satisfies

θi − θj = ∠
(
vi − z∗ijSij

)
, (i, j) ∈ E (2.37)

Moreover such a θ, if it exists, is unique.

Proof. It is necessary since, from (2.1) and (2.2), we have ViV
∗
j = |Vi|2 − z∗ijSij,

yielding θi − θj = ∠(vi − z∗ijSij).

For sufficiency, we need to show that (2.13)–(2.16) together with (2.31)–(2.34) and

(2.37) implies (2.1)–(2.3). Now (2.13) and (2.14) are equivalent to (2.3). Moreover

(2.16) and (2.31)–(2.33) imply (2.2). To prove (2.1), we can substitute (2.2) into

(2.37) to get

θi − θj = ∠
(
vi − z∗ijViI∗ij

)
= ∠ Vi (Vi − zijIij)∗

Hence

∠Vj = θj = ∠ (Vi − zijIij) (2.38)
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From (2.15) and (2.2), we have

|Vj|2 = |Vi|2 + |zij|2|Iij|2 − (zijS
∗
ij + z∗ijSij)

= |Vi|2 + |zij|2|Iij|2 − (zijV
∗
i Iij + z∗ijViI

∗
ij)

= |Vi − zijIij|2

This together with (2.38) implies Vj = Vi − zijIij which is (2.1).

The condition (2.37) implies that a branch flow solution can be recovered from a

relaxed solution if and only if there exist θ that solves

Bθ = β (2.39)

Since G is connected, m ≥ n and rank(A) = n and hence (2.39) has at most one

solution.

Proof of Theorem 2.2. Since m ≥ n and rank(B) = n, we can always find n linearly

independent rows of B to form a basis. The choice of this basis corresponds to

choosing a spanning tree of G, which always exists since G is connected [54, Chapter

5]. Assume without loss of generality that the first n rows is such a basis so that B

and β are partitioned as in (2.28) and (2.30), respectively. Then Lemma 1 implies

that there exists a unique θ∗ ∈ [−π, π]n such that hθ∗(ŷ) is a branch flow solution in

X if and only if θ∗ solves (2.39), i.e.,

BT

B⊥

 θ =

βT
β⊥

 (2.40)

Since T is a spanning tree, the n × n submatrix BT has a full rank and hence is

invertible. Therefore, θ∗ = B−1
T βT . Moreover, (2.40) has a unique solution if and only

if B⊥θ∗ = B⊥B
−1
T βT = β⊥.

We are left to prove the equivalence of (2.35) and (2.36). Recall that the spanning

tree T defines the orientation of all links in T to be directed away from the root node
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0. Let T (i  j) denote the unique path from node i to node j in T ; in particular,

T (0 j) consists of links all with the same orientation as the path and T (j  0) of

links all with the opposite orientation. Then it can be verified directly that B−1
T is

defined by [54, Chapter 5]

[
B−1
T

]
ei

:=

−1 if link e is in T (0 i)

0 otherwise

Then B−1
T βT represents the (negative of the) sum of angle differences on the path

T (0 i) for each node i ∈ T :

[
B−1
T βT

]
i

=
∑
e

[
B−1
T

]
ie

[βT ]e = −
∑

e∈T (0 i)

[βT ]e

Hence B⊥B
−1
T βT is the sum of voltage angle differences from node i to node j along

the unique path in T , for every link (i, j) ∈ E \ET not in the tree T . To see this, we

have, for each link e := (i, j) ∈ E \ ET ,

[
B⊥B

−1
T βT

]
e

=
[
B−1
T βT

]
i
−
[
B−1
T βT

]
j

=
∑

e′∈T (0 j)

[βT ]e′ −
∑

e′∈T (0 i)

[βT ]e′

Since

∑
e′∈T (0 j)

[βT ]e′ = −
∑

e′∈T (j 0)

[
β̃T

]
e′

the angle recovery condition (2.35) is equivalent to

∑
e′∈T (0 i)

[βT ]e′ + [β⊥]ij +
∑

e′∈T (j 0)

[
β̃T

]
e′

=
∑

e′∈c(i,j)

β̃e′ = 0
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where c(i, j) denotes the unique basis cycle (with respect to T ) associated with each

link (i, j) not in T [54, Chapter 5]. Hence (2.35) is equivalent to (2.36) on all basis

cycles, and therefore it is equivalent to (2.36) on all cycles.

2.6.2 Angle recovery algorithms

Theorem 2.2 suggests a centralized method to compute a branch flow solution from

a relaxed solution.

Algorithm 1: centralized angle recovery. Given a relaxed solution ŷ ∈ Ŷ,

1. Choose any n basis rows of B and form BT and B⊥.

2. Compute β from ŷ and check if B⊥B
−1
T βT = β⊥.

3. If not, then ŷ 6∈ ĥ(X); stop.

4. Otherwise, compute θ∗ = B−1
T βT .

5. Compute hθ∗(ŷ) ∈ X through (2.31)–(2.34).

Theorem 2.2 guarantees that hθ∗(ŷ), if it exists, is the unique branch flow solution of

(2.1)–(2.3) corresponding to (whose projection is) ŷ.

The relations (2.2) and (2.37) motivate an alternative iterative procedure to com-

pute the angles ∠Iij, ∠Vi, and hence a branch flow solution. This procedure is more

amenable to a distributed implementation.

Algorithm 2: distributed angle recovery. Given a relaxed solution ŷ ∈ Ŷ,

1. Choose any spanning tree T of G rooted at node 0.

2. For j = 0, 1, . . . , n (i.e., as index j ranges over the tree T , starting from the root

and in the order of breadth-first search), for all descendents k ∈ δ(j), set

∠Ijk := ∠Vj − ∠Sjk (2.41)

∠Vk := ∠Vj − ∠(vj − z∗jkSjk) (2.42)
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3. For each link (j, k) ∈ E \ ET not in the spanning tree, node j is an additional

parent of k in addition to k’s parent in the spanning tree from which ∠Vk has

already been computed in Step 2.

(a) Compute current angle ∠Ijk using (2.41).

(b) Compute a new voltage angle θjk using the new parent j and (2.42). If

θjk 6= ∠Vk, then angle recovery has failed and ŷ is spurious.

If the angle recovery procedure succeeds in Step 3, then ŷ together with these angles

∠Vk,∠Ijk are indeed a branch flow solution. Otherwise, a link (j, k) not in the tree

T has been identified where condition (2.36) is violated over the basis cycle c(j, k)

associated with link (j, k).

2.6.3 Radial networks

Recall that all relaxed solutions in Ŷ \ ĥ(X) are spurious. Our next key result shows

that, for radial network, ĥ(X) = Ŷ and hence angle relaxation is always exact in the

sense that there is always a unique inverse projection that maps any relaxed solution

ŷ to a branch flow solution in X (even though X 6= Y).

Theorem 2.3. Suppose G = T is a tree. Then

1. ĥ(X) = Ŷ.

2. given any ŷ, θ∗ := B−1β always exists and is the unique phase angle vector such

that hθ∗(ŷ) ∈ X.

Proof. When G = T is a tree, m = n and hence B = BT and β = βT . Moreover B

is n × n and of full rank. Therefore θ∗ = B−1β always exists and, by Theorem 2.2,

hθ∗(ŷ) is the unique branch flow solution in X whose projection is ŷ. Since this holds

for any arbitrary ŷ ∈ Ŷ, Ŷ = ĥ(X).

A direct consequence of Theorem 2.1 and Theorem 2.3 is that, for a radial network,

OPF is equivalent to the convex problem OPF-cr in the sense that we can obtain an

optimal solution of one problem from that of the other.
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Corollary 1. Suppose G is a tree. Given any optimal solution (ŷ∗, s∗) of OPF-cr,

there exists a unique θ∗ such that (hθ∗(ŷ∗), s∗) is an optimal solution of the original

OPF.

2.7 Convexification of mesh network

For mesh networks a relaxed solution may be spurious if it does not satisfy the angle

recovery condition in Theorem 2.2. In this section, we explain how to use phase

shifters to convexify a mesh network so that any relaxed solution can be mapped to

a valid branch flow solution of the convexified network. As a consequence, the OPF

for the convexified network can always be solved efficiently (in polynomial time).

2.7.1 Branch flow model with phase shifters

In this section we study power flow solutions and hence we fix an s. All quantities,

such as x, ŷ,X, Ŷ, X,XT , are with respect to the given s, even though that is not

explicit in the notation. In the next section, s is also an optimization variable and

the sets X, Ŷ, X,XT are for any s; c.f. the more accurate notation in (2.4) and (2.5).

Phase shifters can be traditional transformers or FACTS (Flexible AC Transmis-

sion Systems) devices. They can increase transmission capacity and improve stability

and power quality [55, 56]. In this chapter, we consider an idealized phase shifter

that only shifts the phase angles of the sending-end voltage and current across a

line, and has no impedance nor limits on the shifted angles. Specifically, consider an

idealized phase shifter parametrized by φij across line (i, j), as shown in Figure 2.5.

As before, let Vi denote the sending-end voltage. Define Iij to be the sending-end

current leaving node i towards node j. Let k be the point between the phase shifter

φij and line impedance zij. Let Vk and Ik be the voltage at k and current from k to

j, respectively. Then the effect of the idealized phase shifter is summarized by the

following modeling assumption:

Vk = Vi e
iφij and Ik = Iij e

iφij
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k
zij

i j!ij

Figure 2.5: Model of a phase shifter in line (i, j).

The power transferred from nodes i to j is still (defined to be) Sij := ViI
∗
ij, which,

as expected, is equal to the power VkI
∗
k from nodes k to j since the phase shifter is

assumed to be lossless. Applying Ohm’s law across zij, we define the branch flow

model with phase shifters as the following set of equations:

zijIij = Vi − Vj e−iφij (2.43)

Sij = ViI
∗
ij (2.44)

sj =
∑
i∈π(j)

(
Sij − zij|Iij|2

)
−
∑
k∈δ(j)

Sjk (2.45)

Without phase shifter (φij = 0), (2.43) reduces to (2.1).

Recall the set X of branch flow solutions defined in (2.4) (and (2.5)). The inclusion

of phase shifters modifies the network and enlarges the solution set of the (new) branch

flow equations. Formally, let

X := {x |x solves (2.43)–(2.45) for some φ} (2.46)

Here and henceforth, φ ∈ [−π, π]m. For any spanning tree T of G, let “φ ∈ T⊥”

stands for “φij = 0 for all (i, j) ∈ T”, i.e., φ involves only phase shifters in branches

not in the spanning tree T . Define

XT :=
{
x |x solves (2.43)–(2.45) for some φ ∈ T⊥

}
(2.47)

Since (2.43) reduces to (2.1) when φ = 0, X ⊆ XT ⊆ X.



43

From (2.43) and (2.44), we have

Sij = Vi
V ∗i − V ∗j eiφij

z∗ij

leading to ViV
∗
j e

iφij = vi − z∗ijSij, and hence θi − θj = βij − φij. This changes the

angle recovery condition from whether there exists θ that solves Bθ = β in (2.39) to

whether there exists (θ, φ) that solves

Bθ = β − φ (2.48)

The condition (2.39) for the case without phase shifter corresponds to setting φ = 0.

The voltage angles are θ = B−1
T (βT − φT ), and the angle recovery condition (2.35)

becomes

B⊥B
−1
T (βT − φT ) = β⊥ − φ⊥ (2.49)

which can always be satisfied by appropriate (nonunique) choices of φ.

A similar argument to the proof of Theorem 2.2.2 leads to the following interpreta-

tion of (2.49). For any link (i, j) ∈ E, (2.48) says that the phase angle difference from

node i to node j is βij and consists of the voltage angle difference θi−θj = βij−φij and

the phase shifter angle φij. Fix any link (i, j) ∈ E \ ET not in tree T . The left-hand

side
[
B⊥B

−1
T (βT − φT )

]
ij

of (2.49) represents the sum of the voltage angle differences

from node i to node j along the unique path in T , not including the phase shifter

angles along the path. This must be equal to the voltage angle difference [β⊥ − φ⊥]ij

across (the non-tree) link (i, j), not including the phase shifter angle across (i, j).

Therefore the sum
[
B⊥B

−1
T φT

]
ij

of phase shifter angles from node i to node j along

the unique path in T must equal the phase shifter angle [φ⊥]ij across (the non-tree)

link (i, j).

Our next key result implies that, given a relaxed solution ŷ := (S, `, v, s0) ∈ Ŷ,

we can always recover a branch flow solution x := (S, I, V, s0) ∈ X of the convexified

network. Moreover it suffices to use phase shifters in branches only outside a spanning
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tree. It extends Theorem 2.2 to the case with phase shifters.

Theorem 2.4. Let T be any spanning tree of G. Consider a relaxed solution ŷ ∈ Ŷ

and the corresponding β defined by (2.29)–(2.30) in terms of ŷ.

1. There exists a unique solution (θ∗, φ∗) of (2.48) with φ∗ ∈ T⊥. Specifically

θ∗ = B−1
T βT

φ∗ =

 0

β⊥ −B⊥B−1
T βT


2. hθ∗(ŷ) ∈ XT , i.e., hθ∗(ŷ) is a branch flow solution of the convexified network.

3. Y = X = XT and hence Ŷ = ĥ(X) = ĥ(XT ).

Proof. 1. Write φ = [φtT φt⊥]t and set φT = 0. Then (2.48) becomes

BT

B⊥

 θ =

βT
β⊥

−
 0

φ⊥


The same argument as in the proof of Theorem 2.2 shows that a solution (θ∗, φ∗)

to (2.48), with θ∗ ∈ T⊥, exists and is unique if and only if

B⊥B
−1
T βT = β⊥ − φ⊥

i.e., iff φ⊥ = β⊥ − B⊥B
−1
T βT . Hence the (θ∗, φ∗) given in the theorem solves

(2.48).

2. Theorem 2.2 then implies hθ∗(S, `, v, s0) ∈ XT with φ∗ ∈ T⊥ given in assertion

1.

3. This follows from assertions 1 and 2.

Remark 2.5. More generally, consider a network with phase shifters on an arbitrary

subset of links. Given a relaxed solution ŷ, under what condition does there exist a
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θ such that the inverse projection hθ(ŷ) is a branch flow solution in X? If there is a

spanning tree T such that all links outside T have phase shifters, then Theorem 2.4

says that such a θ always exists, with an appropriate choice of phase shifter angles

on non-tree links. Suppose no such spanning tree exists, i.e., given any spanning tree

T , there is a set E⊥′ ⊆ E \ ET of links that contain no phase shifters. Let B⊥′ and

β⊥′ denote the submatrix of B and subvector of β, respective, corresponding to these

links. Then a necessary and sufficient condition for angle recovery is as follows: there

exists a spanning tree T such that

B⊥′B
−1
T βT = β⊥′

This condition reduces to (2.35) if there are no phase shifters in the network (E⊥′ =

E \ ET ) and is always satisfied if every link outside any spanning tree has a phase

shifter (E⊥′ = ∅).

Remark 2.6. The expression for φ∗ in Theorem 2.4.1, in particular,

B⊥B
−1
T βT + [φ∗]⊥ = β⊥ (2.50)

is a special case of (2.49). It says that, for any link (i, j) ∈ E \ ET not in T , the

sum
[
B⊥B

−1
T βT

]
ij

of the voltage angle differences (since there is no phase shifter in

T ) from node i to node j along the unique path in T plus the phase shifter angle

across link (i, j) must equal [β⊥]ij, the angle difference across link (i, j) implied by the

relaxed solution ŷ. If [β⊥]ij = [θ∗]i − [θ∗]j, then the sum of voltage angle differences

around the (unique) basis cycle defined by (i, j) is zero, and [φ∗]ij = 0; this is the

case in Theorem 2.2.2 for link (i, j). Otherwise, a nonzero phase shifter angle [φ∗]ij

is required to compensate for the angle difference.

Theorem 2.4 implies that given any relaxed solution ŷ, there exists a φ ∈ T⊥ such

that its inverse projection x := hθ(ŷ) is a branch flow solution, i.e., (x, φ) satisfies

(2.43)–(2.45). We now give an alternative direct construction of such a solution

(x, φ) from any given branch flow solution x̃ and phase shifter setting φ̃ that may
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have nonzero angles on some links in T . It exhibits how the effect of phase shifters

in a tree is equivalent to changes in voltage angles.

Fix any spanning tree T . Given any (x̃, φ̃), partition φ̃t = [φ̃T φ̃⊥] with respect

to T . Define α ∈ [−π, π]n by BT α = φ̃T or α := B−1
T φ̃T . Then define the mapping

(x, φ) = g(x̃, φ̃) by

Vi := Ṽie
iαi , Iij := Ĩije

iαi , Sij := S̃ij (2.51)

and

φij :=

0 if (i, j) ∈ ET

φ̃ij − (αi − αj) if (i, j) ∈ E \ ET
(2.52)

i.e., φ is nonzero only on non-tree links. It can be verified that αi−αj =
∑

e∈T (i j) φ̃e

where T (i  j) is the unique path in tree T from node i to node j. Note that

|Vi| = |Ṽi|, |Iij| = |Ĩij| and S = S̃. Hence if h(x̃) is a relaxed branch flow solution, so

is h(x). Moreover, the effect of phase shifters in T is equivalent to adding αi to the

phases of Vi and Iij.

Theorem 2.5. Fix any tree T . If (x̃, φ̃) is a solution of (2.43)–(2.45), so is (x, φ) =

g(x̃, φ̃) defined in (2.51)–(2.52).

Proof. Since |Vi| = |Ṽi|, |Iij| = |Ĩij| and S = S̃, (x, φ) satisfies (2.44)–(2.45). For any

link (i, j) ∈ ET in tree T , (2.51)–(2.52) imply

Vi − Vj e−iφij =
(
Ṽi − Ṽj e−i(αi−αj)

)
eiαi

=
(
Ṽi − Ṽj e−iφ̃ij

)
eiαi

where the second equality follows from BT α = φ̃T . For any link (i, j) ∈ E \ ET not

in T , (2.51)–(2.52) imply

Vi − Vj e−iφij =
(
Ṽi − Ṽj e−iφ̃ij

)
eiαi
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But
(
Ṽi − Ṽj e−iφ̃ij

)
= Ĩij since (x̃, φ̃) satisfies (2.43). Therefore Vi − Vj e−iφij = Iij,

i.e., (x, φ) satisfies (2.43) on every link.

Remark 2.7. A less direct proof of Theorem 2.5 is as follows: by (2.49), we must

have

B⊥B
−1
T (βT − φ̃T ) = β⊥ − φ̃⊥

where β := β(h(x̃)) = β(h(x)) is defined by (2.29) and the relaxed solutions h(x̃)

and h(x) are identical. Substituting α = B−1
T φ̃T and rearranging, this becomes (using

(2.52))

B⊥B
−1
T βT = β⊥ − (φ̃⊥ −B⊥α) = β⊥ − φ⊥

This is simply the necessary and sufficient condition for (x, φ) to satisfy (2.48).

2.7.2 Optimal power flow

Theorem 2.4 suggests using phase shifters to convexify a mesh network so that any

solution of OPF-ar can be mapped into an optimal solution of OPF of the convexified

network. Convexification thus modifies a NP-hard problem into a simple problem

without loss in optimality; moreover this requires an one-time deployment cost for

subsequent operational simplicity, as we now show.

We will compare four OPF problems: the original OPF (2.11)–(2.12), OPF-ar

(2.20)–(2.21), the following problem where there is a phase shifter on every line (φ ∈

[−π, π]m):

OPF-ps:

min
x,s,φ

f
(
ĥ(x), sg

)
subject to x ∈ X, (v, s0, s) ∈ S

and the problem where, given any spanning tree T , there are phase shifters only
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outside T :

OPF-ps(T):

min
x,s,φ

f
(
ĥ(x), sg

)
subject to x ∈ XT , (v, s0, s) ∈ S, φ ∈ T⊥

Let the optimal values of OPF, OPF-ar, OPF-ps, and OPF-ps(T) be f∗, far, fps, and

fT , respectively.

Theorem 2.4 implies that X ⊆ Y = X = XT for any spanning tree T . Hence we

have

Corollary 2. For any spanning tree T , f∗ ≥ far = fps = fT , with equality if there is

a solution (ŷar, s
g
ar) of OPF-ar that satisfies (2.35).

Corollary 2 has several important implications:

1. Theorem 2.1 implies that we can solve OPF-ar efficiently through conic relax-

ation to obtain a relaxed solution (ŷar, sar). An optimal solution of OPF may

or may not be recoverable from it. If ŷar satisfies the angle recovery condition

(2.35) with respect to sar, then Theorem 2.2 guarantees a unique θ∗ such that

the inverse projection (ĥθ∗(ŷar), sar) is indeed optimal for OPF.

2. In this case, Corollary 2 implies that adding any phase shifters to the network

cannot further reduce the cost since f∗ = far = fps.

3. If (2.35) is not satisfied, then ŷar 6∈ ĥ(X) and there is no inverse projection that

can recover an optimal solution of OPF from (ŷar, sar). In this case, f∗ ≥ far.

Theorem 2.4 implies that if we allow phase shifters, we can always attain far =

fps with the relaxed solution (ŷar, sar), with potentially strict improvement over

the network without phase shifters (when f∗ > far).

4. Moreover, Corollary 2 implies that such benefit can be achieved with phase

shifters only in branches outside an arbitrary spanning tree T .
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2.8 Simulations

For radial networks, Theorem 2.3 guarantees that both the angle relaxation and the

conic relaxation are exact. For mesh networks, the angle relaxation may be inexact

and phase shifters may be needed to implement a solution of the conic relaxation.

We now explore through numerical experiments the following questions:

• How many phase shifters are typically needed to convexify a mesh network?

• What are typical phase shifter angles to implement an optimal solution for the

convexified network?

Test cases. We explore these questions using the IEEE benchmark systems with

14, 30, 57, 118, and 300 buses, as well as a 39-bus model of a New England power

system and two models of a Polish power system with 2,383 and 2,737 buses. The

data for all the test cases were extracted from the library of built-in models of the

MATPOWER toolbox [57] in Matlab. The test cases involve constraints on bus

voltages as well as limits on the real and reactive power generation at every generator

bus. The New England and the Polish power systems also involve MVA limits on

branch power flows. All of these systems are mesh networks, but very sparse.

Objectives. We solve the test cases for two scenarios:

• Loss minimization. In this scenario, the objective is to minimize the total

active power loss of the circuit given constant load values, which is equivalent

to minimizing the total active power generation. The results are shown in Table

2.2.

• Loadability maximization. In this scenario, the objective is to determine the

maximum possible load increase in the system while satisfying the generation,

voltage and line constraints. We have assumed all real and reactive loads grow

uniformly, i.e., by a constant multiplicative factor called the max loadability in

Table 2.3.
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Angle range (◦) Angle/loop size (◦)

(m) (OPF, MW) (OPF-cr, MW) (m− n) |φi| > 0.1◦ [φmin, φmax] [φmin, φmax]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [−2.09, 0.58] [−0.70, 0.02]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [−0.2, 4.47] [−0.03, 0.50]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [−3.47, 3.15] [−0.58, 0.38]
IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [−1.95, 2.03] [−0.39, 0.28]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [−13.27, 9.40] [−3.96, 1.68]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [−0.26, 1.83] [−0.04, 0.26]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 373 (13%) [−19.99, 16.82] [−1.68, 0.93]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 395 (11%) [−10.88, 11.98] [−0.93, 0.71]

Table 2.2: Loss minimization. Min loss without phase shifters (PS) was computed
using SDP relaxation of OPF; min loss with phase shifters was computed using SOCP
relaxations OPF-cr of OPF-ar. The “(%)” indicates the number of PS as a percentage
of #links.

No PS With phase shifters (PS)
Test cases Max loadability Max loadability # required PS # active PS Angle range (◦) Simulation time

(OPF) (OPF-cr) (m− n) |φi| > 0.1◦ [φmin, φmax] (seconds)

IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [−0.5, 1.4] 1.92
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [−0.4, 12.4] 3.86
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [−13.1, 23.2] 7.13
IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [−16.5, 22.3] 15.96
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [−15.0, 16.5] 34.6

New England 39-Bus 109.1% 114.8% 8 (17%) 5 (11%) [−6.3, 10.6] 2.82
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [−19.6, 19.4] 434.5
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [−16.7, 17.0] 483.7

Table 2.3: Loadability maximization. Max loadability without phase shifters (PS)
was computed using SDP relaxation of OPF; max loadability with phase shifters
was computed using SOCP relaxations OPF-cr of OPF-ar. The “(%)” indicates the
number of PS as a percentage of #links.

Solution methods. We use the “SEDUMI” solver in Matlab [58]. We first solved

the SOCP relaxation OPF-cr for a solution (ŷ, s) of OPF-ar. In all test cases, equality

was attained in (2.24) at optimality, and hence OPF-cr was exact, as Theorem 2.1

would suggest. Recall however that the load values were constants in all the test

cases. Even though this violated our condition that there are no upper bounds on

the loads, OPF-cr turned out to be exact with respect to OPF-ar in all cases. This

confirms that the no-upper-bound condition is sufficient but not necessary for the

conic relaxation to be exact.

Using the solution (ŷ, s) of OPF-ar, we checked if the angle recovery condition

in Theorem 2.2 was satisfied. In all test cases, the angle recovery condition failed

and hence no (hθ(ŷ), s) was feasible for OPF without phase shifters. We computed
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the phase shifter angles φ ∈ T⊥ and the corresponding unique (hθ(ŷ), s) that was an

optimal solution of OPF for the convexified network.

To place the phase shifters, we have used a minimum spanning tree of the network

where the weights on the lines are their reactance values. In Tables 2.2 and 2.3, we

report the number m− n of phase shifters potentially required, the number of active

phase shifters (i.e., those with a phase angles greater than 0.1◦), the range of the

phase angles at optimality, the range of phase angles per link around the associated

basis cycles (Table 2.2), and the simulation time on an Intel 1.8 GHz Core i5 CPU

(Table 2.3).

We also report the optimal objective values of OPF with and without phase shifters

in Tables 2.2 and 2.3. The optimal values of OPF without phase shifters were obtained

by implementing the SDP formulation and relaxation proposed in [36] for solving

OPF. In all test cases, the solution matrix was of rank one and hence the SDP

relaxation was exact. Therefore the values reported here are indeed optimal for OPF.

The SDP relaxation requires the addition of small resistances (10−6 pu) to every

link that has a zero resistance in the original model, as suggested in [34]. This

addition is, on the other hand, not required for the SOCP relaxation: OPF-cr is tight

with respect to OPF-ar with or without this addition. For comparison, we report the

results where the same resistances are added for both the SDP and SOCP relaxations.

Summary. From Tables 2.2 and 2.3:

1. Across all test cases, the convexified networks have higher performance (lower

minimum loss and higher maximum loadability) than the original networks.

More important than the modest performance improvement, convexification is

design for simplicity: it guarantees an efficient solution for optimal power flow.

2. The networks are (mesh but) very sparse, with the ratios m/(n + 1) of the

number of lines to the number of buses varying from 1.2 to 1.6 (Table 2.2). The

numbers m − n of phase shifters potentially required on every link outside a

spanning tree for convexification vary from 17% of the numbers m of links to

37%.
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3. The numbers of active phase shifters in the test cases vary from 7% of the

numbers m of links to 25% for loss minimization, and 11% to 34% for loadability

maximization. The phase angles required at optimality is no more than 20◦ in

magnitude. Moreover the phase angle per link around a cycle is much smaller.

4. The simulation times range from a few sec to mins. This is much faster than

SDP relaxation. Furthermore the simulation time appears to be linear with the

network size.

2.9 Extensions

In [50], we prove a variety of sufficient conditions under which the conic relaxation

proposed here is exact for radial networks. The main difference from Theorem 2.1

below is that [50] allows upper bounds on the loads, i.e., it replaces the load over-

satisfaction assumption in this chapter with a different set of assumptions.

Both the bus injection model and the branch flow model are descriptions of the

Kirchhoff laws. It is shown in [59] that there is a one-one correspondence between

the semidefinite relaxation in the bus injection model and the relaxations proposed

here in the branch flow model. As a consequence, the various conditions on radial

networks proved in [36, 37, 35, 38] for the exactness of semidefinite relaxation imply

immediately the exactness of the relaxations proposed here. Conversely, the condition

in [50] for the conic relaxation immediately implies that the matrix solution of the

semidefinite relaxation in [36, 37, 35, 38] has rank 1. This is useful because some

results may be easier to formulate and prove in one model than in the other.

2.10 Conclusion

We have presented a branch flow model that focuses on branch current and power

flows instead of nodal injections, and demonstrated how it can be used for the analysis

and optimization of mesh as well as radial networks. Our results confirm that radial

networks are computationally much simpler than mesh networks and we should exploit
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this advantage whenever we can. For mesh networks, we have proposed a simple way

to convexify them using phase shifters that will render them as computationally simple

as radial networks for power flow solution and optimization.

We have proposed a solution strategy for OPF that consists of two steps:

1. Compute a relaxed solution of OPF-ar by solving its conic relaxation OPF-cr.

2. Recover from a relaxed solution an optimal solution of the original OPF using

an angle recovery algorithm.

We have proved that, for radial networks, both steps are always exact so this strat-

egy guarantees a globally optimal solution. For mesh networks the angle recovery

condition can be used to check if a given relaxed solution is globally optimal.

Since power networks in practice are very sparse, the number of required phase

shifters may be relatively small. Moreover, the placement of these phase shifters

depends only on network topology, but not on power flows, generations, loads, or

operating constraints. Therefore only one-time deployment cost is required to achieve

the subsequent simplicity in network operation, market operation, and investment

decisions.
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2.11 Appendix

2.11.1 OPF-ar has zero duality gap

Theorem 2.6. Suppose OPF-cr has a finite optimal value and a strictly feasible point.

Then both OPF-cr and OPF-ar have zero duality gap.

Proof. Recall that the original OPF is feasible by assumption. Hence OPF-ar and

OPF-cr are both feasible. In particular the optimal value of OPF-cr is either finite

or −∞. We assume without loss of generality that, for all i, pg
i
< pgi , q

g
i
< qgi in (2.6)

and vi < vi in (3.5) so that S has a nonempty interior6.

Let fcr, dcr denote the optimal primal and dual value of OPF-ar and far, dar those

of OPF-ar. The weak duality theorem and Theorem 2.1 imply

dcr ≤ fcr = far ≥ dar

We will prove strong duality first for OPF-cr and then for OPF-ar.

Theorem 2.1 implies that OPF-cr is a convex program. By assumption its optimal

value fcr is finite and Slater’s condition is satisfied, i.e., there exists an (ŷ, s) in the

relative interior of the feasible set such that

`ij >
P 2
ij +Q2

ij

vi
(2.53)

Hence OPF-cr has a zero duality gap [60, Chapter 5.3.1]. We then have

dcr = fcr = far ≥ dar (2.54)

To prove that OPF-ar has zero duality gap, it suffices to prove that dar ≥ dcr. Notice

that the dual variables corresponding to the inequality constraints (2.24) in OPF-cr

are restricted to be non-negative whereas the dual variables corresponding to the

equality constraints (2.16) are unconstrained. The dual problems of OPF-cr and

6Otherwise some of these quantities are constants and can be eliminated from the optimization
variables.
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OPF-ar are otherwise identical. Hence dar ≥ dcr and (2.54) completes the proof.

2.11.2 ĥ is injective on X

The uniqueness of the θ in Theorem 2.2 for each ŷ implies that the projections into

Ŷ of two branch flow solutions in X must be distinct. Clearly this does not hold for

points in Y \ X that are not branch flow solutions. Formally,

Fact 2.7. The mapping ĥ is one-to-one on X, i.e., if x, x′ ∈ X and x 6= x′, then

ĥ(x) 6= ĥ(x′).

Proof. Suppose not and there are x and x′ in X such that ĥ(x) = ĥ(x′) = ŷ. Let

β = β(ŷ) be the vector defined by ŷ through (2.29). Theorem 2.2 implies that there

is a unique θ∗ such that hθ∗(ŷ) is the only branch flow solution in X whose projection

is ŷ. Hence x = x′ = hθ∗(ŷ).

To visualize this, we identify C2m+n+1 with R3m+n+2×[−π, π]n. Then (S, I, V, s0) ∈

C2m+n+1 and (S, `, v, s0; θ) ∈ R3m+n+2 × [−π, π]n refer to the same vector if

hθ(S, `, v, s0) = (S, I, V, s0)

and we use them interchangeably in that case. Then an equivalent description of Y

is

Y := { (S, `, v, s0; θ) | (S, `, v, s0) solves (2.13)–(2.16),

θ ∈ [−π, π]n }

Clearly X ⊆ Y and ĥ(X) ⊆ ĥ(Y) = Ŷ. Their relationship is illustrated in Figure 2.6.

2.11.3 Optimization Reference

Quadratic constrained quadratic program (QCQP) is the following problem:
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X

Y

Ŷ ! R3m+n+2

! ! "","[ ]n

ĥ X( )

Figure 2.6: Fact 2.7: ĥ is injective on X. X can be represented by curves in the space
R3m+n+2 × [−π, π]n, and Y by the shaded areas (higher dimensional).

min
x∈Cn

xHC0x (2.55)

subj. to xHCmx ≤ bm, m = 1, . . . ,M (2.56)

where, for m = 0, . . . ,M,Cm ∈ Sn (so that xHCmx are real) and bm ∈ R are given.

If Cm,m = 0, . . . ,M, are positive semidefinite then this is a convex QCQP. Otherwise

it is generally nonconvex.

Any psd rank-1 matrix X has a unique spectral decomposition X = xxH . Using

xHCmx = tr Cmxx
H = tr CmX we can rewrite a QCQP as the following equivalent

problem where the optimization is over Hermitian matrices:

min
x∈Sn

tr C0X (2.57)

subj. to tr CmX ≤ bm, m = 1, . . . ,M (2.58)

X � 0, rank X = 1 (2.59)

The objective function and the constraints (2.58) are linear in X and X � 0 is

a convex constraint (Sn+ is a convex set). The rank constraint in (2.59) is the only

nonconvex constraint and the only source of computational difficulty.
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Removing this constraint results in a semidefinite program (SDP):

min
x∈Sn

tr C0X (2.60)

subj. to tr CmX ≤ bm, m = 1, . . . ,M (2.61)

X � 0 (2.62)

A special case of SDP is a second-order cone program (SOCP) in the following

rotated form:

min
x∈Cn

cH0 x (2.63)

subj. to ||Cmx+ bm||2 ≤ (cHmx+ dm)(ĉHmx+ d̂m), m = 1, . . . ,M (2.64)

2.11.4 A remark on the case of negative impedance values

Negative impedances have long been studied in power system analysis. It is well-

known that the conventional method of modeling three-winding transformers and

two-winding tap-changing transformers, as well as the presence of series capacitors,

can lead to negative resistance and reactance values. Therefore, it is important to note

that the adverse effect of negative impedances is not limited to OPF studies. It has

been shown that negative impedances can cause instability of transient simulations

and also divergence of some steady-state power flow analysis methods. For instance,

there’s a large literature on how negative impedance values can cause Gauss-Seidel

steady state method to diverge for systems on which Newton-Raphson can easily

converge.

Negative impedances can easily induce inexactness of the conic relaxation of OPF

problems. For instance, this happens in the case of the Polish 3375-bus system used

in the simulation section of this chapter, which has 10 lines with negative impedance

values. This inability is not specific to conic relaxations of the OPF problem, as

it applies to other OPF solutions methods, such as the SDP relaxation of [34] as
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well. One simple remedy in these cases is to go back to the simplified model of the

transformers and avoid negative reactance values in the first place.
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Chapter 3

Voltage Control in Distribution
Systems with High PV Penetration

In this chapter we study the potential benefits of fast timescale inverter VAR control

in saving energy and improving voltage regulation, in the presence of losses in DC/AC

conversion. In this chapter, we first propose a model that augments the traditional

volt/var control through switched controllers on a slow timescale, with inverter control

on a fast timescale. This model is motivated by the need to mitigate rapid and large

voltage fluctuations in power distribution systems with high penetration of renewable

generation. Our approach is to formulate a radial optimal power flow (OPF) problem

to minimize the sum of line and inverter losses and energy consumption at loads,

subject to constraints on voltage magnitudes. The resulting optimization problem

is non-convex and therefore hard to solve. We adopt the Branch Flow Model and

the proposed relaxation method described in previous chapter to efficiently solve this

problem to better study the structure of optimal inverter var injection and their net

benefit. We demonstrate that the optimal reactive power injection of the inverters is

not necessarily monotone with respect to their real power output, but depends on a

nontrivial trade-off between line loss, inverter losses, load models, and on the circuit

topology and its loading condition. Simulations of two real-world distribution circuits

from the Southern California Edison (SCE) company illustrates that the proposed

inverter control achieves significant improvement over the current unity power factor

standard of the IEEE 1547 in terms of power quality and power savings.
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3.1 Introduction

The connection of large amounts of highly intermittent solar power at the distribu-

tion level presents a number of technical issues to our existing operation and control

methods, and necessitates design of more advanced and much faster monitoring and

control systems. These challenges include protection impacts of bi-directional power

flow, low voltage ride-through, load following, resource adequacy for contingencies,

stability (given loss of system inertia), line capacity, short circuit contribution, distri-

bution system planning and operation (load rolling), and volt/voltage control. The

latter is the focus of this chapter.

3.1.1 Volt/var control high PV penetration scenarios

Regulating the voltage in distribution circuits within the acceptable range specified in

ANSI C84.1 is an important responsibility of utility companies. Traditionally voltage

profile and reactive power flow in distribution feeders has been locally controlled using

switched devices such as shunt capacitor banks, On-Load Tap Changers (OLTCs), and

voltage regulators. These devices are expected to switch only a few times a day to

accommodate relatively slow variation in load, which might not be sufficient to cope

with the rapid fluctuations in renewable generation.

When a large solar generator is interconnected to a distribution circuit, the real

power it injects tends to cause a local voltage rise due primarily to the substation bus

voltage and the resistance of the circuit back to the substation. In some cases this rise

might be large, and due to variable output may cause adverse voltage fluctuations

for other connected customers. These fluctuations may also cause traditional voltage

regulating elements such as line regulators and capacitors to operate too frequently.

The higher voltage will also work against Conservation Voltage Reduction (CVR)

strategies. Since 1976, California has required utilities to provide voltage in the lower

half of the ANSI C84.1 range (114 to 120 Volts) for CVR purposes. Significant energy

savings are attainable by better regulation of customer supply voltage, and Southern

California Edison has pursued closed loop capacitor control methods for this purpose
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for many years [4].

Among the means being considered to mitigate these voltage effects is the use of

the inverter’s inherent reactive power capability to offset its real power effect. An

inverter will often have a KVA size on the order of 110% of its maximum KW output.

This leaves 46% of its capacity for reactive power even at full real power output. Since

voltage rise as a function of KVAR on a typical distribution circuit is 2 to 3 time that

as a function of KW significant voltage regulation is possible. However, according to

the current IEEE 1547, the standard for integration of Distributed Energy Resources

(DERs), “inverters should not actively participate in the voltage and var regulation”.

This limitation may have been appropriate for low levels of penetration, but as we

move towards higher penetration of renewables, it will be essential to exploit the

advanced control capability of inverter interfaces to the grid.

In this chapter we show how the reactive power capability of the solar plant

inverters can be optimally used to regulate voltage. In particular, we seek to determine

voltage regulation operation that minimizes power losses considering (1) CVR effects,

(2) line losses, and (3) inverter losses due to reactive power injection. Maintaining

customer voltage within ANSI C84.1 and reactive power flow limits are treated as

hard constraints.

Literature Review: Volt/var control in a distribution system has been exten-

sively studied in the literature. Most effort focus on finding optimal switching sched-

ules for shunt capacitors and Under Load Tap Changer (ULTCs) to minimize system

losses [44, 61, 62]. Inverter control has been considered in some recent works, e.g.,

[63, 64]. In [63], the authors consider centralized reactive power flow control of in-

verters and use DC power flow approximations. Although recent studies show that

deployment of conservation voltage reduction plans on distribution feeders of United

States can provide a 3.04% reduction in the annual national energy consumption

[65], almost all existing VVC solutions in the literature ignore this and only aim to

minimize systems losses.
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3.1.2 High PV penetration cases in Southern California

California, as one of the leading states driving America’s clean energy boom, has

embarked on several initiatives to reach its ambitious goals in increasing the share

of renewable energy in its total energy mix. California Solar Initiative (CSI) aims

to create 3,000 megawatts of new solar generation by 2016. As a result distribution

planners of the electric utilities are facing a rapidly increasing number of integration

request for small size residential PV as well as large scale commercial PV systems.

In particular, under the Solar Photovoltaic Program (SPVP) 500 MW of warehouse

rooftop and ground mounted commercial generation in the 1 to 10 MW range are

being deployed in Southern California Edison’s (SCE) service territory, one of the

nation’s largest utility companies. These large scale plants have already created a

number of distribution circuits with very high penetration of PV generation. This

chapter adopts the Branch Flow Model (BFM) framework and a two time-scale control

scheme to study these distribution circuits.

One such example is a 12 rural 12KV feeder with a 5 MW generator near the end

of the circuit to explore the use of the generator inverter’s reactive power capability to

control voltage. This circuit is particularly interesting because of its low loading, high

generation, long distance of the generator from the substation, and large reverse power

flow. Figure 3.1, shows the feeder current data measured at the substation, taken from

the SCADA system of SCE. In this plot, a positive current shows a reverse power flow

back to the substation. Note that this feeder has a peak reverse flow of more than

3MW. We have chosen four typical days in November 2011 to represent the four class

of solar radiation behavior introduced in [66], i.e., clear, cloudy, intermittent clear,

and intermittent cloudy days. The later type is the worst case in terms of voltage

fluctuations.
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Figure 3.1: Line current measurement at the substation for one of SCE’s lightly loaded
12KV feeders with 5MW of PV installed almost at the end of the line. A positive
current represents reverse power flow into the substation and a negative current shows
real power flowing into the feeder. The plots are from SCADA data of SCE for 4 days
in Nov 2011.

3.2 Problem Formulation

In this section, we will describe our two time-scale control model and formulate the

optimal volt/var control problem using the branch flow model.

3.2.1 Two time-scale control

As mentioned earlier, there are two types of control devices with two different control

timescales: shunt capacitors and the voltage controllers that are controlled on a slow

timescale of, say, hourly, and inverters that can be controlled on a fast timescale,

say, minutes. In practice, the switched controllers are typically re-configured only

a few times each day due to their limited life cycle. As the aggregate load changes

slowly, the slow timescale control has been sufficient to provide voltage support. As

renewable penetration such as solar PV and wind generation increases, fast timescale
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control of the inverters will become indispensable in order to adapt to the large, rapid,

and random fluctuations of their output.

Hence, in our model, we divide each day into M slots and index these slots by

T . Each of these M slots is further divided into N slots indexed by t, as shown in

Figure 3.2. For instance, we can choose each T -slot to be an hour and each t-slot a

minute, i.e., M = 24, N = 60. We will assume that the state of the network (the

voltages, real and reactive power at each bus), and the input to the network (real and

reactive power generated or consumed at each bus) remain unchanged within each

t-slot, and may change only from t to t + 1. As we will explain below, the inverter

control will be applied for each t to match renewable output fluctuations, and the

configuration of the shunt capacitors and the substation voltage will be adjusted for

each T -slot to match load fluctuations.

3.2.2 Power flow equations and constraints

Let G({0} ∪ V,E) be a graph representing a radial distribution circuit. Each node in

{0}∪ V is a bus and each link in E is a line. We index the nodes by i = 0, 1, . . . , |V |.

Node 0 denotes the substation bus and other nodes in V denote branch buses. Let

vi(t), i ≥ 0 denote the square of the voltage magnitude at node i at time t. Node 0 is

special in that its voltage v0 is adjusted on the slow timescale T while other voltages

vi(t), i ≥ 1, are adjusted every t.

There are two types of nodes in V that generate reactive power. Let Vc be the

set of nodes with switched shunt capacitors that are controlled at the slow timescale

T , and the remaining nodes in V \ Vc have inverters that are controlled at the fast

Figure 3.2: Two-timescale discretization of a day for switched controllers and invert-
ers.
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timescale t. For notational simplicity only, we assume without loss of generality that

each node can have either a shunt capacitor or an inverter, but not both nor neither.

Let pgi (t) and qgi (t) be the real and reactive power generation, respectively, at node i

at time t. For nodes i ∈ V \ Vc, pgi (t) represent real power generated by renewable

sources such as solar PV that are connected to the grid via inverters. For nodes i ∈ Vc
that has (only) switched shunt capacitors, pgi (t) ≡ 0 for all t. For each i ∈ V , let pci(t)

and qci (t) be the real and reactive power demand, respectively, at time t. If there is

no load at node i, we assume pci(t) ≡ qci (t) ≡ 0 for all t. Here, pci(t), q
c
i (t), and pgi (t)

are assumed to be given quantities, whereas the reactive power generated qgi (t) are

the control variables.

The shunt capacitor and inverter settings qgi (t), i ≥ 1, and the substation voltage

v0(t), together with the inputs (pci(t), p
g
i (t), q

c
i (t)) determine the voltages and real and

reactive power flows on the network. Let Pij(t) and Qij(t) be the real and reactive

power flows from nodes i to j over link (i, j). Then, from [44], these variables satisfy

the following recursion (Dist-Flow equations): for each link (i, j) in the distribution

circuit,

Pij(t) =
∑

k:(j,k)∈E

Pjk(t) + rij
P 2
ij(t) +Q2

ij(t)

vi(t)

+pcj(t)− p
g
j (t) (3.1)

Qij(t) =
∑

k:(j,k)∈E

Qjk(t) + xij
P 2
ij(t) +Q2

ij(t)

vi(t)

+qcj(t)− q
g
j (t) (3.2)

vj(t) = vi(t)− 2(rijPij(t) + xijQij(t))

+(r2
ij + x2

ij)
P 2
ij(t) +Q2

ij(t)

vj(t)
(3.3)

The end points of the feeder can be modeled through the boundary condition that

there is zero power flow downstream from them. For this purpose, all the leaf nodes

in our model G = ({0}∪V,E) and the edges incident on these leaf nodes are actually

artificial nodes and edges added to each leaf node (bus) in the real distribution circuit.
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Denote by V ′ ⊂ V the set of leaf nodes. The the boundary constraints will force the

real and reactive power flows to be zero on each edge incident to V ′: for all t

∀(i, j) ∈ E with j ∈ V ′ : Pij(t) = Qij(t) = 0 (3.4)

The primary purpose of VVC on distribution circuits is to maintain voltages in

an acceptable range at customer level without creating excessive var demand on

transmission and subtransmission systems under all operating conditions. This is

formulated as constraints on the voltage variables vi: for all i 6∈ V ′ for all t,

v ≤ vi(t) ≤ v (3.5)

The total reactive power demand on the feeder may also be constrained within limits

set by operators for different seasons and even sometimes for different times of a day

considering transmission var emergency cases, but this is outside the scope of this

chapter. For our purpose, we assume these limits are given

Q
0
(t) ≤

∑
j:(0,j)∈E Q0j(t) ≤ Q0(t) (3.6)

3.2.3 Inverter limits

Besides the slow timescale control, nodes i ∈ V \Vc have inverters that are controlled

at the fast timescale t. We use the inverter model of [63, 67]. For our purposes, the

main implication is that the magnitude of the reactive power qgi (t) generated at an

inverter is upper bounded by a quantity that depends on the real power generated at

node i: for all i ∈ V \ Vc,

|qgi (t)| ≤ qi(t) (3.7)

where the upper bound

qi(t) :=

√
s2
i − (pgi (t))

2 (3.8)
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Figure 3.3: In order to regulate the voltage, inverters can quickly dispatch reactive

power limited by |qgi (t)| ≤
√
s2
i − (pgi (t))

2).

is assumed given for each t1. Here si represents the rated apparent power capacity

of PV panel at bus i and pgi (t) is the real power generated at time t. As illustrated

in figure 3.3, the real power generation of the PV panel approaches its capacity, si,

when the range of available reactive power reduces to zero.

3.2.4 Inverter losses

DC-AC inverters are not perfect, they have losses. The real power loss in an inverter

can be approximated by a quadratic function of its apparent power [68]:

P loss
i (t) = cs + cv

√
(pgi (t))

2 + (qgi (t))
2 + cr

(
(pgi (t))

2 + (qgi (t))
2
)

(3.9)

where cs models the inverter’s standby losses, cv is the voltage dependent losses over

the power electronic components which is proportional to its current, I, cr is the ohmic

losses proportional to I2, and
√

(pgi (t))
2 + (qgi (t))

2 is the magnitude of the apparent

power injection of the inverter. Clearly, even though optimal inverter var control can

reduce the line losses and the energy consumption as measured by the CVR term, its

deviation from unity power factor also increases the inverter real power loss.

1There is no loss of generality by assuming all nodes not in Vc have inverters, because if node i
has neither shunt capacitors nor inverter, we can assume i ∈ V \ Vc with qi(t) = 0 for all t.
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3.2.5 Voltage dependent load model

We will now approximate total real power consumption of loads as a function of

voltage on the feeder to model the conservation energy reduction (CVR) term. Recall

that vi represents the square of the voltage magnitude at node i. A model of a voltage-

dependent load pci is the following: for 0 ≤ n ≤ 2

pci(t) = pci · (vi(t))ni/2 (3.10)

qci (t) = qci · (vi(t))ni/2 (3.11)

where
√
vi(t) is the per unit value of the load’s voltage magnitude at time t, and

the constants pci and qci are the real and reactive power consumed by the load at

the reference voltage, assumed given2. Three special cases are of particular interest:

n = 0 for constant power loads, n = 1 for constant current loads, and n = 2 for

constant impedance loads.

The real power consumption at a load at per unit voltage vi(t) can be approxi-

mated as: pci · (vi(t))ni/2 ≈ pci
(
1 + ni

2
(vi(t)− 1)

)
=
∑

i αivi + constant, where αi =

(ni/2)pci and the constant can be neglected in the power consumption minimization

(see below). Here we have used the fact that for all loads, vi(t) ≈ 1. It is also common

to model a load as a combination of above three models:

pci(t) = pci

(
a0
i + a1

i

√
vi(t) + a2

i vi(t)
)

qci (t) = qci

(
a0
i + a1

i

√
vi(t) + a2

i vi(t)
)

where a0
i + a1

i + a2
i = 1. The real power consumption of such a load can again

be approximated as
∑

i αivi + constant, where αi = pci (a1
i /2 + a2

i ). Hence for our

purposes, minimizing real power consumption, i.e. the CVR term, is equivalent to

minimizing a weighted sum of the vi values over all voltage dependent loads.

2If there is no load at node i, then pci = qci = 0.
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3.2.6 Switched controllers

Let us now include switched shunt capacitors and substation Under Load Tap Changer

(ULTC) in our two time-scale volt/var control scheme. Shunt capacitors generate

reactive power when they are on. Since shunt capacitor settings are changed on slow

timescale for each T , we represent this by

qgi (t) = ci(T )qi ∀i ∈ Vc, t ∈ T

where ci(T ) ∈ {0, 1} is the switching control for period T . That is, the capacitor at

node i generates reactive power of qi if it is on and no reactive power if it is off. The

substation ULTC regulates the voltage v0(T ) at the substation bus in discrete steps

corresponding to different tap levels. It is also controlled at the slow timescale.

Let S denote the set of possible states for the discrete controllers (v0(T ), ci(T ),∀i ∈

Vc). With k number of taps for the substation’s ULTC and m number of switched

capacitors, we will have |S| = k × 2m different states. Let s(T ) := (v0(T ), c(T )) :=

(v0(T ), ci(t), i ∈ Vc) be the control at time T . Then s(T ) ∈ S. The traditional

volt/var control is to choose s(T ) so as to minimize a certain cost function of the form

J(s) +C(s′, s), where C(s′, s) represents the cost of switching from the configuration

s′ in the previous time period to the new configuration s in the current period, and

J(s) represents the cost in the new state s, e.g., the loss in the distribution circuit.

Hence, the slow timescale control can be formulated as the following optimization

problem

min
s(T )∈S

∑
T=1,...,M

{J(s(T )) + C(s(T − 1), s(T ))} (3.12)

Given the cost functions J and C, this can be solved using dynamic program-

ming. Typically each distribution feeder has a small number of capacitors and hence

searching through the state space for the optimal setting of the discrete controllers

should be computationally tractable at the slow timescale. The idea is illustrated in
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figure 3.4 for the case of a distribution feeder with 4 switched capacitors. 3

Figure 3.4: Illustration of the dynamic programming approach to solve the slow
time-scale voltage control problem in a distribution feeder with 4 on/off switched
capacitors.

3.2.7 VVC optimization problem

We are now ready to state the the VVC optimization problem. As explained in

Section 3.2.6, the switched controllers are controlled at the timescale T . Within each

period T , the control s(T ) is fixed and the reactive power qgi (t), i ∈ V \ Vc generated

by inverters is adjusted at the fast timescale t ∈ T . The daily operation is then

represented by a hierarchical optimization problem, where the slow timescale control

solves

min
s(T )∈S

∑
T=1,...,M

{J(s(T )) + C(s(T − 1), s(T ))} (3.13)

3 An alternative option, particularly when dealing with a large number of discrete controllers, is
to consider reactive power injection of capacitors and the substation voltage as continuous variables,
find the optimal solution of the resulting optimization problem and then determine On/Off and tap
setting for the switched capacitors and substation ULTC by projecting the solution to the discrete
state space using thresholding.
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and the cost J(s(T )) in period T is the sum of cost J(s(T ), t) in each period t ∈ T

under the fast timescale control:

J(s(T )) =
∑
t∈T

J(s(T ), t)

Here, for each t, the optimal cost J(s(T ), t) is the sum of the loss in the distribution

circuit and the weighted voltages as explained in Section 3.2.5: given the switched

control s(T ) = (v0(T ), c(T )). If we denote the set of the nodes with DC-AC inverters

with I, then the overall fast time-scale inverter var control problem can be formulated

as follows:

J(ST , t) = min
∑

(i,j)∈E

rij
P 2
ij(t) +Q2

ij(t)

vi(t)
+
∑
i

αivi(t) +
∑
i∈I

P loss
i (t)

(3.14)

subject to (3.1)–(3.9) (3.15)

v0(t) = v0(T ) (3.16)

qgi (t) = ci(T )qi, i ∈ Vc (3.17)

over P (t), Q(t), v(t), qg(t) (3.18)

3.3 Fast-timescale control: inverter optimization

In this section, we focus on the fast timescale inverter control, i.e., we assume a given

s(T ) and consider solving (3.14)–(3.18) for a fixed t ∈ T . For the sake of simplicity,

we drop time dependency labels t from the fast time-scale control problem. Now let

us introduce the following new variables for every bus and every line, respectively,

νi := |Vi|2 (3.19)

`ij := |Iij|2 (3.20)
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and also the following new variables for every bus with an inverter, i.e. i ∈ I,

si :=
√

(pgi )
2 + (qgi )

2 (3.21)

ti := s2
i = (pgi )

2 + (qgi )
2 (3.22)

In order to remove the nonlinear equality constraints as the source of nonconvexity

and cast this problem into a Second Order Cone Program (SOCP), we follow the

relaxation step introduced in chapter 2:

∀(i, j) ∈ E : `ij ≥
P 2
ij +Q2

ij

νi
(3.23)

This is equivalent to relaxing the magnitude of currents on all links, and the

hope is to find these inequalities to be tight the optimal solution. Note that relaxed

constraints (3.23) represent second order cones with respect to (P,Q, ν, `ij). Now

consider the following relaxed SOCP program to solve the fast time-scale inverter var

control problem,
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min
∑

(i,j)∈E

rij`ij +
∑
i

αiνi +
∑
i∈I

(cvsi + crti) (3.24)

s. t. Pij =
∑

k:(j,k)∈E

Pjk + rij`ij + pcj − p
g
j (3.25)

Qij =
∑

k:(j,k)∈E

Qjk + xij`ij + qcj − q
g
j − qcjνj (3.26)

νj = νi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij (3.27)

∀(i, j) ∈ E : `ij ≥
P 2
ij +Q2

ij

νi
(3.28)

∀i ∈ I : si ≥
√

(pgi )
2 + (qgi )

2 (3.29)

∀i ∈ I : ti ≥ (pgi )
2 + (qgi )

2 (3.30)

∀i ∈ I : |qgi | ≤ qgi (3.31)

V 2
i ≤ νi ≤ V

2

i (3.32)

pc
i
≤ pci , qc

i
≤ qci (3.33)

over X := (P,Q, pg, pc, qg, qc, ν, `, s, t) (3.34)

Using relaxations (3.29), (3.30) is the typical method of linearizing the Euclidean

norms and quadratic terms in the objective function and casting them as second

order cone constraints. It is easy to see that these inequalities will be tight in the

solution. We have also made two other relaxations in the problem formulation. First

the nonlinear equalities in the original problem are relaxed to inequalities (3.28).

Second, in (3.33), we have used the over-satisfaction of active and reactive loads (see

chapter 2) . The result is

Theorem 3.1. The volt/var control problem (3.24)–(3.34) is convex. Moreover,

it is exact, i.e., any optimal solution of (3.24)–(3.34) achieves equality in (3.28),

(3.29),(3.30), and therefore specifies valid and optimal inverter reactive generation qgi

and voltage magnitudes |Vi|.

Proof. A slightly simpler version of this theorem was proved in the previous chapter.
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The only difference here is the addition of more linear terms due to inverter losses in

the objective function and more second order cone constraints in (3.29), (3.30). How-

ever, the same proof would still apply since the active and reactive power generation

variables are not involved in the proof steps.

Remark 3.1. Theorem 3.1 implies that the original nonconvex optimal inverter con-

trol problem can be efficiently solved using the above SOCP relaxation. This opens the

way to implement efficient volt/var control in real time to cope with random, rapid,

and large fluctuations of solar generation.

3.4 Case study: reverse power flow with a single

large solar PV

In this section we evaluate the proposed solution using data from one of SCE’s dis-

tribution circuits with a large 5MW solar PV installed at at the end of a distribution

rural feeders. We use historical SCADA data for load and PV generation to illustrate

the ideas and to estimate the net benefits of optimal inverter var control. The fol-

lowing is a very lightly loaded rural distribution feeder (less than 1MW) in which a

5MW PV has been integrated almost 6 miles away from the substation. The circuit

diagram of the distribution system is shown Figure 3.5 and the various parameters

are given in Table 5.1. The load data in Table 5.1 are peak values. Historical data

shows a typical day time loading of around 20% of the peak with a typical power

factor of 0.9. In the simulation results discussed below, the voltage magnitude of

bus 1 at the substation is fixed at 1 pu. The voltage magnitude bounds at all other

buses are assumed to be 0.97 pu and 1.03 pu.

Figure 3.6 shows the voltage magnitude at bus 45, i.e., the Point of Common

Coupling (PCC), as a function of solar output, when the inverter provides no var

control, i.e., unity power factor with qgi = 0, according IEEE 1547. The load is in

percentage of peak load. The figure shows that the range of voltage fluctuation can
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Figure 3.5: Circuit diagram for SCE distribution system.

Table 3.1: Line impedances, peak spot load KVA, capacitors and PV generation’s
nameplate ratings for the distribution circuit in Figure 3.5.

Network Data
Line Data Line Data Line Data Load Data Load Data Load Data

From To R X From To R X From To R X Bus Peak Bus Peak Bus Peak
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MVA

1 2 0.160 0.388 20 21 0.251 0.096 39 40 2.349 0.964 3 0.057 29 0.044 52 0.315
2 3 0.824 0.315 21 22 1.818 0.695 34 41 0.115 0.278 5 0.121 31 0.053 54 0.061
2 4 0.144 0.349 20 23 0.225 0.542 41 42 0.159 0.384 6 0.049 32 0.223 55 0.055
4 5 1.026 0.421 23 24 0.127 0.028 42 43 0.934 0.383 7 0.053 33 0.123 56 0.130
4 6 0.741 0.466 23 25 0.284 0.687 42 44 0.506 0.163 8 0.047 34 0.067 Shunt Cap
4 7 0.528 0.468 25 26 0.171 0.414 42 45 0.095 0.195 9 0.068 35 0.094 Bus MVAR
7 8 0.358 0.314 26 27 0.414 0.386 42 46 1.915 0.769 10 0.048 36 0.097 19 0.6
8 9 2.032 0.798 27 28 0.210 0.196 41 47 0.157 0.379 11 0.067 37 0.281 21 0.6
8 10 0.502 0.441 28 29 0.395 0.369 47 48 1.641 0.670 12 0.094 38 0.117 30 0.6
10 11 0.372 0.327 29 30 0.248 0.232 47 49 0.081 0.196 14 0.057 39 0.131 53 0.6
11 12 1.431 0.999 30 31 0.279 0.260 49 50 1.727 0.709 16 0.053 40 0.030 Photovoltaic
11 13 0.429 0.377 26 32 0.205 0.495 49 51 0.112 0.270 17 0.057 41 0.046 Bus Capacity
13 14 0.671 0.257 32 33 0.263 0.073 51 52 0.674 0.275 18 0.112 42 0.054
13 15 0.457 0.401 32 34 0.071 0.171 51 53 0.070 0.170 19 0.087 43 0.083 45 5MW
15 16 1.008 0.385 34 35 0.625 0.273 53 54 2.041 0.780 22 0.063 44 0.057
15 17 0.153 0.134 34 36 0.510 0.209 53 55 0.813 0.334 24 0.135 46 0.134 Vbase = 12KV
17 18 0.971 0.722 36 37 2.018 0.829 53 56 0.141 0.340 25 0.100 47 0.045 Sbase = 1MVA
18 19 1.885 0.721 34 38 1.062 0.406 27 48 48 0.196 Zbase = 144Ω
4 20 0.138 0.334 38 39 0.610 0.238 28 38 50 0.045
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Figure 3.6: Voltage magnitude at the point of common coupling (PCC) vs solar
output.

exceed 5% as solar output varies from 0 to 5 MW (its nameplate capacity). It clearly

demonstrates the need for fast timescale inverter var control for voltage support to

cope with random, rapid, and large solar output fluctuations.

3.4.1 Inverter var control trade-offs

In this subsection we examine the inverter var injection qg∗i at the PV bus under the

proposed optimal control, as solar output varies and as load varies. Multiple factors

interact to determine the optimal inverter var injection. As illustrated in figure 3.7,

there is trade-off between the line loss term and the CVR term in the objective func-

tion: a higher voltage magnitude reduces line loss but increases energy consumption

in the CVR term. The optimal trade-off is determined by the solar output and the

total load, and the constraints (3% tolerance) on the voltage magnitude. Intuitively,

one should increase var injection (more positive) either when the voltage magnitude

is low in order to keep it above its lower bound, or when the solar is high so as to

minimize the line losses in transferring power from the PV bus towards the substa-

tion. Conversely, one should decrease var injection (more negative) either when the
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Figure 3.7: Illustration of trade-offs in optimal inverter volt/var control problem.

voltage magnitude is high in order to keep it below its upper bound or when the load

is high in order to decrease energy consumption due to the CVR term in the objective

function.

We now take a closer look at these interactions, as solar output and as load

varies. Figures 3.8 and 3.9 show the optimal inverter var injection as a function of

solar output for a fixed total load. At low load (Figure 3.8), as solar output increases,

the optimal inverter var injection qg∗i initially increases so as to minimize line losses

in transferring power from the PV bus towards the substation. Eventually, as the

solar output continues to rise above a threshold the optimal inverter var injection qg∗i

decreases (absorbs var) in order to maintain a voltage magnitude within its upper

bound. The opposite effect dominates at high load (Figure 3.9) when the voltage

magnitude is typically well below the upper bound. As solar output increases, the

optimal inverter var injection qg∗i decreases so as to reduce the energy consumption

due to the CVR term in the objective function. We can also see the transition between

these two phenomena in these Figures.

Figure 3.10 shows the optimal inverter var injection as a function of total load

for a fixed solar output. At low solar output, optimal inverter var injection decreases
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Figure 3.8: Optimal inverter reactive power (in KVAR) vs PV output when load is
low.

Figure 3.9: Optimal inverter reactive power (in KVAR) vs PV output when load is
high.

Figure 3.10: Optimal inverter reactive power (in KVAR) vs total load.
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as load initially increases to as to reduce the energy consumption in the CVR term,

until the load reaches a threshold that reduces the voltages to near the lower bounds.

Beyond that threshold, the optimal inverter var injection increases as load increases

so as to maintain the voltage magnitudes above the lower bounds. At high solar

output, on the other hand, the above behavior is preceded by a section where the line

losses term dominates over the CVR term. Then the optimal inverter var injection

increases as load initially increases from zero in order to reduce line losses.

3.4.2 Net benefits of optimal inverter var control

We implemented the proposed convex relaxation of the radial OPF problem and

solved it using CVX optimization toolbox [69] in Matlab. In all our simulations,

we checked the inequality constraint in condition (3.28) for optimal solutions of the

relaxed problem and confirmed that the inequality constraints were all active, i.e.,

equality holds at the optimal solutions.

We will assess the benefit of the proposed optimal inverter var control in two

ways. First, when inverters do not participate in var control (i.e., unity power factor

as specified in the current IEEE 1547 standard), the voltage magnitudes may violate

the specified limits when the total load is low and solar power is high. This represents

an undesirable operation mode. The proposed optimal inverter var control should help

maintain the voltage magnitudes within their specified limits and thus enlarge the

region of desirable operation mode.

Second, the net cost is the sum of line losses and energy consumption, as expressed

in (3.24), plus the real power loss in the inverter. We have used typical loss model

parameters from [68] for an inverter with maximum efficiency of 96% to evalue the

total cost. Table 3.4 summarizes these two benefits using the distribution circuit

specified in Table 5.1. First, when inverters do not participate in var control, the

feeder spends a significant amount of time (e.g., 1,214 hours per year with 3% voltage

drop tolerance) outside the feasibility region where voltage magnitudes violate their

specified limits. Under the proposed optimal inverter var control, this undesirable



80

Table 3.2: Simulation Results For Some Voltage Tolerance Thresholds

Voltage Drop Annual Hours Saved Spending Average Power
Tolerance Outside Feasibility Region Saving

3% 1,214h 2.04%
4% 223h 2.24%
5% 37h 2.53%

operation mode is completely eliminated. Second, the optimal control yields signifi-

cant savings (above 2 %), as measured by the total cost that includes the inverter real

power loss. Note that the savings in total cost are calculated only for times where

both the unity power factor control and the optimal control are feasible. As the volt-

age drop tolerance decreases, the unity power factor control becomes infeasible more

often while the optimal control remains feasible, but the corresponding savings are

excluded in the calculation.

3.5 Case study: multiple inverter interactions

We investigate the interactions of multiple solar PV inverters in voltage regulation

on a different feeder of Southern California Edison. The Fontana feeder is a 12 kV

distribution system about one mile from the local substation. The entire length of

the interconnected distribution circuit is 7.8 miles including all mainline and branch

circuits. Voltage regulation of the circuit is accomplished by switched capacitor banks

placed along the length of the mainline of the distribution circuit. The capacitors

are controlled using a time schedule with a voltage override. The voltage override

operating set points are adjusted automatically if the ambient temperature, measured

at the capacitor bank controller, is above 90 F. Voltage regulation at the substation is

also accomplished using switched capacitors located at the substation. The capacitors

at the substation are operated to both regulate the voltage at the substation bus bars

and compensate var flows in the subtransmission system.
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Figure 3.11: Schematic diagram of a distribution feeder with high penetration of
Photovoltaics. Bus No. 1 is the substation bus and the 6 loads attached to it model
other feeders on this substation.

Table 3.3: Network of Fig. 3.11: Line impedances, peak spot load KVA, capacitors,
and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVAR No. Capacity

1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Capacity
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Base Voltage (KV) = 12.35 1 6000 KVAR
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Base KVA = 1000 3 1200 KVAR
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 Substation Voltage = 12.35 37 1800 KVAR
8 40 0.046 0.015 20 25 0.214 0.046 32 0.13 47 1800 KVAR
8 39 0.244 0.046 21 24 0 0 33 0.27
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Figure 3.12: Joint distribution of the normalized solar output level and the normal-
ized load level

3.5.1 Simulation setup

In this section we present an example to illustrate the effectiveness of our fast-

timescale VVC control, compared with the current PV integration standards IEEE

1547 which require all the inverters to operate at unity power factor and not partici-

pate in VAR control of the distribution circuit [67].

We use the 47-bus distribution feeder shown in Fig. 3.11 in our simulations. This

circuit is a simplified model of an industrial distribution feeder of SCE with high

penetration of renewables, integrated with 5 large PV plants. The network data,

including line impedances, peak MVA demand of loads, and the nameplate capacity

of the shunt capacitors and the PV generations, are listed in table 3.3. For all the

loads in this industrial area, we assume a constant power factor of 0.8.

To focus on the fast-timescale control, we fix the trajectory of slow-timescale

control (v0(T ), c(T ),

T = 1, . . . ,M) to be the settings used in practice, and only solve problem (3.14)–

(3.15) for each time t. We use real data for load and solar generation over the course

of a year. Using minute based data for one year, the empirical joint probability
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Figure 3.13: Overall power savings in MW, for different load and solar output levels
assuming a 3% voltage drop tolerance.

distribution of the load and solar output levels is shown in Figure 3.12. We have

used a hot color scale, with hotter colors representing a higher probability for the

system to spend time in. The axes are scaled to the peak power demand and total

capacity of installed PV generation, respectively. We assume ni = 1 for all loads,

corresponding to a constant current load model for this feeder. We further constrain

the reactive power flow through the substation bus to be less than 2MVAR at all

times. To compare the cost of the operation under the IEEE 1547 standard and our

proposed algorithm, we choose a fixed voltage drop tolerance.

We implemented the proposed convex relaxation of the original VVC optimization

problem and solved it using CVX optimization toolbox [69] in Matlab. In all our sim-

ulations, we checked the inequality constraint in condition (3.28) for optimal solutions

of the relaxed problem and confirmed that the inequality constraints were all active.

Figure 3.13 shows the difference in the objective function between current standard

IEEE 1547 standard and our proposed solution for different load and solar output

levels, given a 3% voltage drop tolerance. This can be interpreted as the overall power

savings achieved by optimal control of inverter’s VAR dispatch. Interestingly, in typi-
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Table 3.4: Simulation Results For Some Voltage Tolerance Thresholds

Voltage Drop Annual Hours Saved Spending Average Power
Tolerance Outside Feasibility Region Saving

3% 842.9h 3.93%
4% 160.7h 3.67%
5% 14.5h 3.62%

cal loading conditions, optimal inverter control can save more than 200KW in overall

power consumption, even at night. The missing region in Figure 3.13 is the set of the

infeasible settings of load and solar for the IEEE 1547 operation mode in the relaxed

problem formulation, and is therefore also infeasible for the original problem. The

feasible operation region for the proposed method is considerably a superset of that

of IEEE 1547 operation mode. This demonstrates significant power quality benefits

achieved by optimal inverter control. Table 3.4 summarizes the overall time that the

feeder can save not spending outside the feasible region, and the overall operation cost

benefits for the whole year, for different voltage drop tolerances. The results show

more than 3% savings achieved by optimal reactive power dispatch for the inverters.

3.6 Conclusion

We discussed a general framework for optimal reactive power dispatch of inverters and

switched controllers in radial networks by considering different time scale of variations

in load and the output of intermittent renewable sources. Our proposed centralized

solution for the fast time-scale subproblem demonstrated the benefits of inverter var

control to mitigate rapid and large voltage fluctuations due to high penetration of

photovoltaic generation and the resulting reverse power flow. We have formulated

the fast time-scale subproblem as a radial OPF problem that minimizes line losses,

internal inverter losses, and energy consumption (CVR term), subject to operational

constraints on voltage magnitudes and var injections. We adopt the SOCP relaxation

of the BFM model discussed in the previous chapter to solve the resulting nonconvex

problem efficiently. Finally, we illustrated the improvement in both reliability and
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efficiency under the optimal inverter var control on two cases of SCE’s distribution

feeders with very high PV penetration.
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Chapter 4

Equilibrium and Dynamics of Local
Voltage Control in Distribution
Networks

4.1 Introduction

As previously discussed, traditionally voltages in a primary distribution system fluc-

tuate slowly due to changes in demand which are relatively mild and predictable.

Capacitor banks and under load tap changers (ULTC) are reconfigured a few times

a day to stabilize voltages around their nominal values; see, e.g., [70, 44, 51]. The

continued proliferation of distributed generation such as photovoltaic will introduce

frequent, rapid, and random fluctuations in supply and voltages in a primary distri-

bution system. Capacitor banks and ULTC alone may not be adequate to stabilize

voltages in such an environment. Distributed energy resources such as photovoltaic

systems are connected to the grid through inverters. Even though the current IEEE

Standard 1547 requires unity power factor at the output of an inverter, the inverter

hardware can easily optimize its reactive power output to help stabilize voltages. In-

deed the IEEE Standards group is actively exploring a new inverter-based volt/var

control. Unlike the capacity banks or ULTC, inverters can push and pull reactive

power much faster, in a much finer granularity, and with low operation costs; see,

e.g., [2, 3, 4]. They will enable the realtime distributed volt/var control that is

needed for the future power grid.
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The literature on inverter-based volt/var control in distribution systems can be

divided into the following three main categories: (i) approaches that propose a cen-

tralized control scheme by solving a global optimal power flow (OPF) problem. These

methods implicitly assume an underlying complete two-way communication system

between a central computing authority and the controlled nodes [4, 11, 12]; (ii) dis-

tributed message-passing algorithms in which communications are limited to neigh-

boring nodes [5, 13, 12, 14]; (iii) local control methods that require no communications

and rely only on local measurements and computations [3, 6, 15]. These include re-

active power control based on local real power injection (referred to as Q(P)), power

factor control, and the more common voltage based reactive power control (referred

to as Q(V)). Although the methods proposed in the first two categories are critical for

theoretical analysis and better understanding the impact of renewables on the grid,

lack of sufficient telecommunication infrastructure discourages practical implementa-

tion of these methods in most practical scenarios.

Inverter-based local volt/var control is a closed-loop dynamical system whereby

the measured voltage determines the reactive power injection, which in turn affects

the voltage. There has been only a limited theoretical treatment of the equilibrium

and dynamic properties of such feedback systems; see, e.g., [17, 71, 72]. In this chap-

ter we study these local volt/var control schemes that are motivated by the proposed

1547.8 standard [73]. We use a linear branch flow model similar to the Simplified

DistFlow equations introduced in [43]. The linear branch flow model and the local

volt/var control form a closed loop dynamical system (Section 4.2). We show that the

dynamical system has a unique equilibrium point and characterize it as the unique

optimal solution of a certain convex optimization problem (Section 4.3). The op-

timization problem has a simple interpretation: the local volt/var control tries to

achieve an optimal tradeoff between minimizing the cost of voltage deviations and

minimizing the cost of reactive power provisioning. Moreover, the objective of the

optimization problem serves as a Lyapunov function of the dynamical system under

local volt/var control, implying global asymptotic stability of the equilibrium. We

further provide a sufficient condition under which the dynamical system yields a con-
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traction mapping, implying that it converges exponentially fast to the equilibrium.

We apply these results to study the inverter-based volt/var control in IEEE 1547.8

standard[73], and discuss how to set the parameters for the proposed control functions

(Section 4.4). The optimization-based model not only provides a way to characterize

the equilibrium and establish the convergence of the local volt/var control, but also

suggests a principled way to engineer the control. New design goals such as fairness

and economic efficiency can be revised by engineering the global objective function

in the optimization problem; and new control schemes with better dynamical prop-

erties can be designed based on various optimization algorithms, e.g., the gradient

algorithms.

4.2 Network model and local voltage control

Consider a tree graph G = {N ∪{0},L} that represents a radial distribution network

consisting of n + 1 buses and a set L of lines between these buses. Bus 0 is the

substation bus and is assumed to have a fixed voltage. Let N := {1, . . . , n}. For each

bus i ∈ N , denote by Li ⊆ L the set of lines on the unique path from bus 0 to bus i, pci

and pgi the real power consumption and generation, and qci and qgi the reactive power

consumption and generation, respectively. Let vi be the magnitude of the complex

voltage (phasor) at bus i. For each line (i, j) ∈ L, denote by rij and xij its resistance

and reactance, and Pij and Qij the real and reactive power from bus i to bus j,

respectively. Let `ij denote the squared magnitude of the complex branch current

(phasor) from bus i to bus j. These notations are summarized in Table 4.1. Note

that a quantity without subscript is usually a vector with appropriate components

defined earlier, e.g., v := (vi, i ∈ N ), qg := (qgi , i ∈ N ).
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Table 4.1: Notations.

t time index, t ∈ T := {1, . . . , T}
N set of buses excluding bus 0, N := {1, ..., n}
L set of power lines
Li set of the lines form bus 0 to bus i
pci , q

c
i real, reactive power consumption at bus i

pgi , q
g
i real, reactive power generation at bus i

Pij, Qij real and reactive power flow from i to j
rij, xij resistance and reactance of line (i, j)
Vi complex voltage at bus i
vi vi := |Vi|2, i ∈ N
Iij complex current from i to j
`ij `i := |Iij|2, (i, j) ∈ L
β(j) ⊂ N Set of all descendants of bus j, β(j) = {i|Lj ⊆ Li}
x+ positive part, x+ = max {0, x}
[x]ba [x]ba = x+ (a− x)+ − (x− b)+

λmax the maximum eigenvalue

4.2.1 Linearized branch flow model

We adopt the following branch flow model introduced in [44, 70] (called DistFlow

equations there) to model a radial distribution system:

Pij = pcj − p
g
j +

∑
k:(j,k)∈L

Pjk + rij`ij, (4.1a)

Qij = qcj − q
g
j +

∑
k:(j,k)∈L

Qjk + xij`ij, (4.1b)

v2
j = v2

i − 2 (rijPij + xijQij) +
(
r2
ij + x2

ij

)
`ij, (4.1c)

`ijvi = P 2
ij +Q2

ij. (4.1d)

Following [43] we assume `ij = 0 for all (i, j) ∈ L in (4.1). This approximation

neglects the higher order real and reactive power loss terms. Since losses are typically

much smaller than power flows Pij and Qij, it only introduces a small relative error,

typically on the order of 1%. We further assume that vi ≈ 1 so that we can set

v2
j −v2

i = 2(vj−vi) in equation (4.1c). This approximation introduces a small relative

error of at most 0.25% (1%) if there is a 5% (10%) deviation in voltage magnitude.
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With the above approximations the model (4.1) simplifies to the following linear

model [43]:

Pij =
∑
k∈β(j)

(pck − p
g
k) ,

Qij =
∑
k∈β(j)

(
qcj − q

g
j

)
,

vi − vj = rijPij + xijQij

where β(j) is the set of all descendants of node j including node j itself, i.e., β(j) =

{i|Lj ⊆ Li}. This yields an explicit solution for vi in terms of v0 (which is given and

fixed):

v0 − vi =
∑

(j,k)∈Li

rjkPjk +
∑

(j,k)∈Li

xjkQjk

=
∑

(j,k)∈Li

rjk

 ∑
h∈β(k)

(pch − p
g
h)

+
∑

(j,k)∈Li

xjk

 ∑
h∈β(k)

(qch − q
g
h)


=
∑
j∈N

(
pcj − p

g
j

) ∑
(h,k)∈Li∩Lj

rhk

+
∑
j∈N

(
qcj − q

g
j

) ∑
(h,k)∈Li∩Lj

xhk


=
∑
j∈N

Rij

(
pcj − p

g
j

)
+
∑
j∈N

Xij

(
qcj − q

g
j

)
where

Rij :=
∑

(h,k)∈Li∩Lj

rhk,

Xij :=
∑

(h,k)∈Li∩Lj

xhk (4.2)

Figure 4.1 gives an illustration of Li ∩ Lj for two arbitrary buses i and j in



91

Figure 4.1: Li ∩Lj for two arbitrary buses i, j in the network and the corresponding
mutual voltage-to-power-injection sensitivity factors Rij, Xij

a radial network and the corresponding Rij and Xij
1. Define a resistance matrix

R = [Rij]n×n and a reactance matrix X = [Xij]n×n. Both matrices are symmetric.

Using the matrices R and X the linearized branch flow model can be summarized

compactly as

v = v0 +R(pg − pc) +X(qg − qc),

where v0 = (v0, . . . , v0) is an n-dimensional vector. In this chapter we assume

that v0, p
c, pg, qc are given constants. The only variables are (column) vectors v :=

(v1, . . . , vn) of squared voltage magnitudes and qg := (qg1 , . . . , q
g
n) of reactive powers.

Let ṽ = v0 +R(pg − pc)−Xqc, which is a constant vector. For notational simplicity

in the rest of the chapter we will ignore the superscript in qg and write q instead.

Then the linearized branch flow model reduces to the following simple form:

v = Xq + ṽ. (4.3)

The following result is important for the rest of this chapter.

Lemma 2. The matrices R and X are positive definite.

Proof. The proof will use the fact that the values of resistances and reactances of

power lines in the network are all positive. Here we give a proof for the reactance

matrix X, and exactly the same argument applies to the resistance matrix R.

1Since

Rij =
dvi
dpgj

= − dvi
dpcj

,

Xij =
dvi
dqgj

= −dvi
dqcj

,

we refer to Rij , Xij as the mutual voltage-to-power-injection sensitivity factors.
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We prove by induction on the number k of buses in the network, excluding bus 0

(the root bus). The base case of k = 1 corresponds to a two-bus network with one

line. Here X is obviously a positive scalar that is equal to the reactance of the line

connecting the two buses.

Suppose that the theorem holds for all k ≤ n. For the case of k = n + 1 we

consider two possible network topologies as shown in Figure 4.2:

(a) Case1: degree of bus 0
is greater than 1

(b) Case 2: degree of bus 0
is 1

Figure 4.2: Two possible network structures

Case 1: bus 0 is of degree greater than 1. Split the network into two different

trees rooted at bus 0, denoted by T1 and T2, each of which has no more than n buses

excluding bus 0. Denote by Y and Z, respectively, the reactance matrices of T1 and

T2. By induction assumption Y and Z are positive definite. Note that the set Li of

lines on the unique path from bus 0 to bus i must completely lie inside either T1 or

T2, for all i. Therefore, by definition (4.2), the reactance matrix X of the network

has the following block-diagonal form:

Xij =


Yij, i, j ∈ T1

Zij, i, j ∈ T2

0, otherwise

⇒ X =

 Y 0

0 Z

 .

Since Y and Z are positive definite, so is X.

Case2: bus 0 is of degree 1. Suppose without loss of generality that bus 0 is

connected to bus 1. Denote by x the reactance of the line connecting buses 0 and

1, and T the tree rooted at bus 1. Tree T has n − 1 buses excluding bus 1 (i.e., its

root bus). Denote by Y the reactance matrix of T , and by induction assumption, Y

is positive definite. Note that, for all nodes i in the network, the set Li includes the
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single line that connects buses 0 and 1. Therefore, by definition (4.2), the reactance

matrix X has the following form:

Xij =

 Yij + x, i, j ∈ T−

x, otherwise
⇒ X =


x . . . x
...

...

x . . . x

+

 0 0

0 Y

 ,

where T− denotes the set of nodes in tree T excluding the root bus 1. It is straight-

forward to verify that, when Y is positive definite and x is positive, X is positive

definite. This concludes the proof.

4.2.2 Local volt/var control

The goal of volt/var control on a distribution network is to provision reactive power

injections q := (q1, . . . , qn) in order to maintain the bus voltages v := (v1, . . . , vn) to

within a tight range around their nominal values vnom
i , i ∈ N . This can be modeled

by a feedback dynamical system with state (v(t), q(t)) at discrete time t. A general

volt/var control algorithm maps the current state (v(t), q(t)) to a new reactive power

injections q(t + 1). The new q(t + 1) produces a new voltage magnitudes v(t + 1)

according to (4.3). Motivated by the IEEE 1547.8 Standard [9, 10], we consider a

class of local volt/var control algorithms where each bus i makes an individual decision

qi(t+ 1) based only on its own voltage vi(t).

Definition 4.1. A local volt/var control function f : Rn → Ω is a collection of

fi : R → Ωi functions that map the current voltage vi(t) to a new local control

qi(t+ 1):

qi(t+ 1) = fi(vi(t)), ∀i ∈ N , (4.4)

where Ω =
n∏
i=1

Ωi, with Ωi =
{
qi | qimin ≤ qi ≤ qi

max
}

the set of feasible reactive power

injections at each bus i ∈ N .

The control algorithm (4.4) is non-incremental as the current decision does not
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depend directly on the decision at the previous time. We obtain the following dynam-

ical system that models the non-incremental local volt/var control of a distribution

network:

D1 :

∣∣∣∣∣∣ v
(t) = Xq(t) + ṽ,

q(t+1) = f(v(t)).
(4.5)

A fixed point (v∗, q∗) of the above dynamical system represents an equilibrium

operating point of the network.

Definition 4.2. (v∗, q∗) is called an equilibrium point, or a network equilibrium, if

it is a fixed point of (4.5), i.e.,

v∗ = Xq∗ + ṽ,

q∗ = f(v∗). (4.6)

4.3 Reverse Engineering Local Voltage Control in

Radial Networks

In this section we will reverse engineer the local voltage control in radial networks

by showing that the dynamical system D1 can be seen as a distributed algorithm

for solving a well-defined convex optimization problem under appropriate conditions.

Let us start by characterizing the equilibrium points.

4.3.1 Network equilibrium

The local volt/var control functions fi(·) are usually decreasing, but are not always

strictly monotone because of the deadband in control as well as the bounds on the

available reactive power. We assume for each bus i ∈ N a symmetric deadband

around the nominal voltage (vnom
i − δi/2, vnom

i + δi/2), with δi ≥ 0. In the rest of this

chapter we will make the following two assumptions:
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A1: The local volt/var control functions fi are nonincreasing over R and strictly

decreasing and differentiable in (vi,−δi/2) and in (δi/2, vi).

A2: The derivative of the control function fi is bounded, i.e., there exists a finite αi

such that |f ′i(vi)| ≤ αi for all vi in the appropriate domain, for all i ∈ N .

This assumption means that an infinitesimal change in voltage should not lead

to a jump in reactive power.

Since fi is nonincreasing a (generalized) inverse f−1
i exists over (qmin

i , qmax
i ). In

particular, at the end points, we have

f−1
(
qmin
i

)
:= vi and f−1 (qmax

i ) := vi

and, at the origin, we assign f−1(0) = 0 in the deadband [−δi/2,+δi/2]. This may

introduce a discontinuity at qi = 0. See Figure 4.3 for an example fi and Figure 4.4

for its inverse f−1
i .

Define a cost function for each bus i ∈ N :

Ci(qi) := −
ˆ qi

0

f−1
i (q) dq.

This function is convex since f−1
i is decreasing. Then, given any vi(t), qi(t + 1) in

(4.4) is the unique solution of a simple distributed optimization:

qi(t+ 1) = argmin
qi∈Ωi

Ci(qi) + qivi(t), (4.7)

i.e., (4.4) and (4.7) are equivalent specification of qi(t+ 1)2.

2They are equivalent specifications even if vi(t)− vnormi falls inside the deadband, i.e., if |vi(t)−
vnormi | < δi/2. Under this situation, the set of subgradients of Ci(qi) + qi(vi(t)− vnomi ) at qi = 0[

−δi
2

+ (vi(t)− vnormi ) ,
δi
2

+ (vi(t)− vnormi )

]
contains 0, which is exactly the optimality condition at qi = 0, and hence qi(t + 1) = 0. In the
following we ignore such subdifferentiability issue with the understanding that subgradients should
be used in place of gradients where functions are not differentiable.
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Now let us define the function F : Ω→ R:

F (q) := C(q) +
1

2
qTXq + qT ṽ

where C(q) =
∑

i∈N Ci(qi) and ṽ := ṽ − vnorm, and the global optimization problem:

min
q∈Ω

F (q). (4.8)

Theorem 4.1. Suppose A1 holds. Then there exists a unique equilibrium point.

Moreover a point (v∗, q∗) is an equilibrium if and only if q∗ is the unique optimal

solution of (4.8) and v∗ = Xq∗ + ṽ.

Proof. From Lemma 2 the matrix X is positive definite. This implies that the objec-

tive function F (q) is strictly convex. Hence the first order optimality condition for

(4.8) is both necessary and sufficient; moreover (4.8) has a unique optimal solution.

We now relate it to the equilibrium point.

The gradient of F is the (column) vector

∇F (q) = ∇C(q) +Xq + ṽ

where, from the definition of Ci(qi),

∇C(q) =
[
−f−1

1 (q1) . . . − f−1
n (qn)

]T
.

Hence the first order optimality condition for (4.8) is:

q∗i = fi (Xq
∗ + ṽ) .

Hence a point (v∗, q∗) is an equilibrium if and only if q∗ solves (4.8) and v∗ = Xq∗+ ṽ.

The existence and uniqueness of the optimal solution of (4.8) then implies that of the

equilibrium (v∗, q∗).
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With v = Xq + ṽ, the objective can be written as F (q, v) = C(q) + 1
2
vTX−1v +

1
2
ṽTX−1ṽ. Note that the last term is a constant. Therefore the local volt/var con-

trol D1 tries to achieve an optimal trade-off between minimizing the cost 1
2
(v −

vnom)TX−1(v − vnom) of voltage deviation and minimizing the cost C(q) of reactive

power provisioning.

4.3.2 Dynamics

We now study the dynamic properties of local volt/var control D1.

Theorem 4.2. Suppose A1–A2 hold. if

C1 : A−1 := diag

(
1

αi

)
� X, (4.9)

i.e., if the matrix diag
(
α−1
i

)
−X is positive definite, then local volt/var control dynamic

D1 converges to the unique equilibrium point (v∗, q∗).

Proof. Recall that C(q) =
∑

i∈N Ci(qi). Its Hessian

∇2C(q) = diag

(
−∂f

−1
i (qi)

∂qi

)
.

By assumptions A1–A2 we have

∇2C(q) � diag

(
1

αi

)
. (4.10)
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By the second order Taylor expansion,

F (q(t+ 1))

= C(q(t+ 1)) +
1

2
qT (t+ 1)Xq(t+ 1) + qT (t+ 1)ṽ

= C(q(t)) + (∇C(q(t+ 1)))T (q(t+ 1)− q(t))

−1

2
(q(t+ 1)− q(t))T∇2C(q̃)(q(t+ 1)− q(t))

+
1

2
qT (t)Xq(t) + (q(t+ 1)− q(t))TXq(t)

+
1

2
(q(t+ 1)− q(t))TX(q(t+ 1)− q(t))

+qT (t)ṽ − (q(t+ 1)− q(t))T ṽ

≤ F (q(t))

+(∇C(q(t+ 1)) +Xq(t) + ṽ)T (q(t+ 1)− q(t))

−1

2
(q(t+ 1)− q(t))T

(
diag

(
α−1
i

)
−X

)
(q(t+ 1)− q(t))

≤ F (q(t))

−1

2
(q(t+ 1)− q(t))T

(
diag

(
α−1
i

)
−X

)
(q(t+ 1)− q(t)),

(4.11)

where q̃ ∈ {q ∈ Ω | q = θq(t) + (1− θ)q(t+ 1), 0 ≤ θ ≤ 1}, the first inequality follows

from (4.10), and the last inequality follows from (4.7).

Since diag
(
α−1
i

)
� X, the second term in (4.11) is strictly negative as long as

q(t + 1) 6= q(t) and zero only if q(t + 1) = q(t). Since the fixed point to dynamic D1

is unique by Theorem 4.1, q(t+ 1) = q(t) can only occur at the unique fixed point q∗

(with v∗ = Xq∗ + ṽ).

Thus we have shown the following:

• F (q) ≥ F (q∗) with equality if and only if q = q∗ by Theorem 4.1,

• F (q(t+ 1)) ≤ F (q(t)) with equality if and only if q(t+ 1) = q(t) = q∗,

i.e., F is a discrete-time Lyapunov function for D1. Moreover one can extend the

domain of each f−1
i from [qmin

i , qmax
i ] to R in such a way that the above properties
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hold in the entire space and F is radially unbounded. The Lyapunov stability theorem

then implies that q∗ is globally asymptotically stable.

SinceX is not only a positive definite matrix but also a positive matrix, diag(
∑

j∈N Xij) �

X. This leads to a sufficient condition for the convergence of the local volt/var control.

Corollary 3. Suppose A1–A2 hold. If for all i ∈ N

αi
∑
j

Xij < 1, (4.12)

then local volt/var control D1 converges to the unique equilibrium point (v∗, q∗). More-

over, it converges exponentially fast to the equilibrium.

Proof. By condition (4.12), diag
(
α−1
i

)
� diag

(∑
j∈N Xij

)
. Since X is a positive

definite as well as positive matrix, diag
(∑

j∈N Xij

)
−X is diagonally dominant with

non-negative diagonal entries, and is thus positive semidefinite. Thus diag
(
α−1
i

)
�

X. By Theorem 4.2, D1 converges to the equilibrium point (v∗, q∗). Now consider

the equivalent system to the dynamic D1:

q(t+ 1) = f(Xq(t) + ṽ) =: g(q(t)).

We have

∂g

∂q
= diag(f ′i(vi))X

with vi :=
∑

j Xijqj + ṽi. Condition (4.12) implies

∥∥∥∥∂g∂q
∥∥∥∥
∞

< 1,

where the induced matrix norm ‖ · ‖∞ is the maximum row sum. Hence

‖g(q)− g(q̂)‖∞ ≤
∥∥∥∥∂g∂q

∥∥∥∥
∞
· ‖q − q̂‖∞ < ‖q − q̂‖∞,
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i.e., g is a contraction. This implies that (v(t), q(t)) converges exponentially fast to

the unique equilibrium point of D1.

The following result is immediate.

Corollary 4. if max{αi} < 1
λmax(X)

where λmax denotes the largest eigenvalue, then

local volt/var control D1 converges to the unique equilibrium point (v∗, q∗).

Proof. If max{αi} < 1
λmax(X)

, we have diag
(

1
αi

)
� λmax(X)I � X. The result follows

from Theorem 4.2.

Notice that αi can be seen as a metric for the “aggressiveness” of the voltage

control: a larger αi value corresponds to a more aggressive response to the voltage

deviation. Theorem 4.2 (and Corollary 4) implies that, in order to ensure convergence,

the voltage control cannot be too aggressive. Intuitively, a too aggressive response

will lead to overshoot in the control and thus oscillation.

Remark 4.1. We have reverse-engineered the local volt/var control D1, by showing

that it is a distributed algorithm for solving a convex global optimization problem. The

optimization based model (4.8) not only provide a way to characterize the equilibrium

and establish the convergence of the local volt/var control, but also suggests a prin-

cipled way to engineer the control. New design goals such as fairness and economic

efficiency can be revised by engineering the global objective function in (4.8); and new

control schemes with better dynamical properties can be designed based on various

optimization algorithms, e.g., the gradient algorithms.

4.4 Case study: Inverter Control in IEEE 1547.8

A particularly interesting example control function is the piecewise linear droop con-

trol in figure 4.3 , which is proposed in the latest draft of the new IEEE 1547.8

Standard [73]. This control algorithm is incremental as at each time the reactive

power is “gradually” adjusted upon the provisioning at the previous time. It is also

distributed, since the reactive power provisioning decision at each node i ∈ N depends



101

only on the current provisioning and voltage at node i. We now apply the results of

Section 4.3 to study this local inverter-based volt/var control algorithm and discuss

the parameter setting for the proposed functions.

4.4.1 Reverse engineering 1547.8

The IEEE 1547 is currently being extended by the standards working group (IEEE

1547.8) to specify how to use inverters to assist in power quality control by adapting

their reactive power generation. The methods being discussed in the latest draft [73]

are:

1. Fixed power factor: the reactive power generation is directly proportional to

the real power generation. This includes the traditional mode of operation with

unity power factor where inverters are not allowed to inject or absorb reactive

power under normal operating conditions.

2. Variable power factor: the reactive power generation depends not only on their

active power output but also to Xii/Rii ratio at the point of connection.

3. Voltage-based reactive power control: an inverter monitors its terminal voltage

and sets its reactive power generation based on a predefined volt-var curve.

A particularly interesting example control function is the proposed piecewise linear

droop control in this document [73]:

fi(vi) :=

[
−αi

(
vi − vnom

i − δi
2

)+

+ αi

(
−vi + vnom

i − δi
2

)+
]qimax

qimin

, (4.13)

where (x)+ = max{x, 0}, and

[x]ba =


a for x ≤ a,

x for a ≤ x ≤ b,

b for b ≤ x.
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δi
2

−
δi
2

vi

vi

qi
min

qi
max

fi vi( )

−αi

−αi

Figure 4.3: Piecewise linear volt/var control curve discussed in the latest draft of the
new IEEE 1547.8 standard document.

They are specified by a deadband of width δi and two linear segments with a slope of

−αi for inverter i. In this equation, (δi, αi) are the local control parameters at each

bus3.

Following the procedure described in Section 4.3.1, the inverse f−1
i of the volt/var

control curve over [Qmin
i , Qmax

i ] is illustrated in Figure 4.4 and given by:

f−1
i (qi) :=


− qi
αi

+ δi
2

for qi ∈ [qmin
i , 0),

0 for qi = 0,

− qi
αi
− δi

2
for qi ∈ (0, qmax

i ],

and the corresponding cost function Ci(qi) :=
´ qi

0
f−1
i (q)dq is shown in Figure 4.5 and

is given by:

Ci(qi) =

 1
2αi
q2
i − δi

2
qi if qi ∈ [qmin

i , 0],

1
2αi
q2
i + δi

2
qi if qi ∈ [0, qmax

i ].
(4.14)

3Here we “reload” notation, and use αi to also denote the slope of the droop control function. It
does not contradict the use of αi in the condition A2.
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δi
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−
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vi
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qi
min

qi
max

fi
−1 qi( )

−
1
αi

−
1
αi

Figure 4.4: The inverse f−1
i of the volt/var control curve in Figure 4.3.

qi
min qi

max

Ci qi( )

Figure 4.5: The cost function Ci(qi) corresponding to f−1
i of Figure 4.4.



104

4.4.2 Parameter setting

It has been suggested to set the slope of the piecewise linear control function to αi =

1/Xii. This is a good choice if bus i is the only bus where the inverter-based volt/var

control is employed. To see this, suppose that in the beginning vi = ṽi > vnomi + δi/2.

Then under the control (4.13), qi = −(vi − vnomi − δi/2)/Xii and vi = Xiiqi + ṽi =

vnomi + δi/2. Therefore if the deadband δi is set to the range of the desired voltage,

the volt/var control can bring the voltage of bus i to the desired range in just one

step.

However the above choice does not take into consideration the impact of volt/var

control at other buses. In particular, when the αi = 1/Xii, condition (4.9) in Theorem

4.2 does not hold, and the local control 4.13 may not converge to the equilibrium point.

Instead, by Corollary 3, a convenient choice for αi is to set αi = (
∑

j∈N Xij + ε)−1,

where ε > 0 can be used to control the convergence speed and a larger ε leads to faster

response. Intuitively Xij characterizes the sensitivity of bus j’s voltage to reactive

power injected at bus i, so if a bus has a larger impact to other buses (including

itself), it should control its reactive power more cautiously, i.e., use a smaller αi.

On the other hand, as mentioned in Section 4.3.1, the local volt/var control tries to

achieve an optimal tradeoff between minimizing the cost 1
2
(v−vnom)TX−1(v−vnom) of

voltage deviation and minimizing the cost C(q) of reactive power provisioning. Seen

from (4.14), a smaller αi implies a steeper cost function of reactive power provisioning,

which means that a larger voltage deviation may incur at the equilibrium. So a larger

αi and smaller ε is preferred for minimizing the voltage derivation. Therefore the ε

value specifies the tradeoff between convergence speed and the voltage deviation. We

will further study the optimal choice of ε and αi in future work.

Seen from (4.14), a smaller deadband δi means a smaller marginal cost in reactive

power provisioning and thus a smaller cost in reactive power provisioning. Intuitively,

this implies that the smaller the deadband δi, the more bus i is willing/active to

provision reactive power in order to achieve a narrower range of desired voltage.

The above discussion on parameter choice is based on the dynamical properties
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of the local volt/var control, as well as the impact of bus i’s choice on itself; e.g.,

if the control at a bus has a smaller impact on itself or if a bus wants to achieve a

narrower voltage range, it should be more active in reactive power provisioning. We

can also set parameters to balance the contribution of a bus to the network versus

its gain. For example, a larger Xii means bus i can help more with regulating the

voltages at other buses, so it may have a tighter range of desired voltage and set a

smaller deadband. A fair choice for the deadband would be δi ∝ 1/Xii.

4.5 Conclusion

We have studied a general class of local volt/var control schemes where the control

decision on reactive power at a bus depends only on the voltage of that bus. By

interpreting the resulting feedback dynamical system as a distributed algorithm for

solving a convex global optimization problem, we have shown that the network has

a unique equilibrium point. Moreover, the objective function serves as a Lyapunov

function, leading to a simple condition that guarantees exponential convergence. The

optimization based model also suggests a principled way to engineer the control. We

have applied these results to the inverter-based volt/var control in the IEEE 1547.8

standard, and discuss how to set the parameters for the proposed control functions.
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Chapter 5

Incremental Local Voltage Control
Algorithms

5.1 Introduction

The reverse-engineered optimization based model in (4.8) provides a way to charac-

terize the equilibrium and establishes the convergence of the local volt/var control,

as shown in Theorems 4.1 – 4.2. It also suggests a principled way to engineer the

control. New design goals such as fairness and economic efficiency can be revised

by engineering the objective function in (4.8); and new control schemes with better

dynamical properties can be designed based on various optimization algorithms, e.g.,

the gradient algorithm.

In particular, the convergence condition (4.9) is hard to verify in practice for two

reasons. First, it is a computationally demanding problem to verify a linear matrix

inequality of potentially very large dimension. Second, matrix X depends on the

reactance of every line in the network, which is practically hard to obtain. More-

over, even if you can verify the condition (4.9), it is rather restrictive in constraining

“allowable” control functions, and the existing control schemes may not satisfy this

condition. Indeed, it has been observed in the literature, e.g., [6], that in practical

circumstances the droop-based control scheme, a commonly adopted non-incremental

voltage control [73], can lead to undesirable oscillatory behaviors even in the case

of a single inverter unit. This motivates us to forward-engineer the local voltage
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control and apply the sub-gradient method to design an incremental voltage control

algorithm that demands less restrictive condition for convergence.

Even though the sub-gradient based voltage control has less restrictive conver-

gence condition, it has a high implementation complexity because of the need to

choose the proper sub-gradient direction and to compute the inverse of the control

function. Therefore, we follow up by proposing a pseudo-gradient based voltage con-

trol algorithm that not only admits a less restrictive convergence condition but also

has a low implementation complexity. We show that the dynamical system with the

new voltage control algorithm solves the same optimization problem and gives the

condition on the stepsize under which the system converges. We further compare all

the three voltage control algorithms analytically, as well as numerically based on a real

world distribution feeder in Southern California with multiple large PV generation

units through simulations.

5.2 An incremental control algorithm

As mentioned in the above, for a given optimization problem, there may exist different

optimization algorithms. In this subsection, we will apply the (sub)gradient method

to the problem (4.8) to design a new voltage control algorithm:

qi(t+ 1) =

[
qi(t)− γ

∂F (q)

∂qi

]qmax
i

qmin
i

, (5.1)

where γ > 0 is the stepsize, ‘[ ]ab ’ denotes the projection onto [a, b], and

∂F (q)

∂qi
=



C
′
i(qi(t)) + vi(t) if qi(t) 6= 0

0 if qi(t) = 0 , − δ
2
≤ vi(t) ≤ δ

2

− δ
2

+ vi(t) if qi(t) = 0 , vi(t) >
δ
2

δ
2

+ vi(t) if qi(t) = 0 , vi(t) < − δ
2

. (5.2)

The above control algorithm is incremental as at each time the reactive power is

“gradually” adjusted upon the provisioning at the previous time. It is also distributed,
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since the reactive power provisioning decision at each node i ∈ N depends only on

the current provisioning and voltage at node i.

We thus obtain the following dynamical system:

D2 :

∣∣∣∣∣∣∣
v(t) = Xq(t) + ṽ,

q
(t+1)
i =

[
qi(t)− γ ∂F (q)

∂qi

]qmax
i

qmin
i

.
(5.3)

The following result is immediate.

Theorem 5.1. Suppose A1 holds. Then there exists a unique equilibrium point for

the dynamical system D2. Moreover, a point (v∗, q∗) is an equilibrium if and only if

q∗ is the unique optimal solution of problem (4.8) and v∗ = Xq∗ + ṽ.

5.2.1 Convergence

We now analyze the convergence of the dynamical system D2.

Theorem 5.2. Suppose A1 holds. If the stepsize γg satisfies

C2 : γg <
2

λmax(∇2C(q) +X)
, (5.4)

where λmax denotes the maximum eigenvalue, then the dynamical system D2 con-

verges to the unique equilibrium.

Proof. Consider first the case when qi(t) 6= 0, ∀i ∈ N . By the second order Taylor

expansion,

F (q(t+ 1))

= F (q(t)) + (∇F (q(t)))T (q(t+ 1)− q(t))

+
1

2
(q(t+ 1)− q(t))T (∇2C(q̃) +X)(q(t+ 1)− q(t)), (5.5)

where q̃ = θq(t) + (1 − θ)q(t + 1) for certain θ ∈ [0, 1]. By Projection Theorem[74],
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we have (∇F )T (q(t+ 1)− q(t)) ≤ − 1
γg
||q(t+ 1)− q(t)||2, which leads to

F (q(t+ 1))

≤ F (q(t))− 1

γg
||q(t+ 1)− q(t)||2

+
1

2
(q(t+ 1)− q(t))T (∇2C(q̃) +X)(q(t+ 1)− q(t))

= F (q(t))

+(q(t+ 1)− q(t))T (− 2

γg
I +∇2C(q̃) +X)(q(t+ 1)− q(t)). (5.6)

When the condition (5.7) holds, − 2
γg
I + ∇2C(q̃) + X is negative definite, and thus

the second term in (5.6) is strictly negative as long as q(t+ 1) 6= q(t) and zero only if

q(t + 1) = q(t). So, F (q(t + 1)) ≤ F (q(t)) with the equality if and only if q(t + 1) =

q(t). Since the equilibrium of the dynamical system D2 is unique by Theorem 5.1,

q(t + 1) = q(t) can only occur at the unique equilibrium q∗ (with v∗ = Xq∗ + ṽ).

Thus, F (q(t+1)) ≤ F (q(t)) with the equality if and only if q(t+1) = q(t) = q∗. Also,

notice that F (q) ≥ F (q∗) with equality if and only if q = q∗. So, F is a discrete-time

Lyapunov function for D2, and the Lyapunov stability theorem then implies that q∗

is globally asymptotically stable [75].

Consider now the case when qi(t) = 0 and thus Ci(qi(t)) in the function F (q(t))

is not differentiable for some i ∈ N . The complication here is to use well-defined

derivatives in the Taylor expansion. We have three sub-cases; see equation (5.2):

1. vi(t) > δ/2: The subgradient in D2 is chosen as ∂F
∂qi

= − δ
2

+ vi(t) > 0, so

qi(t + 1) = −γg ∂F∂qi < 0. We can use the left derivative C ′i(0
−), which is well-

defined, in the Taylor expansion.

2. vi(t) < −δ/2: The subgradient in D2 is chosen as ∂F
∂qi

= δ
2

+ vi(t) < 0, so

qi(t+ 1) = −γg( δ2 + vi(t)) > 0. We can use the right derivative C ′i(0
+), which is

well-defined, in the Taylor expansion.

3. −δ/2 ≤ vi(t) ≤ δ/2: The subgradient in D2 is chosen as ∂F
∂qi

= 0. So, qi(t +

1) = qi(t) = 0. In this case, the Taylor expansion on Ci is not needed, and
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F (q(t+ 1)) ≤ F (q(t)) still holds.

With the above choice of the derivatives in the Taylor expansion, we can similarly

show that F is a discrete-time Lyapunov function for D2 and q∗ is globally asymp-

totically stable.

Notice that for any control functions fi (that satisfies A1), the convergence condi-

tion (5.7) can be always satisfied by a properly chosen stepsize γg. Even though the

range of γg depends on the control functions, the condition (5.7) does not constrain

the allowable control functions. In contrast, the convergence condition (4.9) for the

non-incremental voltage control (4.4) does constrain the allowable control functions

fi.

For the piecewise linear droop control functions (4.13), we have the following result

on convergence.

Corollary 5. Suppose A1 holds. If the stepsize γg satisfies

γg <
2

λmax(diag( 1
αi

) +X)
, (5.7)

then the dynamical system D2 with the piecewise linear droop control functions (4.13)

converges to the unique equilibrium.

Proof. For the piecewise linear control functions (4.13), ∇2C(q) = diag( 1
αi

). The

result follows from Theorem 5.2.

Recall that αi can be seen as a metric for the “aggressiveness” of the voltage

control. Theorem 5.2 (and Corollary 5) implies that a more aggressive voltage control

allows a larger range of the stepsize for the convergence. This is different from the

convergence of the non-incremental voltage control (4.4) where the control cannot be

too aggressive. On the other hand, a bound (5.7) on the “allowable” stepsize also

means that the control cannot be too aggressive.
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Figure 5.1: Circuit diagram for SCE distribution system.

Table 5.1: Network of Fig. 5.1: Line impedances, peak spot load KVA, capacitors,
and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Capacity
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MW

1 2 0.259 0.808 8 34 0.244 0.046 18 19 0.198 0.046 11 0.67 28 0.27
2 3 0.031 0.092 8 36 0.107 0.031 22 26 0.046 0.015 12 0.45 29 0.2 2 1
3 4 0.046 0.092 8 30 0.076 0.015 22 23 0.107 0.031 13 0.89 31 0.27 26 2
3 13 0.092 0.031 8 9 0.031 0.031 23 24 0.107 0.031 15 0.07 33 0.45 29 1.8
3 14 0.214 0.046 9 10 0.015 0.015 24 25 0.061 0.015 16 0.67 34 1.34 31 2.5
4 17 0.336 0.061 9 37 0.153 0.046 27 28 0.046 0.015 18 0.45 35 0.13 12 3
4 5 0.107 0.183 10 11 0.107 0.076 28 29 0.031 0 19 1.23 36 0.67
5 21 0.061 0.015 10 41 0.229 0.122 30 31 0.076 0.015 20 0.45 37 0.13
5 6 0.015 0.031 11 42 0.031 0.015 30 32 0.076 0.046 21 0.2 39 0.45
6 22 0.168 0.061 11 12 0.076 0.046 38 39 0.107 0.015 23 0.13 40 0.2
6 7 0.031 0.046 14 16 0.046 0.015 38 40 0.061 0.015 24 0.13 41 0.45
7 27 0.076 0.015 14 15 0.107 0.015 43 44 0.061 0.015 25 0.2 Vbase = 12.35 KV
7 8 0.015 0.015 17 18 0.122 0.092 43 45 0.061 0.015 26 0.07 Sbase = 1000 KVA
8 35 0.046 0.015 17 20 0.214 0.046 27 0.13 Zbase = 152.52 Ω

5.3 Numerical Examples

Focusing on the piecewise linear droop control functions (4.13), we evaluate the pro-

posed incremental var/volt control algorithm (5.1) and compare it against the existing

non-incremental algorithm (4.4) on a distribution feeder of South California Edison

with a high penetration of photovoltaic (PV) generation.1

Fig. 5.1 shows a 42-bus model of this feeder, where bus 1 is the substation and

five photovoltaic generators are integrated at buses 2, 12, 26, 29, and 31. As we aim

1This feeder is a modified version of the original feeder published in [2], where zero impedance
lines have been removed, and also the location and capacity of the PV generators have changed for
demonstration purpose.
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to study the volt/var control through PV inverters, all shunt capacitors are assumed

to be off. Table 5.1 contains the network data including the line impedance, the peak

MVA demand of loads, and the capacity of the PV generators. It is important to note

that all studies are run with a full AC power flow model (not the linearized model).

Droop parameters at voltage controlling nodes are such that the deadband is from

0.98p.u. to 1.02p.u., and the hard voltage thresholds are v̄i = 0.97p.u., vi = 0.97p.u. on

all inverters.

5.3.1 Case of a single inverter

We first provide a simple example to illustrate the potential instability of the non-

incremental voltage control scheme (4.4). In the feeder in Fig. 5.1, assume that all

loads are at 80% of their peak value with a constant 0.9 Power Factor (PF), i.e., a

total demand of 8.24MW and 3.99MV ar. We further assume that all five PV generators

are running at 60% of their nameplate capacity with PF=1, except for the generator

at bus 12, which is enabled to inject/absorb reactive power within a range of PF

∈ [0.8, 1], corresponding to qmax12 = 1.35MV ar. In this setup, it is observed that the

reactive power output of the inverter at bus 12 oscillates between 0.18 and 1.35Mvar

(dash line in Fig. 5.2a), corresponding to a voltage oscillation between 0.967 and

0.979p.u. (dash line in Fig. 5.2b). In contrast, when the proposed incremental control

algorithm (5.1) with γ = 20 is applied, there is no oscillation and the system converges

very quickly to the equilibrium point of 0.85MV ar, 0.974p.u. at bus 12 (solid lines in

Fig. 5.2a, 5.2b).

5.3.2 Multiple inverter interactions

As demonstrated above, the non-incremental voltage control (4.4) can potentially be

unstable even with just a single inverter. With multiple inverters operating simulta-

neously in a distribution feeder, instability is even more of a serious concern. To see

this, suppose that all five PV units of the feeder in Fig. 5.1 are active in controlling

their inverters. Now let all spot loads be at their peak value with a constant 0.9 PF,
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(a)

(b)

Figure 5.2: Dynamics in reactive power injection and voltage magnitude for the case
of a single inverter.
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Figure 5.3: Oscillation in voltage profile when all inverters operate.

and let the PV units be running at 70% of their capacity, all enabled to control their

reactive power output within a range of PF ∈ [0.8, 1]. Again, as shown in Fig. 5.3,

it is observed that in this case the non-incremental control scheme fails to converge,

causing the voltage profile of the feeder to oscillate around the equilibrium (dashed

blue line). Also, notice that, when the control at an inverter oscillates, it causes

oscillation at all buses except for the substation bus.

In contrast, with the incremental voltage control algorithm (5.1) there is no os-

cillation and the system converges with appropriate stepsizes, as shown in Fig. 5.8.

We see that with “small” enough stepsize γ, the proposed incremental voltage con-

trol scheme converges to the equilibrium; and the larger the stepsize, the faster the

convergence, which is a typical characteristics of the gradient algorithm. Also notice

that, as shown in Fig. 5.8(d), if the stepsize is too large, the system will oscillate. In

practice, we can start with an analytical estimate of the bound on the stepsize (5.7),

and then run some numerical experiments around the bound to choose a stepsize that

achieves a good tradeoff between convergence speed and robustness.

5.4 pseudo-gradient based local voltage control

Despite the condition C2 being less restrictive, the above incremental voltage control

based on the (sub)gradient algorithm incurs lots of implementation complexity. The

(sub)gradient (5.2) requires tracking the value of vi with respect to ±δi/2, and takes
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(a) γ = 10: fast convergence (b) γ = 1

(c) γ = 0.1: slow convergence (d) γ = 50: diverges

Figure 5.4: Convergence of the proposed incremental voltage control with different
stepsizes.

different forms accordingly. Furthermore, it requires the computation of the inverse

of the control function fi, which is computationally expensive for a general control

function. This high implementation complexity of the gradient algorithm motivates

us to seek an incremental voltage control algorithm with less restrictive conditions on

the control function as well as low implementation complexity. In the next section,

we will present such a control algorithm based on the pseudo-gradient algorithm for

the optimization problem ((4.8)) and study its equilibrium and dynamical properties.

Consider the following incremental local voltage control based on the pseudo-
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gradient algorithm for solving the optimization problem (4.8):

qi(t+ 1) = [(1− γp)qi(t) + γpfi(vi(t))]
qmax
i

qmin
i

=
[
qi(t)− γp

(
qi(t)− fi(vi(t))

)]qmax
i

qmin
i

, (5.8)

where γp > 0 is the stepsize or the weight. With the given control functions fi,

the implementation of the algorithm (5.8) is straightforward and does not have any

implementation issues that the (sub)gradient based control algorithm D2 has. It is

also interesting to notice that, when the weight γp = 1, we recover the non-incremental

voltage control in (4.5).

With the control (5.8), we obtain the following dynamical system:

D3 :

∣∣∣∣∣∣∣
v(t) = Xq(t) + ṽ,

qi(t+ 1) =
[
qi(t)− γp

(
qi(t)− fi(vi(t))

)]qmax
i

qmin
i

.
(5.9)

The dynamical system D3 has the same equilibrium condition as the dynamical sys-

tem D1. The following result is immediate.

Theorem 5.3. Suppose A1 holds. There exists a unique equilibrium point for the

dynamical system D3. Moreover, a point (v∗, q∗) is an equilibrium if and only if q∗ is

the unique optimal solution of problem (4.8) and v∗ = Xq∗ + ṽ.

We now analyze the convergence of the dynamical system D3.

Lemma 3. Suppose A1− A2 hold. With any qa, qb ∈ [qmini , qmaxi ], we have

(
(−f−1

i (qa))− (−f−1
i (qb))

)
(qa − qb) ≥

1

αi
(qa − qb)2. (5.10)

Proof. By the condition A2, we have the bound on the derivative of the control

function |f ′i(vi)| ≤ αi, and thus the bound for its inverse |(−f−1
i (qi))

′| = | 1
f ′(f−1(qi))

| ≥
1
αi

.

If qa and qb are both positive (or both negative), then the corresponding va =

f−1
i (qa) and vb = f−1

i (qb) are both smaller than vnomi −δi/2 (or larger than vnomi +δi/2).
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We thus have |(−f−1
i (qa))−(−f−1

i (qb))| ≥ 1
αi
|qa−qb|. Equality is achieved if the linear

control function (4.13) is used. On the other hand, if one of qa and qb is positive and

the other is negative, then as long as δ 6= 0 we have |(−f−1
i (qa)) − (−f−1

i (qb))| >
1
αi
|qa−qb|. Combined with the monotonicity of f−1, the inequality (5.10) follows.

Theorem 5.4. Suppose A1-A2 hold. If the stepsize γp satisfies the following condition

C3:

C3 : γp <
2

max{αi}λmax(∇2C(q) +X)
, (5.11)

then the dynamical system D3 converges to its unique equilibrium.

Proof. We first consider the case when qi(t) 6= 0, ∀i, i.e., when objective function F

is differentiable. By the second-order Taylor expansion, we have

F (q(t+ 1))

= F (q(t))− γp
∑
i

(−f−1
i (qi(t)) + vi(t))(qi(t)− fi(vi(t)))

+
γ2
p

2
(q(t)− f(v(t)))T (∇2C(q̃) +X)(q(t)− f(v(t))),

(5.12)

where f(v(t)) :=
(
f1(v1(T )), . . . , fn(vn(t))

)T
, and q̃ = θq(t) + (1 − θ)q(t + 1) for

some θ ∈ [0, 1]. By Lemma 3, we have (−f−1
i (qi(t)) + vi(t))(qi(t) − fi(vi(t))) ≥

1
αi

(qi(t)− fi(vi(t)))2. Thus the Taylor expansion follows as

F (q(t+ 1))

≤ F (q(t)) +
1

2
(q(t)− f(v(t)))T

(γ2
p(∇2C(q̃) +X)− 2γpA

−1)(q(t)− f(v(t))).

(5.13)

When the condition C3 holds, γ2(∇2C(q̃) + X)− 2γA−1 is always negative definite.

As a result, the second term in (5.13) is always non-positive. In fact, this part is
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equal to zero if and only if q(t) = f(v(t)), or equivalently, q(t) = q(t+ 1). Therefore

F (q(t + 1)) ≤ F (q(t)), where the equality is obtained if and only if q(t + 1) = q(t).

Additionally, because of the uniqueness of the equilibrium point as shown in Theorem

5.3, F (q(t+ 1)) = F (q(t)) if and only if q(t+ 1) = q(t) = q∗. So, F can be seen as a

discrete-time Lyapunov function for the dynamical system D3, and by the Lyapunov

stability theorem, the equilibrium q∗ is globally asymptotically stable.

Next we consider the case when qi(t) = 0 for some i. For bus i with qi(t) = 0, the

dynamics, irrelevant of derivative, is still well-defined, giving qi(t+1) = γfi(vi(t)) = 0.

However, its Taylor expansion involves the derivative of Ci(q(t)), which doesn’t exist

at qi = 0. We thus assign the subgradient value for bus i as ∂F (q)
∂qi

∣∣
qi=0

= 0, and then

the proof follows similarly with this well-defined Taylor expansion, and the conclusion

holds as well.

Theorem 5.4 shows that the pseudo-gradient based local voltage control has the

same advantage as the gradient based control, as opposed to the nonincremental

voltage control; and in particular, its convergence condition does not restrict the

allowable control functions fi. We will provide more detailed comparison between

the three algorithms in the next section.

Remarks: Notice that in the pseudo-gradient algorithm it is usually assumed that

γp ≤ 1. This gives a nice interpretation of the new decision qi(t + 1) being a convex

combination of the previous decision qi(t) and the local control oi(t) = fi(v(t)) in

reactive power. However, here we do not require γp ≤ 1, as long as the condition C3

is met.

5.5 Comparative Study of Convergence Conditions

and Rates

We have presented three different local voltage control algorithms in the previous

two sections. In this section, we compare these three control schemes regarding

the corresponding convergence conditions and convergence rates. As we will see,
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the gradient and pseudo-gradient based algorithms have very close performance in

terms of convergence. So, as discussed in the previous sections, the advantage of the

pseudo-gradient based algorithm over the gradient based algorithm is its much lower

implementation complexity. However, this low implementation complexity provides

strong enough motivation for adopting the pseudo-gradient based local voltage control

in the distribution network.

5.5.1 Analytical characterization

5.5.1.1 Comparison of D3 and D1

As indicated earlier, D1 can be viewed as a special case of D3. The following result

is immediate.

Proposition 1. The non-incremental voltage control in the dynamical system D1 is

a special case of the control in D3 with the stepsize γp = 1.

As a result of Proposition 1, when the condition C1 holds, the largest stepsize

that D3 can take is no smaller than 1. On the other hand, if the condition C3 gives

a upper bound for γp that is smaller than 1, D1 will not converge.

5.5.1.2 Comparison of D3 and D2

We investigate the relationship between the dynamical systems D2 and D3, in terms

of their available ranges of the step sizes γg and γp for convergence and the convergence

speed, by looking at the descent rates of their objective value. We’ll show that D2

and D3 are very closely related, and under some circumstances equivalent.

Proposition 2. The dynamical systems D2 and D3 have the same (one-to-one cor-

responding) ranges of stepsizes γg and γp to converge, i.e., for any γp ∈ (0, Bp], there

exists a corresponding γg = max{ai}γp ∈ (0, Bg], where Bg and Bp are upper bounds

of the convergence range for D2 and D3, respectively.

Proof. The result follows from the proofs of the sufficiency of the conditions C2 and

C3 for convergence.
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Moreover, we expect similar convergence speeds, or descent rates from dynamical

systems D2 and D3.

Proposition 3. D2 and D3 have convergence speeds of the same order, when corre-

sponding stepsizes are chosen.

Proof. We pick a feasible stepsize γp for D3, and a corresponding feasible γg =

max{ai}γp for D2. By second-order Taylor expansions, we have the descent from

q(t+ 1) to q(t), i.e., F (q(t+ 1))− F (q(t)), of the pseudo-gradient algorithm as

1

2

(
q(t)− f(v(t))

)T(
γ2
p(∇C(q̃) +X)− 2γpA

−1
)(
q(t)− f(v(t))

)
, (5.14)

while that of the gradient algorithm is

1

2

(
v(t)− f−1(q(t))

)T(
γ2
g(∇C(q̃) +X)− 2γgI

)(
v(t)− f−1(q(t))

)
. (5.15)

Notice that from the proof of Lemma 3, there exists a factor of max{αi} between

(q(t)− f(v(t))) and (v(t)− f−1(q(t))), which compensates for the factor 1/max{ai}

between γp and γg. As a result, the above two decent terms are in the same order,

with the only difference coming from the gap between A and max{αi}I.

Corollary 6. D2 and D3 have identical convergence speeds if homogeneous control

functions are applied.

5.5.2 Numerical examples

We now provide some numerical examples to illustrate the difference between the

convergence conditions and rates of the three algorithms based on piecewise linear

droop control functions (4.13). The network topology (Fig. 5.1) and parameters

(TABLE 5.1) are based on a distribution feeder of South California Edison. As

shown in Fig. 5.1, Bus 1 is the actual “0” bus, and five PVs are installed on Bus 2,

12, 26, 29, and 31 respectively.2 AC power flow model is applied in our simulation,

2Unlike what is implied in the system model and its analysis, in practice we may not have control
at all buses. As a result, the convergence conditions C1, C2, and C3 need to be modified accordingly,
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and calculated with MatLab package MatPower[76], instead of the linear model we

use in the analytical characterization.

The deadband for control function is chosen to be [0.98p.u., 1.02p.u.] for all buses,

and the hard voltage threshold vi and vi in control function is designed to be a

variable, adjusted for the purpose of comparison of convergence conditions by αi =

qmaxi /(vi − δ/2).

5.5.2.1 Convergence condition

We start with observing the difference among the convergence conditions of the three

algorithms.

• We first present in Fig.5.5 that, once we design control functions and stepsize

such that convergence conditions for C2 and C3 are met, the dynamical systems

D2 and D3 converge monotonically to the same equilibrium. However, the

dynamical system D1 converges but may not monotonically.

• We then change the slope of the control function such that we have a larger A−1

(i.e., smaller αi). This will give D2 a more strict condition, and D3 a less strict

one. Resultantly, as we see in Fig.5.6(a), D2 no longer converge. However, by

simply decreasing stepsize γg, D2 can be brought back to convergence, as shown

in Fig. 5.6(b).

• Lastly, we change the slope of control function to get a smaller A−1 (i.e., larger

αi). This affects the convergence conditions for D1 and D3, while leaving that

for D2 inviolated. Similarly, D3 can be back to convergence by having a smaller

stepsize. This is shown in Fig. 5.6(c-d).

5.5.2.2 Range of the stepsize for convergence

Proposition 2 shows that the upper bounds for the stepsizes in D2 and D3 are related

with a factor max{αi}. Since max{αi} is just a bound, it is interesting to see how

based on an “effective” reactance matrix that takes into consideration non-control buses.
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Figure 5.5: D2 and D3 both converge

tight it is. For the linear control function, max{αi} = max(qmaxi /(v−δ/2)), assuming

we have universal and symmetric hard voltage threshold v − vnom = vnom − v. We

tune v such that the value of v− vnom ranges from 0.03p.u. to 0.18p.u. with granularity

of 0.01p.u., and value of max(αi) ranges from 158 to 9.84 accordingly. We examine

the largest possible stepsize max(γg) and max(γp), and compare their ratio with the

theoretical convergence boundary factor max(αi). The granularity for γg and γp is 1

and 0.05, respectively. The results in Fig.5.7 illustrates that the simulated relationship

of convergence ranges for gradient algorithm and pseudo-gradient algorithm is close to

the theoretical one, which serves well as a conservative upper bound. It supports our

analysis in Proposition 2 that these two algorithms have a one-to-one corresponding

convergence ranges for γg and γp.

5.5.2.3 Convergence rate

We observe the convergence rates under certain fixed control functions, with stepsizes

γg and γs tuned within convergence conditions.3 Since D1 is a special case for D3 with

γp = 1 and fixed convergence rate, assuming it still fits the convergence condition, we

won’t specifically involve it.

3Since simulations run under non-linear model, the boundary for stepsizes will usually be different
from that obtained under linear model. We carefully choose the values of step size so that convergence
results are still obtained.
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Figure 5.6: D2 and D3 can be brought back to convergence by changing stepsizes γg
and γp to small enough values.

We fixed the hard voltage threshold as vi = 0.92p.u., and vi = 1.08p.u., change

the stepsize until it reaches the convergence condition boundary. The results are

shown in Fig. 5.8a and 5.8b. We can see that the convergence rates for both gradient

algorithm and pseudo-gradient algorithm increase monotonically with the stepsizes

before they reach upper bounds, where oscillation of objective function value takes

place, i.e., when γg = 11, and γp = 0.6, and starts bringing down the convergence

rates. Also, both algorithms perform similarly in terms of convergence rates, with a

minimal number of steps less than 10.

5.6 Conclusion

Motivated by the oscillatory behavior of the existing non-incremental local var/volt

control schemes, we applied our reverse-engineering results of the previous chapter to
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Figure 5.8: Convergence of the gradient (left), and pseudo-gradient (right) algorithms
with different step-sizes.

design two incremental voltage control algorithms that demand less restrictive con-

dition for convergence: a sub-gradient based method, and a pseudo-gradient method

that admits lower implementation complexity. We characterize the convergence of

these two methods and compare them in terms of the convergence condition and the

convergence rate as well.
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