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Abstract

The study of codes, classically motivated by the need to communicate information reliably in the

presence of error, has found new life in fields as diverse as network communication, distributed storage

of data, and even has connections to the design of linear measurements used in compressive sensing.

But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying

an application. In this thesis, we examine several problems in coding theory, and try to gain some

insight into the algebraic structure behind them.

The first is the study of the entropy region—the space of all possible vectors of joint entropies

which can arise from a set of discrete random variables. Understanding this region is essentially the

key to optimizing network codes for a given network. To this end, we employ a group-theoretic method

of constructing random variables producing so-called “group-characterizable” entropy vectors, which

are capable of approximating any point in the entropy region. We show how small groups can be used

to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy

vectors arising from the random variables involved in linear network codes. We discuss the suitability

of these groups to design codes for networks which could potentially outperform linear coding.

The second topic we discuss is the design of frames with low coherence, closely related to finding

spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to

minimize the magnitudes of their mutual inner products. We show how to build frames by selecting

a cleverly chosen set of representations of a finite group to produce a “group code” as described by

Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group

Fourier matrix, allowing us to study and bound our frames’ coherences using character theory. We

discuss the usefulness of our frames in sparse signal recovery using linear measurements.

The final problem we investigate is that of coding with constraints, most recently motivated by the

demand for ways to encode large amounts of data using error-correcting codes so that any small loss

can be recovered from a small set of surviving data. Most often, this involves using a systematic linear

error-correcting code in which each parity symbol is constrained to be a function of some subset of the

message symbols. We derive bounds on the minimum distance of such a code based on its constraints,

and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.
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Chapter 1

Introduction

The broad intent of this thesis is to explore a set of problems in coding theory, where the term “coding

theory” is in and of itself used broadly. In the context of information theory and communications,

classical coding theory is often associated with the transmission of a message in a manner which is

robust to various types of corruption. For instance, if we were to encode a message as a length-n

vector of zeros and ones v ∈ {0, 1}n which is transmitted to a receiver, the receiver would ideally be

able to decipher the original message even if it did not correctly receive some of the n symbols. A ‘0’

may have been erased in the transmission process, or may have been incorrectly interpreted as a ‘1’

by the receiver. The classical solution to this problem is to choose n large enough so that the vectors

v corresponding to each of the possible messages can be designed to have mutually large Hamming

distance between each other, leading to the notion of an error-correcting code.

But today the term “coding theory” encompasses a wide range of problems involving both the

communication and the storage of information. For instance, the Internet has demanded efficient

protocols to transmit information from a set of sources to a group of receivers over a network, sparking

the field of network coding. In certain signal processing examples, it is desirable to encode messages

as vectors over Cn rather than the binaries, and to have these vectors have large angular separation

rather than Hamming distance. This leads to the notion of a spherical code—a set of points which are

well-spaced over a high-dimensional sphere. Spherical codes are closely connected to the problem of

constructing sets of vectors or frames with low coherence, a field which in turn has strong connections

to the construction of compressive sensing matrices for sparse signal recovery. Even classical error-

correcting codes are finding new applications, now in the storage and protection of large amounts of

information. Companies commonly have many file servers which are subject to crashes and require a

degree of redundancy in their data. More and more, these companies are moving away from naively

making multiple copies of their files in favor of encoding the data as an error-correcting code, storing

each symbol of a codeword on a different server. This can significantly reduce the number of servers
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needed to protect the files.

In what follows, we will study a handful of these problems in different ways, but our approach

will typically involve algebraic methods. Algebra is, of course, no stranger to coding theory. Indeed,

arguably one of the most famous classes of error-correcting codes is that of Reed-Solomon codes, which

are elegantly constructed subspaces of vector spaces over finite fields. As a result, many popular Reed-

Solomon decoders—the Berlekamp-Massey decoder, for instance—employ polynomial arithmetic to

correct errors in codewords. We will encounter Reed-Solomon codes in Chapter 5. But we will venture

beyond finite field arithmetic. Chapters 2, 3, and 4 will require a more general group theoretic approach

(though finite fields will certainly show up). In particular, we will use tools from group action theory

and representation theory to construct various codes with coveted properties, thereby giving us some

algebraic structural insight into the problems at hand.

1.1 Entropy Vectors and the Ingleton Inequality

A great deal of interest has been invested in determining what types of coding schemes can achieve

capacity on a network, particularly in light of the revelation by Dougherty, Freiling, and Zeger [40] that

simple linear codes are insufficient in some cases. One of the most general ways to view the network

coding problem is to consider each message sent over an edge e ∈ E of the network as a random

variable Xe, typically taking a value over a discrete or finite set of possible messages. For any network

coding protocol, we can determine the vector of joint entropies (H(Xe, e ∈ α))∅6=α⊆E ∈ R2|E|−1. This is

fittingly referred to as an entropy vector, and many quantities of interest for the network is a function

of the set of associated entropy vectors.

We call the set of all possible entropy vectors arising from n discrete random variables the entropy

region in R2n−1, denoted Γ∗n. A network with n edges enforces a set of constraints on the entropy

region, so given a quantity of interest (for example, the mutual information between a set of sources and

receivers), we can conceivably determine the optimal network code by optimizing this quantity over

the portion of Γ∗n carved out by the network. Unfortunately, Γ∗n has only been classified for n ≤ 3.

There has been some progress in understanding Γ∗n for larger n. For instance, Zhang and Yeung

showed that its closure is a convex cone [114], but Matúš [73] proved that Γ∗n is not polymatroidal for

n ≥ 4. Many have sought inner bounds on the entropy region, such as the space of linear-representable

matroidal rank functions (see Section 2.3), but even this region is only known for small values of n

(though lately new linear rank inequalities have been discovered more frequently [19, 39, 41, 42, 64]).

The entropy region still remains largely mysterious, however, so new ways of studying it are always

of interest.

In Chapter 2, we discuss a method of constructing entropy vectors from groups. Essentially,
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we fix a set of n subgroups Gi, i = 1, ..., n, of a finite group G from which we randomly draw an

element g. For each i, we define a random variable Xi by determining the coset of Gi in which g

lies. The resulting entropy vector is referred to as a group-characterizable entropy vector, and it has

been shown by Chan and Yeung [23] that any element in the closure Γ∗n can be approximated by

group-characterizable entropy vectors. This gives us a springboard to study the entropy region by

characterizing the types of entropy vectors which can arise from various finite groups.

By the same token, given an entropy inequality that is known to constrain many joint sets of

random variables, we can endeavor to design random variables which are not limited by this inequality

using group-theoretic methods. The inequality in question for us will be the Ingleton Inequality, which

is a fundamental constraint on the dimensions of four linear subspaces of a vector space. As a result,

any four random variables Xi, ‘i = 1, ..., 4, arising from a linear network code must satisfy the Ingleton

Inequality, which can be written as

h1 + h2 + h34 + h123 + h124 ≤ h12 + h13 + h14 + h23 + h24. (1.1)

While it is known that there are entropy vectors in Γ∗4 which violate the Ingleton Inequality, it is not

immediately clear how to construct random variables that produce them, or how and when they can

be incorporated into network codes.

In Chapter 2, we show how to produce Ingleton-violating group-characterizable entropy vectors

using subgroups of projective linear groups PGL(n, q) and general linear groups GL(n, q) for certain

values of n and q. Since these are matrix groups, we are able to give concrete characterizations of the

elements in each of the subgroups Gi, i = 1, ..., 4. Using the theory of group actions, we are able to

generalize our constructions to a broader class of groups, and to understand why they violate Ingleton

from a more geometric perspective. Furthermore, we broach the subject of how these groups might

arise in network codes, particularly in the form of the group network codes described in Section 2.5.

Chapter 2 is joint work with Wei Mao and Babak Hassibi, and appears in [70] and [69].

1.2 Low-Coherence Frames

In Chapters 3 and 4, we shift our focus to the construction of sets of vectors in Cm or Rm, called

frames, which have mutually small correlation between each other. The maximum magnitude of the

inner product between two frame vectors is called the coherence of the frame, and a classic problem

in frame theory is to find frames which achieve low coherence. For frames with n vectors, where

n ≤ m, this can be done by choosing a set of orthogonal vectors. Thus, in some sense, when n > m a

low-coherence frame is an approximation of a basis for a vector space. Today, some might view this
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problem as more applicable to signal estimation than coding theory since a great deal of recent study

has explored the sparse-signal recovery properties of these frames [1, 75, 80, 91]. In particular, when

taken to be the columns of a matrix they tend to have good RIP constants, and hence lend themselves

to the linear programming-based compressive sensing algorithms described in [12] and [11]. They also

have provably good performance with the One-Step Thresholding (OST) algorithm from [1].

At its core, however, this problem has its roots in coding theory. If we normalize the frame

elements, then constructing a low-coherence frame is almost equivalent to the problem of designing a

spherical code—a set of n points spread around the m-dimensional unit sphere which have mutually

large angular separation (see Fig. 1.1). Spherical codes have applications, for instance, when we wish

to encode a message as a vector in which each entry is subject to independent Gaussian noise.

Figure 1.1: Illustration of a spherical code—a set of points spaced out around the unit sphere. Ideally,
the inner product between the unit vectors corresponding to two such points should be small in
magnitude, corresponding to a large angular separation between the vectors.

Furthermore, the constructions we will present in Chapters 3 and 4 are based on the concept of

group codes presented by Slepian in the 1960s [90]. A group code is formed by taking the image of a

vector v ∈ Cm under a multiplicative group of unitary matrices U = {U1, ...,Un} ⊆ Cm×m to form

the set {Uiv}i=1,...,n. This method reduces the total number of distinct inner product magnitudes

between the frame elements from a possible
(
n
2

)
to a mere n− 1, with the inner products taking the

form v∗Uiv (ignoring the inner product corresponding to the identity matrix, which is simply the

inner product of v with itself). By choosing the group U and the vector v appropriately, we will see in

Chapter 3 that the resulting frame becomes the columns of a submatrix of the n× n Discrete Fourier
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Matrix, which (after normalizing the frame elements) takes the form

M =
1√
m


1 ωa1 ωa1·2 . . . ωa1·(n−1)

1 ωa2 ωa2·2 . . . ωa2·(n−1)

...
...

...
. . .

...

1 ωam ωam·2 . . . ωam·(n−1)

 , (1.2)

where ω = e2πi/n and ai ∈ {0, ..., n− 1} for each i.

We then show for certain values of n that by taking some care in choosing the frequencies ai, or

equivalently controlling the specific forms of the matrices Ui, we can further reduce the number of

distinct inner product magnitudes down to n−1
κ , where κ is a divisor of n− 1. The motivation behind

this is that frames of the form (1.2) are known to achieve the lowest possible coherence for given

dimensions m and n when all the mutual inner products between the frame elements have the same

magnitude. Such frames are examples of what are called Grassmanian frames, and are very important

in communications and coding theory [91]. Unfortunately, few Grassmanian frames are known, and

those that take the form of (3.18) only arise when the {ai} form a rare collection of numbers called

a difference set [110]. By reducing the number of distinct inner product magnitudes we essentially

approximate a Grassmanian frame, and as a result we are able to prove upper bounds on the coherence

of our frames which are rather tight in practice.

Our construction utilizes a group-theoretic trick to select the frequencies {ai}, and in Chapter 4 we

show that this technique can be extended to form frames by selecting a subset of rows of a generalized

group Fourier matrix, which is the natural generalization of the DFT matrix. By extending our results

to this context, we will open ourselves to a much richer set of frames which can be realized as group

codes resulting from a broader set of groups U . This will allow us to construct low-coherence frames

achieving a wider range of dimensions m × n, and to design frame vectors whose entries come from

a much smaller alphabet than those of the form (3.18). In certain cases, our frames contain only ±1

entries and are actually composed of subsets of rows from Hadamard matrices.

There are several important advantages to our frames over those constructed from popular random

methods. First, the fact that they are designed from group representations allows us to analyze the

inner products between frame elements in terms of the characters of the group. The algebraic manner

in which we select the representations facilitates the proof of some very sharp bounds on coherence.

Furthermore, it enables us to study other aspects of our frames, including their average coherence.

This quantity was described in [1] and [75] which showed that when conditions on both the usual

coherence and the average coherence are satisfied (the so called “Coherence Property” and “Strong

Coherence Property”) then the matrix M ∈ Cm×n whose columns are the frame elements can provably
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m1 m2 m3

c2 c5 c7c6c4c3c1

Figure 1.2: An example of a constrained code. Each code symbol ci is a function of only the symbols
mj to which it is connected in the bipartite graph.

be used to estimate sparse vectors x ∈ Cn from the set of measurements y = Mx, even in the presence

of added noise e ∈ Cn. More importantly, this estimation can be done quickly using the aforementioned

OST algorithm, a single-step process that involves using the largest entries of M∗y to estimate the

support of x. We will see in Chapter 4 that for our frames the average coherence can be computed

explicitly, allowing us to determine rather precise regimes under which the Coherence Property and

Strong Coherence Property are satisfied.

The work in Chapter 3 appears in [96–100]. The results of Chapter 4 are largely from our work

in [95].

1.3 Constrained Coding

In Chapter 5, we move on to discuss the subject of constrained coding. Loosely speaking, this problem

deals with encoding a set of s messages and a codeword composed of n symbols over some alphabet.

Each of the n code symbols is constrained to be a function of some subset of the s messages. In

keeping with the language of classical coding theory, we typically think of our messages as a single

length-s vector m = [m1, ...,ms] of symbols over some alphabet, which we encode as the vector

c = [c1, ..., cn] subject to the constraints. We often represent the coding constraints via a bipartite

graph G = (M,V, E), where the vertices M represent the message symbols and those in V the code

symbols. A code symbol ci ∈ V is then constrained to be a function of the message symbols contained

in its neighborhood in M. (See Figure 1.2).

This problem arises in a variety of contexts, such as in the case of a sensor network where each

sensor has access to a subset of measurements. We would like to arrange our sensors appropriately

so that if a small number of them malfunction, we can still recover all of the measurements. In the

absence of malfunctions, we would like to be able to obtain all of the information more efficiently from



7

a smaller number of sensors. This suggests the use of a systematic code, i.e., the message symbols mi

appear explicitly as a subset of the code symbols {cj}j=1,...,n. The problem also arises in the field of

distributed storage of data, particularly in the recent field of locally repairable codes [24,54,58]. These

are systematic codes which divide the message symbols into several “local” groups. The remaining

code symbols are then designated to protect one or several of these groups. Thus if one of the

systematic symbols is lost, it can be recovered just by accessing the code symbols which protect its

local group (along with the remaining systematic symbols in its group). The motivation for this setup

is in the situation where we would like to protect a large amount of data which is stored in a large

file server or a set of hard drives. We assume some of the hard drives contain the data in its original

form, and each remaining hard drive stores a function of the data contained in one local group of

hard drives. Using a systematic locally repairable code ensures the security of the data in the event

of several drives crashing, allows for quick download of the data in the event of no crashes in the

systematic portion of the code, and necessitates only a small set of hard drives to be accessed to

repair a single crashed drive in one of the local groups.

Thus in Chapter 5 we will pay particularly close attention to systematic constrained codes, with an

eye toward analyzing the code’s minimum distance based on the topology of the bipartite graph which

constrains it (as in Figure 1.2). The minimum distance—the smallest Hamming distance between any

two codewords—determines the maximum number of code symbols which could be lost or corrupted

while still ensuring that the entire codeword could be correctly determined from nearest neighbor

decoding (that is, selecting the valid codeword which is closest to the corrupted codeword in Hamming

distance). We will primarily focus our attention on systematic linear codes, and seek subcodes of Reed-

Solomon codes which meet a set of constraints. Codes of this form are desirable for their known fast

decoding algorithms, e.g. [5,7,71,77]. We will derive bounds on the minimum distance of constrained

codes that are reminiscent of the cut set-type bounds from [48], and we will refine these bounds in

the case that we require a systematic code. For certain types of constraining graphs, we provide code

constructions which achieve these bounds, utilizing Reed-Solomon and MDS codes in our designs.

The results of Chapter 5 are based on work with Wael Halbawi and Babak Hassibi which appeared

in [49].
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Chapter 2

Violating the Ingleton Inequality
Using Finite Groups

2.1 Entropy Vectors

Let X1, ..., Xn be a set of jointly-distributed discrete random variables. For any subset α ⊆ {1, ..., n}
let Xα denote set of random variables indexed by α,

Xα := {Xi : i ∈ α},

and let hα denote their joint entropy,

hα = H(Xα) = H(Xi : i ∈ α).

The entropy vector associated with the random variables is the (2n − 1)-tuple consisting of the joint

entropies of all nontrivial subsets of the Xi:

h := (hα : ∅ 6= α ⊆ [n]) ∈ R2n−1.

We denote by Γ∗n the set of all possible entropy vectors arising from n discrete random variables. Its

closure Γ∗n is in fact a convex cone [114], which can be shown through timesharing arguments.

2.2 Group-Characterizable Entropy Vectors

We now discuss a connection between groups and entropy vectors which will allow us to use group

theoretic methods to study the entropy region. Let G be a finite group with subgroups G1, ..., Gn.

Let Λ be a random variable which is uniformly distributed on the elements of G, and let Xi = ΛGi
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for each i = 1, ..., n. That is, Xi is a random variable that takes the value of the left coset of Gi in

G in which Λ lies. As such, since all these cosets are the same size, Xi is uniformly distributed over

G/Gi, the |G||Gi| cosets of Gi in G.

The entropy vector h arising from these discrete random variablesXi is called a group-characterizable

entropy vector. From our above discussion, we see that

hi = H(Xi) = log
( |G|
|Gi|

)
. (2.1)

Furthermore, for any subset α ⊆ [n], the cosets Xα = {Xi : i ∈ α} are uniquely determined by the

coset ΛGα ∈ G/Gα where Gα is the intersection
⋂
i∈αGi, also a subgroup of G. Thus its entropy is

the same as that of the random variable ΛGα, so we will identify this with the random variable Xα

and we have by a similar token that

hα = H(Xα) = log
( |G|
|Gα|

)
. (2.2)

Interestingly enough, it turns out that any entropy vector can be approximated by a scaled group-

characterizable entropy vector [23]. The idea is as follows: suppose X is a discrete random variable

taking on N possible values 1, ..., N with respective probabilities p1, ..., pN . If we take T independent

copies of X, vectorized as X := (X(1), ..., X(T )), then H(X) = TH(X). The strongly typical sequences

are those realizations of X where approximately piT entries X(j) take on the value i, for each i =

1, ..., N . The number of such sequences is approximately

(
T

p1T . . . pNT

)
:=

T !
(p1T )! . . . (pNT )!

, (2.3)

where we assume the quantities piT are integers. For T large, a strongly typical sequence will occur

with probability approaching 1, and each of these sequences is equiprobable. Thus, we can approximate

H(X) as

H(X) =
1
T
H(X) ≈ 1

T
log
(

T !
(p1T )! . . . (pNT )!

)
. (2.4)

Now, consider the symmetric group G = ST of permutations on T elements, which has size T !.

Suppose we partition these elements into subsets of size p1T , ..., pNT , and let GX be the subgroup

of G of permutations which preserve these subsets. Then GX has size (p1T )! . . . (pNT )!, and H(X) =
1
T log

(
|G|
|GX |

)
.

Now suppose we have n discrete random variables, X1, ..., Xn. It is not too difficult to see that we

can find a different partition of T for each Xj , j = 1, ..., n, such that when Gj is chosen to be the set
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of permutations that respects the jth partition, the group-characterizable entropy vector associated

to the Gj is approximately a scaled version of the entropy vector corresponding to the original Xj .

A more detailed argument appears in [23] where it is rigorously proven that if gn is the region of

group-characterizable entropy vectors for n variables, and cone(gn) the closure of its convex cone,

then Γ∗n = cone(gn).

While this process can indeed approximate any entropy vector, and can presumably be used to

allow us to study the entropy region using group theoretic techniques, it often requires the set T (and

consequently the permutation group G) to group very large. This begs the question of whether we

can identify small groups which can yield entropy vectors with interesting properties.

2.3 Matroidal Bounds on the Entropy Region

Entropy vectors have an important connection to matroid theory. A matroid is a set M of elements

together with a rank function r : 2M → Z≥0 satisfying the following:

1. r(∅) = 0, and for any ∅ 6= A ⊆M we have r(A) ≤ |A|.

2. r(·) is monotonic: If A ⊆ B ⊆M, then r(A) ≤ r(B).

3. r(·) is submodular: For any subsets A and B in M, we have

r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B).

For example, any set of vectors in a vector space satisfy these conditions when r(·) is taken to

be the usual rank function on a vector space. Thus in some sense, a matroid is a generalization of a

vector space. A matroid is called linear representable (or just “representable”) if the set M and the

function r(·) can be mapped to a set of vectors in a vector space with the same ranks of corresponding

subsets. For any subset A ⊆ M we will often use the notation rA := r(A), and we will speak of the

rank vector of a matroid:

r = (rA : ∅ 6= A ⊆M) ∈ Z2|M|−1.

If M is taken to be a set of random variables M = {X1, ..., Xn} and we consider the entropy

function h : 2M → R, h(A) = H(Xi : i ∈ A), then we can see that h(·) satisfies conditions 2 and 3.

A function with these properties, together with the set M, is called a polymatroid. In the context of

entropy, conditions 2 and 3 together are called the Shannon inequalities, and they correspond to all

conditions which can be expressed as the conditional mutual information of a set of random variables
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being nonnegative:

I(Xα;Xβ |Xγ) = H(Xα, Xγ) +H(Xβ , Xγ)−H(Xα, Xβ , Xγ)−H(Xγ) ≥ 0, (2.5)

where α, β, and γ are subsets of {1, ..., n}, and Xα, Xβ , Xγ are the sets of random variables corre-

sponding to these subsets.

From these observations, it is clear that the Shannon inequalities form an outer bound for the

space of entropic vectors. They do not, however, define the entropy region for all n, and in fact as

we will discuss shortly, they do not even completely describe the closure of the cone of representable

matroidal rank vectors.

2.4 The Ingleton Inequality

It turns out that the Shannon inequalities completely characterize the region of representable rank

vectors for matroids M of up to 3 elements. But larger representable matroids must additionally

satisfy the following constraint, called the Ingleton inequality :

Theorem 1 (Ingleton Inequality). Let S1, S2, S3, and S4 be subspaces of a vector space, and for any

α ⊆ {1, 2, 3, 4}, let rα denote the rank of the subspace generated by the Si, i ∈ α. Then

r1 + r2 + r34 + r123 + r124 ≤ r12 + r13 + r14 + r23 + r24. (2.6)

Proof. This was proven by Ingleton in 1971. [59]

We will speak of an entropy vector h ∈ Γ
∗
4 satisfying the Ingleton inequality if its entries obey the

relation

h1 + h2 + h34 + h123 + h124 ≤ h12 + h13 + h14 + h23 + h24. (2.7)

The Ingleton inequality is the simplest example of a non-Shannon inequality. Together with the

Shannon inequalities, it completely characterizes the region of representable matroids up to size n = 4,

[53] though for n ≥ 5 there are other defining inequalities which these do not imply. [19,39,41,42,64]

The reason to go into detail discussing the region of linear representable matroid rank vectors is

that [53] shows that any such rank vector is indeed entropic. Thus, this region is an inner bound for

the entropy region. It is, however, a proper inclusion, since there exist entropy vectors which violate

the Ingleton inequality [53,72].
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Now let us return to the topic of group-characterizable entropy vectors. In this case, we have a

group G and four subgroups G1, G2, G3, and G4. Instead of dealing with the entries of a rank vector

rα, α ⊂ [4], we deal with the joint entropies hα = log |G||Gα| , where Gα = ∩i∈αGi. Substituting these

entries into (2.7), and after rearranging terms and taking the exponential of both sides, we obtain the

group-based analog of the Ingleton inequality:

|G12||G13||G14||G23||G24| ≤ |G1||G2||G34||G123||G124|. (2.8)

Again, we emphasize that since group-representable entropy vectors can approximate the entire en-

tropy region, not all such vectors need satisfy (2.8). But it turns out that many of the more “basic”

groups can only produce group-characterizable entropy vectors which satisfy the Ingleton inequality,

as we see from the following conditions presented in [22,66,70]:

Theorem 2. Let G be a group with subgroups G1, G2, G3 and G4. Then the following conditions

suffice for these subgroups satisfying the Ingleton inequality of (2.8):

1. G is abelian.

2. Gi is a normal subgroup of G for each i.

3. The set product G1G2 := {g1g2 : g1 ∈ G1, g2 ∈ G2} is a subgroup of G. Equivalently,

G1G2 = G2G1.

4. Gi = 1 or G for some i.

5. Gi = Gj for some i 6= j.

6. G12 = 1.

7. Gi is a subgroup of Gj for some i 6= j.

Proof. Condition 1 is proved in [22]. Condition 2 appears in [66]. The remaining conditions are proven

in [70], which employed these conditions in a computer search to find the smallest Ingleton-violating

groups.

The fact that all abelian groups must satisfy the Ingleton inequality can be seen as a generalization

of the fact that linear subspaces of a vector space must satisfy it in its original form (2.7). Vector

spaces are, after all, a class of abelian groups. In light of this, we wish to identify instances of small

nonabelian groups which produce entropy vectors violating the Ingleton inequality. Such groups have

application in network coding problems, as we will see in Section 2.5.
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2.5 Group Network Codes

Before proceeding further, we briefly comment on the applications of Ingleton-violating groups to

network coding. In a typical network coding scenario, a network is represented as a directed, acyclic

graph G = (V, E) with vertices V representing the communication nodes, and edges E ⊂ V × V the

communication channels of the network. There is a subset S ⊂ V of vertices which represent the

sources of the network, and each source s ∈ S is demanded by another subset D(s) ⊂ V. For any

v ∈ V, we will let I(v) denote the set of incoming edges to v, together with v itself if v ∈ S. That is,

I(v) :=

{e ∈ E : e = (v′, v), v′ ∈ V} v /∈ S

{e ∈ E : e = (v′, v), v′ ∈ V} ∪ {v} v ∈ S
(2.9)

For simplicity, for any edge e = (v1, v2) ∈ E we will abuse notation and write I(e) for the set of

incoming edges to the tail node of e, that is, I(e) := I(v1). Note that I(e) ⊂ S ∪ E .

A network code formally works as follows: each source s is identified with a random variable Ys

which takes some value in a certain alphabet Ys. We typically assume that the Ys are uniformly

distributed over their respective alphabets, and that they independent:

H(Ys : s ∈ S) =
∑
s∈S

H(Ys). (2.10)

Then to each edge e = (v1, v2) ∈ E , we associate an encoded symbol Ye from some alphabet Ye which

is a function φe of the incoming edge symbols and the symbol Yv1 if v1 is a source:

Ye = φe(Ye′ : e′ ∈ I(e)). (2.11)

Likewise, for any u ∈ D(s), the demanded symbol Ys should be uniquely determined from the incoming

edges to u (and from u itself, if u happens to also be a source):

Ys = φu,s(Ye′ : e′ ∈ I(u)). (2.12)

These conditions imply that

H(Ye | Ye′ , e′ ∈ I(e)) = 0, ∀e ∈ E (2.13)

H(Ys | Ye′ , e′ ∈ I(u)) = 0, ∀s ∈ S, u ∈ D(s). (2.14)

Note that based on these criteria, any symbol Ye, e ∈ E , can be expressed directly as a function Φe of
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the symbols Ys, s ∈ S.

In a group network code [20, 21], we start with a group G and for each s ∈ S and each e ∈ E we

select subgroups Gs and Ge. The alphabets Ys and Ye are set to be the cosets of these subgroups

in G, that is, Ys = G/Gs and Ye = G/Ge. In keeping with our previous notation, for any subset

W ⊂ S ∪ E , we will define the intersection subgroup GW := ∩w∈WGw.

A group network code is one in which there is an element g ∈ G such that the symbols Ys and

Ye are equal to the cosets gGs and gGe, respectively. g is assumed to be uniformly selected from

the elements of G, so that Ys and Ye are uniform random variables on their alphabets, with entropies

H(Ys) = log |G||Gs| and H(Ye) = log |G||Ge| . Let us examine what this implies about our chosen subgroups:

First, note that the vector of source symbols YS := (Ys : s ∈ S) is uniquely determined by the coset

gGS . If our source random variables are to be independent, we must have H(YS) =
∑
s∈S H(Ys),

which means that

log
|G|
|GS |

=
∑
s∈S

log
|G|
|Gs|

.

This translates to the requirement that

∏
s∈S
|Gs| = |G||S|−1|GS |. (2.15)

In order for Ye to be a well-defined function of the variables {Yw : w ∈ I(e)}, we must have

that whenever there are distinct elements g and g′ in G such that gGw = g′Gw, ∀w ∈ I(e), then

gGe = g′Ge. This means that whenever g−1g′ ∈ Gw, ∀w ∈ I(e), then g−1g′ ∈ Ge, so we have the

equivalent condition that

GI(e) ≤ Ge. (2.16)

By the same token, since Ys must be a function of the variables {Yw : w ∈ I(u)} for each

u ∈ D(s), we also have the condition that

GI(u) ≤ Gs, ∀u ∈ D(s). (2.17)

Example: Linear Network Codes. In the case of linear network codes, source messages Ys are typically

thought of as elements of a finite field, or vectors in a vector space V = Fn over a finite field F. Each

edge message Ye is a linear function of the messages {Yw : w ∈ I(e)}, written Ye =
∑
w∈I(e)Me,wYw

whereMe,w ∈ Fn×n. This can be realized as a group network code by settingG = V ⊕|S|, the direct sum

of |S| copies of V . If our sources are S = {s1, ..., sm}, then we set Gsi := V ⊕V ⊕...⊕ 0 ⊕...⊕V , where

the 0 is in the ith position of the direct sum. We define the groups Ge inductively as Ge = ∩w∈I(e)Gw.
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In the case n = 1, where message symbols Ys and Ye are simply elements of the finite field F,

then if we have m independent sources, all of our random variables Ye are functions of the vector

(Ys1 , ..., Ysm) ∈ F⊕m. If some edge e is connected only to sources 1 and 2, we have I(e) = {s1, s2},
and Ge = 0⊕ 0⊕ F⊕(m−2), reflecting the fact that Ye is a function of the coset Ys1 ⊕ Ys2 ⊕ F⊕(m−2)

of Ge.

When we consider the entropy vector associated to the random variables {Yt}t∈S∪E , we see that it

is the group-characterizable entropy vector associated with the groups {Gt}t∈S∪E . For linear codes,

since the overlying group G is abelian, we know from Theorem 2 that the subvector associated to any

four of these random variables must satisfy the Ingleton inequality. Thus by characterizing Ingleton-

violating groups, we could potentially develop group network codes which are more powerful than

linear codes in the sense that their associated random variables can achieve a larger range of the

entropy region. This would build on prior results [40] that that there exist networks for which linear

codes cannot achieve capacity.

One limitation on the types of networks to which we can apply Ingleton-violating group codes

is that more than two independent sources will produce random variables Ys which must satisfy the

Ingleton inequality:

Lemma 1. Let X1, X2, X3, and X4 be random variables. If Xi and Xj are independent, where {i, j}
is any pair other than {3, 4}, then the entropy vector of the Xi must satisfy Ingleton’s inequality (2.7).

Proof. By symmetry in the terms of the Ingleton inequality, we need only consider the cases {i, j} =

{1, 2} and {1, 3}. If we assume X1 and X2 are independent, we have h12 = h1 + h2. Also by

submodularity we have h13 + h23 ≥ h3 + h123 and h14 + h24 ≥ h4 + h124. Thus,

h12 + h13 + h14 + h23 + h24 ≥ h1 + h2 + h3 + h4 + h123 + h124 (2.18)

≥ h1 + h2 + h34 + h123 + h124. (2.19)

The proof for the case {i, j} = {1, 3} is similar.

Corollary 1. Given a set of four random variables X1, X2, X3, and X4, if any three are independent,

then the associated entropy vector must satisfy the Ingleton inequality (2.7).

Proof. This follows immediately from the Lemma 1.
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2.6 The Smallest Ingleton-Violating Groups: PGL(2, p)

As we mentioned before, we would like to identify small groups with Ingleton-violating subgroups. It

turns out that the smallest such group is PGL(2, 5), as was discovered in [68]. This is a projective

linear group, which is defined as follows: For a prime power q, the general linear group GL(n, q) is

the multiplicative group of invertible n× n matrices with entries in the finite field Fq. The center of

this group is the set of scalar matrices

Z(GL(n, q)) =



α . . . 0
...

. . .
...

0 . . . α

 , α ∈ F×q

 .

The projective group is then defined to be the quotient PGL(n, q) = GL(n, q)/Z(GL(n, q)), which

has size

|PGL(n, q)| = (qn − 1)(qn − q) . . . (qn − qn−1)
q − 1

.

Thus |PGL(2, 5)| = 120.

For p a prime greater or equal to 5, let t be a primitive root in Fp, i.e., a generator of the

multiplicative group F×p , which is a cyclic group of size p − 1. Then PGL(2, p) is generated by the

matrices

A =

1 0

1 1

 , B =

1 0

0 t

 , C =

 0 1

−1 −1

 .
Indeed, GL(2, p) (and therefore PGL(2, p)) is generated by the elementary matrices

1 0

α 1

 ,
1 β

0 1

 ,
ti 0

0 1

 ,
1 0

0 tj

 . (2.20)

The matrices

1 0

α 1

 are the powers of A. (Note that Ak =

1 0

k 1

, and any element of Fp is simply

an integer k modulo p). Any matrix of the form

ti 0

0 tj

 is a power of B multiplied by a scalar

matrix: tiBj−i. Finally, the matrices

1 β

0 1

 are simply the powers of A conjugated by the matrix
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1 0

, and a quick calculation shows that if we define

B1 :=

 1 0

−2−1 1

1 0

0 −1

 1 0

2−1 1

 =

 1 0

−1 −1

 , (2.21)

then B1C =

0 1

1 0

.

Now consider the following subgroups of PGL(2, p):

G1 = 〈B1, C〉,

G2 = 〈A,B〉,

G3 = 〈CB1, A
−1BA〉,

G4 = 〈B1C,B〉.

By inspection, we have G1 = 〈C〉o 〈B1〉 ∼= D6, the dihedral group with six elements. These are

G1 = {Bi1Cj , 0 ≤ i < 2, 0 ≤ j < 3}

=


1 0

0 1

 ,
 0 1

−1 −1

 ,
−1 −1

1 0

 ,
 1 0

−1 −1

 ,
0 1

1 0

 ,
−1 −1

0 1

 . (2.22)

G2 is also a semidirect product, 〈A〉o 〈B〉 ∼= (Z/pZ) o (Z/(p− 1)Z), with elements

G2 = {AkB`, 0 ≤ k < p, 0 ≤ ` < p− 1}

=


1 0

α β

 α ∈ Fp, β ∈ F×p

 .

G3 is the dihedral group 〈A−1BA〉 o 〈CB1〉 ∼= D2(p−1), where 〈CB1〉 ∼= Z/2Z and 〈A−1BA〉 ∼=
Z/(p− 1)Z. Its elements are

G3 =

(A−1BA)k =

 1 0

tk − 1 tk

 , (CB1)(A−1BA)k =

 −1 −1

1− t−k 1

 0 ≤ k < p− 1

 .

G4 is in fact isomorphic to G3, with G4 = 〈B〉 o 〈B1C〉 ∼= (Z/(p − 1)Z) o (Z/2Z) ∼= D2(p−1). In
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this case, its elements are

G4 =

Bk =

1 0

0 tk

 , (B1C)Bk =

0 tk

1 0

 0 ≤ k < p− 1

 .

Now we can compute the terms of the Ingleton inequality (2.7): We have

G12 = 〈B1〉, G13 = 〈CB1〉, G14 = 〈B1C〉, (2.23)

all isomorphic to Z/2Z. Also we have

G23 = 〈A−1BA〉, G24 = 〈B〉, (2.24)

both isomorphic to the cyclic group Z/(p − 1)Z. The remaining groups G34, G123, and G124 are all

trivial. The two sides of the Ingleton inequality then become

|G12||G13||G14||G23||G24| = 8(p− 1)2,

|G1||G2||G34||G123||G124| = 6p(p− 1).

So we see that these groups do indeed violate Ingleton for p ≥ 5.

2.6.1 Ingleton Violations in PGL(2, q)

Without too much difficulty, the Ingleton violation of the previous section can be generalized [70] to

produce a violating set of subgroups in any projective linear group PGL(2, q) for q a prime power

greater than or equal to 5. Say q = pm for some prime p. The finite field Fq is an m-dimensional

vector space over the subfield Fp, so we may fix a basis {ξ1, ..., ξm}. Instead of the matrix A defined

before, we now define a set of matrices,

Aξi =

1 0

ξi 1

 , i = 1, ...,m.

We may assume that ξ1 = 1, in which case A1 is identical to our matrix A from before. For any

α ∈ Fq, we may express α as a linear combination of the ξi over Fp, say α = k1ξ1 + ...+ kmξm, where

each ki is an integer between 0 and p− 1 corresponding to an element in Z/pZ ∼= (Fp,+), the set Fp
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under addition. It is easy to verify that

1 0

α 1

 =

 1 0

ξ1 1

k1 · ... ·
 1 0

ξm 1

km .
We now can define the subgroup

GA := 〈Aξ1 , ..., Aξm〉 =


1 0

α 1

 , α ∈ Fq

 .

Note that this is actually a direct product GA ∼= 〈Aξ1〉× ...×〈Aξm〉 ∼= (Z/pZ)m ∼= (Fq,+). The matrix

B from the PGL(2, p) case essentially remains the same, except now we take t to be a primitive

element of Fq and define B =

1 0

0 t

. The matrix C from the previous section is exactly the same:

C =

 0 1

−1 −1

. When p 6= 2, the matrix B1 can again be defined exactly as in (2.21). If p = 2, we

will simply define

B1 := A1 =

1 0

1 1

 ≡
 1 0

−1 −1

 ,
so that it has the same matrix form as before. One can verify (as before) that the matrices Aξi , B,

and C generate the elementary matrices from (2.20), and hence generate PGL(2, q).

Our new subgroups of PGL(2, q) can now be explicitly written as

G1 = 〈B1, C〉,

G2 = 〈GA, B〉,

G3 = 〈CB1, A
−1
1 BA1〉,

G4 = 〈B1C,B〉.

It is easy to draw a parallel with the corresponding subgroups of the last section.

It remains true that G1 = 〈C〉o 〈B1〉 ∼= D6 of size 6, consisting of the same matrices as in (2.22).

It is easy to verify that G2 is again the subgroup of lower triangular matrices in PGL(2, q), and that

the subgroup GA is normal in G2. Since GA has trivial intersection with 〈B〉, the subgroup of diagonal

matrices, and we in fact have G2 = GAo 〈B〉 ∼= (Z/pZ)mo (Z/(q−1)Z) of size pm(pm−1) = q(q−1).

G3 and G4 have essentially the same structure and matrices as before:
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G3 =

(A−1
1 BA1)k =

 1 0

tk − 1 tk

 , (CB1)(A−1
1 BA1)k =

 −1 −1

1− t−k 1

 0 ≤ k < q − 1


= 〈A−1

1 BA1〉o 〈CB1〉
∼= D2(q−1),

G4 =

Bk =

1 0

0 tk

 , (B1C)Bk =

0 tk

1 0

 0 ≤ k < q − 1


= 〈B〉o 〈B1C〉
∼= D2(q−1).

Both G3 and G4 have size 2(q − 1).

Examining the other terms of the Ingleton inequality, the intersections G12, G13 and G14 take the

same forms as in (2.23), and all have size 2. The groups G23 and G24 also take the same forms as

before (from equation (2.24)), but now they are isomorphic to the Z/(q − 1)Z, with size q − 1. As

before, the intersections G34, G123, and G124 are trivial. The two sides of the Ingleton inequality (2.7)

now become

|G12||G13||G14||G23||G24| = 8(q − 1)2,

|G1||G2||G34||G123||G124| = 6q(q − 1),

and again we have a violation whenever q ≥ 5.

Our next task will be to extend this example to a broader class of groups, and to explore the

structural reason that these groups violate the Ingleton inequality.

2.7 Ingleton Violations in GL(2, q)

Since PGL(2, q) is a quotient of the general linear group GL(2, q), it is not surprising that we would

find Ingleton violations in this group as well. In fact, it is a simple exercise to show the following

simple result:

Lemma 2. Let G be a group with N E G. Let H = G/N be the quotient group, and H1, H2, H3,

and H4 be subgroups of H with preimages Gi := {g ∈ G : gN ∈ Hi}. If the Hi violate the Ingleton

inequality (2.7), then so do the preimages Gi.
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Proof. It is apparent that each preimage Gi is a subgroup of G containing N . For any subset α ⊆
{1, 2, 3, 4}, we have from the Lattice Isomorphism Theorem that

Gα/N :=

(⋂
i∈α

Gi

)
/N =

⋂
i∈α

(Gi/N) =
⋂
i∈α

Hi =: Hα.

Thus |Gα| = |Hα||N |. Since (2.7) has the same number of terms on both sides of the inequality, it is

now clear that the Hi produce an Ingleton violation if and only if the Gi do as well.

We obtain the projective linear group from the quotient of GL(2, q) by its center Z(GL(2, q)),

which is the group of scalar matrices generated by tI =

t 0

0 t

, where t ∈ Fq is a primitive element

of order q−1. Thus, we can obtain an Ingleton-violating set of subgroups from Lemma 2 by appending

tI to the list of generators for each of the subgroups in section 2.6.1 (taking the original generators now

to be matrices in GL(2, q) rather than PGL(2, q)). In fact, a computer search in GL(2, 5) produces

15 sets of Ingleton-violating subgroups, up to subscript symmetries in the Ingleton inequality (for

example, swapping G1 and G2) and conjugations of all four groups (that is, performing a change of

basis on GL(2, 5) to transform all the Gi) [69, 70]. These sets of Ingleton violations generalize to

GL(2, q) for certain values of q, which we will explore in some detail now.

2.7.1 Instance 1: The Preimage Subgroups

To obtain the preimage subgroups predicted by Lemma 2, we consider the generators of the Ingleton-

violating subgroups from Section 2.6.1 as matrices in GL(2, q), and add on the generator tI. For

example, the first subgroup becomes G1 = 〈tI, B1, C〉, where B1 =

 1 0

−1 −1

 ∈ GL(2, q) and

C =

 0 1

−1 −1

 ∈ GL(2, q). Note that the subgroup 〈B1, C〉 is still isomorphic to D6 in GL(2, q),

and since 〈tI〉 has trivial intersection with this subgroup, G1 is actually the direct product

G1 = 〈tI〉 × 〈B1, C〉 ∼= (Z/(q − 1)Z)×D6.

The second subgroup takes the form G2 = 〈tI, Aξ1 , ..., Aξm , B〉 = 〈tI,GA, B〉, where again we

define Aξi =

1 0

ξi 1

, B =

1 0

0 t

, and GA = 〈Aξ1 , ..., Aξm〉, all matrices and subgroups of GL(2, q).

Since 〈tI〉 has trivial intersection with 〈GA, B〉, we have

G2 = 〈tI〉 × 〈GA, B〉 ∼= (Z/(q − 1)Z)× ((Z/pZ)m o (Z/(q − 1)Z)) ,
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which is the group of all lower triangular matrices in GL(2, q) (analogous to the PGL(2, q) scenario).

In G3 = 〈tI, CB1, A
−1
1 BA1〉, where again we have taken ξ1 = 1 and Aξ1 = A1, we can easily verify

that the entire subgroup 〈tI, A−1
1 BA1〉 ∼= 〈tI〉×〈A−1

1 BA1〉 is normal in G3, and has trivial intersection

with 〈CB1〉, hence

G3 = (〈tI〉 × 〈A−1
1 BA1〉) o 〈CB1〉 ∼= ((Z/(q − 1)Z× Z/(q − 1)Z) o Z.2Z,

which has elements

tk
 1 0

t` − 1 t`

 , tk+`
 −1 −1

1− t−` 1

 k, ` ∈ [q − 1]

.

Finally, the group G4 = 〈tI, B1C,B〉 contains the subgroup 〈tI, B〉 ∼= 〈tI〉 × 〈B〉, which is the

subgroup of all diagonal matrices


α 0

0 β

 α, β ∈ F×q

, and this subgroup is normal in G4 and

intersects the subgroup 〈B1C〉 trivially. Thus,

G4 = (〈tI〉 × 〈B〉) o 〈B1C〉 ∼= ((Z/(q − 1)Z× Z/(q − 1)Z) o Z/2Z

=


α 0

0 β

 ,
0 α

β 0

 α, β ∈ F×q

 ,

which is the group of all diagonal and antidiagonal matrices (as in the PGL(2, q) case).

Computing the subgroup intersections in the Ingleton inequality, we have G12 = 〈tI〉 × 〈B1〉,
G13 = 〈tI〉 × 〈CB1〉, and G14 = 〈tI〉 × 〈B1C〉, all isomorphic to (Z/(q − 1)Z) × Z/2Z). Also G23 =

〈tI〉 × 〈A−1
1 BA1〉 and G24 = 〈tI〉 × 〈B〉, both isomorphic to (Z/(q − 1)Z) × (Z/(q − 1)Z). Finally,

G34 = G123 = G124 = 〈tI〉 ∼= Z/(q − 1)Z, leading to the sides of the Ingleton inequality (2.7) taking

the forms

|G12||G13||G14||G23||G24| = 8(q − 1)7,

|G1||G2||G34||G123||G124| = 6q(q − 1)6,

whereby the inequality is again violated when q ≥ 5. Note that the sizes of these intersections, as well

as the final form of the sides of the Ingleton inequality, are aptly predicted by the proof of Lemma 2.

Next, we will discuss the remaining Ingleton-violating instances. We will divide them into groups,

the first two of which can be obtained by respectively tweaking G1 and G2 in the preimage subgroups.

2.7.2 Variants of the Preimage Subgroups with Different G1

The first class of Ingleton violating sets of subgroups maintains the forms of G2, G3, and G4 from

Section 2.7.1, but changes G1. In each of these instances, G1 will now be a subgroup of the original
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group 〈tI〉 × 〈B1, C〉. We will briefly describe how this changes the intersections of the Gi, but we

mention upfront that each of these variants produces Ingleton violations for q ≥ 5, and when Fq has

characteristic p = 2, some of these instances will overlap.

1. G1 = 〈B1, C〉 ∼= D6:

G12 = 〈B1〉, G13 = 〈CB1〉, and G14 = 〈B1C〉 are isomorphic to Z/2Z; G123 = G124 = 1.

2. G1 = 〈−I〉 × 〈B1, C〉 ∼= (Z/2Z)×D6
∼= D12, (p 6= 2):

G12 =∼= 〈−I〉 × 〈B1〉, G13 = 〈−I〉 × 〈CB1〉, and G14 = 〈−I〉 × 〈B1C〉, all isomorphic to

(Z/2Z)× (Z/2Z). Now, G123 = G124 = 〈−I〉 ∼= Z/2Z.

3. G1 = 〈−B1, C〉 ∼= D6, (p 6= 2):

G12 = 〈−B1〉, G13 = 〈−CB1〉, and G14 = 〈−B1C〉 are all isomorphic to Z/2Z. G123 and G124

are trivial.

4. G1 = 〈C, tB1〉 = 〈C〉o 〈tB1〉 ∼= (Z/3Z) o (Z/(q − 1)Z), (p 6= 2):

Note that the requirement that p be odd comes from the fact that if q is even then since B1 is

an element of order two, then (tB1)q = tI, and this instance collapses to the original preimage

subgroup in which G1 = 〈tI, B1, C〉.

When p 6= 2, the intersection subgroups now become G12 = 〈tB1〉, G13 = 〈tCB1〉, G14 = 〈tB1C〉
(all isomorphic to Z/(q − 1)Z), and G123 = G124 = 〈t2I〉 ∼= Z/

(
q−1
2

)
Z.

2.7.3 Variants of the Preimage Subgroups with Different G2

In the sets of Ingleton-violating subgroups in this section, G1, G3, and G4 take the same forms as

in Section 2.7.1. G2 will now be a proper subgroup of 〈tI〉 × 〈GA, B〉. Several of these cases are

equivalent when p = 2, and we will point these out. While most of these sets will violate Ingleton for

all q ≥ 5, several of the cases will additionally require that q−1
2 be even. We will address these on a

case by case basis.

To facilitate our discussion, we will define the matrices

B′ =

−1 0

0 t

 , P =

t 0

0 1

 , P ′ =

t 0

0 −1

 .
Note that P = tB−1, which has order q − 1. B′ and P ′ are equal to B and P , respectively, when q is

even (p = 2). When q is odd, then t
q−1
2 = −1, and we see that B′ = t

q−1
2 B

q+1
2 and P ′ = t

q−1
2 P

q+1
2 .

Both B′ and P ′ are elements of order q − 1.
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1. G2 = 〈GA, B〉 = 〈GA〉o 〈B〉 ∼= (Z/pZ)m) o (Z/(q − 1)Z):

Here, G2 is actually the group of matrices taking the form

〈GA, B〉 =


1 0

α β

 α ∈ Fq, β ∈ F×q

 .

Now, G12 = 〈B1〉 ∼= Z/2Z. G23 = 〈A−1
1 BA1〉 and G24 = 〈B〉 are both isomorphic to Z/(q−1)Z.

G123 = G124 = 1. In this case, the Ingleton inequality is violated for all prime powers q ≥ 5.

2. G2 = 〈GA, P 〉 = 〈GA〉o 〈P 〉 ∼= (Z/pZ)m) o (Z/(q − 1)Z):

In this case, G2 is the group of lower triangular matrices in GL(2, q) with a ’1’ in the lower-right

corner:

〈GA, P 〉 =


β 0

α 1

 α ∈ Fq, β ∈ F×q

 .

In this case, G12 = 〈−B1〉 ∼= Z/2Z. G23 = 〈t−1A−1
1 BA1〉 and G24 = 〈tB−1〉 are both isomorphic

to Z/(q−1)Z. G123 and G124 are both 1, the trivial group. These subgroups violate the Ingleton

inequality for all finite field sizes q ≥ 5.

3. G2 = 〈GA, B′〉 = 〈GA〉o 〈B′〉 ∼= (Z/pZ)m o (Z/(q − 1)Z), (p 6= 2):

It is simple to verify that

〈GA, B′〉 =


(−1)k 0

α tk

 α ∈ Fq, k ∈ {0, ..., q − 2}

 .

Note that t
q−1
2 = −1, so if q−1

2 is even we can see thatG2 contains the matrices


1 0

α −1

 α ∈ Fq

.

If q−1
2 is odd, G2 instead contains the matrices


−1 0

α −1

 α ∈ Fq

. This gives us the in-

tersections

G12 =

〈B1〉 ∼= Z/2Z if q−1
2 is even

〈−I〉 ∼= Z/2Z otherwise

G123 = G124 =

 1 if q−1
2 is even

〈−I〉 ∼= Z/2Z otherwise
.

In either case we have G23 = 〈−(A−1
1 BA1)

q+1
2 〉 and G24 = 〈B′〉, both isomorphic to the cyclic
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group Z/(q − 1)Z. When q = pm is odd, greater than or equal to 5, this case only violates the

Ingleton inequality when q−1
2 is even.

4. G2 = 〈GA, P ′〉 = 〈GA〉o 〈P ′〉 ∼= (Z/pZ)m o (Z/(q − 1)Z), (p 6= 2):

In this case, we have

〈GA, P ′〉 =


tk 0

α (−1)k

 α ∈ Fq, k ∈ {0, ..., q − 2}

 ,

which contains the matrices


−1 0

α 1

 α ∈ Fq

 if q−1
2 is even and


−1 0

α −1

 α ∈ Fq


if q−1

2 is odd. Our intersection subgroups become

G12 =

〈−B1〉 ∼= Z/2Z if q−1
2 is even

〈−I〉 ∼= Z/2Z otherwise

G123 = G124 =

 1 if q−1
2 is even

〈−I〉 ∼= Z/2Z otherwise
.

G23 = 〈t(A−1
1 BA1)

q−3
2 〉 and G24 = 〈P ′〉, both isomorphic to Z/(q − 1)Z. As in the previous

case, when q ≥ 5 is odd, this case only violates Ingleton when q−1
2 is even.

5. G2 = 〈−I,GA, B〉 = 〈−I〉 × 〈GA, B〉 = (Z/2Z) × (Z/pZ)m o (Z/(q − 1)Z), (p 6= 2): G12 =

〈−I〉 × 〈B1〉 ∼= (Z/2Z) × (Z/2Z). G23 = 〈−I〉 × 〈A−1
1 BA1〉 and G24 = 〈−I〉 × 〈B〉 are both

isomorphic to (Z/2Z)× (Z/(q − 1)Z). G123 = G124 = 〈−I〉 ∼= Z/2Z. This produces an Ingleton

violation for any odd prime power q ≥ 5.

6. G2 = 〈−I,GA, P 〉 = 〈−I〉 × 〈GA, P 〉 = (Z/2Z)× (Z/pZ)m o (Z/(q − 1)Z), (p 6= 2):

G12 = 〈−I〉×〈B1〉 ∼= (Z/2Z)×(Z/2Z). G23 = 〈−I〉×〈t−1A−1
1 BA1〉 and G24 = 〈−I〉×〈P 〉, both

isomorphic to (Z/2Z) × (Z/(q − 1)Z). As in the previous case, G123 = G124 = 〈−I〉 ∼= Z/2Z.

This violates the Ingleton inequality whenever q ≥ 5.

2.7.4 The Final Four Ingleton Violations

In the four remaining sets of Ingleton-violating subgroups which occur in GL(2, 5) and generalize

to other general linear groups, we always have G1 = 〈B1, C〉 ∼= 〈C〉 o 〈B1〉 ∼= D6. The remaining

subgroups are all equal or conjugate to one of 〈GA, B〉, 〈GA, B′〉, 〈GA, P 〉, or 〈GA, P ′〉. As we have

already described, each of these is a semidirect product of the normal subgroup GA by the cyclic group
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generated by the one of the matrices B, B′, P , and P ′, and is isomorphic to (Z/pZ)m o (Z/(q− 1)Z).

The conjugators of the above groups will take the form

E =

−1 1

1 0

 , Q =

2 1

1 0

 , W =

 0 1

−1 1

 .
For a subgroup H and a matrix M , we will use the common notation HM to describe the conjugated

subgroup M−1HM := {M−1XM : X ∈ H} which is itself a subgroup isomorphic to H. As before,

there will be conditions on q = pm which must be met in order for these sets of subgroups to produce

Ingleton violations, but we will address these as we come to them.

1. G2 = 〈GA, B〉, G3 = 〈GA, P 〉E , G4 = 〈GA, P 〉Q, (p 6= 3):

Note that in this case, the requirement that p 6= 3 stems from the fact that otherwise, E ≡ Q,

and the groups G3 and G4 are identical. Thus the Ingleton inequality cannot be violated by

Theorem 2. We can also verify that G3 and G4 respectively become

〈GA, P 〉E =


 1− α α

1− α− β α+ β

 α ∈ Fq, β ∈ F×q

 ,

〈GA, P 〉Q =


 1 + 2α α

2(β − 2α− 1) β − 2α

 α ∈ Fq, β ∈ F×q

 . (2.25)

These groups intersect with G1 as G12 = 〈B1〉, G13 = 〈B1C〉, and G14 = 〈CB1〉, which are

isomorphic to Z/2Z. We also have

G23 = 〈P 〉E =


 1 0

1− tk tk

 k ∈ {0, ..., q − 2}

 , (2.26)

G24 = 〈P 〉Q =


 1 0

2(tk − 1) tk

 k ∈ {0, ..., q − 2}

 , (2.27)

both of which are isomorphic to Z/(q − 1)Z. The remaining intersections in the Ingleton in-

equality (2.7) are trivial. This violates Ingleton for q ≥ 5.

2. G2 = 〈GA, B′〉, G3 = 〈GA, P ′〉E , G4 = 〈GA, P ′〉Q (p 6= 2, 3): In this case, we must have p 6= 3

for the same reason as in the previous case, and based on the forms of B′ and P ′ we see that

unless p 6= 2, these groups will be identical to those in the previous case. We have already
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described the form of the matrices in G2, and those in G3 and G4 will take the form

〈GA, P ′〉E =


 (−1)k − α α

(−1)k − tk − α tk + α

 α ∈ Fq, k ∈ {0, ..., q − 2}

 ,

〈GA, P ′〉Q =


 (−1)k + 2α α

2(tk − 2α− (−1)k) tk − 2α

 α ∈ Fq, k ∈ {0, ..., q − 2}

 .

Since t
q−1
2 = −1, we can see that if q−1

2 is even, G2 will contain the matrices


1 0

α −1

,

while G3 will contain those of the form


1− α α

2− α α− 1

 and G4 will include the matrices
 1 + 2α α

−22(1 + α) −1− 2α

. On the other hand, when q−1
2 is odd, G2 includes the matrices

−1 0

α −1

, G3 contains


−1− α α

−α α− 1

 andG4 will contain the set


−1 + 2α α

−22α −1− 2α

.

Thus, when q−1
2 even, we have as in the previous case: G12 = 〈B1〉, G13 = 〈B1C〉, and G14 =

〈CB1〉, all isomorphic to Z/2Z, and G34 = 1. When q−1
2 is odd, G12, G13, and G14 become

trivial, and G34 = 〈−I〉 ∼= Z/2Z. In either case,

G23 = 〈P ′〉E =


 (−1)k 0

(−1)k − tk tk

 k ∈ {0, ..., q − 2}

 , (2.28)

G24 = 〈P ′〉Q =


 (−1)k 0

2(tk − (−1)k) tk

 k ∈ {0, ..., q − 2}

 , (2.29)

both isomorphic to Z/(q − 1)Z, and G123 = G124 = 1. This set of subgroups produces an

Ingleton violation for q ≥ 5 and q−1
2 even.

3. G2 = 〈GA, P 〉E , G3 = 〈GA, B〉, G4 = 〈GA, B〉W (p 6= 3):

In this case, if p = 3 we will have 2 ≡ −1 in Fq, and we can see that the matrices B1 and C will

actually be elements of 〈GA, P 〉E , and hence G1 will be a subgroup of G2 and Ingleton cannot

be violated by Theorem 2.

We have described the form of the elements in each of the subgroups G1, G2, and G3, and the
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elements of G4 are actually

〈GA, B〉W =


β α

0 1

 α ∈ Fq, β ∈ F×q


= {XT : X ∈ 〈GA, P 〉}.

Now we have G12 = 〈B1C〉, G13 = 〈B1〉, and G14 = 〈CB1〉, all isomorphic to Z/2Z. G23 is the

same as in (2.26), while G24 becomes

G24 = 〈B〉W =


tk 1− tk

0 1

 k ∈ {0, ..., q − 2}

 ∼= Z/(q − 1)Z. (2.30)

Also, we have G34 = G123 = G124 = 1. This instance produces an Ingleton violation for any

q = pm ≥ 5, provided p 6= 3.

4. G2 = 〈GA, P ′〉E , G3 = 〈GA, B′〉, G4 = 〈GA, B′〉W (p 6= 2, 3):

Again, we cannot have p = 2 because the groups in this case will become equal to those of

the previous one, and when p = 3 (so that 2 ≡ −1) we can verify that B1 and C are elements

〈GA, P ′〉E , so that G1 ≤ G2 and Ingleton cannot be satisfied by Theorem 2.

We have described the forms of all the matrices in these subgroups except for those of G4, which

are

〈GA, B′〉W =


tk α

0 (−1)k

 α ∈ Fq, k ∈ {0, ..., q − 2}


= {XT : X ∈ 〈GA, P ′〉}.

Note that G2 and G3 are the same groups (but swapped) from case 2 in this section, in which

we discussed the differences in the matrices they contain depending on whether q−1
2 is even or

odd. Similarly, we see that when q−1
2 is even G4 contains the matrices


−1 α

0 1

, and when

q−1
2 is odd G4 contains


−1 α

0 −1

 for α ∈ Fq. We can thus verify that when q−1
2 is even,

G12 = 〈B1C〉, G13 = 〈B1〉, and G14 = 〈CB1〉, all isomorphic to Z/2Z, and G34 is trivial. When
q−1
2 is odd, we have that G12 = G13 = G14 = 1 and G34 = 〈−I〉 ∼= Z/2Z. In either case, G123
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and G124 are trivial, G23 is the same as in (2.28), and G24 becomes

G24 = 〈B′〉W =


tk (−1)k − tk

0 (−1)k

 k ∈ {0, ..., q − 2}

 ∼= Z/(q − 1)Z.

This instance produces an Ingleton violation when q ≥ 5 and q−1
2 is even.

2.8 Interpreting the Ingleton Violations Using Group Actions

The projective linear group PGL(n, q) can be interpreted as the set of linear transformations acting

on the projective linear space PG(Fnq ), in which points are defined as the lines in Fnq . In other words,

PG(Fnq ) is the set {v ∈ Fnq \ 0} under the relation λv ≡ v, ∀λ ∈ Fq, λ 6= 0. The number of points in

PG(Fnq ) is accordingly qn−1
q−1 = qn−1 + qn−2 + ...+ 1.

Recall that a group action of a group G on a set S is a homomorphism from G to Perm(S),

the permutation group of S. If g ∈ G and s ∈ S, we will denote by gs the image of s under the

permutation associated to g. The set Gs := {gs : g ∈ G} is called the orbit of the element s under

G. For a subset S′ ⊆ S, gS′ is the set of images {gs : s ∈ S′}, and the stabilizer of S′ is the set

StabG(S′) = {g ∈ G : gs ∈ S′, ∀s ∈ S′}, also denoted G(S′). We will use the notation GS′ to denote

the pointwise stabilizer of S′, the subgroup of G(S′) defined as GS′ := {g ∈ G : gs = s, ∀s ∈ S′}. It

should be clear that for a single element s ∈ S, we have G(s) = Gs.

We say a group action is transitive if for any s1, s2 ∈ S, there is a g ∈ G such that gs1 = s2. We

say the action is r-transitive if it is transitive on the set of ordered r-tuples of distinct points in S.

That is, if s = (s1, ..., sr) and s′ = (s′1, ..., s
′
r) are points in Sr where no two si (and no two s′i) are

equal, then there is a g ∈ G such that gs := (gs1, ..., gsr) = s′. G is sharply r-transitive on S if it is

r-transitive and, in addition, only the identity element 1 ∈ G fixes any r points in S.

An important classical result which we will use is called the orbit stabilizer theorem:

Theorem 3 (Orbit Stabilizer Theorem). Let G be a group acting on a set S. For any s ∈ S, the size

of the orbit of s under G is |Gs| = |G|
|Gs| .

Proof. Consider the set of left cosetsG/Gs. Every element in the coset gGs maps s to the same element

in S, namely gs. Thus there are at most |G/Gs| = |G|
|Gs| elements in the orbit of s. Furthermore, for

any two left cosets g1Gs and g2Gs, if g1s = g2s, then g−1
1 g2 fixes s and hence is an element of Gs, so

the cosets are the same. It follows that |Gs| is exactly the number of cosets, |G||Gs| .

Using this terminology, it is easy to see that PGL(2, q) is 2-transitive on the projective space

PG(F2
q), but the following is also true:
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Lemma 3. The group action of PGL(2, q) on the projective space PG(F2
q) is sharply 3-transitive.

Proof. Fix two ordered triples (s1, s2, s3) and (s′1, s
′
2, s
′
3) in PG(F2

q). Since any two distinct points in

PG(F2
q) must be linearly independent in F2

q (because they generate two different lines), we may write

s3 ≡ s1 + αs2 and s′3 ≡ s′1 + βs′2 for some α, β ∈ Fq. (Note that we may assume the coefficients of

s1 and s′1 are nonzero, since otherwise s3 and s′3 would be equivalent to s2 and s′2 respectively in the

projective space.

Now let X ∈ PGL(2, q) be such that Xs1 = s′1 and Xs2 = α−1βs′2 ≡ s′2. Then

Xs3 ≡ Xs1 + αXs2 ≡ s′1 + βs′2 ≡ s3,

and we have 3-transitivity.

Now, if si = s′i for each i = 1, 2, 3, so that X fixes the triple (s1, s2, s3). Then considering X as a

matrix in GL(2, q) and the points si as typical points in the vector space F2
q, we must have Xs1 = λ1s1

and Xs2 = λ2s2 for some λ1, λ2 ∈ Fq. Writing s3 = s1 + αs2, we also must have

λ1s1 + αλ2s2 = Xs3 = λ3s3 = λ3s1 + αλ3s2,

so both λ1 and λ2 must be equal to λ3, hence X is a scalar transformation, X = λ3I, which is

equivalent to the identity transformation in PGL(2, q). This gives us sharpness.

Let G = PGL(2, q). Now consider the standard basis for F2
q,

e1 =

1

0

 , e2 =

0

1

, each

element giving rise to a point in the projective space: x1 = {λe1} and x2 = {λe2}. Recall our

Ingleton-violating subgroups in PGL(2, q) from Section 2.6.1:

G1 =

I,
 0 1

−1 −1

 ,
−1 −1

1 0

 ,
 1 0

−1 −1

 ,
0 1

1 0

 ,
−1 −1

0 1


G2 =


1 0

α β

 α ∈ Fq, β ∈ F×q


G3 =


 1 0

β − 1 β

 ,
 −1 −1

1− β 1

 β ∈ F×q


G4 =


1 0

0 β

 ,
0 β

1 0

 β ∈ F×q


The group G2 is the set of lower-triangular matrices in PGL(2, q), which is in fact the stabilizer of
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the line x2, so we may write G2 = Gx2 . G3 and G4 are both isomorphic to D2(q−1), with normal

subgroups G23 and G24 (both isomorphic to Z/(q− 1)Z which intersect trivially. This means that we

have the quotient groups G3/G23 and G4/G24 isomorphic to Z/2Z. If we let g ∈ G3 be a generator

of G3/G23, and let x3 := gx2, then we claim G3 is the stabilizer of the set {x2, x3}. Indeed, this set

is fixed by both g and G23, and the size of StabG({x2, x3}) can be computed by the orbit-stabilizer

theorem (considering that G acts transitively on the pairs of points of the projective plane) to be

|StabG({x2, x3})| =
|G|

|G{x2, x3}|
=

|PGL(2, q)|
#{{xi, xj} : xi, xj ∈ PG(F2

q), xi 6≡ xj}

=
(q2 − 1)(q2 − q)/(q − 1)(

q+1
2

)
= 2(q − 1).

Thus, by size considerations G3 is the entire stabilizer group of {x2, x3}. We can easily compute x3 to

be

−1

1

. A similar argument shows that G4 is the stabilizer of the set {x2, x4}, where x4 =

1

0

.

Finally, we claim G1
∼= D6 is the stabilizer of the set {x2, x3, x4}. Indeed, we can easily verify

that G1 stabilizes this set, and since PGL(2, q) is sharply 3-transitive by Lemma 3, we know that

StabG({x2, x3, x4}) ∼= S3. But this is isomorphic to D6, so G1 is the full stabilizer.

It is not too difficult to see that the choice of the points x2, x3, and x4 was arbitrary, provided

that they are distinct. Indeed, using the relation

|H1H2| =
|H1||H2|
|H12|

, (2.31)

which is true for any subgroups H1 and H2, we can rewrite the Ingleton inequality of (2.7) in the form

|G1||G2|
|G12|

≥ |G13G23||G14G24|
|G34|

. (2.32)

Then, fixing points α, β and γ, and setting G1 = G({α, β, γ}), G2 = Gα, G3 = G({α, β}) and

G4 = G({α, γ}), we actually have G13G23 = G3 and G14G24 = G4. To see this, note that G13 is the

subgroup of G1 which fixes γ and permutes {α, β}, and G23 is simply the point wise stabilizer of α

and β, i.e. Gα,β . Now since G is sharply 3-transitive, any g ∈ G is uniquely determined by its values

on three distinct points of S. Thus if h ∈ G3 and we consider the three points α′ := h−1α, β′ := h−1β,

and γ′ := h−1γ, there is a unique g which fixes each of α′ and β′ while satisfying gγ′ = γ. By our

choice of h, we know that {α′, β′} = {α, β}, so g ∈ G23. Sharp 3-transitivity also gives us a group

element g′ which fixes γ and satisfies g′α′ = α and g′β′ = β. This g′ is in G13. The composition g′g

satisfies g′gα′ = α, g′gβ′ = β and g′gγ′ = γ, so by sharp 3-transitivity we must have g′g = h. We can
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now deduce that G3 = G13G23, and a similar argument shows that G4 = G14G24. Note that we only

needed sharp 3-transitivity to prove this.

We can now rewrite (2.32) as

|G1||G2|
|G12|

≥ |G3||G4|
|G34|

. (2.33)

We can use the orbit stabilizer theorem to compute the quantities |G1|, |G2|, and |G3| as we did

in the above calculation of |StabG({x2, x3})|, using only knowledge of the size of G, the fact that G

is 3-transitive, and how each of the subgroups acts on the points α, β and γ. We find that

|G1| = 6 (2.34)

|G2| = q(q − 1) (2.35)

|G3| = |G4| = 2(q − 1). (2.36)

We can compute |G12| using the orbit stabilizer theorem by considering G12 as the subgroup of Gγ

which fixes the set {α, β}:

|StabGγ ({α, β})| = |Gγ |
|Gγ{α, β}|

=
q(q − 1)(

q
2

)
= 2.

Finally, we compute |G34| by noting that G34 is the pointwise stabilizer of the set {α, β, γ}, i.e. Gα,β,γ .

We consider the action of this group on the ordered triples of distinct points in the projective space,

and again apply the orbit stabilizer theorem:

|Gα,β,γ | =
|G|

#{(x1, x2, x3) ∈ S × S × S : xi 6≡ xj , ∀i 6= j}

=
(q2 − 1)(q2 − q)/(q − 1)

(q + 1)q(q − 1)

= 1.

Plugging these quantities into (2.33), we see that as expected the Ingleton inequality is violated. This

example is not only gives rise to a whole class of Ingleton-violating subgroups in PGL(2, q), but it gives

a structural interpretation for the fundamental reason why they violate Ingleton. More importantly,

though, is the fact that it reveals that we really only needed G to be a sharply 3-transitive group of
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a particular size.

2.8.1 Ingleton Violations in More General 2-Transitive Groups

It turns out that even requiring G to be strictly 3-transitive is more than we need demand. Instead,

let us just require that G act 2-transitively on a set S of size at least 3. Suppose further that for

some subset {α, β, γ} ⊆ S, G acts as the symmetric group S3. That is, for every permutation σ of the

elements {α, β, γ}, there is some g ∈ G such that gα = σα, gβ = σβ, and gγ = σγ. This condition is

clearly if G acts 3-transitively on S, as in the case of PGL(2, q) acting on PG(F2
q).

Now, again define the subgroups:

G1 = G({α, β, γ}),

G2 = Gα,

G3 = G({α, β}),

G4 = G({α, γ}).

(2.37)

Lemma 4. Let the group G act 2-transitively on a set S, and act as the symmetric group on a subset

{α, β, γ} ⊆ S. Then if G1, G2, G3, and G4 are defined as in (2.37), we have G3 = G13G23 and

G4 = G14G24.

Proof. We prove the equality for G3, and the proof for G4 is analogous. Since the group product

G13G23 is a subset of G3, it suffices show that |G13G23| = |G3|. But from (2.31) we have that

|G13G23| = |G13||G23|/|G123|. We claim that

|G13|
|G123|

=
|G3|
|G23|

.

Indeed, G123 is the subgroup of G13 which fixes α, and likewise G23 is the stabilizer of α in G3. Thus

from the orbit-stabilizer theorem, |G13|
|G123| is the size of the orbit of α under the action of G13, and |G3|

|G23|

is the size of the orbit of α under the group G3. But by hypothesis, both of these orbits are equal to

the set {α, β}, so we are done.

This lemma shows that the Ingleton inequality again takes the form of (2.33). Now computing the

remaining terms, we note that G12 is the subgroup of G1 which fixes α, thus by the orbit stabilizer

theorem, |G1|
|G12| is equal to the size of the orbit of α under G1 which is the set {α, β, γ}, and hence

|G1|
|G12| = 3. Also by the orbit stabilizer theorem and transitivity, |G2| = |G|/|Gα| = |G|/|S|.

Let us define τ := |G3|/|G34|. Since G34 is the subgroup of G3 which fixes α, β and γ (which can

equivalently be interpreted as either G3({α, γ}), (G3)α,γ , or (G3)β,γ), we see that τ depends on how G
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acts on these three elements. By the orbit stabilizer theorem, τ is equal to the size of the orbit of the

ordered triple (α, β, γ) under G3. This is at least 2, since G3 acts as the symmetric group on the set

{α, β} by assumption. On the other hand, for each permutation of {α, β}, G3 can potentially map γ

to any of the elements S \{α, β}, so we have 2 ≤ τ ≤ 2(|S|−2). τ achieves the lower bound when, for

example, G3 is a subgroup of Gγ . It achieves the upper bound in the case where G is 3-transitive, as

in our previous example with the projective linear group. To simplify notation, we will let τ ′ = τ/2,

so that |G3|
|G34| = 2τ ′ and 1 ≤ τ ′ ≤ |S| − 2.

Finally, by 2-transitivity and the orbit stabilizer theorem, |G4| is equal to |G| divided by the

number of pairs of elements in S. Thus, |G4| = |G|
(|S|2 ) = 2|G|

|S|(|S|−1) .

Now, examining the Ingleton inequality (2.7), we see that Ingleton is violated if |G12||G13||G14||G23||G24|
|G1||G2||G34||G123||G124| > 1.

For a set of subgroups µ = (G1, G2, G3, G4), we define the Ingleton ratio to be the quantity

r(µ) =
|G12||G13||G14||G23||G24|
|G1||G2||G34||G123||G124|

. (2.38)

In the case of the groups in (2.37), the Ingleton ratio becomes

r(µ) =
|G12||G3||G4|
|G1||G2||G34|

=
4τ ′

3(|S| − 1)
. (2.39)

If G is chosen so that τ ′ is close to |S| − 2, then as |S| becomes large the Ingleton ratio approaches 4
3 ,

producing an Ingleton violation.
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Chapter 3

Group Frames with Few Distinct
Inner Products and Low Coherence

A frame is the following generalization for the basis of a vector space:

Definition 1. Let V be a vector space equipped with an inner product 〈·, ·〉 (or more specifically, a

separable Hilbert space). A set of elements {fk}k∈I , where I is a countable index set, is a frame for

V if there exist positive constants A and B such that

A||f ||22 ≤
∑
k∈I

|〈f, fk〉|2 ≤ B||f ||22, (3.1)

for all f ∈ V. A frame is called tight if A = B in this definition, and unit norm if ||fk||2 = 1,∀k ∈ I.

Most often we will consider our frame vectors to be the columns {mi}ni=1 of a matrix M =

[m1,m2, . . . ,mn] ∈ Cm×n. We will speak of the coherence of M to be the coherence of the frame

{mi}. If f ∈ Cm×1 is any vector, the sum in (3.1) takes the form
∑n
k=1 |〈f ,mk〉|2 = f∗MM∗f . By

examining the singular value decomposition of MM∗, we can see that the frame is tight if and only

if MM∗ = λIm where Im is the m×m identity matrix and λ = A = B in (3.1). If the columns {mi}
form a unit-norm tight frame, then we have the relation

mλ = Tr(MM∗) = Tr(M∗M) =
n∑
i=1

||mi||22 = n, (3.2)

from which we see that λ = n
m . We will typically restrict our attention to unit-norm frames.

Of particular interest in frame design are the magnitudes of the inner products between distinct

frame elements, |〈fi, fj〉|, i 6= j. A unit-norm frame is called equiangular if all of these magnitudes

are equal: |〈fi, fj〉| = α, ∀i 6= j, for some constant α. In general, we would like all of the inner
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product magnitudes to be as small as possible so that the frame vectors are well-spaced about the m-

dimensional unit sphere. We define the coherence µ of the frame to be the largest of these magnitudes:

µ = max
i 6=j

|〈fi, fj〉|
||fi||2 · ||fj ||2

.

Designing frames with low coherence is a problem that has connections to a wide range of fields,

including compressive sensing [10–12, 37, 38, 101], spherical codes [31, 91], LDPC codes [44], MIMO

communications [56,57], quantum measurements [43,84,85], etc. Frame theory has also made its mark

as an interesting field in its own right, with a great collection of recent work by Casazza, Kutyniok,

Fickus, Mixon, and many others [13–16,18,45].

The following is a classical lower bound on the coherence due to Welch [108]:

Theorem 4. Let {fi}ni=1 be a unit-norm frame in Cm or Rm. The coherence µ := maxi 6=j |〈fi, fj〉|
satisfies

µ ≥
√

n−m
m(n− 1)

, (3.3)

with equality if and only {fi} is both tight and equiangular. In this case, the frame is called Grassma-

nian.

Proof. The bound in (3.3) is one of a more general set of bounds originally derived by Welch in [108].

This version of the theorem is typically proven (e.g. in [91]) by considering the eigenvalues of the

Gram matrix G := [〈fi, fj〉]. G is positive semidefinite of rank at most m. If G has eigenvalues

λ1, ..., λn, which are necessarily real and nonnegative, we may assume that at most the first m of

these are nonzero. The Frobenius norm gives us

n∑
i=1

λ2
i = Tr(G2) =

∑
i,j

|〈fi, fj〉|2. (3.4)

The right side of (3.4) becomes

∑
i,j

|〈fi, fj〉|2 = n+
∑
i 6=j

|〈fi, fj〉|2 ≤ n+
n(n− 1)

2
µ2, (3.5)

where µ = maxi,j |〈fi, fj〉|. Here, equality is achieved if and only if the frame is equiangular.

On the other hand, from the Cauchy-Schwartz inequality we have

n2 = Tr(G)2 =

(
m∑
i=1

λi

)2

≤ m
m∑
i=1

λ2
i = m

n∑
i=1

λ2
i . (3.6)
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Here we have equality if and only if the λi are all equal, which is the case if and only if the frame is

tight.

Finally, combining (3.4), (3.5), and (3.6), we obtain the result.

Thus, we would like to identify tight, equiangular frames for use in constructing matrices which

achieve this lower bound. This problem arises in various contexts, for example line packing problems

[27]. It should be emphasized that such frames do not exist for all values of m and n, so in general,

we would also like to find ways to optimize the coherence by choosing M cleverly from an appropriate

class of matrices. Our approach will be to use the group frame construction proposed by Slepian [90]

in the 1960s. Group frames have received a great deal of attention in recent years, notably in the

substantial collection of work by Vale, Waldron, and others [25,55,102–104,106]. We will discuss them

in some detail shortly, but an excellent review of the work in group frames can be found in [17].

On one final note before proceeding, a common approach to produce a set of vectors with low

correlation is to construct a set of Mutually Unbiased Bases (MUBs). Two bases {e1, ..., em} and

{e′1, ..., e′m} for Cd are mutually unbiased if each is orthonormal, and |〈ei, e′j〉| = 1√
m

for any i and j.

Algebraic constructions of up to m+ 1 MUBs are known in prime-power dimensions m, allowing for

a number of vectors at most m2 + m [2, 65, 109]. The frame constructions presented in this chapter

will at times outperform this coherence, though typically with a smaller number of vectors. More

importantly, though, our frames will not require m to be prime.

3.1 Reducing the Number of Distinct Inner Products in Tight

Frames

In practice, constructing frames which are both tight and equiangular can prove difficult. It turns out,

however, that we can expect reasonably low coherence from tight frames if we just require that the

inner products between frame elements take on few distinct values, provided that each of these values

arises the same number of times. We begin with the following generalization of the Welch bound:

Lemma 5. Let {fi}ni=1 be a unit-norm frame in Cm or Rm. Then the mean value of the n(n − 1)

squared inner product norms {|〈fi, fj〉|2}i 6=j satisfies

1
n(n− 1)

∑
i 6=j

|〈fi, fj〉|2 ≥
n−m
m(n− 1)

, (3.7)

with equality if and only if {fi} is a tight frame.
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Proof. The quantity 1
n(n−1)

∑
i 6=j |〈fi, fj〉|2 is very closely related to the frame potential defined in [4],

and (3.7) follows from Theorem 6.2 in that work. In the interest of being self-contained, we remark

that the proof essentially follows the second half of the proof of the Welch Bound (Theorem 4). From

equations (3.4) and (3.6), we obtain

n2 ≤ m
∑
i,j

|〈fi, fj〉|2 = m

n+
∑
i 6=j

|〈fi, fj〉|2
 , (3.8)

and rearranging terms we get (3.7). Since (3.6) holds with equality if and only if the frame is tight,

the same is true of (3.7), and we are done.

Using Lemma 5, we can obtain upper bounds on the coherence of tight frames which become

particularly effective when there are few distinct inner product values {|〈fi, fj〉|}i 6=j , with each value

arising the same number of times in this set.

Lemma 6. Let {fi}ni=1 be a unit-norm tight frame in Cm or Rm, such that the inner product norms

{|〈fi, fj〉|}i6=j take on κ distinct values, with each value arising the same number of times as such an

inner product norm. Then the coherence µ of the frame is at most a factor of
√
κ greater than the

Welch bound:

µ ≤ √κ
√

n−m
m(n− 1)

. (3.9)

Proof. Let α1, ..., ακ be the κ distinct nonnegative values assumed by the inner product norms

|〈fi, fj〉|, i 6= j. Since each αi arises the same number
(
n(n−1)

κ

)
of times as such a norm by hy-

pothesis, we have that the mean of the squared inner product norms is equal to that of the α2
i :

1
n(n− 1)

∑
i 6=j

|〈fi, fj〉|2 =
1
κ

κ∑
i=1

α2
i . (3.10)

As a result, Lemma 5 gives us

1
κ

κ∑
i=1

α2
i =

n−m
m(n− 1)

. (3.11)

Now we can bound the coherence as

µ2 = max
i
{α2

i } ≤
∑
i

α2
i = κ

n−m
m(n− 1)

, (3.12)

from which the (3.9) follows.
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Notice that when κ = 1 in Lemma 6, the frame becomes both tight and equiangular, and fittingly

the coherence in (3.9) achieves the Welch bound. In what follows, we will discuss constructions of

unit-norm tight frames in which we could control the number of distinct inner product values and

ensure that each arises with the same multiplicity. These constructions appear in [96–99]

3.2 Frames from Unitary Group Representations: Slepian Group

Codes

In [90], Slepian proposed a method to construct low-coherence matrices by reasoning that the key

to controlling the inner products between the columns was to reduce the number of distinct inner

product values which arise. His construction, which has come to be known as a group frame, also

called a “group code,” has since been generalized (see, for example [102] and [17]). On this note, let

U = {U1,U2, ...,Un} be a (multiplicative) group of unitary matrices. We can equivalently view U
as the image of a faithful, unitary representation of a group G. In some works, e.g. [46], U is taken

to be a group-like unitary operator system—the image of a projective representation—but normal

representations will suffice for our purposes. Such representations exist for any finite group.

Suppose that for each i, we have Ui ∈ Cm×m (or equivalently, U is the image of an m-dimensional

representation). Let v = [v1, ..., vm]T ∈ Cm×1 be any vector, and let M be the matrix whose ith

column is Uiv:

M = [U1v, ...,Unv].

The inner product between the ith and jth columns of M is 〈Uiv,Ujv〉 = v∗U∗iUjv. Since U is a

unitary group, we have

U∗iUj = U−1
i Uj = Uk,

for some k ∈ {1, ..., n}, so we can write

〈Uiv,Ujv〉 = v∗Ukv.

In particular, each column has the same norm ||Uiv||2 = ||v||2, so if we assume v is normalized

then the columns of M form a unit-norm set. In this manner, we have reduced the total number

of pairwise inner products between the columns of M from a possible
(
n
2

)
to only n − 1, the inner

products parametrized by the non-identity elements of U . Furthermore, we have the following:

Lemma 7. Let {U1, ...,Un} ⊂ Cm×m be a set of distinct unitary matrices which form a group under

multiplication, and let v ∈ Cm×1 be a nonzero vector. Each of the values v∗Ukv occurs as the inner
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product between two columns of M = [U1v, ...,Unv] the same number of times.

Proof. For every choice of Uk and Ui, there is a unique Uj such that U−1
i Uj = Uk. Thus, for each

Uk, there are n pairs (Ui,Uj) such that v∗U∗iUjv = v∗Ukv.

This result suggests that group codes lend themselves to analysis via Lemmas 5 and 6. One should

be wary, however, about applying the bound in Lemma 6, since in this case the number of inner

product magnitudes could be as high as κ = n − 1, in which case the bound becomes µ ≤
√

n−m
m .

Since this upper bound is greater than 1 when n > 2m, it provides no useful information in this

regime.

Remark: Note that the inner products corresponding to Uk and U−1
k actually have the same

norms, since

|〈v,Ukv〉| = |〈Ukv,v〉| = |〈v,U∗kv〉| = |〈v,U−1
k v〉|.

Thus in practice, depending on our group U , Slepian’s construction can in fact give us as few as n−1
2

distinct nontrivial inner product values, though it is important to bare in mind that they may not

arise with the same multiplicity when grouped together in this fashion.

3.3 Abelian Groups and Harmonic Frames

When U is chosen to be abelian, so that all the Ui commute with each other, then the matrices can be

simultaneously diagonalized by a unitary change of basis matrix B so that we may write B∗UiB = Di,

where Di is diagonal. In this case the inner product corresponding to Ui will take the form

v∗Uiv = v∗B∗DiBv,

so by replacing v with B∗v without loss of generality, we may assume that the Ui are already diagonal.

Furthermore, since each Ui must have a multiplicative order dividing the size of U , we may take the

diagonal entries of Ui to be powers of the nth-root of unity ω := e
2πi
n . The matrices will then take

the form

Uj = diag(ωa1,j , ..., ωam,j ) ∈ Cm×m,

where the ai,j are integers between 0 and n − 1. In the language of representation theory we have

decomposed U into its irreducible representations, all of which are degree-1 since U is abelian.

If we write the coordinates of our rotated vector as v = (v1, ..., vm)T ∈ Cm×1, then our inner
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products will now take the form

v∗Ujv =
m∑
i=1

ωai,j |vi|2, (3.13)

so we see that the inner products depend only on the magnitudes of the vi, which weight the diagonal

entries of the Uj . In particular, for the sake of minimizing coherence, we may take the entries of v

to be real. Furthermore, it turns out that in order for our abelian group frame to be tight, all the

entries vi must be of equal norm. This follows from Theorem 5.4 in [17], and we will touch on this in

Section 4.1. On this note, we will consider the case where v is a scaled vector of all 1’s,

v =
1√
m

1m =
1√
m

[1, ..., 1]T ∈ Cm×1, (3.14)

where we have again chosen v, and hence all the vectors Uiv, to be unit-norm. Now the inner product

norm corresponding to the element Uj becomes simply

|v∗Ujv|
||v||22

=
1
m

∣∣∣∣∣
m∑
i=1

ωai,j

∣∣∣∣∣ . (3.15)

Notice that from Equation (3.15), we can see that the coherence of our final matrix would remain

unchanged if we chose ω to be any other primitive nth root of unity. Indeed, if we replace ω with

another primitive root of unity, which we may write as ωb where b is relatively prime to n, then the

inner product associated with Uj will become 1
m

∣∣∑m
i=1 ω

b·ai,j
∣∣. But this is just the original inner

product associated with Ub
j , which in turn generates the entire cyclic group 〈Uj〉. Hence, the inner

products which arise using any two primitive nth roots of unity are the same.

When we form a frame from an abelian group in this manner, and in addition require the sets

of diagonal components {ωai,j}mi=1 to form distinct representations of U , we obtain what is called a

harmonic frame, which we will define concretely as follows:

Definition 2. Let m and n be integers, ω = e
2πi
n , and Uj = diag(ωa1,j , ..., ωam,j ) ∈ Cm×m for

j = 1, ..., n, where the ai,j are integers between 0 and n − 1. If we set v = 1√
m

[1, ..., 1]T ∈ Cm×1,

and M = [U1v, ...,Unv], then if the rows of M are distinct, we call the set of columns {Ujv}nj=1 a

harmonic frame.

Remark: Note that we have sidestepped the discussion of whether a “harmonic frame” is actually

a frame in the sense of Definition 1. But indeed it is, as we will discuss in the proof of Lemma 8.

Harmonic frames are one of the most thoroughly-studied types of structured frames [25, 55]. An

important example of a harmonic frame arises when we choose the group U to be cyclic, meaning that
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each Uj is a power of a single matrix U, which we will explicitly write as

U = diag(ωa1 , ..., ωam), (3.16)

so we may write Uj := Uj . For cyclic groups, the inner product between the columns U`1v and

U`2v, after normalizing the columns, will take the form |v∗U`2−`1v|
||v||22

, which is the value of the inner

product determined by U`2−`1 in (3.15).

In this case, if we again take v to be the normalized vector of all 1s, our frame matrix takes the

form

M =
[
v Uv . . . Un−1v

]
(3.17)

=
1√
m


1 ωa1 ωa1·2 . . . ωa1·(n−1)

1 ωa2 ωa2·2 . . . ωa2·(n−1)

...
...

...
. . .

...

1 ωam ωam·2 . . . ωam·(n−1)

 , (3.18)

where the columns form a harmonic frame precisely when the ai are distinct. In this form, we see

that M is a subset of rows of the n× n discrete Fourier matrix, so it becomes clear that the columns

of M form a tight frame since MM∗ = n
mI ∈ Cm×m. In fact, this is true of all harmonic frames:

Lemma 8. A harmonic frame is a tight, unit-norm frame.

Proof. The fact that harmonic frames are unit-norm follows straight from the definition. We note

that the rest of this lemma is proven in [17], and we will explain the tightness of harmonic frames

in Section 4.1 when we discuss tight group frames in greater generality. For now, however, we will

provide a simple, self-contained proof.

A general abelian group U can be represented as follows: first express G as a direct product

of, say, L cyclic groups of orders n1, ..., nL, so that U ∼= Z
n1Z × ... × Z

nLZ . Then let ω1, ..., ωL be

the corresponding primitive roots of unity: ωj = e2πi/nj . Then we set Uj = diag(ωa1j
j , ..., ω

amj
j ),

where we will assume that the aij are distinct integers modulo nj . The abelian group generated

by the diagonal matrices {U1, ...,UL} is isomorphic to U , and an arbitrary element will take the

form Ub1
1 Ub2

2 . . .UbL
L , where bj ∈ {0, ..., nj − 1}. Our frame matrix M will then take the form

M = [. . .
(
Ub1

1 Ub2
2 . . .UbL

L v
)
. . .]0≤bj≤nj−1.

In this form, our previous cyclic frames clearly arise as subsets of the columns of M. It is not

too difficult to see that the frame matrix M is a subset of rows of the Kronecker product AKron :=
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A1 ⊗ ...⊗AL, where Aj =
[
v,Ujv, ...,U

nj−1
j v

]
. By the properties of the Kronecker product,

AKronA∗Kron = (A1 ⊗ ...⊗AL)(A1 ⊗ ...⊗AL)∗ (3.19)

= (A1 ⊗ ...⊗AL)(A∗1 ⊗ ...⊗A∗L) (3.20)

= A1A∗1 ⊗ ...⊗ALA∗L, (3.21)

and since each AjA∗j is a multiple of the identity matrix, so is their Kronecker product. It follows

that the columns of M are indeed a tight frame.

As we will see in the next few sections, there is a lot we can do in optimizing frame coherence even

if we restrict our attention to harmonic frames.

3.4 Equiangular Frames from Cyclic Group Representations

Let us examine the “cyclic” harmonic frame formed by the columns of M in (3.18). [110] classified

the conditions on the ai under which this frame is equiangular. Since we know these frames are tight,

this determines precisely when their coherence achieves the Welch lower bound of Theorem 4.

Definition 3. Let G be a group. A difference set A = {a1, ..., am} ⊂ G is a set of elements such that

every nonidentity element g ∈ G occurs as a difference ai − aj the same number of times. That is,

the sets Ag := {(ai, aj) ∈ A×A | ai − aj = g} have the same size for g 6= 0.

Theorem 5 ( [110] Equiangular Cyclic Harmonic Frames). The harmonic frame formed by the

columns of M in (3.18) is equiangular if and only if the integers ai form a difference set in Z/nZ.

Proof. The proof follows from a simple but insightful Fourier connection. Let us define At :=

{(ai, aj) ∈ A × A | ai − aj ≡ t mod n} for any t ∈ Z/nZ, and set Nt := |At|. Furthermore, if

we index the columns as ` = 0, 1, ..., n− 1 then the inner product associated to the `th column takes

the form

c` :=
v∗U`v
||v||22

=
1
m

∑
a∈A

ω`a.

Since we are concerned only with the magnitude of c`, we may consider the quantity

α` := |c`|2 =
1
m2

(∑
a∈A

ω`a

)∗(∑
a∈A

ω`a

)

=
1
m2

∑
ai,aj∈A

ω`(ai−aj).
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We can then write

α` =
1
m2

n−1∑
t=0

Ntω
`t, (3.22)

which gives us a Fourier pairing between the α` and the Nt with inverse transform given by

Nt =
m2

n

n−1∑
`=0

α`ω
−t`. (3.23)

M will be an equiangular tight frame precisely when all of the α` are equal for ` 6= 0, and from

the Fourier pairing this will occur precisely when the Nt are equal for t 6= 0, i.e., when the ai form a

difference set.

This concept of tight equiangular frames arising from difference sets has since been generalized and

elaborated [17, 35, 106]. [34] showed how slightly relaxed forms of difference sets can produce frames

which have coherence almost reaching the Welch Bound. Many of our results in the following sections

can also be viewed as relaxing difference sets even further to produce low-coherence frames. Difference

sets have been long studied and classified [3, 8]. They have found application in other fields as well,

such as designing codes for DS-CDMA systems [36], LDPC codes [105], sonar and synchronization [47],

and other forms of frame design [61].

While Theorem 5 completely characterizes the optimal-coherence frames arising from representa-

tions of cyclic groups, it reveals that equiangular frames of the form (3.18) are rather scarce, since

the number of known difference sets is relatively small. In the following section, we will present a new

strategy for selecting the integers ai which, while not always producing an equiangular frame, does

yield frames with few distinct inner product values and provably low coherence.

3.5 Cyclic Groups of Prime Order

We have already managed to cut down the number of distinct inner products between columns from(
n
2

)
to n−1, simply by using a unitary group to generate our columns. For cyclic groups, however, we

can reduce this number even more. We first consider the case where n is prime. Let H = (Z/nZ)×,

the multiplicative group of the integers modulo n. As usual, we identify the elements of Z/nZ with

the integers 0, 1, ..., n− 1. Since n is assumed to be a prime, H is itself a cyclic group, and consists of

the n− 1 nonzero elements of H. Now let us choose m to be any divisor of n− 1, and set κ := n−1
m .

Since H is cyclic, it has a unique subgroup A of order m consisting of the distinct κth powers of the

elements of H. In fact, if g is any generator for H, then A will be generated by a := g
n−1
m . Now,
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if we write out the elements of A as {a1, ..., am} (or equivalently in terms of a single generator a as

{1, a, a2, ..., am−1}), we can form our generator matrix U as in (3.16), choosing ωai = ωa
i−1

to be

the ith diagonal term. Note that since A consists of elements relatively prime to n, then for each

i, ωai has multiplicative order n. It follows that U also has order n and generates the cyclic group

U = {U`}n−1
`=0
∼= Z/nZ.

It turns out that this construction both 1) reduces the number of distinct inner product values

between our columns and 2) maintains the property that each such value occurs with the same

multiplicity:

Theorem 6. Let n be a prime and m any divisor of n − 1. Take A = {a1, ..., am} to be the unique

(cyclic) subgroup of H = (Z/nZ)× of size m. Set ω = e
2πi
n , v = 1√

m
[1, ..., 1]T ∈ Cm, and U =

diag(ωa1 , ..., ωam). Then the columns of M = [v,Uv, ...,Un−1v] ∈ Cm×n form a unit-norm tight

frame with at most n−1
m distinct inner product values between its columns, each occurring with the

same multiplicity.

Proof. For any integer ` in the set {1, ..., n−1}, the inner product corresponding to U` (as in Equation

(3.15)) will take the following form:

|v∗U`v|
||v||22

=
1
m

∣∣∣∣∣
m∑
i=1

ω`·ai

∣∣∣∣∣ . (3.24)

Notice the exponents of ω appearing in the above summation can be taken modulo n, since ω is an

nth root of unity, and are then simply the elements of the `th coset of K in H, `A = {` · a1, ..., ` · am}.
The set of all cosets of A in H is denoted H/A. From elementary group theory, we know that the

distinct cosets of A form a disjoint partition of H, so the number of distinct cosets of K in H is

the quotient of their sizes: |H/A| = |H|
|A| = n−1

m . Thus, the total number of distinct pairwise inner

products that we now must control is n−1
m .

It only remains to show that each of the n−1
m inner products occurs the same number of times.

Let {`1, ..., `r} be a complete set of coset representatives for K in (Z/nZ)×. Here, r is simply n−1
m .

Then every element in {1, ..., n − 1} can be written uniquely as a product `iaj , and from Lemma 7

the n− 1 inner products v∗U`iajv all arise the same number of times. As described above, the n−1
m

distinct inner product values correspond to the cosets of K, i.e., for a fixed `i the m inner products

v∗U`ia1v, ...,v∗U`iamv will give rise to one of the distinct inner product values. Thus, since each

distinct value corresponds to m inner products, each arising the same number of times, our result is

proved.

We emphasize the power of this construction in reducing the number of inner products that we

must control in order to maintain low matrix coherence. Since we are free to choose m to be any
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divisor of n− 1, then for properly chosen matrix dimensions, we can reasonably create matrices with

just two or three distinct values of inner products between columns. In practice, this often creates

matrices with remarkably low coherence, far outmatching that of any known randomly-generated

matrices. In Table A.1, we compare the coherences of the “Group Matrices” from our construction

with those of randomly-generated complex Gaussian matrices and matrices designed by randomly

selecting m rows from the n × n Fourier matrix. (This latter construction is equivalent to randomly

selecting the exponents ki in our cyclic generator matrix U in (3.16).) For convenience, we also list

the lower bound on coherence from Theorem 4, and we underline the coherences which achieve this

bound. Figure 3.1 illustrates explicitly the inner products for a random Fourier matrix vs. a Group

matrix.

Table 3.1: Coherences for Random and Group Matrices (for n a Prime)

(n,m) Complex
Gaussian

Random
Fourier

Group
Ma-
trix

√
n−m
m(n−1)

(251, 125) .2677 .1996 .0635 .0635
(499, 166) .3559 .1786 .0888 .0635
(499, 249) .2226 .1736 .0449 .0449
(503, 251) .2137 .1533 .0447 .0447
(521, 260) .2208 .1504 .0458 .0439
(521, 130) .3065 .2376 .1175 .0761
(643, 321) .2034 .1627 .0395 .0395
(643, 214) .2274 .1978 .0755 .0559
(701, 175) .2653 .2316 .0687 .0655
(701, 350) .1788 .1326 .0393 .0379
(1009, 504) .1565 .1147 .0325 .0315
(1009, 336) .2086 .1384 .0597 .0446
(1009, 252) .2287 .1631 .0846 .0546

3.6 Sharper Bounds on Coherence for Frames from Cyclic

Groups of Prime Order

In the special case where we construct our frame as in Theorem 6 (using Slepian’s approach with a

group U ∼= Z/nZ and n prime), we have a great deal of underlying algebraic structure in our frame. So

it should come as no surprise that we can derive sharper bounds on our coherence and even compute

it exactly in some cases.

As before, let m be a divisor of n − 1, and take A = {a1, ..., am} to be the unique subgroup of

(Z/nZ)× of size m. Define κ := n−1
m , which is the number of distinct inner product values. If κ is

small, it becomes relatively simple to analyze these values. For example:
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Figure 3.1: The norms of the inner products associated to each group element for (a) randomly-
chosen A, and (b) A selected to be a subgroup of (Z/nZ)× of index 3. Here, n = 499 (a prime)
and m = 166. In (b), as expected, there are only three distinct values of the inner products between
distinct, normalized columns.

Theorem 7 (κ = 2). Let n be a prime, m a divisor of n−1, and ω = e
2πi
n . Let A = {a1, ..., am} be the

unique subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m, v = 1√
m

[1, ..., 1]T ∈
Cm×1, and M = [v,Uv, ...,Un−1v].

If κ := n−1
m = 2, there are two distinct inner product values between the columns of M, both of

which are real. If n − 1 is divisible by 4, these inner products are −1±
√

1+2m
2m . In this case, M has

coherence
√

n−m− 1
2

m(n−1) + 1
2m .

If n − 1 is not divisible by 4, then the columns of M form an equiangular frame. The two inner

products are ±
√

1
m

(
1
2 + 1

2m

)
, and the coherence is

√
n−m
m(n−1) .

Proof. We will hold off on the details of the proof until Appendix A.2 aside from mentioning that it

is related to the connection made by Xia et al [110] between tight equiangular harmonic frames and

difference sets. In fact, in the case where n− 1 is not divisible by 4, A forms a known difference set in

Z/nZ. If we view Z/nZ as the additive group of Fn, this particular case also overlaps with the tight

equiangular frames classified in Theorem 3 of [35].

As the number κ of inner products increases, it becomes more complicated to explicitly compute

their values or even just the coherence of the resulting frame. While there were only two cases to

consider when κ = 2, there are many more even for κ as low as 3. We can, however, exploit the
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algebraic structure of our frames to yield bounds on their coherence which in practice prove to be

nearly tight.

Theorem 8 (κ = 3). Let n be a prime, m a divisor of n−1, and ω = e
2πi
n . Let A = {a1, ..., am} be the

unique subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m, v = 1√
m

[1, ..., 1]T ∈
Cm×1, and M = [v,Uv, ...,Un−1v].

If κ := n−1
m = 3, then the coherence of M will satisfy

µ ≤ 1
3

(
2

√
1
m

(
3 +

1
m

)
+

1
m

)
≈
√

4
3m

, (3.25)

and for large enough m, we will asymptotically have the following lower bound on coherence:

µ ≥ 1√
m

(asymptotically), (3.26)

which is strictly greater than the Welch bound.

Proof. We present the proof in Appendix A.3.

From Theorem 8 we see that unlike when κ = 2, we can never hope to achieve the Welch bound

with these frames when κ = 3. But this is not a trend, for our frames will again be able to achieve

the Welch bound for certain higher values of κ, including κ = 4 and κ = 8. This again relates to the

connection with difference sets from [110]. As a result, the lower bound on coherence in Theorem 8

does not generalize to all values of κ. Fortunately, the upper bound does:

Theorem 9 (General κ). Let n be a prime, m a divisor of n − 1, and ω = e
2πi
n . Let A =

{a1, ..., am} be the unique subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m,

v = 1√
m

[1, ..., 1]T ∈ Cm×1, and M = [v,Uv, ...,Un−1v].

If κ := n−1
m , then the coherence µ of M satisfies the following upper bound:

µ ≤ 1
κ

(
(κ− 1)

√
1
m

(
κ+

1
m

)
+

1
m

)
. (3.27)

Proof. This theorem will be proved in Appendix B.1.

This bound is strictly lower than the one from Lemma 6, which applies to all tight frames. In fact,

when n > 2, we can find an even lower bound on the coherence of our frames constructed in Theorem

6, which surprisingly depends only on whether m is odd:
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Theorem 10 (m odd). Let n be an odd prime, m a divisor of n − 1, and ω = e
2πi
n . Let A =

{a1, ..., am} be the unique subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m,

v = 1√
m

[1, ..., 1]T ∈ Cm×1, and M = [v,Uv, ...,Un−1v]. Set κ := n−1
m .

If m is odd, then the coherence of M is upper-bounded by

µ ≤ 1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2, (3.28)

where β =
√

1
m

(
κ+ 1

m

)
.

Proof. We delay the proof of this theorem until Appendix B.1.

It is worth noting that this latter bound has no analog in the κ = 3 situation because m must

always be even in that case. Indeed, if n is any prime greater than 2 it is necessarily odd, and n− 1

is even. Thus m = n−1
3 is also even. In the Appendix B.1 we will give an alternate classification for

exactly when this latter coherence bound applies. This will allow us to apply our bound to a more

general class of frames, which we will discuss in the next chapter. We illustrate the upper and lower

bounds for κ = 3 in Figure 3.2 and the two upper upper bounds from Theorem 10 for when κ = 4.

When κ = 4, we can also derive different lower bounds on the coherence for when m is even or odd,

and together with the two upper bounds from the theorems they form two non-overlapping regions

in which the coherences can fall in the graph. While these regions will exist for every κ, they will

sometimes overlap (that is, the lower bound on coherence for m even could be less than the upper

bound for m odd).

3.7 Optimizing Coherence Over Cosets

While the preceding results give us a deterministic way to construct very low coherence matrices, we

can hope to generalize our construction to yield an entire class of group-theoretically based matrices

over which we can optimize to find even lower coherences.

As before, let us take n to be a prime, and m a divisor of n − 1, and let H = (Z/nZ)×. As we

remarked, there is a unique subgroup A of H of any order m dividing n − 1, and it is cyclic. But

suppose m′ is a divisor of m, and let A′ = {a′1, ..., a′m′} be the unique subgroup of H of order m′. For

convenience, let d = m
m′ . If A is the unique subgroup of H of order m, then A′ is a subgroup of A.

Taking g to be a generator for H, then g
n−1
m is a generator for A and gd

n−1
m is a generator for A′.

Now, the set of cosets of A′ in H form the group H/A′. This is a cyclic group of size n−1
m′ = dn−1

m ,

generated by the coset gA′. We will construct our unitary group U as follows: take a set of d cosets

of A′ in H, {`1A′, ..., `dA′}. Then, for ω a primitive nth root of unity, we let U be the cyclic group



50

0 50 100 150 200 250 300 350 400 450 5000

0.05

0.1

0.15

0.2

0.25

m

C
oh

er
en

ce

 

 

Upper Bound
Lower Bound
Welch Bound
Actual Coherence

Figure 3.2: The upper and lower bounds on coherence for κ = 3.
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generated by the matrix U, which we define as follows: For any ` ∈ H, let D` = diag
(
ω`a

′
1 , ..., ω`a

′
m′

)
,

an m′ ×m′ diagonal matrix with the elements of ω`a
′
, a′ ∈ A′ along the diagonal. Then define U to

be the (block) diagonal matrix

U := diag(D`1 ,D`2 , ...,D`d).

Now, since each coset of A′ in H consists only of elements relatively prime to n, then we see

that this matrix will indeed maintain the property of having multiplicative order n, as in our original

framework. In fact, if we choose `iA′ = gi
n−1
m A′, for each i = 1, ..., d, then since g

n−1
m is a generator

for A, we find that the cosets {`1A′, ..., `dA′} are precisely the cosets of A′ as a subgroup of A. These

cosets partition the elements of A, so we retrieve the matrix obtained from our original construction,

with U = diag (ωa1 , ..., ωam) up to a permutation of the elements of A (which will not affect the values

of the inner products in (3.15)). Thus, this new construction is a direct generalization of our original

work. Another special case is when A′ = 1, the trivial subgroup. In this case, selecting cosets for A′

is nothing more than selecting individual rows of the n× n Fourier matrix for M, with the exception

of the row of all 1’s.

As we cycle through the powers of U, each D`i cycles through the different cosets of A′ in some

order. Since some powers of U may give rise to permutations of the same cosets, and hence lead to the

same corresponding inner product from Equation 3.24, it can take some care to determine precisely

how many distinct inner products we have in our constructed matrix. We know that it can be as few

as n−1
m , as is the case when the chosen cosets of A′ partition A. In general, we have the following

theorem:

Theorem 11. Let n be a prime, m a divisor of n−1, and m′ a divisor of m, with m = dm′. Let A be

the unique subgroup of H = (Z/nZ)× of size m, and A′ = {a′1, ..., a′m′} the unique subgroup of size m′.

Let {`1A′, ..., `dA′} be a set of d cosets of A′ in H. Set ω = e2πi/n and v = 1√
m

[1, ..., 1]T ∈ Cm×1, and

form the matrices D`i = diag
(
ω`ia

′
1 , ..., ω`ia

′
m′

)
∈ Cm′×m′ , U := diag(D`1 ,D`2 , ...,D`d) ∈ Cm×m,

and M = [v,Uv, ...,Un−1v] ∈ Cm×n. Then M has at most d·(n−1)
m distinct values of the inner

products between its columns.

Proof. We know that the distinct inner products between the normalized columns of M will correspond

to the powers of U. The bth power of U can be written as Ub = diag
(
Db
`1
, ...,Db

`d

)
. Thus, the inner

product corresponding to this power of U is

1
m

∣∣∣∣∣ ∑
a′∈A′

ω`1(ba
′) +

∑
a′∈A′

ω`2(ba
′) + ...+

∑
a′∈A′

ω`d(ba
′)

∣∣∣∣∣ . (3.29)

Thus, there can only be as many such sums as there are cosets bA′. Since there are n−1
m′ = d·(n−1)

m
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cosets of A′ in H, we have our result.

This coset construction offers us a tradeoff. By using the smaller group A′ (of size m
d ) to construct

our matrix as opposed to A (of size m), we gain the possibility of having nice cancelation properties

among the sums
∑
a′∈A′ ω

`i(ba
′) in (3.29) at the cost of having more inner products to control. But

since the number of distinct inner products can increase only by a factor of d at most, this can turn

out to be a worthwhile tradeoff, and indeed we have examples where we can strictly decrease the

coherence of M by using this construction. (See Fig. 3.4).

We can now can formulate the problem of constructing low-coherence matrices as an optimization

problem, where we can optimize over both the choice of A′ and the set of cosets {`1A′, ..., `dA′}. For

fixed m and n, where n is a prime and m a divisor of n− 1, we must solve the following:

min
m′|m, `∈G×

m
m′

max
b∈H

1
m

∣∣∣∣∣∣
m/m′∑
i=1

 ∑
a∈Am′

ω`i(ba)

∣∣∣∣∣∣
 , (3.30)

where H = (Z/nZ)×, ` = (`1, ..., `d), H×
m
m′ denotes the Cartesian product of H with itself m

m′ times,

and Am′ denotes the unique subgroup of H of size m′.

In practice, it is typically not feasible to perform this exact optimization since it requires a search

over the lattice H×
m
m′ for every m′ dividing m. One simple way to deal with this problem is to fix m′

and randomly sample ` ∈ H× m
m′ to search for the smallest value of the objective function. Note that

if m′2|m′1 (or equivalently, Am′2 ≤ Am′1), then searching over cosets of Am′2 encompasses the search

over cosets of Am′1 since we can express Am′1 as a union of cosets of Am′2 . One might therefore be

tempted to argue that it is unnecessary to search over cosets of Am′1 at all. There is, however, value

in searching over these cosets, since this search will converge to its optimal value much faster than

the search over cosets of the smaller group. See Figure 3.4.

Of course, we can still bound the coherence of the frames that can arise from this construction

using that of our previous frames.

Theorem 12. Let n be a prime, m a divisor of n − 1, m′ a divisor of m, and d = m
m′ . Let

A′ = {a′1, ..., a′m′} be the unique subgroup of H := (Z/nZ)× of order m′. Set ω = e2πi/n and v =
1√
m

[1, ..., 1]T ∈ Cm×1, and as before choose a set of cosets {`1A′, ..., `dA′} of A′ in H. Form the matri-

ces D` = diag
(
ω`a

′
1 , ..., ω`a

′
m′

)
∈ Cm′×m′ for any ` ∈ H, and U := diag(D`1 ,D`2 , ...,D`d) ∈ Cm×m.

If M1 = [v,Uv, ...,Un−1v] ∈ Cm×n has coherence µ1 and M2 = [v,D1v, ...,Dn−1
1 v] ∈ Cm′×n has

coherence µ2, then we have µ1 ≤ µ2.

Proof. The result comes from a simple application of the triangle inequality: from Equation (3.29),
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Figure 3.4: Randomly sampling ` to search for the optimal coherence over cosets of subgroups of
size m′ for various values of m′ (= 1, 14, 70). (Plot shows the lowest coherence found up to a given
iteration). Here, n = 491, and m = 70. The figure shows that m′ = 14 quickly achieves the lowest
values of coherence.

we see that

µ1 = max
b

1
m

∣∣∣∣∣ ∑
a′∈A′

ω`1(ba
′) + ...+

∑
a′∈A′

ω`d(ba
′)

∣∣∣∣∣ (3.31)

≤ 1
dm′

(
max
b1

∣∣∣∣∣ ∑
a′∈A′

ω(`1b1)a
′

∣∣∣∣∣+ ...+ max
bd

∣∣∣∣∣ ∑
a′∈A′

ω(`dbd)a
′

∣∣∣∣∣
)

(3.32)

=
1
d

(
d ·max

s

∣∣∣∣∣ 1
m′

∑
a′∈A′

ωsa
′

∣∣∣∣∣
)

(3.33)

= µ2. (3.34)

Theorem 12 naturally allows us to use the bounds from Theorems 9 and 10 to explicitly bound

the coherence from our coset optimization in terms of r,m and d, though it is worth noting that in

practice we achieve coherence significantly lower than these bounds.

3.8 Generalized Dihedral Groups

Let us now investigate what changes when U is nonabelian. In this case the irreducible representations

at our disposal will no longer all be one-dimensional, so we will no longer have all the matrices Ui

be simultaneously diagonal. Consequently, it may not be possible to write all of our inner products
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in the simple form of Equation (3.15), so it is no longer clear that we can restrict our vector v to be

real-valued.

One simple class of nonabelian groups is that of semidirect products of cyclic groups. On this

note, consider the following group presentation (which arises in [88]):

Gn,r = 〈σ, τ | σn = 1, τD = 1, τστ−1 = σr〉. (3.35)

Here, n and r are relatively prime integers, and D is the multiplicative order of r modulo n. Gn,r is

precisely a semidirect product in the form Z
nZ o Z

DZ , and if we take D = 2 and r = n− 1, we see that

we obtain the familiar dihedral group D2n.

There are n ·D group elements in Gn,r, each of which can be written in the form σ`1τ `2 for some

integers 0 ≤ `1 < n and 0 ≤ `2 < D. Gn,r has an irreducible representation in the form

σ 7→ S :=


ω

ωr

. . .

ωr
D−1

 ∈ CD×D, (3.36)

τ 7→ T :=



1

1
. . .

1

1


∈ CD×D, (3.37)

where ω = e
2πi
n (see again [88]). The informed reader might note that this representation is quite

similar to that of Heisenberg groups, which have been extensively applied to the construction of

frames [9, 63, 84, 86]. Our following methods can be conceivably adjusted for use with Heisenberg

frames as well.

In order to construct our frames, we would like to follow the example of our previous construction

in Theorem 6 by selecting a representation for Gn,r of the form

σ 7→ [σ] :=


Sa1

. . .

Sam

 , τ 7→ [τ ] :=


T

. . .

T

 , (3.38)

where m and the ai are cleverly chosen integers. Then we will select a vector v ∈ CDm×1 and take our



55

frame to be the columns of the matrix M := [. . . [σ]`1 [τ ]`2v . . .]0≤`1<n, 0≤`2<D. We need the greatest

common divisor between the ai to be relatively prime to n in order for the columns to be distinct,

and again we satisfy this by taking n to be prime. Note that in our above notation, this will be a

Dm-dimensional representation, so our resulting frame matrices will have dimensions Dm×Dn.

At this point, we can see that in order to minimize coherence we must deviate from our original

construction, for if we were to set v to the vector 1Dm of all ones it would be fixed by [τ ]`2 for any `2,

and the inner product corresponding to [τ ]`1 would be 1. We must therefore be more clever in how we

construct v. A natural form for v would be to find some D-dimensional vector w = [w1, ..., wD]T ∈
CD×1 and set v equal to the periodic vector v =

[
wT wT ... wT

]T
∈ CDm×1. The question now

becomes how to choose w?

In order to preserve as much of the structure from our previous construction as possible, we would

like each entry of w to have the same norm. This will ensure that the inner products corresponding

to the elements [σ]`1 will have the same values as those in our previous construction from Theorem 6

corresponding to when U was the cyclic group Z/nZ generated by [σ]. Let us require that wd be unit

norm for each d, and consider attempting to force w to satisfy the constraint that

w∗T`2w =
∑
d

w∗dwd+`2 = 0, ∀`2, (3.39)

where the indices are taken modulo D. It turns out that we can satisfy all our restrictions on w by

selecting its indices to form a Zadoff-Chu (ZC) sequence [26,60]:

wd =

e
iπd2
D , if D is even

e
iπd(d+1)

D , if D is odd
. (3.40)

This is a well-known constant amplitude zero autocorrelation (CAZAC) sequence. Our frame

elements will now take the form

[σ]`1 [τ ]`2v =


S`1a1wd+`2

...

S`1amwd+`2

 , (3.41)

where wd+`2 := T`2w denotes the vector obtained by cyclically shifting the entries of w by `2 positions.

Thus, as the notation would suggest, the dth entry of wd+`2 is wd+`2 . (Note that by this notation,
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wd is simply w itself). Our inner products will take the form

v∗[σ]`1 [τ ]`2v
||v||22

=
1

m ·D
m∑
j=1

w∗dS
`1ajwd+`2 . (3.42)

Our new frames remain tight:

Theorem 13. Let n and r be relatively prime integers, and D the order of r modulo n. Let [σ] ∈
CDm×Dm and [τ ] ∈ CDm×Dm be the generating matrices for Gn,r defined in (3.37) and (3.38). If

w = [w1, ..., wD]T ∈ CD×1 is a ZC-sequence (3.40), and v =
[
wT ... wT

]T
∈ CDm×1, then the

columns of M =
[
. . . [σ]`1 [τ ]`2v . . .

]
∈ CDm×Dn form a tight frame.

Proof. This be deduced from Theorem 5.4 of [17] since all the representations are of the same dimension

and the corresponding components wd of v all have the same norm. But we will give a self-contained

proof here for completeness. It is not too difficult to see that M will have D ·m rows which can be

indexed by a pair of numbers (d, j), where 1 ≤ d ≤ D and 1 ≤ j ≤ m. Row (d, j) will be given by[
z(d,j)
1 z(d,j)

2 . . . z(d,j)
D

]
, where z(d,j)

`2+1 =
[
. . . ωr

d−1`1ajwd+`2 . . .
]
0≤`1<n

.

Now we can see that the inner product between row (d, j) and row (d′, j′) will be

D−1∑
`2=0

n−1∑
`1=0

ω(−rd−1aj+r
d′−1aj′ )`1w∗d+`2wd′+`2

=

[
n−1∑
`1=0

ω(−rd−1aj+r
d′−1aj′ )`1

]
·
[
D−1∑
`2=0

w∗d+`2wd′+`2

]
. (3.43)

Since the entries of w form a ZC-sequence, the sum
∑D−1
`2=0 w

∗
d+`2

wd′+`2 is equal to zero unless d = d′,

in which case it is equal to D. In this latter case we have,

n−1∑
`1=0

ω(−rd−1aj+r
d′−1aj′ )`1 =

n−1∑
`1=0

ωr
d−1(aj′−aj)`1 , (3.44)

which is zero unless j = j′. Thus, the rows of M are indeed orthogonal, and of equal norm, so the

frame is tight.

Exploiting the properties of our construction, we can bound the coherence of our new frames by

that of our original frames arising from representations of cyclic groups.

Theorem 14. Let n be an integer, and a1, ..., am distinct integers modulo n whose greatest common

divisor is relatively prime to n. Take r an integer relatively prime to n, and D the multiplicative order
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of r modulo n. Set ω = e
2πi
n . Consider the two frames:

1. The columns of the “cyclic frame” M1 = [v1,Uv1, . . . ,Un−1v1] ∈ Cm×n where U = diag(ωa1 , ..., ωam) ∈
Cm×m and v1 = [1, ..., 1]T ∈ Cm×1.

2. The columns of the “generalized dihedral frame” M2 =
[
. . . [σ]`1 [τ ]`2v2 . . .

]
∈ CDm×Dn

where v2 =
[
wT ... wT

]T
∈ CDm×1 and w = [w1, ..., wD]T ∈ CD×1 is a ZC-sequence.

If µcycA is the coherence of the cyclic frame M1 and µDA the coherence of the generalized dihedral frame

M2, then µDA ≤ µcycA .

Proof. From (3.42), we see that the inner products for the generalized dihedral representation will

take the form

v∗[σ]`1 [τ ]`2v
||v||22

=
1

m ·D
∑
a∈A

∑
d

w∗dwd+`2ω
a`1r

d−1
(3.45)

=
1

m ·D
∑
d

w∗dwd+`2
∑
a∈A

ωa`1r
d−1

(3.46)

=
1

m ·D
∑
d

w∗dwd+`2
∑
a∈A

ωa`
′
, (3.47)

where `′ = `1r
d−1. Furthermore,

|v∗[σ]`1 [τ ]`2v|
||v||22

≤ 1
m ·D

∑
d

∣∣∣∣∣w∗dwd+`2 ∑
a∈A

ωa`
′

∣∣∣∣∣ (3.48)

=
1

m ·D
∑
d

∣∣∣∣∣∑
a∈A

ωa`
′

∣∣∣∣∣ (3.49)

≤ 1
m ·D

∑
d

mµcycA = µcycA , (3.50)

so µDA ≤ µcycA .

Theorem 14 allows us to bound the coherence of our generalized dihedral frames using the same

bounds from Theorems 9 and 10:

Corollary 2. Let n be a prime and m a divisor of n − 1, and let A = {a1, ..., am} be the unique

subgroup of (Z/nZ)× of size m. Set κ = n−1
m . Take r an integer relatively prime to n, and D the

multiplicative order of r modulo n.

Let [σ] ∈ CDm×Dm and [τ ] ∈ CDm×Dm be the generating matrices for Gn,r defined in (3.37) and

(3.38). If w = [w1, ..., wD]T ∈ CD×1 is a ZC-sequence (3.40), and v =
[
wT ... wT

]T
∈ CDm×1,
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then the the columns of M =
[
. . . [σ]`1 [τ ]`2v . . .

]
∈ CDm×Dn have at most D · n−1

m distinct inner

product values between them, and the coherence µ of M is bounded by

µ ≤ 1
κ

(
(κ− 1)

√
1
m

(
κ+

1
m

)
+

1
m

)
. (3.51)

If m is odd, then the coherence of M is upper-bounded by

µ ≤ 1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2, (3.52)

where β =
√

1
m

(
κ+ 1

m

)
.

Proof. From (3.47), we can write out the inner product corresponding to the group element σ`1τ `2 in

the form

v∗[σ]`1 [τ ]`2v
||v||22

=
1

m ·D
∑
d

w∗dwd+`2
∑
a∈A

ωa`
′
, (3.53)

where `′ = `1r
d−1. In this form, we see that for each value of d in the summation, there are n−1

m

possible distinct inner product values associated to the different cosets `′A, so there are at most Dn−1
m

possible values. The last two bounds (3.51) and (3.52) follow from Theorem 14 and the bounds given

in Theorems 9 and 10.

In the case of regular dihedral groups (D = 2), our w becomes [1, i]T , and we can readily calculate

our inner products to be

v∗[σ]`v
||v||22

= Re

 1
m

m∑
j=1

ω`aj

 ,

v∗[σ]`[τ ]v
||v||22

= Im

− 1
m

m∑
j=1

ω`aj

 .

As we can clearly see, each of these has magnitude bounded by that of the corresponding inner

product in the cyclic counterpart,
∣∣∣ 1
m

∑m
j=1 ω

`aj

∣∣∣. In general, the dihedral coherence could be substan-

tially smaller than the corresponding cyclic coherence. Most importantly, by extending to generalized

dihedral groups, we allow for frame matrices M with a greater variety of dimensions. In particular,

the number of columns (nD) no longer need be prime. In Figure 3.5, we plot the coherences arising

from these frames along with the upper bounds predicted by Corollary 2 for the case κ = 4. From

this figure, it becomes apparent that in practice the coherence of our frames significantly outperforms
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these bounds.
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Figure 3.5: Coherences arising from dihedral representations for κ = 4, which we show can also be
realized by abelian representations. We also plot the upper bounds from Theorems 9 and 10.

3.8.1 Simulating Generalized Dihedral Frames with Harmonic Frames

It turns out that in this case, we could have created frames with the same dimensions whose inner

products have exactly the same magnitudes as the those of the above generalized dihedral frames had

we replaced T and [τ ] with

T′ := diag(1, γ, γ2, ..., γD−1) ∈ CD×D (3.54)

[τ ′] := diag(T′, ...,T′) ∈ CDm×Dm, (3.55)

where γ = e
2πi
D , and replaced v with v′ = 1√

Dm

[
1 ... 1

]T
∈ CDm×1, the vector of all ones. Here

we have altered T to be a diagonal matrix, T′, but maintain the property that [τ ′] is a block diagonal

matrix with m copies of T′ on the diagonal. Together with [σ], this is no longer a representation of

a generalized dihedral group, but rather a representation of the abelian group Z
nZ × Z

DZ . The group

elements again take the form [σ]`1 [τ ′]`2 , where 0 ≤ `1 ≤ n− 1 and 0 ≤ `2 ≤ D − 1.

The resulting frame

M =
[
. . . [σ]`1 [τ ′]`2v′ . . .

]
is harmonic and therefore tight by Lemma 8, and it is not too difficult to see that the inner product
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corresponding to [σ]`1 [τ ′]`2 will be

v′∗[σ]`1 [τ ′]`2v′

||v′||22
=

1
m ·D

∑
d

γd`2
∑
a∈A

ωa`1r
d−1

. (3.56)

We would like to compare (3.56) to (3.47). A quick calculation shows that when the terms wd in

(3.47) are chosen to be a ZC sequence as in (3.40), we have

w∗dwd+` =

e
iπ
D (2d`+`2) = γd`e

iπ`2
D if D is even,

e
iπ
D (2d`+`2+`) = γd`e

iπ(`2+`)
D if D is odd.

(3.57)

We can now see from (3.56) and (3.47) that when choosing v and [τ ] as in Theorem 13, we have

v∗[σ]`1 [τ ]`2v
||v||22

=

e
iπ`22
D

(
v′∗[σ]`1 [τ ′]`2v′

||v′||22

)
if D is even,

e
iπ(`2

2+`2)
D

(
v′∗[σ]`1 [τ ′]`2v′

||v′||22

)
if D is odd,

(3.58)

so indeed the inner products from our two frames have the same norm.

3.9 Summary

In this chapter, we have presented a method to select a set of representations of a finite cyclic group

to construct tight, unit-norm group frames such that the frame elements take on very few distinct

pairwise inner product values. Our construction ensures that each such inner product value arises

the same number of times, allowing us to derive upper bounds on the coherence of the frames which

approach the Welch lower bound. In certain cases, our construction has yielded instances of previously

known tight, equiangular frames which achieve the Welch bound. We have then demonstrated how

our method can be applied to constructing tight group frames from abelian and generalized dihedral

groups to obtain a richer set of frames of different sizes and dimensions. We have derived similar

bounds on coherence in these situations. In the Chapter 4, we will realize our method in a more

general context, showing how to choose representations of a general group to construct group frames.

We will develop a general framework which will tie all of our previous constructions together, and it

will become apparent why our cyclic group construction extends so naturally to generalized dihedral

groups. Furthermore, we will identify other groups for which our method produces frames with

particularly low coherence, including certain other tight, equiangular frames.
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Chapter 4

Frames from Generalized Fourier
Matrices

4.1 Tight Group Frames and the Group Fourier Matrix

In light of Lemmas 5 and 6, we will first establish the tools we need to ensure that our group frames

are tight. It turns out that the tight group frames have been completely classified [17, 102]. On this

note, we review some basics on representation theory, which the interested reader can read about in

greater depth in the first few chapters of [87].

Let G be a group of size n, and recall that a complex representation of G is formally defined as

a complex vector space V together with a function ρ : G → GL(V ) such that ρ(gg′) = ρ(g)ρ(g′),

∀g, g′ ∈ G. If V has dimension d, then ρ(g) is simply a d × d invertible complex matrix—a degree

d representation. Two representations ρ1 and ρ2 with corresponding vector spaces V1 and V2 are

equivalent if there is an invertible transformation T : V1 → V2 such that Tρ1(g)T−1 = ρ2(g) for

all g ∈ G. A basic result in representation theory says that every representation of a finite group is

equivalent to a unitary representation, in which all the ρ(gi) are unitary matrices, which is why we have

used the notation ρ(gi) = Ui in our previous discussion. We will typically assume our representations

are unitary without loss of generality.

A representation ρ is reducible if there is a nontrivial subspace V ′ of V which is mapped to itself by

ρ(g) for every g ∈ G. Otherwise, it is called irreducible. As matrices, the representation is reducible

if the ρ(g) can be simultaneously block-diagonalized by a similarity transformation. For any finite

group G of size n, there are only a finite number of inequivalent, irreducible unitary representations.

If we call them ρ1, ..., ρnr with corresponding degrees d1, ..., dnr , then it can be shown [87] that these
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degrees satisfy the relation

nr∑
i=1

d2
i = |G|. (4.1)

Every complex representation of G is equivalent to an orthogonal direct sum of irreducible repre-

sentations. Formally, this means that there is an invertible linear transformation T : V → V1⊕ ...⊕Vm
such that the Vi are mutually orthogonal vector spaces and Tρ(g)T−1 = ρ1(g) ⊕ ... ⊕ ρm(g), where

for each i, ρi and Vi give an irreducible representation of G. These irreducible representations can

again be taken to be unitary. As matrices, this means that the ρ(g) can be simultaneously block-

diagonalized in the form ρ(g) = diag(ρ1(g), ..., ρm(g)). A basic result of representation theory is that

this decomposition into irreducible components is unique up to isomorphism. We are now ready to

give a classification of all the tight G-frames:

Theorem 15 ( [17]). Let G = {gi}ni=1 be a finite group, and ρ : G→ GL(V ) a complex representation

of G which has the decomposition into orthogonal unitary irreducible representations:

V = V1 ⊕ ...⊕ Vm,

ρ(g) = ρ1(g)⊕ ...⊕ ρm(g).

Let v = v1 + ...+ vm, vk ∈ Vk, and set fi = ρ(gi)v. Then {fi}ni=1 is a tight G-frame if and only if

• ||vi||
2
2

||vj ||22
= dim(Vi)

dim(Vj)
, and

• if the ith and jth irreducible components are equivalent via T : Vi → Vj, then Tvi and vj are

orthogonal.

Proof. This is Theorem 5.4 in [17]. It follows from considering the frame matrix M :=
[
. . . ρ(gi)v . . .

]n
i=1

and applying Schur’s Lemma (Section 2.2, [87]) to the product MM∗ to see when it is a scalar matrix,

which is equivalent to the columns of M forming a tight frame.

We will now establish a tool that will allow us to easily use this theorem to construct tight

frames. On this note, consider the following well-studied generalization of the classical discrete Fourier

transform [94]:

Definition 4. We define the group Fourier transform of a complex-valued function on G, f : G→ C,

to be the function that maps a degree d representation ρ to the d× d complex matrix

f̂(ρ) =
∑
g∈G

f(g)ρ(g). (4.2)
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There is an inverse transformation given by

f(g) =
1
|G|

nr∑
i=1

diTr(ρi(g−1)f̂(ρi)), (4.3)

where the sum is taken over all the inequivalent irreducible representations of G.

Much like the traditional discrete Fourier transform, this transformation has a matrix representa-

tion in the form

F =



√
d1vec(ρ1(g1)) . . .

√
d1vec(ρ1(gn))

√
d2vec(ρ2(g1)) . . .

√
d2vec(ρ2(gn))

...
. . .

...√
dnrvec(ρnr (g1)) . . .

√
dnrvec(ρnr (gn))

 , (4.4)

where for a d × d matrix A, vex(A) is the vectorization of A, i.e., the vector formed by stacking the

columns of A into a single d2 × 1 column. From equation (4.1), we see that F is a square matrix.

Notice that when G is a cyclic group of size n, then the group elements are {0, 1, ..., n−1} (with the

group operation being addition modulo n). Since this group is abelian, there are exactly n irreducible

representations, {ρ`}n`=1, each degree-1. ρ` is simply the function that maps k 7→ ωk`, k ∈ {0, ..., n−1},
where ω = e

2πi
n . In this case our group Fourier transform and matrix become the familiar discrete

time Fourier transform and DFT matrix.

Theorem 16. Let G = {gi}ni=1 be a finite group with inequivalent, irreducible representations {ρi}nri=1,

and F the group Fourier matrix of G as in (4.4). Then the columns of F form a tight G-frame, so

F is a unitary matrix. In fact, if ρ̃ : G→ Cd×d is a representation of G and ṽ ∈ Cd×1 such that the

columns of M := [. . . ρ̃(gi)ṽ . . .]ni=1 form a tight frame, then the rows of M are a subset of the rows

of F up to an equivalence of ρ̃ or a change of basis of Cd×1.

Proof. The group Fourier matrix F can be realized as a G-frame as follows: For each i = 1, ..., nr,

define the representation

ρ̃i(g) = diag(ρi(g), ..., ρi(g)) ∈ Cd
2
i×d

2
i , (4.5)

a direct sum of di copies of the irreducible representation ρi. Also define the vector

vi = vec(Idi) = [e(1)T
i , ..., e(di)T

i ]T ∈ Cd
2
i , (4.6)

where Idi is the di× di identity matrix and e(j)
i ∈ Cdi×1 is the jth column of Idi—a vector of all zeros
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except for a 1 in the jth position.

Now choose the representation

ρ(g) = diag(ρ̃1(g), ρ̃2(g), ..., ρ̃nr (g)) ∈ Cn×n, (4.7)

and the vector

v = [
√
d1vT1 ,

√
d2vT2 , . . . ,

√
dnrv

T
nr ]

T ∈ Cn. (4.8)

Then F is the G-frame with columns ρ(gi)v. For any i, {e(j)
i }dij=1 is a complete orthonormal set in

Cdi , and
||e(j1)
i1
||22

||e(j2)
i2
||22

= di1
di2

. From Theorem 15, we see that not only do the columns of F form a tight

G-frame, but in fact up to a change of basis of the e(j)
i or a similarity transformation of the ρi, every

tight G-frame can be realized as a subset of the rows of F by forming each vi from a corresponding

subset of the columns {e(j)
i }dij=1.

Theorem 16 reduces the task of constructing tight G-frames to selecting blocks of rows of the

corresponding group Fourier matrix F . Our job will now be to find good choices of the group G, and

to identify which rows of F to choose to create a tight group frame with low coherence. We should

mention that this problem was explored for abelian groups G in [35], with a focus on finding frames

with coherence equal to the Welch Bound. We will find, however, that by not placing any restrictions

on our group G, and by allowing our coherence to be slightly above the Welch lower bound, we can

produce a vastly larger and richer collection of frames.

4.2 Reducing the Number of Distinct Inner Products in Tight

Group Frames

In our original construction from Theorem 6, we designed harmonic frames in the form of M from

(3.18) which arose from representations of the cyclic group G = Z/nZ, where n is a prime. Indeed, the

jth row of M is [1, ωkj , ω2kj , ..., ω(n−1)kj , where ω = e
2πi
n , and we can now see that this is simply the

row of the group Fourier matrix of G corresponding to the n-dimensional representation ρkj (`) = ω`kj ,

for ` ∈ {0, ..., n−1}. We wish to generalize our original method from Theorem 6 of constructing frames

with few distinct inner product values.

On this note, we will consider constructing frames by choosing the blocks of rows corresponding

to m of the representations, which we may assume are ρ1, ..., ρm up to a reordering, so that our frame
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matrix takes the form

M =


√
d1vec(ρ1(g1)) . . .

√
d1vec(ρ1(gn))

...
. . .

...
√
dmvec(ρm(g1)) . . .

√
dmvec(ρm(gn))

 . (4.9)

As an analog to Equations (4.7) and (4.8) from the proof of Theorem 16, this corresponds to the

tight group frame whose elements are the images of the vector v = [
√
d1vT1 ,

√
d2vT2 , . . . ,

√
dmvTm]T

under the representation ρ(g) = diag(ρ̃1(g), ρ̃2(g), ..., ρ̃m(g)), where ρ̃i and vi are defined as in Equa-

tions (4.5) and (4.6) respectively. The dimension of this representation is easily seen to be
∑m
i=1 d

2
i .

Note that in the setting of Theorem 6, the representations ρi are all 1-dimensional, so the block[√
divec(ρi(g1)) . . .

√
divec(ρi(gn))

]
is just a single row.

The inner product between the ith and jth columns of M in (4.9) takes the form

m∑
t=1

dtvec(ρt(gi))∗vec(ρt(gj)) =
m∑
t=1

dtTr(ρt(gi)∗ρt(gj)) (4.10)

=
m∑
t=1

dtTr(ρt(g−1
i gj)) (4.11)

=
m∑
t=1

dtχt(g−1
i gj). (4.12)

Here, χi(g) := Tr(ρi(g)) is the character function associated to the representation ρi. Equation (4.12)

actually arises in [35], though only 1-dimensional representations are considered, in which case each

representation is essentially just its own character. Note that in this form the frame is unnormalized,

but all of the columns have the same norm, which is given by the square root of the inner product

associated to the identity element:

||ρ(g)v||2 =

√√√√ m∑
t=1

dtχt(1) =

√√√√ m∑
t=1

d2
t , (4.13)

where we have used the fact the character evaluated at 1 is simply the dimension of the representation.

Alternatively, we could have simply seen this to be the norm of v by speculation.

Basic representation theory tells us that a character χ completely determines its representation up

to isomorphism, and as such the characters of many groups are well-studied. In light of this fact, we

can often compute the coherence of frames in the form of (4.9) for different choices of representations

{ρi}mi=1 without explicitly building the frame matrix M, which can often be a tedious computation.

From (4.11) and (4.12) we see that the inner product depends only on the group element gk := g−1
i gj ,
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so a priori there are only n − 1 possible nontrivial distinct inner product values, and each of these

values arises the same number of times as the inner product between two columns. This was to be

expected, since the columns of M form a group frame in light of Theorem 16. If we could generalize

our method for choosing rows of the classical Fourier matrix, however, we could hope to reduce this

number even further.

Toward this end, we consider the group of automorphisms of G. An automorphism of G is a

bijective function σ : G → G which respects the group multiplication, i.e., σ(gg′) = σ(g)σ(g′) for

any g, g′ ∈ G. The automorphisms of G form a group under composition, denoted Aut(G). An

important subgroup of Aut(G) is that of the inner automorphisms, denoted Inn(G). These are the

automorphisms which arise from conjugation by an element h ∈ G, which is the function σh(g) =

hgh−1. Two elements g and g′ are said to be conjugate if there is some h ∈ G such that g′ = hgh−1,

and the set of all elements conjugate to g is called the conjugacy class Cg. We see that the relation

{g ∼ g′ ⇐⇒ g is conjugate to g′} is an equivalence relation on G, so G can be partitioned into a

disjoint union of its conjugacy classes. Inn(G) is easily verified to be a normal subgroup of Aut(G),

and the quotient group Aut(G)/Inn(G) is called the group of outer automorphisms, denoted Out(G).

Any conjugation σh ∈ Inn(G) fixes a representation’s character function. Indeed, if ρ is a repre-

sentation of G with associated character χ, then

χ(σh(g)) = χ(hgh−1) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)) = χ(g). (4.14)

Thus, since the inner products between the columns of M in (4.9) can be expressed as in (4.12) in

terms of the characters of the irreducible representations of G (i.e., a so-called character function

on the group elements), we see that there is really only one inner product value for each conjugacy

class of G. Note that while this observation has the advantage of reducing the number of distinct

inner product values to consider, we unfortunately cannot readily apply Lemma 6 to obtain a tighter

coherence bound since these values no longer occur with the same multiplicity. Indeed, for each g ∈ G,

the corresponding inner product value
∑m
t=1 dtχt(g) will arise once for each element in the conjugacy

class Cg, and the conjugacy classes need not have the same size.

Since an automorphism essentially preserves the structure of the group G, it is no surprise that it

also preserves the structure of its representations:

Lemma 9. ρ(g) is an irreducible representation of the finite group G if and only if ρ(σ(g)) is also an

irreducible representation for any σ ∈ Aut(G). Furthermore, ρ(g) and ρ(σ(g)) have the same degrees.

Proof. If ρ : G→ GL(V ) is a representation, then composing with the automorphism σ : G→ G yields
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a function ρ ◦ σ : G → GL(V ) which respects the group multiplication: ρ(σ(gg′)) = ρ(σ(g)σ(g′)) =

ρ(σ(g))ρ(σ(g′)). Thus, ρ(σ(g)) is a well-defined representation which clearly has the same dimension

as ρ(g). Furthermore, since σ is a bijection of G, the matrices {ρ(σ(g)) : g ∈ G} are simply a

permutation of the matrices {ρ(g) : g ∈ G}, so the first representation is irreducible if and only if

the second is.

If ρ is a representation with character χ, and σ ∈ Aut(G), we will use the notation ρσ to indicate

the representation

ρσ(g) := ρ(σ(g)), (4.15)

which is irreducible if ρ is. ρσ has corresponding character

χσ(g) := χ(σ(g)). (4.16)

Under this notation, if 1 ∈ Aut(G) denotes the identity automorphism 1(g) = g, then ρ1 and χ1 are

simply ρ and χ, respectively. From Lemma 9, we see that Aut(G) has a group action on the irreducible

representations and characters of G given by

σ′ · ρσ := ρσσ′ , (4.17)

σ′ · χσ := χσσ′ . (4.18)

Let us consider case in our original construction from Theorem 6 where G was the (additive)

cyclic group Z/nZ = {0, ..., n − 1}. In this case, Aut(G) is isomorphic to the (multiplicative) group

of elements relatively prime to n, (Z/nZ)×. For each ` ∈ (Z/nZ)×, the corresponding automorphism

σ` ∈ Aut(G) is given by σ`(g) = `g. When we required that n be prime in Theorem 6, we ensured

that every nonzero element had a multiplicative inverse modulo n, so in this case (Z/nZ)× is the set

{1, ..., n− 1}.
Refer back to the structure of our harmonic frame from (3.18):

M =
1√
m


1 ωa1 ωa1·2 . . . ωa1·(n−1)

1 ωa2 ωa2·2 . . . ωa2·(n−1)

...
...

...
. . .

...

1 ωam ωam·2 . . . ωam·(n−1)

 , (4.19)

where ω = e2πi/n. As we have discussed, selecting the frequencies {a1, ..., am} is equivalent to choosing
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rows of the group Fourier matrix corresponding to Z/nZ, each of which corresponds to a degree-1

representation. By choosing the frequencies {a1, ..., am} in (4.19) to be a subgroup of (Z/nZ)× as in

Theorem 6, we can now see that we are actually choosing a subgroup of Aut(G). Without loss of

generality, let a1 = 1 so that the first row of (4.19) corresponds to the representation ρ(g) = ωg. Then

the ith row corresponds to the representation ρi(g) := ρ(σai(g)) = ωaig. Thus, we have formed M

by choosing the rows of the group Fourier matrix corresponding to a subset of representations of the

form {σi · ρ}, where the {σi} form a subgroup of automorphisms.

We wish to generalize this process to groups G other than Z/nZ by choosing an irreducible repre-

sentation ρ of G and taking its image under a subgroup of automorphisms {σi} ≤ Aut(G). Note that

from Lemma 9, the representations {σi · ρ} will all be irreducible, and hence correspond to easily-

identified blocks of rows from the group Fourier matrix F in (4.4). It is not clear, however, whether

these representations will be distinct. The question now becomes how to choose the subgroup of

automorphisms?

4.3 Choosing the Automorphism Subgroup

Let H ≤ Aut(G) be a group of automorphisms of G, and fix an irreducible representation ρ with

character χ. Define K to be the subgroup of H which fixes χ:

K = {σ ∈ H : χ(σ(g)) = χ(g), ∀g ∈ G}. (4.20)

Immediately we see that K contains every inner automorphism in H. Thus, it is effectively the group

of outer automorphisms which acts nontrivially on the representations. Now choose a subgroup A ≤ H
such that the group product KA := {ka : k ∈ K, a ∈ A} is a subgroup of H. This is equivalent to

the group products KA and AK being equal as sets. We consider choosing the rows of the generalized

Fourier matrix corresponding to the representations {ρa : a ∈ A}, with notation as in (4.15). From

Lemma 9, all of these representations have the same degree d. Thus, if A = {a1, ..., am} ≤ Aut(G),

then M takes the form

M =
√
d


vec(ρa1(g1)) . . . vec(ρa1(gn))

...
. . .

...

vec(ρam(g1)) . . . vec(ρam(gn))

 . (4.21)

Notice that if A and K have nontrivial intersection, then some of the blocks of rows of M above may

correspond to repeated or isomorphic representations. If this is the case our frame will no longer be

tight. We can avoid this by assuming that |K ∩A| = 1, though we will typically not make use of this
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assumption in our following proofs.

Now let us examine the inner products between our frame elements. From (4.12), the inner product

corresponding to the group element g is

d
∑
a∈A

χa(g) = d
∑
a∈A

χ(a(g)). (4.22)

Our aim is to generalize the concept from Theorem 6 of having one inner product per coset of a

subgroup of Aut(G). We first establish the following preliminary lemma:

Lemma 10. Let A and K be subgroups of a finite group H such that the set product KA is a group,

and let {ai}|A|/|A∩K|i=1 be a set of right coset representatives for (A∩K)\A. Then for each fixed ai and

k ∈ K, there is a unique ai′ and k′ ∈ K such that ai′k = k′ai, and a unique ai′′ and k′′ ∈ K such

that aik = k′′ai′′ .

Proof. Since KA is a group (by assumption) which obviously contains both K and A, we can write

aik = k̃ã for some k̃ ∈ K and ã ∈ A. Then ã can further be written uniquely in the form k̃2ai′′ for

some k̃2 ∈ A∩K and ai′′ one of the right coset representatives of A∩K in A. Setting k′′ = k̃k̃2 gives

us the second part of this theorem.

Now suppose there are two pairs (aj , k′j) and (at, k′t) such that

ajk = k′jai, (4.23)

atk = k′tai. (4.24)

Then from (4.24) we have at(aj)−1ajk = k′t(k
′
j)
−1k′jai, and we can use (4.23) to cancel out ajk and

k′jai from this expression to arrive at

at(aj)−1 = k′t(k
′
j)
−1 ∈ A ∩K. (4.25)

But since at and aj are representatives of distinct right cosets of A ∩ K in A, they must be equal,

hence at = aj and k′t = k′j . This shows that there can only be at most one pair (ai′ , k′) such that

ai′k = k′ai. But since we have already shown that every ajk can be written uniquely in the form

k′′aj′′ for some aj′′ , then since our groups are finite there must be some j for which aj′′ = ai, so there

is exactly one such pair (ai′ , k′) = (aj , k′′) which satisfies the hypotheses of the lemma.

The next lemma now extends the coset idea of Theorem 6 to drastically reduce the number of

distinct inner product values we need consider.

Lemma 11. Let G be a finite group, H ≤ Aut(G), ρ an irreducible representation of G with character
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χ, and K the subgroup of H which fixes χ as in (4.20). Let A be a subgroup of H such that KA is a

group. Then for any σ1, σ2 ∈ H which are in the same right coset of KA, the inner products associated

to σ1(g) and σ2(g) respectively are equal for any g ∈ G. That is,

d
∑
a∈A

χa(σ1(g)) = d
∑
a∈A

χa(σ2(g)). (4.26)

Proof. Since σ1 and σ2 are in the same right coset of KA (which is equal to AK), there is some h ∈ H
such that σ1 = a1k1h and σ2 = a2k2h for some a1, a2 ∈ A and some k1, k2 ∈ K. Thus, (4.22) becomes

d
∑
a∈A

χ(aσ1(g)) = d
∑
a∈A

χ(aa1k1h(g)) (4.27)

= d
∑
a∈A

χ(ak1h(g)), (4.28)

which follows from the fact that multiplication by a1 permutes the elements of A.

Now let {ai} be a set of right coset representatives for (A ∩K)\A. Our sum now becomes

d
∑
a∈A

χ(ak1h(g)) = d
∑
ai

∑
γ∈A∩K

χ(γaik1h(g)) (4.29)

= d
∑
ai

|A ∩K|χ(aik1h(g)), (4.30)

which follows from fact that elements of K fix χ. Now for each ai, we know from Lemma 10 that

aik1 is uniquely expressible in the form k′jaj for some right coset representative aj and some k′j ∈ K.

Thus, since the {ai} and {aj} are in one to one correspondence by Lemma 10, we can further rewrite

our sum as

d
∑
ai

|A ∩K|χ(aik1h(g)) = d
∑
aj

|A ∩K|χ(k′jajh(g)) (4.31)

= d
∑
aj

|A ∩K|χ(ajh(g)) (4.32)

= d
∑
aj

∑
γ∈A∩K

χ(γajh(g)) (4.33)

= d
∑
a∈A

χ(ah(g)). (4.34)

Since the inner product depends only on h, we are done.

We can now express each inner product in terms of a right coset of KA and an orbit of G under
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the automorphism group H. Two elements g, g′ ∈ G are said to be in the same orbit if there is an

automorphism h ∈ H such that h(g) = g′. Note that since g = h−1(g′), this is an equivalence relation,

so the orbits partition G. We may write this orbit as Hg := {h(g) | h ∈ H}, and we say that g is a

representative of this orbit. It should be clear that the identity element 1 ∈ G is in its own orbit.

We are now equipped to bound both the number of distinct inner product values, as well as the

coherence of our new frames. The following theorem contains the analogs of Lemma 6 and Theorem

6 to the broader class of frames we have just constructed.

Theorem 17. Let G be a finite group of size n and ρ a degree-d irreducible representation of G with

character χ. Define

• H ≤ Aut(G) a group of automorphisms of G,

• K := {σ ∈ H : χ(σ(g)) = χ(g), ∀g ∈ G}, the subgroup of H consisting of automorphisms

which fix χ,

• A = {ai}mi=1 ≤ H, any subgroup of H such that the set product KA is also subgroup of H with

A ∩K = 1,

• {hi}nci=1 representatives of the distinct cosets of KA in H

• {gj}noj=1 representatives of the distinct orbits of G under H

Finally, let M be the frame with elements {
√
d[vec(ρa1(g))T , ..., vec(ρam(g))T ]T }g∈G as in (4.21).

Then M is a tight frame with at most nc(no − 1) distinct inner product values between its vectors. If

µW is the lower bound on coherence given by the Welch bound (explicitly µW =
√

n−dm
dm(n−1) ), then the

coherence µ of our frame is bounded by

µ ≤
√

|G| − 1
min{(i,j):gj 6=1} |KAhi(gj)|

µW . (4.35)

Proof. By hypothesis, G is partitioned into distinct orbitsHg1, ...,Hgno with representatives g1, ..., gno .

Let g ∈ G be in the jth orbit so that for some h ∈ H we have h(gj) = g. Suppose that h ∈ KAhi.
Then from Lemma 11, the inner product associated to g is

d
∑
a∈A

χ(a(g)) = d
∑
a∈A

χ(ah(gj)) = d
∑
a∈A

χ(ahi(gj)). (4.36)

Thus, excluding the orbit corresponding to the identity element (which corresponds to taking the

inner product of a column of M with itself), the number of nontrivial inner products that we must
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consider is nc(no − 1), and the number of times the inner product corresponding to the pair (hi, gj)

arises is

|KAhi(gj)| = #{kahi(gj) : k ∈ K, a ∈ A}. (4.37)

Now since our frame M is tight by Theorem 16, then from Lemma 6, the mean squared inner

product between the frame vectors is equal to µ2
W , and this mean can be written as

µ2
W =

1∑
hi

∑
gj 6=1 |KAhi(gj)|

·
∑
hi

∑
gj 6=1

|KAhi(gj)||αi,j |2 (4.38)

=
1

|G| − 1
·
∑
hi

∑
gj 6=1

|KAhi(gj)||αi,j |2, (4.39)

where αi,j is the inner product associated to the pair (hi, gj). From this, it follows that

(|G| − 1)µ2
W ≥

(
min

{(i,j):gj 6=1}
|KAhi(gj)|

)(
max

{(i,j):gj 6=1}
|αi,j |2

)
,

from which our result follows.

We can see from Theorem 17 that in general our coherence will be closer to the Welch bound if

we have fewer orbits, and the sets KAhi(gj) are close to each other in size. We articulate this in the

following corollary.

Corollary 3. In Theorem 17, if the sets KAhi(gj) are the same size for all hi and all nonidentity

gj, we achieve our optimal upper bound in (4.35):

µ ≤
√
nc(no − 1)µW . (4.40)

Proof. If there are nc cosets of KA in H, and no orbits of G under the action of H, then since∑
hi

∑
gj 6=1 |KAhi(gj)| = |G| − 1, we have

min
{(i,j):gj 6=1}

|KAhi(gj)| ≤
|G| − 1

nc(no − 1)
, (4.41)

with equality if and only if the sets KAhi(gj) are all the same size. The result follows immediately.

For clarity, let us reiterate how our frames from Theorem 6 fall into the more general framework

of Theorem 17. In this case,
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• G is the cyclic additive group Z/nZ = {0, 1, ..., n− 1} mod n, where n is a prime.

• ρ is the representation ρ(x) = e
2πix
n for any x ∈ G.

• χ(x) is equal to ρ(x) for any x ∈ G, since ρ is a degree-1 representation.

• H is the multiplicative group (Z/nZ)× = {1, 2, ..., n − 1} mod n, where each element h ∈
(Z/nZ)× is viewed as an automorphism h(x) = h · x.

• K is the subgroup of H such that e
2πikx
n = e

2πix
n , ∀x ∈ G. In this case, we can see that K = {1}.

• A is the size m subgroup of H, where m|(n − 1). Since K is trivial, KA is automatically a

subgroup of H, and A ∩K = 1.

• nc is the number of cosets of A in H, which is n−1
m . {hi}nci=0 are the representatives of these

cosets. If x is a cyclic generator for H, then the hi can be taken to be the powers of x: hi = xi,

i = 1, ..., nc.

• no = 2, because there are only two orbits of G under H. One of these is the trivial orbit, {0},
and indeed h · 0 = 0, ∀h ∈ H. All the nonzero elements {1, ..., n− 1} ⊂ G are in the same orbit,

since any two of these elements differ only by a multiplicative factor in H. Thus we may take

our two orbit generators to be g1 = 1 (the generator of the nontrivial orbit) and g2 = 0 (the

generator of the tribal orbit).

In light of this last point, we see that these frames trivially satisfy the hypothesis of Corollary 3

since the sets KAhi(gj) are simply the cosets Ahi, which all have the same size as desired. (Note that

since we write G additively in this situation, the identity element is 0 instead of 1, so the hypothesis

of Corollary 3 effectively becomes that the sets KAhi(gj) are the same size for gj 6= 0). Thus the

frames from Theorem 6 give us our optimal bound in Theorem 17, and the bound in (4.40) becomes

µ ≤ √ncµW , which is the same bound we saw in Corollary 3. We will explore this connection more

in the next section.

4.4 Subgroups and Quotients of General Linear Groups

We will now identify a class of groups that yield frames with remarkably low coherence using this

framework, a subclass of which consists of the groups used in Theorem 6. Recall that in our original

construction of Theorem 6, we chose G to be the additive group Z/nZ, where n was a prime p, and

H was isomorphic to the multiplicative group (Z/nZ)×, which contains all the nonzero elements of

Z/nZ when n is prime. This is equivalent to choosing G and H respectively to be the additive and
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multiplicative groups of the finite field with p elements, Fp. In this case, H is the simplest example

of a general linear group. Indeed, H can be interpreted as the 1-dimensional invertible matrices with

entries in Fp. As we will now see, subgroups and quotients of matrix groups over finite fields lend

themselves naturally to our construction.

4.4.1 Frames from Vector Spaces Over Finite Fields

Recall from our discussion following Theorem 17 that in general our coherence will be closer to the

Welch bound if we have fewer orbits, and the sets KAhi(gj) are close to each other in size. The

optimal case is when their sizes are all equal, in which case we obtain the bound in Corollary 3.

Equation (4.40) in this corollary closely resembles the result from Lemma 6. This is no coincidence,

since the condition that the sets KAhi(gj) have the same size is equivalent to requiring that each

corresponding inner product value arises the same number of times as the inner product between two

frame elements. (Recall that we exploited this latter property in deriving Lemma 6.) In a sense, the

best case is when we have exactly one nontrivial orbit, so that no = 2. And if in addition the sets

KAhi(gj) have the same size for all hi and gj 6= 1, Corollary 3 shows that the coherence is bounded

by a factor of
√
nc of the Welch bound.

We saw at the end of Section 4.3 that this happens in our original frames constructed in Theorem 6,

when G was the additive group of a prime-sized finite field Fp ∼= Z/pZ and H the set of automorphisms

given by multiplication by elements of F×p ∼= (Z/pZ)×. As we remarked at the beginning of this

section, H is the simplest example of a general linear group GL(r,Fp)—the multiplicative group of

r × r invertible matrices with entries in Fn (in this case r = 1). It turns out that even higher-

dimensional general linear groups fit the framework of Corollary 3. If we set H := GL(r,Fp) then it

is the automorphism group of G := (Fp)r, the r-dimensional vector space over Fp (viewed only as an

additive abelian group). For any two nonzero vectors v1 and v2 in (Fp)r, there is an invertible matrix

W ∈ GL(r,Fp) such that Wv1 = v2, so all nontrivial elements of (Fp)r lie in the same orbit under

H.

Alternatively, we may view (Fp)r as the additive group of the finite field with pr elements, Fpr ,

which is a vector space over its subfield Fp. An irreducible representation ρ of Fpr (and hence of

(Fp)r) is the function

ρ(x) = e
2πiTr(x)

p , (4.42)
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where Tr(x) is the trace of the field element x, defined as

Tr :Fpr → Fp,

Tr(x) = x+ xp + xp
2

+ ...+ xp
r−1

. (4.43)

The trace function in our context is the sum of the automorphisms of Fpr fixing the subfield Fp, and

is so named because Tr(x) is the trace of the matrix associated with the linear transformation of

multiplication by x. This transformation acts on the additive group of Fpr viewed as a vector space

over Fp. As such, the trace is an additive function: Tr(x + y) = Tr(x) + Tr(y), and consequently

Tr(−x) = −Tr(x). In the case where r = 1, the trace becomes the identity function, and we see that

as expected we recover a familiar representation of Fp similar to the ones used in Theorem 6.

We should point out that the general form of an irreducible representation of the additive group

of Fpr is ρa(x) := ωTr(ax), where ω = e
2πi
p and a ∈ Fpr . This is the image of the function ρ in

(4.42) under the action of k viewed as a matrix in GL(r,Fp) as just described. As such, it is fitting

that the notation “ρk” bears resemblance to that of equation (4.15). Note also that since each of

these is a degree-1 representation, each is equal to its own character: χk(x) = ρk(x). Each of the pr

representations ρk, k ∈ Fpr , is unique, and from equation (4.1) we see that they indeed comprise all

of the inequivalent irreducible representations of G.

Now, we can concisely describe the group K of character-preserving automorphisms from Theorem

17 as follows: K is simply the set of automorphisms in H which preserve the field trace, K = {k ∈
H | Tr(kx) = Tr(x), ∀x ∈ G}. It can be easily shown that the size of K is |K| = |H|/|F×pr | =

(pr − p) . . . (pr − pr−1). What is not clear, however, is the form that each element of K will take as

a matrix in H = GL(r,Fp). The same issue arises when we attempt to compute the group A from

Theorem 17.

To rectify this issue, we will shift our focus to the interpretation of G as the additive group of the

field Fpr . And instead of choosing H to be the entire automorphism group GL(r,Fp), we will let H

be the size-(pr − 1) subgroup of matrices corresponding to the nonzero field elements F×pr . (Recall,

each element of F×pr acts linearly on Fpr by multiplication, and as such has a matrix representation

when viewed as a linear transformation of (Fp)r.) In this new setting, the only element of H which

fixes the field trace is 1, so K is now the trivial group.

It is reasonable to ask if we lose anything by choosing H to be only a proper subgroup of GL(r,Fp).

But in fact, we can see from Lemma 11 and Theorem 17 that the coherence of our frames depends

only on the right cosets of K in H. The following lemma shows that we do not lose anything by

choosing H to be F×pr instead of GL(r,Fp):
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Lemma 12. Let G = (Fp)r (which is the additive group of Fpr), and χ a character of G. Let

H1 = GL(r,Fp) with K1 ≤ H1 the subgroup that fixes χ, and H2 = F×pr ≤ H1 with corresponding

subgroup K2 = H2 ∩K1. For every subgroup A1 of H1 with A1 ∩K1 = 1, there is a subgroup A2 of

H2 with A2 ∩K2 = 1 such that the groups A1 and A2 give rise to the same inner products described

by Lemma 11.

Proof. As we touched on above, since our character is a function of the form χ(x) = e
2πiTr(ax)

p , we

observe that no nontrivial element of H2 fixes χ. Thus, K2 = 1. Since the right cosets K1 H1 =

{K1h1 : h1 ∈ H1} partition H1, each element h2 ∈ H2 must lie in some such coset. We claim that

no two elements of H2 are in the same right coset of K1. To see this, assume we have h2 and h′2 in

H2 which lie in the same right coset of K1. This means that h′2h
−1
2 ∈ K1 ∩H2 = K2, hence h2 and

h′2 must be equal. Furthermore, we know that there is one element of H2 in each right coset of K1

in H1, since every character of G can be written in the form χ(h2(x)) for some multiplicative field

element h2 ∈ H2. (This is a well-known fact that can be found, for example, in [83].)

Now, if A1 is a subgroup of H1 which intersects K1 trivially, each element of A1 must lie in a

distinct right coset of K1. For each element a1 ∈ A1, let a2 be the unique element of H2 which lies

in the same such coset, and let A2 be the set of all these elements. Clearly A2 has trivial intersection

with K2, since it is a subset of H2. The fact that A2 is itself a group is easy to verify. For example,

for elements a2 and a′2 in A2, with corresponding elements a1 and a′1 in A1, we see that the product

a′2a
−1
2 is also an element of A2 since it is the field element lying in the same right coset of K1 as

a′1a
−1
1 ∈ A1. Since elements a in the same right coset of K1 give rise to the same character χ(a(x)),

we see also that the groups A1 and A2 will give rise to the same frame inner products as described in

Lemma 11.

Let us explicitly match this example with the framework of Theorem 17. We note that

• G is the additive group of the vector space (Fp)r, or equivalently the additive group of the field

Fpr .

• ρ(x) = e
2πiTr(x)

p .

• χ(x) = ρ(x), since ρ is a 1-dimensional representation, hence is equal to its own character.

• H = F×pr = Fpr \ {0}, where G is viewed as the additive group of Fpr . Basic field theory tells us

that H is isomorphic to the cyclic group of size pr − 1.

• K = 1, since the only field element h ∈ H such that χ(h(x)) = χ(x) is the identity.

• A = {a1, ..., am} is any subgroup of H, which will necessarily be a cyclic group of size m, where

m is a divisor of pr − 1. Since H is cyclic, there is a unique subgroup for each such m, and
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it consists of the
(
pr−1
m

)th
powers in H. Thus, if x is a cyclic generator for H, we may set

y = x
pr−1
m and ai = yi for each i = 1, ...,m.

• nc = pr−1
m , the number of cosets of A in H. If x is a generator for the cyclic group H, these

cosets are hi = xi, i = 1, ..., nc.

• no = 2, since again 0 ∈ Fpr is in its own orbit, and all the nontrivial elements are in their own

orbit under H (generated by 1 ∈ Fpr ).

Our new frame matrix M from (4.21) becomes

M =


ωTr(a1x1) ωTr(a1x2) . . . ωTr(a1xn)

...
...

...
. . .

...

ωTr(amx1) ωTr(amx2) . . . ωTr(amxn)

 , (4.44)

where we have expressed the elements of our field as {xi}ni=1. If xj − xi = x`, the inner product

between the ith and jth columns now becomes

∑
at

(
ωTr(atxi)

)∗ (
ωTr(atxj)

)
=
∑
at

ωTr(at(xj−xi)) (4.45)

=
∑
at

ωTr(atx`). (4.46)

We can see from (4.46) that as in our original frames from Theorem 6, we have exactly n−1
m

nontrivial inner product values: one for each element of F×pr (each of which represents a right coset of

K in H). Again, each of these values arises as an inner product the same number of times.

Since these new frames are a generalization our original frames constructed in Theorem 6, it should

come as no surprise that the bounds in Theorems 9 and 10 generalizes as well:

Theorem 18. If n is prime power pr, m a divisor of n− 1, and {ai} the unique subgroup of F×pr of

size m, then setting ω = e
2πi
p , and κ := n−1

m , the coherence µ of our frame M in (4.44) satisfies

µ ≤ 1
κ

(
(κ− 1)

√
1
m

(
κ+

1
m

)
+

1
m

)
. (4.47)

If both p and m are odd, µ satisfies the tighter bound

µ ≤ 1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2, (4.48)

where β =
√

1
m

(
κ+ 1

m

)
.
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Proof. We present this proof in Appendix B.1.

4.4.2 Smaller Alphabets and Frames from Hadamard Matrices

We emphasize that these generalized frames have several advantages over the original frames con-

structed in Theorem 6. First, the number n of frame vectors is no longer limited to being a prime, but

is instead a power of a prime, n = pr. Furthermore, the entries of our frame matrix M in (4.44) are no

longer nth roots of unity, but rather pth roots of unity. This allows for more practical implementations

of our frames. Indeed, while our original frames did achieve low coherence, the entries of the frame

vectors came from an alphabet size as large as the frame itself. Thus even for small examples our

frames could require an alphabet size of at least several hundred. In our new frames, we could fix p

to be a small prime and take a number of frame elements that is substantially larger, yet our frame

vectors will only have entries from an alphabet of size p.

For instance, if p = 2, then even though our frame can have n = 2r elements for any r, the matrix

M will always have ±1 entries. In this case, we have the following:

Theorem 19. When p = 2 in our above framework, our frame matrix M in (4.44) is a subset of

rows of an n× n Hadamard matrix.

Proof. We already commented above that when p = 2, M will have ±1 entries. The theorem then

follows from the fact that the frame is tight (i.e. the rows of M are orthogonal with equal norm) by

Theorem 16.

This is not the first time that frames with ±1 entries have been explored. For example, [75]

designed such frames using codes constructed by [6] and [113], and analyzed the frames’ geometry.

Figure 4.1 illustrates the benefit of using our frames to control coherence. Depicting histograms of the

inner products resulting from selecting two sets of 341 rows of from a 1024× 1024 Hadamard matrix

using our method (red) versus randomly (blue), we can see that our construction actually yields just

two distinct inner product values in this case, both much closer to zero than the largest magnitude

inner products from the random case. In Table 4.1, we compute the coherences of several random

vs. group Hadamard frames, and compare to the Welch bound for reference. The group Hadamard

frames have consistently lower coherence than the random Hadamard frames, particularly when the

frame dimensions m and n are large but the quotient κ = n−1
m is small.

4.4.3 Difference Sets

On one final note, we point out that in certain cases the group A forms a difference set in Fpr , that

is, each nonzero element of Fpr occurs as a difference ai − aj the same number of times. In this case,
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Figure 4.1: Superimposed histograms of the inner product values between elements of a 341 × 1024
frame formed from our method of selecting rows of the Hadamard matrix (red) versus selecting the
rows randomly (blue). The red values are concentrated to only two points in this case, resulting in
coherence closer to zero.

Table 4.1: Coherences for Random vs. Group Hadamards

(n,m) Random
Hadamard

Group
Hadamard

√
n−m
m(n−1)

(256, 51) .3725 .2549 .1256
(256, 85) .2941 .1294 .0888
(512, 73) .3425 .2329 .1085

(1024, 341) .2023 .0616 .0442
(4096, 455) .1868 .1253 .0442

our frames yield examples of those constructed [110] and [34]:

Theorem 20. The columns of M in (4.44) form a tight equiangular frame if and only if the elements

in A = {ai}mi=1 form a difference set in Fpr . In this case, the coherence of M achieves the Welch

bound. In particular, our construction yields a difference set when pr−1
m = 2 and m is odd.

Proof. Again, this follows from the arguments in [110] and [34] (see Theorem 3 of the latter). When
pr−1
m = 2, A is the group of squared elements in F×pr , which is a well-known difference set when pr ≡ 3

mod 4 (an example of what is called a “Paley difference set”). [107] This is precisely the case when

m is odd.

Unfortunately, the Hadamard frames we constructed in the previous section cannot satisfy the

condition pr−1
m = 2, since they require that p = 2. We can, however, use our construction to produce
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tight, equiangular frames whose entries are from an alphabet only of size three—the third roots of

unity:

Corollary 4. Let p ≡ 3 mod 4 be a prime, r an odd integer, and set m := pr−1
2 . Choose the set

A = {ai}mi=1 to be the unique subgroup of Fpr of size m. Then the columns of M in (4.44) form a

tight equiangular frame whose entries are each one of the distinct pth roots of unity. In particular,

when p = 3, the entries of M come from an alphabet of size three.

Proof. Since r is odd, we have pr ≡ 3 mod 4, so the set A forms a Paley difference set as mentioned

in the proof of Theorem 20. Thus the columns of M form a tight, equiangular frame whose elements

are integer powers of ω = e2πi/p, i.e., the pth roots of unity.

In Table 4.2, we list the coherences of several of the tight, equiangular frames arising from Corollary

4, and compare the coherence to when the matrix M in (4.44) is formed by randomly choosing the

elements {ai}mi=1. As expected, our frames consistently have lower coherence, in this case meeting the

Welch bound.

Table 4.2: Coherences for Random vs. Group Matrices with Small Alphabets, m = n−1
2

n Random Group
√

n−m
m(n−1)

33 .3353 .2035 .2035
35 .1577 .0645 .0645
37 .0509 .0214 .0214
73 .1110 .0542 .0542
113 .0674 .0274 .0274

Coherences of m × n frame matrices formed from rows of the group Fourier matrices for the finite fields Fq,
q = n. We compare choosing the rows randomly with using the group method from Section 4.4.1, which
produces tight, equiangular frames by Corollary 4. When n = pr, the matrix entries are pth roots of unity.

4.5 Frames from Special Linear Groups

To show how our framework can be applied to more complicated groups, we will demonstrate how to

obtain frames with low coherence in the case where G is the special linear group SL2(Fq). Frames of

this type were discussed in [100]. This matrix group is easy to describe, but it is nonabelian and has

irreducible representations of degree greater than 1, hence will be interesting for our purposes.

Let Fq be the finite field containing q elements, where q is some integral power of a prime number.

Then SL2(Fq) is the set of 2× 2 determinant-1 matrices with entries in Fq,

SL2(Fq) :=


a b

c d

 | a, b, c, d ∈ Fq, ad− bc = 1

 .
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Table 4.3: Character Table of SL2(Fq), q even

Class Representative:
[
1 0
0 1

] [
1 1
0 1

] [
c 0
0 c−1

]
B

[
s 0
0 s−1

]
B−1

No. of such classes: 1 1 1
2 (q − 2) 1

2q
Size of class: 1 q2 − 1 q(q + 1) q(q − 1)

1G 1 1 1 1
StG q 0 1 −1
ρχ q + 1 1 χ(c) + χ(c−1) 0
πη q − 1 −1 0 −η(s)− η(s−1)

Here, c ∈ Fq and s ∈ Fq2 , where s is an element of norm 1. B is an invertible matrix with entries in Fq2 .

It is not difficult to check that the size of this group is |SL2(Fq)| = q(q + 1)(q − 1).

Table 4.3 is the character table of SL2(Fq) for when q is even (a power of 2). As we can see, in this

case the matrices fall into four types of conjugacy classes based on how they diagonalize. The first is

simply the identity matrix,

1 0

0 1

. The second consists of the matrices that are not diagonalizable,

and have the Jordan canonical form

1 1

0 1

. These first two conjugacy classes contain all the matrices

in SL2(Fq) with repeated eigenvalues of 1.

Each conjugacy class of the third type has a representative which is a diagonal matrix:

c 0

0 c−1

,

where c ∈ Fq \ {0, 1}. Since the diagonal matrices diag(c, c−1) and diag(c−1, c) are conjugate to each

other, there are 1
2 (q − 2) such classes.

The fourth type of conjugacy class consists of matrices whose eigenvalues do not lie in Fq. These

are the matrices that take the form B

s 0

0 s−1

B−1, where B ∈ SL2(Fq2) and s ∈ Fq2 is one of the

norm-1 elements of Fq2 \ Fq, that is, sq+1 = 1. Note that here Fq2 is the finite field of q2 elements,

which contains Fq as a subfield. There are q + 1 elements of Fq2 which satisfy the equation sq+1 = 1.

Of these, the only element lying in Fq is 1, and the remaining q lie in Fq2 \ Fq. As in the previous

case, these q elements pair up to represent a total of q/2 distinct conjugacy classes of the fourth type.

There are four types of characters of SL2(Fq) for q even, arising as a consequence of the four

types of conjugacy classes. The interested reader can refer to [79, 83, 93] to learn in depth how these

characters come about, but for now we will give brief descriptions. The first two characters both

correspond to degree-1 representations. They include the character of the identity representation 1G,

which maps every element to 1, and that of the Steinberg representation StG, which maps elements of

the various conjugacy classes to the values shown in Table 4.3. For our purposes, the third and fourth

types of characters in the last two rows of the table are of greater interest. The third corresponds to
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what is called an induced representation, denoted here as ρχ. It is a degree-(q+1) representation built

from an underlying nontrivial degree-1 representation χ of the multiplicative group F×q , a cyclic group

of size q − 1. If c̃ is a cyclic generator for F×q (so that every element can be written as a power of c̃),

and we set ω− = e
2πi
q−1 , then χ is a function of the form χ(c̃`) = ωa`− , for some fixed a ∈ {1, 2, ..., q−2}.

(It is required that a be nonzero modulo q − 1 in order for ρχ to be irreducible.)

The final type of character, denoted πη, corresponds to a degree-(q−1) cuspidal representation. A

cuspidal representation is constructed from a degree-1 representation η of the set of norm-1 elements

of Fq2 , which is a cyclic multiplicative group of size q + 1. Given a cyclic generator s̃ for this group,

and setting ω+ = e
2πi
q+1 , then η will take the form η(s̃`) = ωh`+ , where h is some fixed integer in the set

{1, 2, ..., q}. (Again we require h 6≡ 0 mod q + 1 for irreducibility of πη.

4.5.1 Frames from Induced and Cuspidal Representations

We can now use our previous results to design low-coherence frames in the form of F in (4.4) using the

characters of SL2(Fq) for q even. We emphasize that while explicitly writing out our frame vectors can

be cumbersome and requires a certain amount of work in its own right, we will find that identifying

which representations to use will be quick, as will computing the coherence of the resulting frame.

We will first focus our attention on only the induced representations. For convenience, we will

write χa and ρa, respectively, for the representations χ and ρχ where χ(c̃) = ωa−. It remains to

identify a suitable group A of automorphisms of SL2(Fq) under which we can take the image of an

induced representation to construct our frames, as prescribed by Theorem 17. In the last section,

when our group was just the additive group of a finite field Fq, our automorphisms corresponded to

the nonzero field elements which formed the cyclic multiplicative group F×q . These automorphisms

were well-described and easy to work with. It turns out that each automorphism ϕ of Fq induces an

automorphism of SL2(Fq) by simply applying ϕ to the entries of the 2 × 2 matrices in the special

linear group:

ϕ

a b

c d

 :=

ϕ(a) ϕ(b)

ϕ(c) ϕ(d)

 . (4.49)

This observation enables us to continue working with the automorphisms of Fq, so we can again choose

A to be a subgroup of F×q . If a′ ∈ A ≤ F×q , then as an automorphism a′ acts on ρa as

a′ · ρa = ρa′·a. (4.50)

Thus, it would be natural to choose for A to act on the representation ρ1, so that the images under
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A will be the representations {ρa | a ∈ A}. For the sake of simplicity, we will set K = 1 and H = A

in our Theorem 17 notation.

One caveat that we now face by choosing this set of automorphisms is the following: notice that

each element of A fixes the element u =

1 1

0 1

 ∈ SL2(Fq), which means that there is a size-1 orbit

KA(u). This means that the bound we gave in Equation (4.35) of Theorem 17 will be somewhat

ineffective. We can get around this problem by noticing that from Equations (4.38) and (4.39), the

magnitude of the largest inner product will still be small as long as the inner product corresponding

to u is small in magnitude. We quickly see this to be the case based on the equation for the inner

product given in (4.22) and the fact that, from Table 4.3, the character values ρa(u) are all equal to

1, a relatively small constant. We will give an explicit formula for the inner product corresponding

to u in Equation (4.52), and after normalizing our frame elements (dividing the inner product by the

squared norm of a frame element) this inner product becomes very small as q grows.

Since we are working with such a familiar set of automorphisms A, we would like to exploit some

of the tools we developed for our frames constructed from finite fields. Consider choosing q such that

q − 1 is some prime p. In this case, χa is simply a representation of the cyclic group Z/pZ, which

is isomorphic to the additive group of the field Fp. From the preceding sections, we already have

powerful tools at our disposal for bounding certain sums of these characters. Since the character χa

appears in the main part of the character ρa (as shown in Table 4.3), we would like to apply these

tools to bound sums of the ρa as well. This will allow us to use our bounds from Theorem 18 to obtain

even tighter bounds on coherence than those we could obtain from Theorem 17.

Intuitively, if we take m to be a divisor of p − 1, and let A = {a1, ..., am} be the unique size-m

subgroup of (Z/pZ)× (explicitly the set {1, ..., p − 1} with multiplication modulo p), then we should

achieve frames with low coherence by using A to choose the representations ρai to use in our frame

matrix F from (4.4). Note that from our previous notation,

Now, notice that based on Table 4.3, the characters corresponding to ρa and ρ−a are the same

(where −a is taken modulo p). This indicates that ρa and ρ−a are in fact equivalent representations.

If −1 is contained in A and is not equivalent to 1 in Z/pZ (which is always the case when q is even,

since p 6= 2), then for each ai ∈ A we also have −ai ∈ A, and −ai 6≡ ai in Z/pZ. In this case, the set

of chosen representations {ρa | a ∈ A} has repetition, and using these representations as the rows of

F would yield repeated rows of the Group Fourier Matrix of SL2(Fq), and hence would not produce

a tight frame (based on Theorem 16). More importantly for our purposes, the resulting frame would

not fit our criteria from Theorem 17, which means we could not use the tools we have built to bound

its coherence. Therefore, if −1 lies in the unique subgroup of (Z/pZ)× of size m, we must choose A

slightly differently. First, let us explicitly describe how the size-m subgroup decomposes into pairs
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{a,−a}:

Lemma 13. Let q = 2d for some positive integer d, such that p = q − 1 is a prime. Take a divisor

m of p− 1, and let Am be the unique size-m subgroup of (Z/pZ)×. Then Am contains −1 if and only

if m is even. In this case, m/2 is odd, and Am = Am/2 ∪ −Am/2 where Am/2 is the unique size-m2
subgroup and −Am/2 = {−a | a ∈ Am/2}.

Proof. Since p is necessarily odd, −1 generates the unique size-2 subgroup of (Z/pZ)×, and Am

contains this subgroup if and only if its size m is even.

Since p = q − 1 is prime, then writing q in the form 2d for some integer d, we must have d > 1.

In this case, m is a divisor of q − 2 = 2(2d−1 − 1). In this form, it is clear that q − 2 can never be

divisible by 4 (since the factor (2d−1 − 1) is odd), so neither can its divisor m. Thus, if m is even,

m/2 must be odd, so −1 /∈ Am/2. As a result, for any a ∈ Am/2, we must have −a ∈ Am \ Am/2
(since Am/2 is a subgroup of Am). By comparing sizes, we see that Am must be equal to the union

Am/2 ∪ −Am/2.

From Lemma 13, we see that when m is an even divisor of p − 1, the obvious candidate for the

group A is the unique size-m2 subgroup of (Z/pZ)×, which will ensure that −1 is not in A and that our

resulting frame is tight. With this in mind, we will simply assume that we choose m to be odd. The

following theorem uses our previous results on frames constructed from finite fields to give a bound

on the coherence of the frames we can construct from the induced representations of SL2(Fq), for q

even.

Theorem 21. Take q a power of 2 such that q− 1 is a prime p, and let m be an odd divisor of p− 1

and κ = p−1
2m . Let A = {a1, ..., am} be the unique subgroup of (Z/pZ)× of size m, and form F (as in

(4.4)) from the induced representations ρai . Then the coherence µF of F is bounded by

µF ≤
1

q + 1
max

(
1,

1
κ

(
(κ− 1)

√
1

2m

(
κ+

1
2m

)
+

1
2m

))
. (4.51)

Proof. From Equation (4.12) and Table 4.3, we see that the only nontrivial inner products between the

columns of F are those corresponding to the conjugacy classes represented by u :=

1 1

0 1

 ∈ SL2(Fq)
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and w` :=

c̃` 0

0 c̃−`

 ∈ SL2(F2) for ` ∈ {1, ..., q − 2}. These inner products are

u :
m∑
i=1

diχρai (u) = m(q + 1) (4.52)

(4.53)

w` :
m∑
i=1

diχρai (w`) =
m∑
i=1

(q + 1) · (χai(c̃`) + χai(c̃
−`)) (4.54)

= (q + 1)
m∑
i=1

(ω`ai− + ω−`ai− ). (4.55)

From Lemma 13 and the fact that m is odd by assumption, we can see that the union A ∪ −A =

{±a1, ...,±am} is actually the unique subgroup of (Z/pZ)× of size 2m. If we denote this subgroup as

A2m, then we can write the sum in (4.55) in the form

m∑
i=1

(ω`ai− + ω−`ai− ) =
∑

a∈A2m

ω`a− . (4.56)

But this is just a scaled version of one of our original inner products between the elements of the

harmonic frames that we constructed in Theorems 6 and 9, so we can use Theorem 9 to bound its

magnitude.

To complete the proof, we simply need to take the maximum of the inner product magnitudes

corresponding to the elements u and w`. This maximum becomes scaled after we normalize the

columns of F by
√
m(q + 1)2, where we obtain the column norm from Equation (4.13) and the fact

that the induced representations are (q + 1)-dimensional.

Table 4.4: SL2(Fq) vs. Gaussian Frame Coherences

Frame Dimensions SL2(Fq) Random Gaussian Welch Bound
25× 60 .2000 .5214 .1540
81× 504 .2002 .3482 .1019
243× 504 .1111 .2274 .0462

Theorem 21 gives us a recipe for constructing low-coherence frames from the induced representa-

tions of SL2(Fq) for q even. These frames will consist of q(q+1)(q−1) vectors (one for each element of

SL2(Fq)) which are m(q+ 1)2-dimensional. Figure 4.2 shows how our upper bound from the theorem

comes decently close to the Welch lower bound on coherence. In table 4.4, we provide some explicit

values of our frames’ coherence, and for comparison we have included the coherence of frames of the

same dimensions and number of elements whose coordinates are chosen independently from a Gaus-
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Figure 4.2: Comparison of the Welch lower bound on coherence with the upper bound given by
Theorem 21 for frames constructed from the induced representations of SL2(Fq), for q a power of
2 such that q − 1 is prime. The number of frame vectors is |SL2(Fq)| = q(q + 1)(q − 1), which are
m(q + 1)2-dimensional. Here, we have fixed κ := q−2

2m = 3.

sian distribution. While the frame matrix F can be concretely written out using the explicit forms

of the representations given in [79, 83, 93], we will omit this process since we have already described

it in depth and since these particular frames tend to have rather large dimensions. We remark that

we can obtain similar results using a parallel construction of F with only cuspidal representations πη,

which works when q + 1 is prime.

4.6 Satisfying the Strong Coherence Property

A closely related quantity to the coherence of a frame {fi}ni=1 in Cm is the average coherence ν,

defined as

ν =
1

n− 1
max
i∈[n]

∣∣∣∣∣∣
∑
j 6=i

〈fi.fj〉

∣∣∣∣∣∣ . (4.57)

When discussing the average coherence, the usual quantity µ is sometimes referred to as the worst-case

coherence. [1] and [75] use the average coherence to describe the following properties of certain frames:

Definition 5. A frame {fi}ni=1 in Cm with average coherence ν and worst-case coherence µ is said

to satisfy the Coherence Property if
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1. µ ≤ 0.1√
2 logn

, and

2. ν ≤ µ√
m

.

It satisfies the Strong Coherence Property if

1. µ ≤ 1
164 logn , and

2. ν ≤ µ√
m

.

These works also give theoretical guarantees on the sparse-signal-recovery abilities of frames sat-

isfying these properties. In particular, they discuss the One-Step Thresholding (OST) algorithm

(Algorithm 1) described in [1]. If F ∈ Cm×n has columns which form a unit-norm frame, x ∈ Cn×1 is

a sparse signal, and e ∈ Cn×1 is a noise vector, OST produces an estimate x̂ for x given y := Fx+ e.

We assume the entries of e are iid complex Gaussian values with mean 0 and variance σ2, and the

OST threshold λ is chosen to be

λ :=
(√

2σ2 log n
)

max{10
t
µF
√
m · SNR,

√
2

1− t}, (4.58)

where µF is the worst-case coherence of F , SNR is the signal to noise ratio ||x||22
E[||e||22]

, and t is a parameter

chosen between 0 and 1. If F satisfies the coherence property, [1] finds regimes in which the support of

x̂ is equal to that of x with high probability. If F further satisfies the strong coherence property, [75]

further provides high-probability bounds on the error ||x− x̂||2. In the absence of an error vector e, [1]

also finds cases where x̂ is identically equal to x with high probability, though this calls for a different

threshold, λ = 10µF ||y||2
√

2 logn
1−e−1/2 . For our purposes, however, we will mainly focus on recovering

signals with complex Gaussian error.

Algorithm 1 One-Step Thresholding (OST) Algorithm [1]

1: Input: F ∈ Cm×n whose columns form a unit-norm frame, a vector y = Fx+ e, and a threshold
λ > 0.

2: Output: Estimates K̂ for supp(x) and x̂ ∈ Cn×1 for x.
3: x̂← 0
4: z ← F ∗y
5: K̂ ← {i : |zi| > λ}
6: x̂K̂ ← (FK̂)†y

It turns out that we can explicitly compute the average coherence of our frames from Theorem 17,

and indeed any group frame constructed from a set of distinct irreducible representations of the same

degree:

Theorem 22. Let G be a finite group of size n and ρ1, ..., ρm a set of distinct nontrivial degree-d

irreducible representations of G. Then the columns of the matrix M =
√
d[vecρi(gj)] ∈ Cmd×n from
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(4.9) form a frame with average coherence ν = 1
n−1 . If µ is the worst-case coherence of M, then

ν ≤ µ√
md

provided that n ≥ 2md.

Proof. From equations (4.12) and (4.13), we have that after normalizing the columns of M, the inner

product between the ith and jth columns is

∑m
t=1 d · vec(ρt(gi))∗vec(ρt(gj))

md2
=

1
md

m∑
t=1

χt(g−1
i gj). (4.59)

Then the average coherence of M (after normalizing the columns) becomes

ν =
1

n− 1
max
i∈[n]

∣∣∣∣∣∣
∑
j 6=i

〈fi, fj〉

∣∣∣∣∣∣ =
1

md(n− 1)
max
i∈[n]

∣∣∣∣∣∣
∑
j 6=i

m∑
t=1

χt(g−1
i gj)

∣∣∣∣∣∣ (4.60)

=
1

md(n− 1)

∣∣∣∣∣∣
∑
g 6=1

m∑
t=1

χt(g)

∣∣∣∣∣∣ (4.61)

=
1

md(n− 1)

∣∣∣∣∣∣
m∑
t=1

∑
g 6=1

χt(g)

∣∣∣∣∣∣ . (4.62)

Now from basic character theory (see for example [87]), we know that for any character χt of a

nontrivial irreducible representation, we have the relation

1
|G|

∑
g∈G

χt(g) = 0. (4.63)

This is due to the orthogonality of irreducible characters, and the above sum is simply the inner

product between χt and the trivial character. But this equation gives us

∑
g 6=1

χt(g) = −χt(1) = −d, (4.64)

since chit(1) is the degree of the representation ρt. Thus,

ν =
1

md(n− 1)

∣∣∣∣∣
m∑
t=1

(−d)

∣∣∣∣∣ =
md

md(n− 1)
=

1
n− 1

. (4.65)

Now from the Welch bound, µ ≥
√

n−md
md(n−1) . Thus, to show that ν ≤ µ√

md
it is sufficient to show that

1
n−1 ≤ 1√

md

√
n−md
md(n−1) , or equivalently that

md ≤
√

(n−md)(n− 1). (4.66)
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But since n− 1 ≥ n−md, we have
√

(n−md)(n− 1) ≥ n−md, so (4.66) is satisfied provided that

2md ≤ n.

[75] explored the geometry of several types of frames to see when they satisfied the Coherence

and Strong Coherence Properties. In particular, they stated the following theorem:

Theorem 23 ( [75]). Let F be an n×n discrete Fourier matrix, Fk` = e2πik`/n, k, ` = 0, ..., n−1. Then

let M be the submatrix formed by randomly selecting a subset of rows of F , each row independently

selected with probability m
n , and then normalizing the columns. If 16 log n ≤ m ≤ n

3 , then with

probability exceeding 1− 4n−1 − n−2 the worst-case coherence of M satisfies µM ≤
√

118(n−m) logn
mn .

In Figure 4.3, we compare this bound with the bound on our harmonic frames from Theorem 9 and

the Welch lower bound on coherence, in the regimes where m = n−1
3 (i.e. κ = 3) and when m = n4/5.

In both cases, we can see that the frames from our group-based construction are guaranteed to satisfy

the Coherence and Strong Coherence Properties for a wider range of values of n than random harmonic

frames, as suggested by Theorem 23.

4.7 Summary

In this chapter, we have generalized our methods from Chapter 3 to yield a way to select rows of

the group Fourier matrix of a finite group G to produce frames with low coherence. By choosing the

rows corresponding to the image of a representation under a subgroup of Aut(G), we can reduce the

number of distinct inner product values which arise between our frame elements. By exploiting the

tightness of the resulting frames, we identified cases in which the coherence comes very close to the

Welch lower bound.

We have demonstrated that our method is particularly effective when G is a subgroup or quotient

of a group of matrices with entries in a finite field. This is a consequence of the manner in which

the field automorphisms permute the elements of G. It is certainly possible that other groups of

automorphisms of G can lead to even better coherence when applying our method, though these

remain to be explored.

Furthermore, we emphasize that using the character table of G to identify suitable representations

to use in our frame allows us to avoid dealing with the explicit forms of the matrices involved in

the representations. These matrices are often quite large in dimension and tedious to construct,

particularly in the case of the special linear groups we examined in Section 4.5.1. While exploiting the

character table makes coherence calculations relatively painless, however, it is ultimately necessary to

use the representation matrices to construct the actual frame vectors. It is desirable to find a class
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Figure 4.3: Comparison of the upper bounds on the coherence of m × n harmonic frames using our
group construction (from Theorem 9) versus choosing rows randomly from a DFT matrix (Theorem
23). In 4.3(a), κ = n−1

m = 3, while in 4.3(b), m = n4/5. In both these regimes, the frames from
our constructions are guaranteed to satisfy both the Coherence Property and the Strong Coherence
Property for smaller dimensions than randomly chosen harmonic frames.
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of groups with uncomplicated representations that allow us to build low-coherence frames in a wide

variety of dimensions.
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Chapter 5

Coding With Constraints: Distance
Bounds and Systematic
Constructions

5.1 Introduction: Coding with Constraints

We consider a scenario in which we must encode s message symbols using a length n error-correcting

code subject to a set of encoding constraints. Specifically, each coded symbol is a function of only a

subset of the message symbols. This setup arises in various situations such as in the case of a sensor

network in which each sensor can measure a certain subset of a set of parameters. The sensors would

like to collectively encode the readings to allow for the possibility of measurement errors. Another

scenario is one in which a client wishes to download data files from a set of servers, each of which stores

information about a subset of the data files. The user should be able to recover all of the data even in

the case when some of the file servers fail. Ideally, the user should also be able to download the files

faster in the absence of server failures. To protect against errors, we would like the coded symbols to

form an error-correcting code with reasonably high minimum distance. On the other hand, efficient

download of data is permitted when the error-correcting code is of systematic form. Therefore, in

this chapter, we present an upper bound on the minimum distance of an error-correcting code when

subjected to encoding constraints, reminiscent of the cut-set bounds presented in [33]. In certain

cases, we provide a code construction that achieves this bound. Furthermore, we refine our bound in

the case that we demand a systematic linear error-correcting code, and present a construction that

achieves the bound. In both cases, the codes can be decoded efficiently due to the fact that our

construction utilizes Reed-Solomon codes.
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5.1.1 Prior Work

The problem of constructing error-correcting codes with constrained encoding has been addressed by

a variety of authors. Dau et al. [28–30] considered the problem of finding linear MDS codes with

constrained generator matrices. They have shown that, under certain assumptions, such codes exist

over large enough finite fields, as well as over small fields in a special case. A similar problem known

as the weakly secure data exchange problem was studied in [111], [112]. The problem deals with a

set of users, each with a subset of messages, who are interested in broadcasting their information

securely when an eavesdropper is present. In particular, the authors of [112] conjecture the existence

of secure codes based on Reed-Solomon codes and present a randomized algorithm to produce them.

The problem was also considered in the context of multisource multicast network coding in [33,50,51].

In [51], the capacity region of a simple multiple access network with three sources is achieved using

Reed-Solomon codes. An analogous result is derived in [50] for general multicast networks with 3

sources using Gabidulin codes.

There has been a recent line of work involving what are known as locally repairable codes (LRCs),

in which every parity symbol is a function of a predetermined set of data symbols. Codes with local

repair properties were described as early as 2007 in the works of [24, 54, 58]. In [48], Gopalan et al

introduced bounds on code distance in terms of the locality constraints of LRCs, and since then there

have been a number of new specific code constructions and extensions of these bounds [62,76,78,81,92].

Our work will also include theoretical distance bounds reminiscent of those in [48]. Another recent

paper is that of Mazumdar [74] in which code symbols are represented as vertices of a partially

connected graph. Each code symbol is a function of its neighbors and, if erased, can be recovered

from them. Our code also utilizes a graph structure, though solely to describe the encoding procedure.

In other words, there is not necessarily a notion of an individual code symbol being repairable from

a local subset of the other code symbols.

5.2 Problem Setup

Let q be a prime power, and s a positive integer. Our task is to encode a set of qs messages, represented

as each of the s-dimensional vectors over the finite field Fq of size q. As such, we will refer to a message

as such a vector m = [m1, ...,ms] ∈ Fsq. We would like to map each of these message vectors to a

codeword consisting of n symbols each coming from an alphabet of size q, again represented as a

vector c = [c1, ..., cn] ∈ Fnq . Here, n ≥ s. In our case, each of the symbols ci is a function of only a

subset of the message symbols {mi}si=1. We will denote this subset as Ici . For example, the mi could

represent incoming signals to a sensor array, and each ci could represent a sensor with access to only
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m1 m2 m3

c2 c5 c7c6c4c3c1

Figure 5.1: A bipartite graph representing the coding constraints. Here, there are 3 message symbols
and 7 codeword symbols. Each ci is a function of the message symbols to which it is connected. For
example, c1 is a function of {m1,m2}.

some of these signals. Alternatively, the mi could be data files which must be stored in each member

of a set of file servers. Each server might only have access to a local set of data files and seeks to

store a function of these files, represented as ci. In either case, we would like to select our encoding

scheme subject to these constraints so that the original message m can be determined from c even in

the case that some of the symbols ci are erased or corrupted.

We can represent our encoding constraints in the form of a bipartite graph, G = (M,V, E), with

vertex sets M of size s and V of size n representing the message symbols and codeword symbols

respectively. As such, we will label the vertices in M as {mi}si=1 and the vertices in V as {ci}ni=1. A

pair (mi, cj) ∈ M× V is in the edge set E if and only if mi ∈ Icj , that is, cj is a function of mi. For

example, in Figure 5.1 we have Ic1 = {m1,m2} and Ic2 = {m2}.
Let us quickly establish some notation. For any subset mi ∈ M, we will let N (mi) denote the

neighborhood of mi in V:

N (mi) := {cj ∈ V : (mi, cj) ∈ E}.

Likewise, we will consider neighborhoods of arbitrary subsets M′ ⊆M:

N (M′) :=
⋃

mi∈M′
N (mi).

We will denote neighborhoods of elements cj ∈ V and subsets V ′ ⊆ V similarly. With this notation,

it is clear that N (cj) = Icj .
When the mi are assigned values from Fq, then each cj has an associated function fj : F|N (cj)|

q → Fq
which maps the set of values {mi ∈ N (cj)} to a value of cj . By abuse of notation, we will sometimes

simply write cj = fj(m), with the understanding that cj depends only on the coordinates of m which

are in N (cj). If we let [c]J be the subvector of c with elements indexed by J ⊆ {1, ..., n}, then
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we will write fJ : F|N ({cj : j∈J})|
q → F|J |q for the function which sends [m]N (cj : j∈J ) to the vector

[c]J = (fj(m), j ∈ J ). Under this notation, we have c = f[n](m), where [n] := {1, ..., n}. If we

restrict the functions fj(·) to be linear, then C becomes a linear code.

If we define

C := {c ∈ Fnq : ∃m ∈ Fsq s.t. c = f[n](m)},

then C is the set of all valid codewords, which is an error-correcting code of length n and size at most

qs. Let d(C) be the minimum distance of this code:

d(C) := min
{c1,c2∈C : c1 6=c2}

dH(c1, c2),

where dH(·, ·) denotes the Hamming distance between two vectors. In the case that our fj(·) are

linear, we have the following well-known equivalent definition of the code’s minimum distance:

Lemma 14. If C is a linear code, then d(C) = minc∈C ||c||H, where ||c||H is the Hamming weight (the

number of nonzero entries) of c.

Proof. Since C is linear, the all-zero codeword 0 is in C. Also, for any c1, c2 ∈ C, we have that

c1 − c2 ∈ C. The result now follows from noting that dH(c1, c2) = dH(c1 − c2,0) = ||c1 − c2||H, so

d(C) ≤ minc∈C ||c||H. On the other hand, for any c ∈ C we have ||c||H = dH(c,0), so the reverse

inequality also holds.

Let us assume our functions fj(·) are linear, and C a linear code. This means that for each

j ∈ {1, ..., n}, there is a column vector gj ∈ Fs×1
q , such that cj = fj(m) = m · gj . Since cj is a

function of only the mi ∈ N (cj), we see that the support of gj must lie in the entries indexed by the

elements of N (cj). If we concatenate the columns gj , we form the generator matrix of C,

G = [g1, . . . ,gn] ∈ Fs×nq .

For any message vector m, the corresponding codeword will be given by c = mG.

We can describe the support of G by examining the adjacency matrix A ∈ {0, 1}s×n of the bipartite

graph G = (M,V, E) describing our code:

[A]i,j :=

1 if (mi, cj) ∈ E

0 otherwise
. (5.1)

Thus the jth column of A has support precisely on N (cj). Hence by our discussion above, a matrix

G will be a “valid” generator matrix for a code C with constraints defined by the bipartite graph G if
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the support of G is a subset of the support of A. In the example given in Figure 5.1, our adjacency

matrix is

A =


1 0 0 1 1 1 1

1 1 1 0 1 1 1

0 0 1 1 1 1 1

 . (5.2)

The choice of support entries for a valid generator matrix G determines both the rank of the

code (which can be between 0 and s) and its minimum distance. In general, we seek to find a

valid generator matrix which produces a full-rank code (yielding the maximum number of distinct

codewords, qs) while simultaneously maximizing the minimum distance of our code (allowing us to

correctly determine a codeword even in the presence of up to dd(C)2 e − 1 errors). Furthermore, we

would like to ensure efficient methods to decode our codewords in the presence of errors. To this end,

we will look to constructing our codes from Reed-Solomon codes, a common class of error-correcting

codes with efficient decoding algorithms.

5.3 Minimum Distance Bounds for General and Constrained

Codes

While it can be difficult in general to determine the optimal minimum distance of a constrained code,

we have a handful of tools at our disposal to help bound it. For instance, we can always appeal to

the well-known Singleton bound [89]:

Theorem 24 (Singleton Bound). If C is a length-n code over an alphabet of size q, then |C| ≤
qn−d(C)+1.

Proof. Take any subset I ⊆ {1, ..., n} of size d(C) − 1, and let CIc denote the set {[c][n]\I : c ∈ C},
i.e., the vectors of C with their entries in I removed. As such, the elements of CIc are subvectors of

length n−d(C) + 1, so there can be no more than qn−d(C)+1 of them. Since any two vectors in C differ

in at least d(C) entries, all of the vectors in CIc must be distinct, and |C| = |CIc |, and we are done.

In our framework, we would like to have a distinct codeword for each of our messages m ∈ Fsq,

hence we would like to have C = qs. We will accordingly rephrase the Singleton bound in the following

form:

Corollary 5. Let C be a length-n code over an alphabet of size q such that |C| = qs. Then d(C) ≤
n− s+ 1.
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Proof. This follows directly from Theorem 24.

A linear code which meets the Singleton bound with equality is called a maximum distance separable

(MDS) code, and has the following alternative characterization:

Theorem 25. Let C ⊂ Fnq be a linear code of dimension s and generator matrix G ∈ Fs×nq . Then C
is an MDS code if and only if every s columns of G are full rank.

Proof. Assume every s columns of G are full rank. Consider two distinct codewords c1 and c2 in C,
and let m1 and m2 be corresponding message vectors in Fsq such that ci = miG, i = 1, 2. Fix a subset

I ⊆ [n], of size d ≤ n − s, and remove the coordinates of I from c1 and c2 to form [c1]Ic and [c2]Ic

respectively. Likewise, remove the columns of G indexed by I to form GIc . Since GIc has at least s

columns, it must have full rank s. Thus, if [c1]Ic and [c2]Ic are identical, it implies that m1 = m2,

and c1 = c2. Thus, the distance of our code is greater than n − s, so it must achieve the Singleton

bound.

Conversely, suppose our code is MDS, and fix a subset S ⊆ [n] of size s. Let GS ∈ Fs×sq be the

submatrix of G consisting of the columns indexed by S. Since C has minimum distance n − s + 1,

then for any distinct m1,m2 ∈ Fsq, the codewords c1 := m1G and c2 := m2G must differ within the

s coordinates indexed by S. That is, m1GS 6= m2GS , so the columns indexed by S are full rank.

For constrained codes, it turns out the Singleton bound is often rather loose. In this case, we can

derive a tighter class of bounds reminiscent of those in [32].

Theorem 26. Let C ⊆ Fnq be a code which is constrained by the bipartite graph G = (M,V, E), that

is, for each c = (c1, ..., cn) ∈ C there is some m = (m1, ...,ms) ∈ Fsq such that cj is a function of the

set {mi ∈ N (cj)}. Assume that for any subset I ⊆ M, we have |N (I)| ≥ |I|. Then for any subset

I ⊆M, the minimum distance of C satisfies

d(C) ≤ |N (I)| − |I|+ 1. (5.3)

Proof. Fix any set I ⊆ M. This proof is essentially a variation of the proof of the Singleton bound

when restricted to the code induced by the subvectors [c]N (I), c ∈ C, consisting of the codewords in

C with their coordinates removed outside of the set N (I). To be explicit, consider the set SI ⊆ Fsq of

vectors which are zero outside of the indices in I:

SI = {(m1, ...,ms ∈ Fsq : mi = 0∀i /∈ I}.
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Figure 5.2: Partitions of M and of V used in the proof of Theorem 26. The set N (I) is a function of
both I and Ic, while the set N (I)c is a function of Ic only.

It is clear that SI has q|I| elements. By examining the bipartite graph, we can see that the symbols

cj , j ∈ N (I)c are only a function of the message variables mi, i /∈ I (see Fig. 5.2), hence the subcode

CI := {c ∈ C : c = f[n](m), m ∈ SI} must have constant values in the indices corresponding to

N (I)c. Furthermore, if |N (I)| ≥ |I|, and we consider any |I|−1 of the indices corresponding to N (I),

then by the Pigeonhole Principal, there must be distinct m1 and m2 in SI such that c1 := f[n](m1)

and c2 := f[n](m2) have the same values in these |I| − 1 indices. Thus, since c1 and c2 are both in

CI , they have at least |N (I)c|+ |I|−1 entries in common, hence can have Hamming distance at most

n− (|N (I)c|+ |I| − 1) = |N (I)| − |I|+ 1, and we are done.

Remark : In the case where |N (I)| < |I| for some subset I, then the proof above can produce

two distinct vectors m1 and m2 in SI , yielding c1 and c2 in CI which have the same entries in all

coordinates of N (I), and hence c1 = c2 so our code has minimum distance equal to 0.

As a direct corollary, we have

Corollary 6. Let C be a code constrained by the bipartite graph G = (M,V, E), as in Theorem 26.

Then the minimum distance d(C) satisfies

d(C) ≤ min
M′⊆M

|N (M′)| − |M′|+ 1. (5.4)

As we can see, when M′ is taken to be the full set M in Corollary 6, then we obtain the original

Singleton bound (assuming N (M) is the entire set V, which we may do without loss of generality).

In general, however, it remains an interesting task to provide constructions of codes C that meet the

constraints imposed by arbitrary graphs G which 1) achieve the upper bound on distance in Corollary

6 with equality, and 2) have efficient decoding algorithms to recover a message m ∈ Fsq from the

vector c := f[n](m) ∈ C even in the presence of errors. Our method will be to attempt to construct

C as a subcode of a Reed-Solomon code, which is a well-known MDS code with known fast decoding

algorithms. We will briefly review Reed-Solomon codes in the next section.
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5.4 Subcodes of Reed-Solomon Codes

While there are several equivalent ways to define Reed-Solomon codes, we will use the original def-

inition from [82], which we will see fits quite naturally into our current framework. Let n and k be

integers, with n ≥ k, and q a power of a prime. To any vector

m = (m1, ...,mk) ∈ Fkq ,

we can associate the polynomial

m(x) :=
k∑
i=1

mix
i−1

of degree at most k − 1. If we fix distinct elements {α1, ..., αn} ⊆ Fq, which we will call the defining

set of our code, then a [n, k]q Reed-Solomon code is defined as

CRS := {(m(α1), ...,m(αn)) ∈ Fnq : deg(m(x)) < k},

which is a k-dimensional subspace of Fnq .

If we define the matrix

GRS :=


1 . . . 1

α1 . . . αn
...

. . .
...

αk−1
1 . . . αk−1

n

 , (5.5)

then we can express any codeword in c ∈ CRS in the form c = mGRS for some m ∈ Fkq , so we see that

GRS is the generator matrix for CRS . Since GRS is Vandermonde, any k of its rows are full rank, and

we see that CRS is an MDS code by Theorem 25. Thus, its minimum distance achieves the Singleton

bound, and we have d(CRS) = n− k + 1.

Given a bipartite graph G = (M,V, E) defining a set of constraints for our code, where |V| = n and

|M| = s ≤ k, we can find a subspace C of CRS which forms a valid code for the constraints imposed

by G as follows: For each i ∈ {1, ..., s}, let N (mi)c := V \ N (mi) be the set of codeword symbols

cj to which mi is not connected in G. Identifying αj with the node cj for each j = 1, ..., n, define a

polynomial ti(x) of degree at most k − 1 such that ti(x) is divisible by
∏
αj∈N (mi)c

(x − αj). If we

write ti(x) =
∑k
i′=1 ti,i′x

i′−1 and identify ti(x) with the vector ti := [ti,1, ..., ti,k] ∈ Fkq , we see that
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the codeword

ci := tiGRS = [ti(α1), ..., ti(αn)] (5.6)

has zeros in the entries corresponding to the elements αj ∈ N (mi)c. Thus, if we stack the rows ci to

form the matrix

G :=


c1

...

cs

 =


t1

...

ts

 ·


1 . . . 1

α1 . . . αn
...

. . .
...

αk−1
1 . . . αk−1

n

 , (5.7)

then we see that G has the same zero-pattern as the adjacency matrix A of G defined in (5.1). Thus,

G is the generator matrix for a linear code C which is valid for the graph G. For convenience, we will

define the matrix of the ti to be

T :=


t1

...

ts

 , (5.8)

and write the above equation in the compact form G = TGRS . The dimension of the code C is equal

to the row rank of T, which is determined by how we choose the polynomials ti(x) subject to the

aforementioned requirements that deg(ti(x)) < k and
∏
αj∈N (mi)c

(x−αj) divides ti(x). Furthermore,

since C is a subspace of a Reed-Solomon code, we can apply pre-existing efficient decoders to recover

any message m ∈ Fsq from the codeword c := mG, even in the presence of errors. Some well-known

such decoders include the Peterson [77], the Berlekamp-Massey [5, 71], and the Welch-Berlekamp [7]

algorithms.

5.5 Systematic Codes

In many scenarios, it is desirable to have the s symbols our original message m appear as a subset

of the symbols of the corresponding codeword c. This allows m to be retrieved immediately in the

absence of errors in c without alluding to a lookup table, inverting the function fM : m 7→ c,

or performing any other method of decoding which could be costly in computation or storage. For

example, if our original message symbols m = [m1, ...,ms] collectively represent a collection of data

files, the codeword symbols c = [c1, ..., cn] could represent encoded files stored in n different servers,
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where n > s to protect the data in the case of some servers crashing. Suppose ci = mi for i = 1, ..., s.

Then in the case where crashes occur only in the servers corresponding to cs+1, ..., cn, we can still

easily access our original data m = [c1, ..., cs], which can be used to quickly recompute the cj in the

servers which have crashed (for j > s).

Definition 6. Let s and n be integers, n ≥ s, and q a power of a prime. For any vector c ∈ Fnq and

any subset I ⊆ [n], let [c]I denote the subvector of c in the entries indexed by I. Let f : Fsq → Fnq be

a function such that for some fixed subset Isys ⊆ [n] of size s, we have [f(m)]Isys = m. Then the set

C = {c ∈ Fnq : c = f(m),m ∈ Fsq} is called a systematic code, or a code in systematic form. For any

c = [c1, ..., cn] ∈ C, the symbols cj, j ∈ Isys, are called the systematic symbols of c, and the remaining

cj, j /∈ Isys, are the parity symbols.

If C is a linear code with generator matrix G ∈ Fs×nq , then C being systematic is equivalent to

the columns of the s× s identity matrix Is, arising as a subset of the columns of G. Let us examine

what this means in the context of codes with constraints. As before, let G = (M,V, E) be a bipartite

graph with |M| = s and |V| = n, where we identify the message symbols m1, ...,ms with the vertices

of M and the codewords symbols c1, ..., cn with those of V. For each cj ∈ V, we have an associated

function cj = fj({mi ∈ N (cj)}). Thus if cj is a systematic symbol in a systematic code C such that

cj = mi, it must be that mi ∈ N (cj). In other words, (mi, cj) ∈ E . On this note, we refer to the

following definition from basic graph theory:

Definition 7. Let G = (M,V, E) be a bipartite graph. A subset Ẽ ⊂ E is called a matching for G if

no two edges in Ẽ share a common vertex. Ẽ is said to be a maximal matching if it is not a proper

subset of any other matching. A subset S ⊆ M ∪ V is said to be covered by Ẽ if each vertex in S is

incident to an edge in Ẽ.

Under this terminology, the following is clear:

Lemma 15. Let G = (M,V, E) be a bipartite graph, with |M| = s and |V| = n. Then there exists a

systematic code C = {c ∈ Fnq : c = f[n](m), m ∈ Fsq} for some f[n](·) which fits the constraints of G
only if there is an M-covering matching Ẽ ⊆ E for G.

Proof. Let Isys ⊆ [n] be the indices of the systematic symbols of each c = [c1, ..., cn] ∈ C. For

each j ∈ Isys, let ij ∈ [s] be such that cj = mij . Since C is constrained by G, we necessarily have

(mij , cj) ∈ E . Note that by the nature of the systematic code, for any two distinct j1 and j2 in Isys,
we necessarily have ij1 6= ij2 . Furthermore, for any mi ∈ M, there must be some j ∈ Isys such that

i = ij . Thus, the set of edges Ẽ := {(mij , cj) : j ∈ Isys} is a matching for G which covers M.

A crucial tool in examining matchings is Hall’s Theorem:
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Theorem 27 (Hall’s Theorem). Let G = (M,V, E) be a bipartite graph. An M-covering matching

exists if and only if |M′| ≤ |N (M′)| for all subsets M′ ⊆M.

Proof. This is a well-known result in graph theory, proven by Philip Hall in [52]. An accessible proof

appears on p. 53 of [67].

5.5.1 Systematic Code Construction Using Reed-Solomon Codes

We now present a sufficient condition on our bipartite constraint graph G = (M,V, E) which allows us

to construct a systematic code meeting our constraints which achieves the upper bound on distance

from Corollary 6. Our code will be a linear subcode of a Reed-Solomon code, and will have dimension

equal to |M|. Loosely speaking, our construction relies on a sufficient amount of connectivity in G.

Theorem 28. Let G = (M,V, E) be a bipartite graph where N (M) = V, with |M| = s and |V| = n.

Define the set A := {cj ∈ V : N (cj) = M}, the set of code symbols which are connected to all the

message symbols. Let dmin := minM′⊆M |N (M′)| − |M′|+ 1 and kmin := n− dmin + 1. Then if q is

a prime power greater than or equal to n, a linear code C ⊆ Fnq can be constructed with a generator

matrix G ∈ Fs×nq in systematic form provided that kmin ≥ |V \ A|.

Proof. By our hypotheses, we have

n = |V \ A|+ |A| ≤ kmin + |A|, (5.9)

and by our definition of kmin, this gives us |A| ≥ dmin − 1. Let B ⊆ A be a set of size dmin − 1, and

set A∗ := A \ B, V∗ := V \ B, and E∗ := {(mi, cj) ∈ E : cj ∈ V∗}. Then define the corresponding

subgraph of our bipartite graph, G∗ = (M,V∗, E∗), in which we can see that A∗ is precisely the set of

vertices in V∗ which are connected to all of M. Its cardinality is

|A∗| = |A| − (dmin − 1). (5.10)

To avoid confusion, for any subset M′ ⊆ M, we will denote the neighborhood of M′ in V∗ as

N ∗(M′), while still using the notation N (M′) to denote the neighborhood ofM′ in the entire set V.

We can express N ∗(M′) as the disjoint union (N (M′) \ A) t A∗, so we have

|N ∗(M′)| = |N (M′) \ A|+ |A∗|. (5.11)
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On the other hand, by the definition of dmin we have

|M′| ≤ |N (M′)| − (dmin − 1) = |N (M′) \ A|+ |A| − (dmin − 1). (5.12)

Combining our relations from (5.10), (5.11), and (5.12), we obtain

|M′| ≤ |N ∗(M′)|, ∀M′ ⊆M. (5.13)

Thus we can apply Hall’s Theorem to the subgraph G∗ to find a matching Ẽ ⊆ E∗ which coversM.

If we let cj(i) be the vertex matched to mi, then we can write this matching as Ẽ = {(mi, cj(i))}si=1 ⊆
E∗. Let Ṽ = {cj(i)}si=1 be the subset of V∗ which is covered by Ẽ .

The symbol cj(i) will correspond to the systematic coordinate of our codeword which is equal to

message symbol mi. As such, any edge (mi′ , cj(i)), for i′ 6= i, is effectively ignored. As such, define

the set of ignored edges

Eneg := {(mi, cj) ∈ E : j ∈ Ṽ, j 6= j(i)}.

Let AẼ be the adjacency matrix of the graph G̃ := (M,V, E\Eneg), which is the graph G after removing

the ignored edges. Note that any any code fitting the constraints imposed by G̃ will automatically

fit those of the original graph G. We claim that the number of zeros in any row of AẼ is at most

n− dmin. Indeed, each message symbol vertex mi is connected to one vertex in V∗ and all dmin − 1

vertices in B, so the corresponding row of AẼ must have at least dmin ones.

Now we can construct a linear code with a generator matrix G having the same support set as

AẼ , and thus meeting the constraints imposed by the graph G̃ (and therefore G). We will form

our code as a linear subcode of a Reed-Solomon code as described in Section 5.4. Select distinct

elements {α1, ..., αn} ⊆ Fq, and form the generator matrix GRS of equation (5.5) for an [n, kmin]q

Reed-Solomon code. To each mi ∈M, associate the polynomial ti(x) :=
∏
{j : [AẼ ]i,j=0}(x− αj). By

our above discussion, we have deg(ti(x)) ≤ n− dmin = kmin− 1 for each i. Now for each i, expressing

ti(x) in the form
∑kmin
i′=1 ti,i′x

i′−1, we define the coefficient vector ti := 1
ti(αj(i))

[ti,1, ..., ti,kmin ], where

we have normalized the polynomial’s coefficients so that its evaluation at αj(i) is 1. Then if we stack

the vectors ti to form the matrix T as in (5.8), and set

G = TGRS =
[
ti(αj)
ti(αj(i))

]
, (5.14)

we see that G has zeros precisely in the locations of the zeros of AẼ , so it is the generator matrix

for a linear code C fitting our constraints. It is in systematic form, since the columns in the indices

corresponding to {cj(i)}si=1 form a permutation of the columns of the s× s identity matrix. This also
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immediately shows that the code is full rank s. Finally, the minimum distance d(C) of our code must

be at least that of the [n, kmin]q Reed-Solomon code from which it is derived, thus d(C) ≥ dmin. But

by Corollary 6, the reverse inequality also holds, and we see that we must have d(C) = dmin.

5.6 Minimum Distance for Systematic Linear Codes

In this section, we will restrict our attention to the case where a code valid for G is linear, so that

each cj ∈ V is a linear function of the message symbols mi ∈ N (cj). We seek to answer the following:

what is the greatest minimum distance attainable by a systematic linear code valid for G?

Any systematic code must correspond to a matching Ẽ ⊆ E which identifies each message symbol

mi ∈ M with a unique codeword symbol cj(i) ∈ V, where j(i) ∈ {1, . . . , n}. Explicitly, Ẽ consists of

s edges of the form {(mi, cj(i))} for i = 1, . . . , s such that cj(i1) 6= cj(i2) for i1 6= i2. As before, Ṽ is

the subset of vertices in V which are involved in the matching: Ṽ = {cj(i)}si=1. Our code becomes

systematic by setting cj(i) = mi for i = 1, . . . , s, and choosing each remaining codeword symbol cj /∈ Ṽ
to be some linear function of its neighboring message symbols mi ∈ N (cj).

Definition 8. For G = (M,V, E), let Ẽ ⊆ E be an M-covering matching so that Ẽ = {(mi, cj(i))}si=1.

Let Ṽ = {cj(i)}si=1 be the vertices in V which are covered by Ẽ. Define the matched adjacency matrix

AẼ ∈ {0, 1}s×n so that [AẼ ]i,j = 1 if and only if either (mi, cj) ∈ Ẽ, or cj /∈ Ṽ and (mi, cj) ∈ E. In

other words, AẼ is the adjacency matrix of the bipartite graph formed by starting with G and deleting

the edges Eneg = {(mi, cj) ∈ E : cj ∈ Ṽ and j 6= j(i)}.

Definition 9. Let Ẽ ⊆ E be a matching for the G = (M,V, E) which covers M. Let zẼ be the

maximum number of zeros in any row of the corresponding matched adjacency matrix AẼ , and define

kẼ := zẼ+1. Furthermore, define ksys = minẼkẼ where Ẽ ranges over all matchings for G which cover

M, and dsys = n− ksys + 1.

Lemma 16. For a given bipartite graph G = (M,V, E) which merits a matching that covers M, we

have

s ≤ kmin ≤ ksys ≤ n (5.15)

and

dsys ≤ dmin. (5.16)

Proof. Let A be the adjacency matrix of G.

For any subsetM′ ⊆M we have dmin ≤ |N (M′)| − |M′|+ 1, and likewise kmin = n− dmin + 1 ≥
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|M′|+(n−|N (M′)|). TakingM′ =M (and noting that in our framework, every cj ∈ V is connected

to at least one vertex in M, hence |N (M)| = n) we obtain kmin ≥ s.
Now choose a set M′ for which the above relation holds with equality, that is, kmin = |M′| +

(n− |N (M′)|). Since N (M′) is simply the union of the support sets of the rows of A corresponding

to M′, then each of these rows must have at least n − |N (M′)| = |N (M′)c| zeros. Furthermore,

any matching Ẽ which covers M must identify the rows of M′ with columns of N (M′). Thus, in

the matched adjacency matrix AẼ , the row corresponding to j ∈ M′ must have |M′| − 1 zeros in

the columns of N (M) which are matched to M′ \ {j}, in addition to the n − |N (M′)| zeros in the

columns corresponding to N (M′)c.

This gives us kẼ ≥ |M′| + (n − |N (M′)|) for each matching Ẽ , hence ksys ≥ kmin. It follows

directly that dsys ≤ dmin. Finally, it is clear from definition that for any M-covering matching Ẽ we

must have that kẼ is less than the length of the adjacency matrix A, which is n, hence ksys ≤ n.

Corollary 7. Let G = (M,V, E) be a bipartite graph which merits a systematic linear code. The

largest minimum distance obtainable by a systematic linear code is dsys. This distance can be achieved

by a subcode of a Reed-Solomon code.

Proof. Let C be a systematic linear code which is valid for G. Then C must have a codeword containing

at least ksys − 1 zeros, i.e. a codeword of Hamming weight at most n − ksys + 1 = dsys. Since the

code is linear, this Hamming weight is an upper bound for its minimum distance, so d(C) ≤ dsys.
It remains to see that there are systematic linear codes which are valid for G and achieve a

minimum distance of dsys. Let Ẽ be anM-covering matching for G such that kẼ = ksys. Then for any

k ≥ ksys and prime power q ≥ n, we claim that an [n, k]q Reed-Solomon code contains a systematic

linear subcode that is valid for G. Indeed, choose a set of n distinct elements {αi}ni=1 ⊆ Fq as the

defining set of our Reed-Solomon code. Then to form our subcode’s generator matrix G, note that

(as mentioned before) G must have zero entries in the same positions as the zero entries of AẼ , and

indeterminate elements in the remaining positions. There are at most ksys− 1 zeros in any row of AẼ

(and at least s − 1 zeros in each row, since there must be s columns which have nonzero entries in

exactly one row). For each row i ∈ {1, . . . , s} of AẼ , let Ii ⊆ {1, . . . , n} be the set of column indices

j such that [AẼ ]i,j = 0. Then form the polynomial ti(x) =
∏
j∈Ii(x− αj) and normalize by ti(αj(i)),

which accordingly has degree at most ksys (and at least s − 1). We now set the ith row of G to be

(ti(α1), . . . , ti(αn)), and we see that by construction this row has zeros precisely at the indices j ∈ Ii
as desired.

The rows of G generate a code with minimum distance at least that of the original Reed-Solomon

code, which is n − k + 1. Furthermore, by setting k = ksys for our Reed-Solomon code, we see this

new code C has minimum distance at least n − ksys + 1 = dsys. Since by our previous argument,
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d(C) ≤ dsys, the minimum distance of C must achieve dsys with equality.

5.7 Arbitrary MDS Codes

Up until now, we have been extensively employing Reed-Solomon codes in our constructions and

proofs, though this has mainly been due to their familiarity, their ease of discussion, and the fact that

they have a number of efficient decoding algorithms. It is worth mentioning, however, that we could

have instead used any MDS codes with the same dimensions to satisfy our constraints.

Let CMDS be an MDS code in Fnq of dimension k and generator matrix GMDS ∈ Fk×nq . For any

subset I ⊆ [n] such that |I| ≤ k− 1, there is a nonzero codeword c = [c1, ..., cn] ∈ C such that ci = 0,

∀i ∈ I.

To see this, let gi be the ith column of GMDS , and define the submatrix GI := [gi]i∈I . Since GI

is a tall matrix, there is a nonzero vector h ∈ F1×k
q such that hGI = 0 ∈ F|I|q . Therefore the desired

codeword is c = hGMDS .

Now suppose we have a bipartite graph G = (M,V, E) of constraints for which we wish to produce

a valid code C. For any integer d such that d ≤ |N (mi)|, ∀i, choose CMDS ⊆ Fnq to have dimension

k = n− d+ 1. If A is the adjacency matrix of G, then each row of A has at most n− d = k− 1 zeros.

So for each i, we can find some hi ∈ Fkq such that the codeword ci := hiGMDS has zeros in the same

entries as the zeros of A.

Thus the matrix

G :=


c1

...

cs


is the generator matrix for a linear code C which is valid for G. Note that since the minimum distance

of C must be at least that of CMDS , which is d. On the other hand, d(C) is equal to the lowest Hamming

weight of any of its codewords, among which are the rows ci of G. Row ci can have Hamming weight

no greater than |N (mi)|, so we have

d ≤ d(C) ≤ min
i∈[s]
|N (mi)|. (5.17)

This, of course, is in addition to the other bounds on distance we had from Theorem 26. (In fact,

the upper bound in (5.17) is actually one of these, since it can be rewritten as |N (mi)| = |N (mi)| −
|{mi}|+ 1). Thus, a priori it seems that we can freely control our code’s distance by simply choosing

d = minM′⊆M |N (M′)| − |M′|+ 1. But it is important to remember that the dimension of C (equal

to the rank of G) depends on our particular choice of the rows ci = hiGMDS . Thus, if we begin with
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an MDS code of too high a minimum distance d, it may result in C having dimension smaller than

s = |M|.
One more thing to point out is that in the case where we would like C to be a systematic code, so

that s of the columns of its generator matrix G are a permutation of the columns of the s× s identity

matrix, we have to take slightly more care in choosing the hi. Indeed, if mi is matched to cj(i) as

described in the previous section, then we must make sure that higj(i) 6= 0. This is always possible,

because any k columns of GMDS must be full rank by Theorem 25, and our only requirement on hi

had been that it lie in the null space of a submatrix GI of at most k−1 columns. In this case, we can

be sure C will have dimension s since G will have an identity submatrix, and hence will have rank s.

5.8 Example

In this section, we give an explicit example of how to use a Reed-Solomon code to construct a system-

atic code which is valid for the constraints induced by the bipartite graph G of Figure 5.1. Corollary

6 bounds the distance of any constrained code C as d(C) ≤ 5, but if C is required to be systematic,

Corollary 7 bounds the distance as (.C) ≤ 4. This is a simple example where the systematic distance

bound from Corollary 7 actually proves tighter than that given by our original (general) bound in

Corollary 6.

Corollary 7 requires an M-covering matching Ẽ , and we see that if we match m1, m2, and m3 to

c1, c2, and c3, respectively, and remove all other edges incident to these three ci from our bipartite

graph (i.e. remove edges (m2, c1) and (m2, c3)), then the matched adjacency matrix becomes

AẼ =


1 0 0 1 1 1 1

0 1 0 0 1 1 1

0 0 1 1 1 1 1

 . (5.18)

Here the bold entries correspond to the edges that have been removed from G, or equivalently ’1’

entries which have been removed from the original adjacency matrix A from (5.2). By speculation,

this matching minimizees the maximum number of zeros in any row of the matched adjacency matrix,

and hence it is an optimal matching and yields the bound of Corollary 7.

We can construct a linear code that is vlid for AẼ from a [7, 4]7 Reed-Solomon code. If we fix a

primitive element α of F7 and select the defining set {α1, ..., α7} to be {0, 1, α, ..., α5} when we form

the generator matrix GRS , then using the method described in Section 5.4, we identify the message
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symbols m1, m2, and m3, respectively, with the polynomials

t1(x) = α5(x− 1)(x− α), (5.19)

t2(x) = α4x(x− α)(x− α2), (5.20)

t3(x) = α3x(x− 1). (5.21)

Here, the leading constants of the polynomials are normalizing factors to ensure that our code will

be in systematic form. Again following the procedure from Section sec:ReedSolomon, we form the

vector ti of the coefficients of ti(x) for i = 1, 2, 3, and stack these vectors to form the matrix T. Our

subcode’s generator matrix will then take the form

G = TGRS =


1 0 0 α2 α5 1 α5

0 1 0 0 1 α4 1

0 0 1 α5 α5 α2 1

 , (5.22)

where we can indeed see that the submatrix corresponding to the first three columns is the identity

matrix, and hence we have produced a valid systematic code for G.
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Chapter 6

Conclusions and Future Work

In this thesis, we have delved into several topics in coding theory in its various forms. We have

presented algebraic constructions of Ingleton-violating entropy vectors, low-coherence frames, and

constrained codes, and have gained much structural insight into these problems. More importantly,

our work has paved the way for some exciting new directions of study in these areas. In this chapter,

we suggest several future continuations of our work.

6.1 Characterizing the Entropy Region

The constructions of Ingleton-violating group-characterizable entropy vectors that we presented in

Chapter 2 represent a broad class of points in a very interesting part of the entropy region, and in

some ways they suggest techniques that can be used to determine points in many other subregions.

But there remains a great deal of work to be done to completely characterize the entropy region,

or even just the space of entropy vectors which violate the Ingleton inequality. This task requires

a much more general approach to studying group characterizable entropy vectors, and would likely

demand far more complicated groups than those which can be expressed as small matrices over finite

fields, or even those which merit obvious group actions. A more reachable goal would be to more

extensively characterize the portion of the entropy region which is achieved by entropy vectors arising

from familiar classes of groups. An ultimate goal is to use these groups to construct high-performing

network codes, so it makes sense to restrict our attention to groups that easy to work with and

facilitate code design. As a first step, it would be interesting to classify networks for which we can

construct codes from the projective and general linear groups PGL(2, q) and GL(2, q) discussed in

Chapter 2, particularly if they can outperform linear codes on these networks.
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6.2 Frame Design

The idea of reducing the number of distinct inner product magnitudes arising in a tight frame is in some

sense a natural generalization of a Grassmanian frame. The construction we presented in Chapter 3

achieves this goal, though in a very specific manner. It would be interesting to classify other frames

that have this property, or if there are other ways to generalize the notion of a Grassmanian frame.

The generalizations of our construction that we gave in Chapter 4 give us much more flexibility in

controlling the dimensions and alphabets of our frames, but it remains a challenge to identify groups

that work well in this generalized framework. While it may be simple enough to explicitly compute

the inner products of these frames directly from the characters of different groups, it is sometimes less

trivial to explicitly write out the frame elements themselves, as one might have noticed in the frames

constructed from SL2(q) in Section 4.5. It is conceivable that we can describe how the coherence of

these frames will behave in terms of the interaction between various subgroups or generators of our

group, which could allow us to produce new groups more easily.

In light of the fact that our frames do contain a great deal of structure, it would be pleasing

to identify applications in which our frames outperform other frames with low coherence. In many

compressive sensing simulations, or experiments in which we attempt to decode a noise-corrupted

spherical code message, it is difficult to perform significantly better than randomly generated frames

(though even matching their performance with a deterministically-designed frame is useful). Further-

more, while our frames provably satisfy the Strong Coherence Property in certain regimes, we can see

from Figures 4.3(a) and 4.3(b) that this often requires both the number of rows m and columns n

of our frame matrices to be very large. In the case where m = nγ , for γ < 1, then for large enough

n the bounds on the coherence of our group-based harmonic frames do not outcompete those for

random harmonic frames. Thus it would be very useful to find a deterministic set of frames which is

guaranteed to have lower coherence in high dimensions, or perhaps in the regime where m = O(log n).

This might involve tightening the bounds we provided in Chapters 3 and 4, identifying groups which

work better in our framework, or finding a new approach to constructing frames.

6.3 Constrained Coding

Chapter 5 answered several questions about the connection between the constraining bipartite graph

and the minimal distance of a constrained code. A major open question that remains is whether the

bound on minimum distance in Theorem 26 always achievable with a subcode of a Reed-Solomon

code. Our work answers this question when we demand a systematic subcode, in which case we can

only achieve the altered bound of Corollary 7. But ultimately we would like to be able to provide a
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Reed-Solomon subcode for any given set of constraints that achieves the optimal minimal distance so

that we can take advantage of existing fast Reed-Solomon decoders.

Another open question concerns how to compute the quantity dsys from Corollary 7. This is

equivalent to computing the quantity ksys from Definition 9, which boils down to finding the matching

Ẽ which minimizes the maximum number of zeros in any row of the matched adjacency matrix AẼ

from Definition 8. A priori, it is unclear whether this problem has a computationally fast solution.

We can actually relax this problem, however, to obtain the following linear program:

minimize{w(j)}sj=1⊂Rn

max
i

(n− s)1s×1 −A

1s×1 −
∑
j

w(j)


i

 (6.1)

subject to: 0 ≤ [w(j)]i ≤ 1, j = 1, ..., s∑
i

[w(j)]i = 1, j = 1, ..., s

[Aw(j)]j = 1, j = 1, ..., s

0 ≤

∑
j

w(j)


i

≤ 1, i = 1, ..., n

where 1s×1 is a length-s vector of all 1s, and for a vector v, the notation [v]i denotes the ith entry.

The idea of the above linear program is that we would like w(j) to be a vector with all 0s except for a

single 1 in the entry corresponding to the index of the code symbol ci which is matched to the message

symbol mj . In this case, A
(
1s×1 −

∑
j w(j)

)
is the total number of zeros in each row of the matched

adjacency matrix, and the objective function gives us dsys. It is not too difficult to see that if the

solution to this optimization problem yields a set of vectors w(j) with all 0,1 entries, then this certifies

that the solution is indeed a matching and that the minimized value of the objective function is the

true value of dsys. Otherwise, this linear program only gives us a lower bound on dsys. It remains to

characterize the effectiveness of this method of searching for the largest achievable minimum distance

for systematic linear codes.
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Appendix A

Chapter 3 Proofs

A.1 The Fourier Pairing of (3.22) and (3.23) for Cyclic Groups

of Prime Order

We will now begin to develop the tools needed to prove Theorems 7, 8, 9 and 10. We will explicitly

prove Theorems 7 and 8 and defer the proofs of Theorems 9 and 10 to Appendix B. Let us return

to representations of the cyclic group G = Z/nZ, where A = {a1, ..., am} is a subset of G (not

necessarily a group), U = diag(ωa1 , ωa2 , ..., ωam), where ω = e2πi/n and the powers ωai are distinct,

and U = {U,U2, ...,Un−1,Un = Im}. As before, taking v = 1√
m

1m the normalized vector of all ones,

U`v =
[
ωa1` ωa2` . . . ωam`

]T
. Then if we index the columns as ` = 0, 1, ..., n− 1, we have M as

in (3.18). The inner product associated to the element U` takes the form

c` :=
v∗U`v
||v||22

=
1
m

∑
a∈A

ω`a. (A.1)

We define α` := |c`|2 to be the squared norm of the `th inner product. If for any t ∈ Z/nZ we define

the set At := {(ki, kj) ∈ A× A | ai − aj ≡ t mod n} with size Nt := |At|, then we have the Fourier

pairing given by Equations (3.22) and (3.23).

Now consider the framework of Section 3.5 where n is a prime, m is a divisor of n − 1, and A is

the unique cyclic subgroup of H = (Z/nZ)× of size m. If κ = n−1
m , then A consists of the nonzero κth

powers in Z/nZ. Let x be a multiplicative generator of the cyclic group (Z/nZ)×. Then the distinct

cosets of A in (Z/nZ)× are {A, xA, x2A, ..., xr−1A}. If ` ∈ xdA, then we see that c` = cxd and hence

α` = αxd . Likewise, if t ∈ xdA, it is not too difficult to see that we have a bijection

At → Axd : (ai, aj) 7→ (xdt−1ai, x
dt−1aj).
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It follows that

Nt = Nxd if t ∈ xdA. (A.2)

It is straightforward to see from their definitions that c0 = α0 = 1 and N0 = m. With this in mind,

we may write the condensed forms of (3.22) and (3.23):

α` =
1
m2

(
a0 +

κ−1∑
d=0

Nxd
∑
a∈A

ωx
d`a

)
,

Nt =
m2

n

(
α0 +

κ−1∑
d=0

αxd
∑
a∈A

ω−x
dta

)
.

In particular,

αxd′ =
1
m2

(
N0 +

κ−1∑
d=0

Nxd
∑
a∈A

ωx
d+d′a

)
(A.3)

=
1
m

(
1 +

κ−1∑
d=0

Nxdcxd+d′

)
, (A.4)

Nxd′ =
m2

n

(
α0 +

κ−1∑
d=0

αxd
∑
a∈A

ω−x
d+d′a

)
(A.5)

=
m2

n

(
1 +m

κ−1∑
d=0

αxdc
∗
xd+d′

)
. (A.6)

On one final note, since the roots of unity sum to 0:

1 +mc1 +mcx +mcx2 + ...+mcxκ−1 = 0. (A.7)

A.2 κ = 2, and Proof of Theorem 7

As before, take n to be a prime, m a divisor of n− 1, and A = {a1, ..., am} the unique multiplicative

subgroup of (Z/nZ)× of size m. Let us examine the case where κ := n−1
m = 2. Fix a multiplicative

generator x for (Z/nZ)×. In this case, A has two distinct cosets: A and xA. Our frame will corre-

spondingly have two distinct inner product values: c1 = 1
m

∑
a∈A ω

a and cx = 1
m

∑
a∈A ω

xa. There

are two equations of the form (A.4),

α1 =
1
m

(1 +N1c1 +Nxcx) , αx =
1
m

(1 +N1cx +Nxc1) .
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From (B.10), substituting cx = −
(

1
m + c1

)
gives us

α1 =
1
m

(
1− 1

m
Nx + (N1 −Nx)c1

)
, (A.8)

αx =
1
m

(
1− 1

m
N1 + (Nx −N1)c1

)
. (A.9)

From (A.8) and (A.9), we can see that since α1, αx, N1, and Nx are real, then c1 must be real as well

(and thus so is cx). This allows us to write

α1 = c21, αx = c2x =
(

1
m

+ c1

)2

. (A.10)

Lemma 17. Let n be a prime, and κ and m satisfy κ = n−1
m = 2. Let A be the unique subgroup of

(Z/nZ)× of size m. As before, let Nt be the number of pairs (a1, a2) ∈ A× A such that a1 − a2 = t.

Let x be the multiplicative generator of (Z/nZ)×. Then

• If n− 1 is divisible by 4, N1 = 1
2 (m− 2) and Nx = 1

2m.

• Otherwise, N1 = Nx = 1
2 (m− 1), (−1 /∈ A).

Proof. Let us first count the number of pairs (a1, a2) such that a1 − a2 ∈ A, which will give us∑
a∈ANa. From (A.2), this is precisely equal to mN1. Since A is the group of nonzero squares in

Z/nZ, we can write a1 = h2
1 and a2 = h2

2 for some choice of h1, h2 ∈ (Z/pZ)×. If we let x1 = h1 − h2

and x2 = h1 + h2, then a1 − a2 = (h1 − h2)(h1 + h2) = x1 · x2.

Equivalently, we may write 1 −1

1 1

h1

h2

 =

x1

x2

 .
We see that for any choice of the pair (x1, x2), there is a unique pair (h1, h2) which maps to it. Since

we need to consider only pairs where h1 and h2 are nonzero, we must eliminate the cases where x1 = x2

(corresponding to when h2 = 0) and x1 = −x2 (corresponding to when h1 = 0).

In order to have x1 · x2 ∈ A, we must either have x1 and x2 both in A or both in xA. If −1 ∈ A,

a quick counting argument shows that there are 2m(m − 2) valid choices for (x1, x2) which satisfy

x1 · x2 ∈ A, each yielding a pair (h1, h2) with h1 and h2 nonzero. But we are concerned only with

their squares h2
1 and h2

2, so we can group these ordered pairs into sets of four, {(±h1,±h2)}, and the

number of distinct pairs (h2
1, h

2
2) with h2

1 and h2
2 nonzero and h2

1 − h2
2 ∈ A is thus

mN1 =
1
4

(2m(m− 2)) =
m

2
(m− 2), if − 1 ∈ A.
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Likewise, x1 · x2 ∈ xA precisely when x1 and x2 are in opposite cosets of A. If this is true, and

−1 ∈ A, then we cannot have x1 = x2 or x1 = −x2, since this would imply that x1 and x2 are in the

same coset. Thus, any pair (x1, x2) in either A × xA or xA × A will yield x1 · x2 ∈ xA, so there are

2m2 possible pairs, each yielding a pair (h1, h2). Again, we must divide by 4m to get the number of

feasible pairs (h2
1, h

2
2) such that h2

1 − h2
2 = x, and we find that

Nx =
1
2
m, (−1 ∈ A).

If −1 /∈ A, then the calculations for N1 and Nx change slightly: Now the condition x1 = −x2

implies that x1 and x2 are in opposite cosets of A. Thus, we have one extra case to consider when

calculating N1, and one less case when calculating Nx, so we find

N1 = Nx =
1
2

(m− 1), (−1 /∈ A).

Note that −1 ∈ A, or rather -1 is a square modulo n, precisely when (Z/nZ)× contains a fourth

root of unity, and since (Z/nZ)× is a cyclic multiplicative group of size n − 1, this occurs precisely

when n− 1 is divisible by 4.

We now have all the ingredients to prove Theorem 7, which we restate here for convenience:

Theorem 7: Let n be a prime, m a divisor of n−1, and ω = e
2πi
n . Let A = {a1, ..., am} be the unique

subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m, v = 1√
m

[1, ..., 1]T ∈ Cm×1,

and M = [v,Uv, ...,Un−1v].

If κ := n−1
m = 2, there are two distinct inner product values between the columns of M, both of

which are real. If n − 1 is divisible by 4, these inner products are −1±
√

1+2m
2m . In this case, M has

coherence
√

n−m− 1
2

m(n−1) + 1
2m .

If n − 1 is not divisible by 4, then the columns of M form an equiangular frame. The two inner

products are ±
√

1
m

(
1
2 + 1

2m

)
, and the coherence is

√
n−m
m(n−1) .

Proof. (Theorem 7) From (A.8), (A.9), (A.10), and Lemma 17, we have that if n− 1 is divisible by 4,

c21 =
1
m

(
1
2
− c1

)
,

and making the substitution c1 = −
(

1
m − cx

)
from (B.10) yields the same quadratic equation in cx.

Solving this reveals that c1 and cx will take on the values −1±
√

1+2m
2m , and the solution with the larger

norm is −1−
√

1+2m
2m , which indicates that the coherence is

µ =

˛̨̨̨
−1−

√
1 + 2m

2m

˛̨̨̨
=

s
n−m− 1

2

m(n− 1)
+

1

2m
(n ≡ 1 mod 4).
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On the other hand, if n− 1 is not divisible by 4, then from Lemma 17 equations (A.9) and (A.9)

become

c21 = c2x =
1
m

(
1
2

+
1

2m

)
,

so this gives us coherence

µ =

√
1
m

(
1
2

+
1

2m

)
=
√

n−m
m(n− 1)

(n 6≡ 1 mod 4).

A.3 κ = 3, and Proof of Theorem 8

Take n to be a prime, m a divisor of n− 1, and A = {a1, ..., am} the unique subgroup of (Z/nZ)× of

size m. We now consider the case where κ = n−1
m = 3, so that if x is a generator of (Z/nZ)×, then A

is cyclically generated by x3, and consists of the cubes of all the nonzero integers modulo n. In this

case our distinct inner products will be c1, cx, and cx2 , with corresponding squared norms α1, αx, and

αx2 . Our goal in this section will be to prove Theorem 8.

We first make the following remark:

Lemma 18. Let n be a prime, ω = e
2πi
n , and r and m satisfy κ = n−1

m = 3. If we take A to be the

unique subgroup of (Z/nZ)× of size m, then the inner product values c` = 1
m

∑
a∈A ω

`a are all real.

Proof. A is the set of cubes in (Z/nZ)×, and since −1 is its own cube it will lie in A. Multiplication

by −1 will therefore permute the elements of A, so we have

c∗` =

(
1
m

∑
a∈A

ω`a

)∗
=

1
m

∑
a∈A

ω−`a = c`. (A.11)

We begin by making the following definition:

Definition 10. For any two cosets t1A and t2A, we define the translation degree from t1A to t2A, to

be the quantity

Nt1A,t2A := |(1 + t1A) ∩ t2A| = #{α ∈ t1A | 1 + α ∈ t2A}.
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Similarly, for any coset tA, define the translation degree from tA to 0 to be the quantity

NtK,0 := |(1 + tA) ∩ {0}| =

1 if − 1 ∈ tA,

0 otherwise.

We can express our previously defined values Nt in terms of the translation degrees as follows:

Lemma 19. Let n be a prime, and m and κ satisfy κ = n−1
m = 3. Let A be the unique subgroup of

(Z/nZ)× of size m. Define Nt = #{(a1, a2) ∈ A×A | a1 − a2 ≡ t mod n} Then Nt = NK,tK .

Proof. For every pair (a1, a2) ∈ A×A we have that a1− a2 ∈ tA if and only if 1− a2a
−1
1 ∈ tA. There

are mNt such pairs in total (Nt pairs for every element in tA). Note that −a2a
−1
1 ∈ A, since −1 ∈ A.

If we select any of the m candidates for a1 ∈ A, then there are NA,tA choices for a2 that will satisfy

this requirement. Thus, we have mNt = mNA,tA, and the result follows.

Some other facts about translation degrees:

Lemma 20. Let n be a prime, m a divisor of n − 1 such that n−1
m = 3, and A the unique subgroup

of (Z/nZ)× of size m. Then Nt1A,t2A = Nt2A,t1A for all t1, t2 ∈ Z/nZ.

Proof. Suppose b1 ∈ t1A such that 1 + b1 = b2 ∈ t2A. Then 1 − b2 = −b1, with −b2 ∈ t2A and

−b1 ∈ t1A (since −1 is a cube and is thus in A). In fact, we see that we have a bijection between

the sets {(b1, b2) ∈ t1A × t2A | 1 + b1 = b2} and {(b′1, b′2) ∈ t2A × t1A | 1 + b′1 = b′2} which sends

(b1, b2) 7→ (b′1, b
′
2) := (−b2,−b1). This gives us Nt1A,t2A = Nt2A,t1A.

Lemma 21. Let n be a prime, m a divisor of n− 1 such that κ = n−1
m , and A the unique subgroup of

(Z/nZ)× of size m. If x is the multiplicative generator of (Z/nZ)×, then NxiA,xjA = Nxκ−iA,xκ−i+jA.

Proof. Let a ∈ A such that 1+xia = xjb, with b ∈ A. Then multiplying both sides of this equation by

xκ−i, we get xκ−i + xκa = xκ−i+jb. Note that xκa ∈ A. Now, multiplying both sides of this equation

by (xκa)−1 ∈ A, we obtain 1 + xκ−i(xκa)−1 = xκ−i+jb(xκa)−1, where xκ−i(xκa)−1 ∈ xκ−iA and

xκ−i+jb(xκa)−1 ∈ xκ−i+jA. We see that we in fact have a bijection between the sets {(xia, xjb) ∈
xiA× xjA | 1 + xia = xjb} and {(xκ−ic, xκ−i+jd) ∈ xκ−iA× xκ−i+jA | 1 + xκ−ic = xκ−i+jd} which

sends (xia, xjb) 7→ (xκ−i(xκa)−1, xκ−i+jb(xκa)−1).

Lemma 22. Let n be a prime, m a divisor of n− 1 such that κ = n−1
m , and A the unique subgroup of

(Z/nZ)× of size m. Set H = (Z/nZ)×, with multiplicative generator x. For any coset t0A, we have

Nt0A,0 +
∑κ
i=1Nt0A,xiA = |t0A|.
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Proof. This simply follows from the observation that any element of t0A, when translated by 1, must

be sent to either 0 or exactly one of the cosets xiA ∈ H/A.

Lemma 23. Let n be a prime, and m a divisor of n − 1 such that κ := n−1
m = 3. Take A to be the

unique subgroup of (Z/nZ)× of size m, and x a multiplicative generator for H := (Z/nZ)×. Then

NxA,x2A −NA,A = 1. (A.12)

Proof. We prove this by counting the size of the set

AK := {(a1, a2) ∈ A×A | a1 − a2 ∈ A}

in two ways. First, using Equation (A.2), we can simply count the elements in this set as

|AA| =
∑
a∈A

Na = mN1. (A.13)

Alternatively, we note that when κ = 3, the difference between any two elements in A takes the

form

b31 − b32 = (b1 − b2)(b1 − ζb2)(b1 − ζ2b2),

where ζ is a primitive third root of unity, and b1 and b2 are nonzero elements of Z/nZ. Let us define

x1 := b1 − b2, x2 := b1 − ζb2, x3 := b1 − ζ2b2. (A.14)

We can express this using matrices as
1 −1

1 −ζ
1 −ζ2

 ·
b1
b2

 =


x1

x2

x3

 .

In this form we can see that b1 and b2, and x3 are uniquely determined by x1 and x2. In particular,

x3 = −ζ(x1 + ζx2). (A.15)

Now, if b31 − b32 ∈ A, then Table A.1 lists the possibilities for the cosets of A to which x1, x2, and

x3 must belong (up to a permutation of the cosets).
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Table A.1: b31 − b32 ∈ A

x1 x2 x3 Multiplicity
A A A 1
xA xA xA 1
x2A x2A x2A 1
A xA x2A 6

The last case is representative of six possible cases which we obtain by permuting the order of the

cosets (thus it has “multiplicity 6”). In short, we must have x1, x2, and x3 all in the same coset, or

all in different cosets of A in order to have b31 − b32 ∈ A. Let us attempt to count the quantity

#{(x1, x2) ∈ A×A | x3 = −ζ(x1 + ζx2) ∈ A, b1 6= 0, b2 6= 0}.

Since x generates (Z/nZ)× ∼= F×n , the multiplicative group of the finite field with n elements, and κ

divides n− 1, the order of this group, then any κth root of unity will be contained in F×n , so ζ will lie

in one of the cosets of A.

We will first consider the case where ζ ∈ A. Since κ = 3, −1 ∈ A, so −ζ ∈ A. Thus, the condition

that −ζ(x1 + ζx2) ∈ A is equivalent to the condition that x1 + ζx2 ∈ A ⇐⇒ 1 + ζx2x
−1
1 ∈ A. If

we fix x1 to be any one of the m elements of A, we have exactly NA,A choices for x2 which satisfy

this condition (for each a ∈ A such that 1 + a ∈ A, simply set x2 = ax1ζ
−1). This gives us a total of

mNA,A ordered pairs (x1, x2) ∈ A×A, each corresponding to a unique pair (b1, b2) with b31 − b32 ∈ A.

But we must rule out those which have either b1 or b2 equal to zero. If b1 = 0, then any choice of

b2 ∈ A will satisfy that all the xi are in A. Likewise, if b2 = 0, then any choice of b1 ∈ A will do the

same. Thus, there are 2m cases to eliminate, so

#{(x1, x2) ∈ A×A | x3 ∈ A, b1 6= 0, b2 6= 0}

= mNA,A − 2m. (A.16)

By mimicking these calculations, it is not too difficult to see that we also have

#{(x1, x2) ∈ xA× xA | x3 ∈ xA, b1 6= 0, b2 6= 0} (A.17)

= #{(x1, x2) ∈ x2A× x2A | x3 ∈ x2A, b1 6= 0, b2 6= 0} (A.18)

= mNA,A − 2m. (A.19)

Now consider the case where x1, x2, and x3 are each in different cosets of A. We see that this rules

out the case where either b1 or b2 is zero, since this would force all the xi to be in the same coset.
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Suppose x1 ∈ A, x2 ∈ xA, and x3 ∈ x2A. Since x3 = −ζ(x1 + ζx2), we must have 1 + ζx2x
−1
1 ∈ x2A,

where we note that x2x
−1
1 ∈ xA. For any fixed x1 ∈ A, there are NxA,x2A choices for x2 that satisfy

this constraint. Thus, we arrive at

#{(x1, x2) ∈ A× xA | x3 ∈ x2A, b1 6= 0, b2 6= 0}

= mNxA,x2A. (A.20)

With a little work exploiting Lemma 20, we see that we will arrive at the same result for any of the

six permutations of the cosets corresponding to x1, x2, and x3.

We comment that for any ordered pair (a1, a2) ∈ A × A such that a1 − a2 ∈ A the nine pairs

(b1, b2) = (ζn1a
1/3
1 , ζn2a

1/3
2 ), for n1 and n2 ranging independently between 0 and 2, will all satisfy

(b31, b
3
2) = (a1, a2). Thus, in counting the size of AA, we will have to add up our previous quantities

from (A.16), (A.17), (A.18), and (A.20) (with multiplicities) and then divide by 9. This gives us

|AA| =
1
9
(
3(mNA,A − 2m) + 6mNxA,x2A

)
. (A.21)

Finally, combining (A.13) and (A.21), and using Lemma 19 to make the substitution N1 = NA,A, we

obtain the result for the case where ζ ∈ A.

For the case where ζ /∈ A we can verify that the relation does in fact still hold. It suffices to prove

the result for when ζ ∈ xA, for the result will also hold when ζ ∈ x2A due to the interchangeability

of xA and x2A which arises from both being multiplicative generators of H/A. In this case, we can

show using similar counting arguments as before that for d = 0, 1, 2,

#{(x1, x2) ∈ xdA× xdA | x3 ∈ xdA, b1 6= 0, b2 6= 0}

= mNxA,x2A −m, (A.22)

#{(x1, x2) ∈ xdA× xd+1A | x3 ∈ xd+2A, b1 6= 0, b2 6= 0}

= mNx2A,xA −m, (A.23)

#{(x1, x2) ∈ xdA× xd+2A | x3 ∈ xd+1A, b1 6= 0, b2 6= 0}

= mNA,A. (A.24)

Summing these values up for d = 1, 2, 3, and again dividing by 9 and equating the value to (A.13), we
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obtain

mN1 =
1
9
(
3(mNxA,x2A −m)

)
+

1
9
(
3(mNx2A,xA −m) + 3mNA,A

)
, (A.25)

which after substituting N1 = NA,A and Nx2A,xA = NxA,x2A (from Lemmas 19 and 20) reduces to

the desired relation NxA,x2A −NA,A = 1.

Lemma 24. Let n be a prime, m a divisor of n − 1 such that κ := n−1
m = 3, and A the subgroup

of (Z/nZ)× of size m. Then if x is a multiplicative generator for (Z/nZ)×, ω := e
2πi
n , and c` =

1
m

∑
a∈A ω

`a is the inner product value corresponding to ` ∈ Z/nZ, then

cc∗ =
1
m

[I − diag(c) + P (I +B)C], (A.26)

where c = [c1, cx, cx2 ]T , I is the 3× 3 identity matrix, and

B =


N1 Nx2 Nx

Nx N1 Nx2

Nx2 Nx N1

 , C =


c1 cx2 cx

cx c1 cx2

cx2 cx c1

 ,

P =


1 0 0

0 0 1

0 1 0

 .
Proof. The terms of cc∗ will take the form

cxic
∗
xj =

1
m2

∑
(a1,a2)∈A×A

ωx
ia1−xja2 . (A.27)

If i 6= j, note that, xia1−xja2 ∈ xdA if and only if 1−xj−ia2a
−1
1 ∈ xd−iA, and there aremNxj−iA,xd−iA

choices for (a1, a2) that satisfy this. Thus, we obtain

cxic
∗
xj =

1
m

κ−1∑
d=0

Nxj−iA,xd−iAcxd , (i 6= j). (A.28)

If i = j = d′, (A.27) becomes 1
m2

∑
(a1,a2)∈A×A ω

xd
′
(a1−a2). Separating the terms where a1 = a2, we
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can apply the same reasoning as above and use Lemma 19 to obtain

|cxd′ |2 =
1
m

(
1 +

κ−1∑
d=0

Nxdcxd+d′

)
. (A.29)

Equation (A.26) can now be verified from (A.28) and (A.29) using Lemmas 19, 20, 21, 28, and 23.

We are now ready to prove Theorem 8, which we restate here:

Theorem 8: Let n be a prime, m a divisor of n − 1, and ω = e
2πi
n . Let A = {a1, ..., am} be the

unique subgroup of (Z/nZ)× of size m, and set U = diag(ωa1 , ..., ωam) ∈ Cm×m, v = 1√
m

[1, ..., 1]T ∈
Cm×1, and M = [v,Uv, ...,Un−1v].

If κ := n−1
m = 3, then the coherence of M will satisfy

µ ≤ 1
3

(
2

√
1
m

(
3 +

1
m

)
+

1
m

)
≈
√

4
3m

, (A.30)

and for large enough m, we will asymptotically have the following lower bound on coherence:

µ ≥ 1√
m

(asymptotically), (A.31)

which is strictly greater than the Welch bound.

Proof. (Theorem 8) Notice in (A.26) that B and C are circulant matrices (as is I + B), and hence

they can be diagonalized by Fourier matrices. Let γ = e2πi/3 and

F =


1 1 1

1 γ γ2

1 γ2 γ4

 =


1 1 1

1 γ γ−1

1 γ−1 γ

 ,

so that 1√
3
F is the 3×3 discrete Fourier matrix. We first note that the matrix P from above is simply

1
3F

2 = 1
3F
∗2. Now it is easy to verify that since c has real components by Lemma 18, then if we write

Fc =: [w1, w2, w3]T , then we have that w1 is real and w2 = w∗3 . So we may write w1 = α, w2 = βeiθ,

and w3 = βe−iθ, where α and β are real and β is nonnegative. If we let a = [N1, Nx, Nx2 ]T , then we

can easily verify that by pre-multiplying Equation (A.26) by F and post-multiplying by F ∗, noting

that FF ∗ = 3I, FPF ∗ = 3P , FCF ∗ = 3 diag(Fc) and FBF ∗ = diag(Fa), we can rewrite it as

(Fc)(Fc)∗ =
1
m

[3I − F diag(c)F ∗

+ 27P (I + diag(Fa)) diag(Fc)]. (A.32)
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One can further check that F diag(c)F ∗ is circulant with first column Fc, and if we write Fa =

[y1, y2, y3]T , then (A.32) becomes


w1

w2

w3

 [w∗1 , w
∗
2 , w

∗
3 ] =

1
m

[


3 0 0

0 3 0

0 0 3

−

w1 w3 w2

w2 w1 w3

w3 w2 w1

 (A.33)

+27


(1 + y1)w1 0 0

0 0 (1 + y3)w3

0 (1 + y2)w2 0

].

If we consider only the coordinates of the above matrices which do not involve y1, y2 or y3, then after

substituting w1 = α, w2 = βeiθ and w3 = βe−iθ, we can solve the resulting equations to obtain the

relations

α = − 1
m
, β =

√
1
m

(
3 +

1
m

)
. (A.34)

We can use these to bound the coherence as follows:
c1

cx

cx2

 = F−1


α

βeiθ

βe−iθ

 =
1
3


α+ 2β cos(θ)

α+ 2β cos(θ − 2π
3 )

α+ 2β cos(θ + 2π
3 )

 . (A.35)

min
θ

max{|c1|, |cx|, |cx2 |} ≤ µ ≤ max
θ

max{|c1|, |cx|, |cx2 |} (A.36)

From (A.34), we know that α is negative, and β is positive by definition. Since |α| < |β|, then by

inspection we have

max
θ

max{|c1|, |cx|, |cx2 |} =
1
3
|α+ 2β(−1)| (A.37)

=
1
3

(
2

√
1
m

(
3 +

1
m

)
+

1
m

)
. (A.38)

This gives us our upper bound. Asymptotically, we can ignore the term α = − 1
m in our expressions

for c1, cx, and cx2 , and if we do so, we find that

arg min
θ

max{|c1|, |cx|, |cx2 |} ≈ π

2
,
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which follows from noting that since |c1|, |cx|, and |cx2 | are continuous functions of θ, the smallest

value of their maximum must occur when two of them are set equal to each other (in this case, when

|cx| = |cx2 |, so that asymptotically | cos(θ + 2π
3 )| = | cos(θ − 2π

3 )|). Substituting π
2 for θ gives us our

(asymptotic) lower bound on µ:

min
θ

max{|c1|, |cx|, |cx2 |} ≈ 1√
m
. (A.39)

We easily verify that this is greater than the Welch bound, which in this case becomes

√
n−m
m(n− 1)

=

√
2

3m
+

1
3m2

.
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Appendix B

Chapter 4 Proofs

B.1 Universal Upper Bound On Our Frame Coherence: Proof

of Theorems 9, 10, and 18

In this section, we return to the framework of Theorems 9, 10, and 18. Let p be a prime and r a a

positive integer, and set our group G (in Theorem 17) to be the finite field Fpr .

Our frame matrix M from (4.44) will take the form

M =


ωTr(a1x1) ωTr(a1x2) . . . ωTr(a1xn)

...
...

...
. . .

...

ωTr(amx1) ωTr(amx2) . . . ωTr(amxn)

 , (B.1)

where ω = e
2πi
p and we have expressed the elements of Fpr as {xi}ni=1. In terms of powers of x, we

may relabel these elements as x1 = 0, and xi = xi−1, i = 2, ..., n = pr. Note that with this relabeling,

the first column of M is all 1’s.

As we commented before Equation (4.46), if xj − xi = x`, the inner product between the ith and

jth columns is

∑
at

(
ωTr(atxi)

)∗ (
ωTr(atxj)

)
=
∑
at

ωTr(at(xj−xi)) (B.2)

=
∑
at

ωTr(atx`). (B.3)

We will be making extensive use of the sums in (B.3) in this section, so we will make the following

definition:

Definition 11. For any z ∈ Fpr and A a subgroup of F×pr , we will define cz to be the normalized inner
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product sum corresponding to z, that is,

cz =
1
m

∑
a∈A

ωTr(az), (B.4)

where ω = e2πi/p.

The following property of the values cz is simple, but worth establishing:

Lemma 25. For any z ∈ Fpr , we have c∗z = c−z.

Proof. Expanding cz as a sum, we have

(cz)∗ =

(
1
m

∑
a∈A

ωTr(za)

)∗
(B.5)

=
1
m

∑
a∈A

ω−Tr(za) (B.6)

= c−z. (B.7)

Recall that the set of nonzero field elements F×pr is a cyclic group under multiplication, so let x

be a multiplicative generator. The elements of Fpr can now be expressed as {0, 1, x, ..., xpr−1}. The

inner product corresponding to 0 is simply c0 = 1, which arises only when taking the inner product

of a frame element with itself. The nontrivial inner products are thus cxi , for i = 0, ..., pr − 1.

We point out that if A is a size-m multiplicative subgroup, it is unique (since Fpr is cyclic) and is a

cyclic group generated by xκ, where κ = pr−1
m . The cosets of A are A, xA, ..., xκ−1A. One interesting

observation is that elements in the same coset of A give rise to the same inner product value:

Lemma 26. If z is in the coset xiA, then cz = cxi .

Proof. Write z = xiaz, for some az ∈ A. Then,

cz =
∑
a∈A

ωTr(xiaz·a) (B.8)

=
∑
a∈A

ωTr(xia), (B.9)

where ω = e2πi/p and the last equality follows from the fact that since A is a group, multiplication by

az simply permutes its elements.

In light of Lemma 26, we see concretely that there is indeed only a single nontrivial inner product

value for each coset of A, and each arises with the same multiplicity (because each coset has the same
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number of elements). Furthermore, since {1, x, ..., xκ−1} is a set of representatives for each of the

cosets of A, we only need to be concerned with the values cxi , i = 0, 1, ..., κ− 1. The largest absolute

value of these will be the coherence.

Lemma 27. The values c1, cx, ..., cxκ−1 satisfy the equation

1 +mc1 +mcx + ...+mcxκ−1 = 0, (B.10)

where m is the size of A.

Proof. If we expand the sum in (B.10) using the fact that each of the m elements z ∈ xdA satisfies

cz = cxd , and that c0 = 1, we get

1 +
κ−1∑
d=1

mcxd =
∑
z∈Fpr

cz (B.11)

=
∑
a∈A

∑
z∈Fpr

ωTr(za), (B.12)

where ω = e
2πi
p . But the function χreg(y) :=

∑
z∈Fpr ω

Tr(zy) which arises as the internal sum in (B.12)

is the well-known character of the “regular representation” of Fpr , which is equal to pr if y = 0 and 0

otherwise [87]. Since no elements of A are 0, we see that (B.12) sums to zero.

Our following work will involve taking many sums and products of field elements, and determining

in which coset of A they lie. While it is in general easy to determine in which coset a product lies

(for example, if z1 ∈ xi1A and z2 ∈ xi2A, then z1z2 ∈ xi1+i2A), it is often not obvious in which coset

a sum lies. To get around this problem, we will make use of the following quantities, which are the

natural generalization of the translation degrees we defined in Definition 10 of Appendix A:

Definition 12. Given two cosets x1A and x2A, we define the translation degree from x1A to x2A to

be the quantity

Nx1A,x2A = #{z ∈ x1A | 1 + z ∈ x2A} = |1 + x1A ∩ x2A|. (B.13)

Likewise, we define Nx1A,0 and N0,x2A (the translation degrees from x1A to 0 and from 0 to x2A,

respectively) to be

Nx1A,0 = |{−1} ∩ x1A|, (B.14)

N0,x2A = |{1} ∩ x2A|. (B.15)
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We will quickly point out a simple property of the translation degrees:

Lemma 28. Set H = F×pr . For any coset x0A, we have

Nx0K,0 +
∑

xiK∈H/A

Nx0A,xiA = |x0A|.

In particular, if −1 ∈ x0A, this equation reduces to

1 +Nx0A,A +Nx0A,xA +Nx0A,x2A + ...+Nx0A,xκ−1A = m,

and if −1 /∈ x0A, this equation becomes

Nx0A,A +Nx0A,xA +Nx0A,x2A + ...+Nx0A,xκ−1A = m.

Proof. This simply follows from the observation that any of the m elements of x0A, when added to

1, must either be equal to 0 or lie in exactly one of the cosets xiA ∈ H/A.

The following lemma will be instrumental in bounding these inner product values.

Lemma 29. Let c = [c1, cx, cx2 , ..., cxκ−1 ]T , and let F be the scaled κ× κ Fourier matrix with entries

defined by Fij = γ(i−1)(j−1), where γ = e2πi/κ. Then, if we let w := [w1, ..., wκ]T = Fc so that

wd+1 =
∑κ−1
t=0 γ

tdcxt for d = 0, 1, ..., κ− 1, we have

w1 = − 1
m
, (B.16)

|wi| =
√

1
m

(
κ+

1
m

)
, i 6= 1. (B.17)

Proof. For any d = 0, 1, ..., κ− 1, we have
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|wd+1|2 =

(
κ−1∑
t=0

γtdcxt

)(
κ−1∑
`=0

γ`dcx`

)∗
(B.18)

=

(
κ−1∑
t=0

γtdcxt

)(
κ−1∑
`=0

γ−`dc−x`

)
(B.19)

=
κ−1∑
t=0

κ−1∑
`=0

γ(t−`)dcxtc−x` (B.20)

=
κ−1∑
s=0

κ−1∑
`=0

γsdcxs+`c−x` (B.21)

=
κ−1∑
s=0

γsd
κ−1∑
`=0

cxs+`c−x` . (B.22)

Now, we note that

m2cxs+`c−x` =

(∑
a∈A

ωTr(xs+`a)

)(∑
a′∈A

ωTr(−x`a′)

)
(B.23)

=
∑

a,a′∈A
ωTr(xs+`a−x`a′) (B.24)

=
∑

a,a′∈A
ωTr(−x`a′(1−xsaa′−1)) (B.25)

=
∑

a′,a′′∈A
ωTr(−x`a′(1−xsa′′)) (B.26)

=
κ−1∑
t=0

∑
{a′,a′′∈A :

1−xsa′′∈xtA}

ωTr(−x`a′(1−xsa′′)) (B.27)

+
∑

{a′,a′′∈A :
1−xsa′′=0}

1

=
κ−1∑
t=0

N−xsA,xtA

( ∑
a′′′∈A

ωTr(−xtx`a′′′)

)
(B.28)

+
∑
a′∈A

N−xsA,0 (B.29)

= m

κ−1∑
t=0

N−xsA,xtA · c−xt+` +mN−xsA,0. (B.30)

Now we can substitute this into (B.22), and we obtain:
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|wd+1|2 =
κ−1∑
s=0

γsd
κ−1∑
`=0

(
1
m

(
κ−1∑
t=0

N−xsA,xtA · c−xt+` +N−xsA,0

))
(B.31)

=
κ−1∑
s=0

γsd
1
m

(
κ−1∑
t=0

N−xsA,xtA

κ−1∑
`=0

c−xt+` +
κ−1∑
`=0

N−xsA,0

)
(B.32)

=
κ−1∑
s=0

γsd
1
m

(
κ−1∑
t=0

N−xsA,xtA

(
− 1
m

)
+ κN−xsA,0

)
(B.33)

= − 1
m2

κ−1∑
s=0

γsd
κ−1∑
t=0

N−xsA,xtA +
1
m

κ−1∑
s=0

γsdκN−xsA,0 (B.34)

= − 1
m2

κ−1∑
s=0

γsd (m−N−xsA,0) +
κ

m

κ−1∑
s=0

γsdN−xsA,0, (B.35)

where (B.33) follows from Equation (B.10), and (B.35) follows from Lemma 28. Note that N−xsA,0 is

equal to 1 if s = 0 and equal to 0 otherwise. Thus, (B.35) becomes

|wd+1|2 = − 1
m2

(
(m− 1) +m

κ−1∑
s=1

γsd

)
+
κ

m
. (B.36)

Now, if d 6= 0, then
∑κ−1
s=1 γ

sd = −1, and after rearranging terms we obtain

|wd+1|2 =
1
m

(
κ+

1
m

)
. (B.37)

If d = 0, then
∑κ−1
s=1 γ

sd = m, and (B.36) gives us |w1|2 = 1
m2 . In fact, in this case, we can compute

w1 explicitly, since

w1 =
κ−1∑
t=0

cxt = − 1
m
. (B.38)

We can now use Lemma 29 to bound the coherence of our frames constructed from finite fields.

Theorem 29. Let G = Fpr be the finite field with elements {x1, ..., xpr}, and H = F×pr the (cyclic)

multiplicative group of the nonzero field elements. If A is the unique subgroup of H of size m, with

elements {a1, ..., am}, and M is the frame with columns defined in (B.1), then the coherence µ of M

is upper-bounded by

µ ≤ 1
κ

(
(κ− 1)

√
1
m

(
κ+

1
m

)
+

1
m

)
. (B.39)
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Proof. The proof follows from Lemma 29. Using the notation of this lemma, we may write c = 1
κF
∗w,

so that

|cxd | =
1
κ

∣∣∣∣∣∣
κ∑
j=1

γd(j−1)wj

∣∣∣∣∣∣ (B.40)

≤ 1
κ

κ∑
j=1

|wj | (B.41)

=
1
κ

(
(κ− 1)

√
1
m

(
κ+

1
m

)
+

1
m

)
, (B.42)

where (B.41) follows from the triangle inequality and (B.42) follows from Lemma 29. Since the

coherence is equal to the largest value among the |cxd |, d = 0, ..., pr − 1, the result now follows

immediately.

Recall from Theorems 10 and 18 that when the size m of A happens to be an odd integer, we can

derive even tighter bounds on coherence, provided that p is an odd prime. (Note that in our original

framework of Theorem 6, when m was taken to be a divisor of p− 1, the only case where p could be

even was when p = 2 and m = 1 in which case our frames would be 1-dimensional and trivially have

coherence equal to 1.) We will prove this result shortly, but we first present the following equivalent

condition on A for when its size is even or odd.

Lemma 30. Let p be a prime, r an integer, m a divisor of pr − 1, and κ := pr−1
m . Let Fpr be the

finite field with pr elements, whose multiplicative group F×pr has cyclic generator x, and let A be the

unique subgroup of F×pr of size m. Then −1 ∈ A if and only if either p or m is even. If p and m are

both odd, then κ is even and −1 ∈ xκ2A.

Proof. If p is even, that is p = 2, then −1 ≡ 1 in Fpr , so trivially −1 ∈ A. If p is odd, then the order

m of A is even if and only if A has a subgroup of size 2, which means there is a nontrivial element in

A which is a root of the polynomial X2 − 1. The element −1 is the only such root.

If both m and p are odd, then pr − 1 must be even, hence so is κ = pr−1
m . In this case, since the

square of −1 obviously lies in A (which is equal to xκA), we must have −1 ∈ xκ2A.

We need one more tool before we can prove our tighter bound:

Lemma 31. Let p, r, m, κ, x, and A be defined as in Lemma 30 and w = [w1, ..., wκ]T be defined as

in Lemma 29. If either p or m is even (−1 ∈ A) then for any d = 0, 1, ..., κ−1, we have cxd = c∗xd , and

for any i = 2, 3, ..., κ we have w∗i = wκ−i+2. If p and m are both odd (−1 ∈ xκ2A), then cxd = c∗
xd+κ/2

and w∗i = (−1)i−1wκ−i+2.
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Proof. As usual, set ω = e2πi/p and γ := e2πi/κ. If −1 ∈ A, then multiplication by −1 permutes the

elements of A, so we have

c∗xd =

(
1
m

∑
a∈A

ωx
da

)∗
(B.43)

=
1
m

∑
a∈A

ω−x
da (B.44)

=
1
m

∑
a∈A

ωx
da (B.45)

= cxd . (B.46)

It follows that cxd is real. Furthermore, in this case we have

w∗i =

 κ∑
j=1

γ(i−1)(j−1)cxj−1

∗ (B.47)

=
κ∑
j=1

γ−(i−1)(j−1)c∗xj−1 (B.48)

=
κ∑
j=1

γ(−i+1)(j−1)cxj−1 (B.49)

=
κ∑
j=1

γ(κ−i+1)(j−1)cxj−1 (B.50)

=
κ∑
j=1

γ((κ−i+2)−1)(j−1)cxj−1 (B.51)

= wκ−i+2. (B.52)

Now, if instead −1 ∈ xκ2A, then multiplication by −xκ2 permutes the elements of A, and we have

cxd =
1
m

∑
a∈A

ωx
da (B.53)

=
1
m

∑
a∈A

ω−x
dx

κ
2 a (B.54)

=

(
1
m

∑
a∈A

ωx
d+κ2 a

)∗
(B.55)

= c∗xd+κ/2 . (B.56)
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Also in this case, we may write

w∗i =

 κ∑
j=1

γ(i−1)(j−1)cxj−1

∗ (B.57)

=
κ∑
j=1

γ−(i−1)(j−1)c∗xj−1 (B.58)

=
κ∑
j=1

γ−(i−1)(j−1)c
xj−1+κ2

(B.59)

=
κ∑
j=1

γ−(i−1)(j−1+κ
2 )γ(i−1)κ2 c

xj−1+κ2
(B.60)

= γ(i−1)κ2

κ∑
j=1

γ(κ−i+1)(j−1+κ
2 )c

xj−1+κ2
(B.61)

= γ(i−1)κ2wκ−i+2 (B.62)

= (−1)i−1wκ−i+2, (B.63)

where the last line follows from the fact that γ
κ
2 = −1. This completes the proof of the lemma.

We are now equipped to prove the second part of Theorem 18, which we restate here for conve-

nience:

Theorem 30. Let p be a prime, r a positive integer, m a divisor of pr − 1, and A = {ai}mi=1 the

unique subgroup of F×pr of size m. Then setting ω = e
2πi
p and κ := pr−1

m , if both p and m are odd, the

coherence µ of our frame M in (B.1) satisfies

µ ≤ 1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2, (B.64)

where β =
√

1
m

(
κ+ 1

m

)
.

Proof. Since both p and m are odd, then from Lemma 30 we know that κ is even and −1 lies in

the coset x
κ
2A. There is a 1-1 correspondence between the set of integers {1, ..., κ} and itself which

sends j 7→ κ− j + 2 mod κ, for j = 1, ..., κ. This mapping fixes the singletons {1} and {κ2 + 1} and

interchanges the elements in the pairs {j, κ− j + 2} for j = 2, ..., κ2 .

As in Lemma 29, set c = [c1, cx, cx2 , ..., cxκ−1 ]T and w := [w1, ..., wκ]T = Fc, where F is the scaled

κ × κ Fourier matrix with entries Fij = γ(i−1)(j−1), where γ = e2πi/κ. Since −1 ∈ x
κ
2A, then by



135

Lemmas 29 and 31 we have

wj · wκ−j+2 = wj

((
(−1)j−1

)−1
w∗j

)
(B.65)

= (−1)j−1|wj |2 (B.66)

= (−1)j−1β2, (B.67)

where β =
√

1
m

(
κ+ 1

m

)
.

We quickly note that given integers i and j, the conjugate of γ−(i−1)(j−1) can be expressed as

(
γ−(i−1)(j−1)

)∗
= γ−(i−1)(−j+1) (B.68)

= γ−(i−1)(κ−j+1) (B.69)

= γ−(i−1)((κ−j+2)−1). (B.70)

Note that the inverse of F is 1
κF
∗. From the equation c = 1

κF
∗w, we may write

cxi−1 =
1
κ

κ∑
j=1

γ−(i−1)(j−1)wj . (B.71)

Now we can group the terms of the summation of cxi−1 by our above subsets of indices ({j, κ−j+2}
for j = 2, . .., κ2 ) as follows:

cxi−1 =
1
κ

w1 + γ−(i−1)κ2wκ
2 +1 +

κ
2∑
j=2

(
γ−(i−1)(j−1)wj + γ−(i−1)((κ−j+2)−1)wκ−j+2

) . (B.72)

We know from Lemma 29 that w1 = − 1
m and |wκ

2 +1| = β. Also,

γ−(i−1)κ2 = (γ
κ
2 )−(i−1) = (−1)−(i−1) = (−1)i−1,

and from Lemma 31 we know that wκ
2 +1 = (−1)

κ
2w∗κ

2 +1. Thus, if κ
2 is even we have that wκ

2 +1 is

purely real, so γ−(i−1)κ2wκ
2 +1 = ±β. And if κ

2 is odd, we have that wκ
2 +1 is purely imaginary, in

which case γ−(i−1)κ2wκ
2 +1 = ±iβ.

From these observations and Lemma 31, we have

γ−(i−1)(j−1)wj + γ−(i−1)((κ−j+2)−1)wκ−j+2

= γ−(i−1)(j−1)wj + (−1)j−1γ−(i−1)((κ−j+2)−1)w∗j (B.73)

= γ−(i−1)(j−1)wj + (−1)j−1
(
γ−(i−1)(j−1)wj

)∗
. (B.74)
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If j is even (B.74) becomes 2i=(γ−(i−1)(j−1)wj) and if j is odd it becomes 2<(γ−(i−1)(j−1)wj), where

=(z) and <(z) denote the imaginary and real parts of the complex number z respectively. If we define

the phase θj such that wj = βeiθj , we can further express these as

2i=(γ−(i−1)(j−1)wj) = 2iβ sin
(
θj −

2π
κ

(i− 1)(j − 1)
)

(B.75)

and

2<(γ−(i−1)(j−1)wj) = 2β cos
(
θj −

2π
κ

(i− 1)(j − 1)
)
. (B.76)

To simplify our notation, we will define

θ̃j := θj −
2π
κ

(i− 1)(j − 1),

allowing us to write the summation in (B.72) as

κ
2∑
j=2

(
γ−(i−1)(j−1)wj + γ−(i−1)((κ−j+2)−1)wκ−j+2

)

=
∑
j even

2iβ sin(θ̃j) +
∑
j odd

2β cos(θ̃j).

Now, we can bound the coherence by

µ ≤ max
{θj}

max
i
|cxi−1 | ≤ max

i
max
{θj}
|cxi−1 |,

and from our above discussion this becomes

max
{θ̃j}

1
κ

∣∣∣∣∣∣− 1
m
± β +

∑
j even

2iβ sin(θ̃j) +
∑
j odd

2β cos(θ̃j)

∣∣∣∣∣∣ (B.77)

if κ
2 is even, and

max
{θ̃j}

1
κ

∣∣∣∣∣∣− 1
m
± iβ +

∑
j even

2iβ sin(θ̃j) +
∑
j odd

2β cos(θ̃j)

∣∣∣∣∣∣ (B.78)

if κ
2 is odd.

If we set

ne := #{j even | 2 ≤ j ≤ κ

2
}
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and

no := #{j odd | 2 ≤ j ≤ κ

2
},

then by speculation, (B.77) becomes bounded by

1
κ

∣∣∣∣ 1
m

+ β + ne2iβ + no2β
∣∣∣∣ =

1
κ

√(
1
m

+ β(1 + 2no)
)2

+ (2neβ)2 (B.79)

and (B.78) becomes bounded by

1
κ

∣∣∣∣ 1
m

+ iβ + ne2iβ + no2β
∣∣∣∣ =

1
κ

√(
1
m

+ 2noβ
)2

+ β2(1 + 2ne)2. (B.80)

Finally, we note that when κ
2 is even, then ne = κ

4 (half the numbers between 1 and κ
2 , inclusive,

are even), and hence no =
(
r
κ − 1

)
− ne = κ

4 − 1. Thus, (B.79) becomes

1
κ

√(
1
m

+ β
(

1 + 2
(κ

4
− 1
)))2

+
(

2 · κ
4
· β
)2

(B.81)

=
1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2. (B.82)

We get the same bound when κ
2 is odd. Indeed, in this case ne = 1

2

(
κ
2 − 1

)
= κ

4 − 1
2 (now half the

numbers between 1 and κ
2 − 1, inclusive, are even), and no =

(
κ
2 − 1

)
−ne = κ

4 − 1
2 . Then (B.80) also

becomes

1
κ

√(
1
m

+ 2
(
κ

4
− 1

2

)
β

)2

+ β2

(
1 + 2

(
κ

4
− 1

2

))2

(B.83)

=
1
κ

√(
1
m

+
(κ

2
− 1
)
β

)2

+
(κ

2

)2

β2. (B.84)

This concludes the proof.

Remark: If were to mimic the proof of Theorem 10 in the case when m is even (so −1 ∈ A and the

cdx are real), then we would arrive at the same bound as in Theorem 29. Indeed, in this case from

Lemma 31 we have

(
γ−(i−1)(j−1)wj

)∗
= γ−(i−1)((κ−j+2)−1)wκ−j+2, (B.85)
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for j = 2, ..., κ, and hence if κ is odd we have

cxi−1 =
1
κ

κ∑
j=1

γ−(i−1)(j−1)wj (B.86)

=
1
κ

w1 +

κ+1
2∑
j=2

(
γ−(i−1)(j−1)wj + γ−(i−1)((κ−j+2)−1)wκ−j+2

) (B.87)

=
1
κ

− 1
m

+

κ+1
2∑
j=2

2β cos(θ̃j)

 . (B.88)

If κ is even, we note that our above condition (B.85) implies that
(
γ−(i−1)κ2wκ

2 +1

)∗
= γ−(i−1)κ2wκ

2 +1,

so we must have that γ−(i−1)κ2wκ
2 +1 is real, and hence equal to ±β. Thus we get

cxi−1 =
1
κ

w1 + γ−(i−1)κ2wκ
2 +1 +

κ
2∑
j=2

(
γ−(i−1)(j−1)wj + γ−(i−1)((κ−j+2)−1)wκ−j+2

) (B.89)

=
1
κ

− 1
m
± β +

κ
2∑
j=2

2β cos(θ̃j)

 . (B.90)

In either case, maximizing over {θj} gives us an upper bound of

µ ≤ 1
κ

(
1
m

+ (κ− 1)β
)
, (B.91)

which matches with our bound from Theorem 29.



139

Bibliography

[1] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Why Gabor frames? two fundamental measures

of coherence and their role in model selection. J. Commun. Netw., 12:289–307, 2010.

[2] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan. A new proof of the existence

of mutually unbiased bases. Algorithmica, 34:512–528, 2002.

[3] L. D. Baumert. Cyclic Difference Sets, Lecture Notes in Mathematics. 182, 1971.

[4] J. Benedetto and M. Fickus. Finite normalized tight frames. Advances in Computational Math-

ematics, 18(2-4):357–385, 2003.

[5] E. R. Berlekamp. Nonbinary BCH decoding. ISIT, 1967.

[6] E. R. Berlekamp. The weight enumerators for certain subcodes of the second order binary

Reed-Muller codes. Inform. Control, 17:485–500, 1970.

[7] E. R. Berlekamp and L. Welch. Error correction of algebraic block codes, US patent, 1986.

[8] T. Beth, D. Jungnickel, and H. Lenz. Design Theory. Cambridge University Press, Cambridge,

U.K., 1999.

[9] L. Bos and S. Waldron. Some remarks on Heisenberg frames and sets of equiangular lines. N.

Z. Jour. Math., 36:113–137, 2007.

[10] E. J. Candes. The restricted isometry property and its implications in compressed sensing. C.

R. Acad. Sci. Paris S’er. I Math., 346:589–592, 2008.

[11] E. J. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate

measurements. Comm. Pure Appl. Math., 59:1208–1223, 2006.

[12] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Th., 51:4203–

4215, 2005.



140

[13] P. G. Casazza. The art of frame theory. Taiwanese Journal of Mathematics, 4(2):129–201, June

2000.

[14] P. G. Casazza, M. Fickus, D. G. Mixon, Y. Wang, and Z. Zhou. Constructing tight fusion

frames. Applied and Computational Harmonic Analysis, 30(2):175–187, 2011.
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