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Abstract

This thesis studies Frobenius traces in Galois representations from two different

directions. In the first problem we explore how often they vanish in Artin-type

representations. We give an upper bound for the density of the set of vanishing

Frobenius traces in terms of the multiplicities of the irreducible components

of the adjoint representation. Towards that, we construct an infinite family of

representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a

result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical

elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly

less than 2
√
p. The generalization currently applies only to prime ideals p of

degree one, though we expect it to hold for p of any odd degree. However,

an even degree prime can be extremal for f . We prove our result in each of

the following instances: when one can move to a Shimura curve defined by a

quaternion algebra, when f is a CM form, when the crystalline Frobenius is

semi-simple, and when the strong Tate conjecture holds for a product of two

Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.
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Chapter 1

Introduction

The study of Galois representations coming from arithmetic geometry is of

primary importance in modern number theory. In particular, the traces of the

images of the Frobenius elements under these representations carry a wealth of

information that can be examined in various contexts. The focus of this thesis

is to investigate two types of Frobenius traces of special nature: (i) those that

vanish and (ii) the ones that are extremal.

The first question we consider is how often the traces of Frobenius vanish.

In other words, we are interested in the density of the set Σ = {v | av = 0},

where v is a finite place of a field F and av = tr ρ(Frobv) for an irreducible

representation ρ of the Galois group ΓF = Gal(F/F ).

One motivation for considering this problem comes from a paper by Serre

([30], Prop. 16), where he treats the case of `-adic Galois representations. If

n is the dimension of such an irreducible representation ρ, he provides a sharp

upper bound of 1− 1/n2 for the density of Σ. He raises a similar question on

the automorphic side, which was recently studied by Walji [36].

For Artin-type representations we can give a density estimate independent

of the dimension n, once we assume that the adjoint action is irreducible.

More precisely, denote by Ad the composition of the natural projection of
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GLn onto PGLn with the (n2 − 1)-dimensional adjoint representation. Under

the assumption that Ad(ρ) is irreducible, we show that in finite Galois groups

the Frobenius traces are nonzero for at least half of the primes.

In this context, the question naturally arises as to whether for every n there

exists a finite groupG and an n-dimensional irreducible complex representation

ρ of G such that its adjoint is irreducible. Following an idea of M. Aschbacher,

for every prime power n, we construct a representation ρ of degree n such

that Ad(ρ) irreducible. All this is explained in Chapter 2, which is a detailed

version of the author’s article [8].

The main results of Chapter 2 (Theorem 2.1.1 and Theorem 2.1.2) can be

summarized as follows:

Theorem A. Let p be a prime and n = pr, for some integer r ≥ 1. There

exists a number field F and an n-dimensional irreducible C-representation ρ

of the absolute Galois group ΓF such that:

(i) Ad(ρ) is irreducible.

(ii) The image of ΓF under ρ is the normalizer of a Heisenberg p-group H,

and there is a surjection ΓF � Sp2r(Fp) whose kernel is H times its

centralizer.

(iii) The set

Σ = {v finite place of F | av = 0}

has density at most 1/2.

Theorem 2.1.1 furnishes examples of non essentially self-dual representa-

tions, whereas many known examples of Galois representations coming from

arithmetic geometry tend to be essentially self-dual. In general, without any
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restrictions on Ad(ρ), Theorem 2.1.2 gives an upper bound for the density of

Σ in terms of the multiplicities of the irreducible constituents of Ad(ρ).

The second part of our thesis is concerned with the non-existence of ex-

tremal Frobenius traces in Galois representations. The first interesting exam-

ples outside those with finite image are given by the representations associated

to Hilbert modular forms of weight k ≥ 2. To explain the notion of extremality

we need to introduce some notation.

Let ρ be a 2-dimensional Galois representation attached to a Hilbert mod-

ular newform f of parallel weight k and trivial character. For any prime ideal

p at which ρ is unramified, we have

tr ρ(Frobp) = ap and det ρ(Frobp) = N(p)k−1,

where ap is the Fourier coefficient of f at p and N(p) is the norm of p. Since

the roots of the Hecke polynomial x2 − apx+N(p) have absolute value equal

to N(p)(k−1)/2, one knows that

|ap| ≤ 2N(p)(k−1)/2.

We call ap extremal if the previous relation is in fact an equality, i.e., if the

Hecke polynomial has a double root. Further, by the degree of p we mean the

exponent in N(p) of the rational prime below it.

When f is classical cuspidal normalized eigenform of weight 2, Coleman

and Edixhoven [9] prove that ap is never extremal. Moreover, modulo a semi-

simplicity hypothesis, they show a similar result for higher weight forms. An-

other observation they make concerns the case k = 1, where Chebotarev’s

density theorem implies the existence of infinitely many primes p at which
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ρ(Frobp) is the identity, so the Hecke polynomial has a double root at 1.

The object of Chapter 3 is to extend their result for Hilbert modular forms

of weight k = 2. It is important to note that this generalization applies at

the moment only to primes p of degree one, though we expect it to hold for

any p of odd degree. As it turns out, if the degree of p is even then the Hecke

polynomial at p may have a double root (see section 3.3.1).

The cases in which we prove the non-extremality of the ap coefficients are

explained below.

Theorem B. Let F be a totally real number field of degree n over Q. Let f

be a normalized Hilbert cuspidal eigenform for F of parallel weight 2, level n

and trivial character. Denote by π the automorphic representation generated

by f . Then for any degree one prime p - n the Hecke polynomial

x2 − apx+N(p)

has distinct roots, if any of the following conditions hold:

(i) n is odd.

(ii) n is even and there exists a finite place v at which πv is square integrable.

(iii) f is a CM form.

(iv) The crystalline Frobenius φ is semi-simple.

(v) The strong Tate conjecture is true for a product of two Hilbert modular

surfaces (or quaternionic Shimura surfaces) over a finite field.
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We remark that part (iv) is implied by part (v), whereas the weak Tate

conjecture does not suffice to obtain semi-simplicity. For divisors (algebraic

cycles of codimension one) it is known that the strong form of the Tate con-

jecture is equivalent to the weak form, which asserts that all Tate classes are

algebraic (cf. Ulmer [34], Prop. 9.4). In this case, the Tate conjecture for

Hilbert modular surfaces of a finite field was proved by Langer ([21], [22]).

The strong Tate conjecture for a product of two Hilbert modular surfaces

over a solvable number field is also known (at least for non-CM motives; see

Virdol [35]). However, the analogous situation over finite fields is more subtle,

since typically there are more Tate classes to consider in that case.

Finally, we note that the non semi-simplicity of Frobenius restricts the

number of Tate classes. Therefore, if by geometry one could produce enough

algebraic cycles, the weak Tate conjecture may be established, which is an

interesting result of independent interest.



6

Chapter 2

Irreducible adjoint
representations in prime power
dimensions

2.1 Introduction

Let n ≥ 2 be an integer. Consider the representation

Ad : GLn(C)→ GLn2−1(C),

obtained by composing the natural projection of GLn(C) onto PGLn(C) with

the (n2−1)-dimensional adjoint representation of PGLn(C). Henceforth, given

a representation ρ, we shall to refer to Ad(ρ) as the adjoint of ρ. The main

question we address is whether for every n there exists a finite group G and

an n-dimensional irreducible C-representation (ρ, V ) of G such that Ad(ρ) is

irreducible. We will then apply our conclusion to Galois representations of

Artin-type, i.e., those having finite image.

This chapter is a detailed version of the author’s paper [8].
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For n ≤ 4 we find all the groups G with the required property using

Blichfeldt’s classifications (cf. [7]) of the finite subgroups of PGLn(C) for n ≤

4. In Proposition 2.3.1 we show that if n = 2 then Ad(ρ) = Sym2(ρ)⊗det(ρ)−1

is irreducible unless ρ is of cyclic or dihedral type. In Proposition 2.3.2 we

prove that for n = 3, Ad(ρ) is irreducible in precisely four cases; two of which

yield simple groups and the remaining two yield solvable groups. Similarly,

Proposition 2.3.3 shows that for n = 4 there are two instances when Ad(ρ) is

irreducible. Note that for n ≥ 3, Ad(ρ) will be reducible if ρ were essentially

self-dual. On the other hand, many examples of Galois representations coming

from arithmetic geometry tend to be essentially self-dual.

If we restrict our attention to quasisimple groups G (i.e., perfect central

extensions of simple groups), then there is a complete answer in a paper of

Magaard, Malle and Tiep [24] to whether there are irreducible representations

ρ of G with Ad(ρ) irreducible. As it turns out, the only infinite family of

examples are the Weil representations for SUn(F2) and Sp2n(F3) of degrees

(2n − (−1)n)/3 and (3n − (−1)n)/2, respectively (see also [25]). This will not

provide examples in the generic prime power case, forcing us to consider more

general groups.

We also mention that if we do not require the irreducibility of Ad(ρ), then

the prime power degree C-representations ρ of quasisimple groups have been

classified, partially by Malle and Zalesskii [26], where they omit the alternating

groups and their double covers, and completed by Balog, Bessenrodt, Olsson

and Ono [4] (for alternating groups) and Bessenrodt and Olsson [5] (for their

double covers). The generic examples of such representations are given by the

Steinberg characters of finite groups of Lie type.
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In general, following a suggestion of Michael Aschbacher, we construct an

infinite family of representations of prime power degree with irreducible adjoint

representations. In this case, the groups G are taken to be the normalizers of

certain extraspecial groups (the analogue of the Heisenberg groups over finite

fields). More precisely, we establish the following:

Theorem 2.1.1. Let p ≥ 3 be a prime, r a positive integer, and P an ex-

traspecial group of order p2r+1 and exponent p. Let (ρ, V ) be an irreducible

C-representation of degree pr of P , which is necessarily faithful. If G is the

normalizer in SL(V ) of P then Ad(ρ) is an irreducible representation of G.

Note that this gives new cases of prime power dimensions where G is not

quasisimple. Moreover, due to the geometric nature of the Heisenberg groups,

we remark that for some values of p, the groups G constructed above are

known to have geometric interpretations. For instance, when p = 5 and r = 1,

Decker [10] has proved that the group G is the full symmetry group of the

Horrocks-Mumford bundle constructed in [17], which is an indecomposable

rank 2 bundle on P4. In addition, for p = 3 and r = 1, as noted in [1], the

image of G in PGL3 is the group of projective automorphisms preserving the

one-dimensional linear system of plane cubic curves in P2 given by

t0(x3 + y3 + z3) + t1xyz = 0, (t0, t1) ∈ P1.

Since every finite group appears as a Galois group over a number field F ,

our construction furnishes examples of non essentially self-dual representations

of the absolute Galois groups GF (for suitable number fields). Given a con-

tinuous Galois C-representation ρ of GF , for any finite place v at which ρ is

unramified, consider the Frobenius class Frobv attached to v, and denote by av

the trace of ρ(Frobv). The interest in Ad(ρ) stems from the following result:
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Theorem 2.1.2. Let (ρ, V ) be a continuous irreducible n-dimensional com-

plex representation of the absolute Galois group GF of a number field F . Let∑N
i=1miσi be the decomposition of Ad(ρ) into irreducible components σi, such

that σi 6' σj if i 6= j, 1 ≤ i, j ≤ N . Then the density δ(Σ) of the set Σ of

places {v finite | av = 0} satisfies

δ(Σ) ≤ 1− 1

1 +
∑N

i=1m
2
i

.

In particular, if Ad(ρ) is irreducible then δ(Σ) ≤ 1/2.

Note that this is independent of the dimension n of the representation ρ,

which contrasts well with the sharp upper bound of 1 − 1/n2 given by Serre

in [30] for `-adic Galois representations.

After completing [8], the author learned of a paper of Guralnick and Tiep

[14] that, in effect, contains Theorem 2.1.1, albeit arranged in a different way

and studied in a different context. Our focus is on the application Theo-

rem 2.1.2 to lacunarity.

2.2 Preliminaries

An initial observation shows that if ρ∨ is the dual representation of ρ then ρ⊗ρ∨

is an n2-dimensional representation that contains the trivial representation.

Moreover, by Schur’s Lemma, ρ is irreducible if and only if ρ⊗ρ∨ contains the

trivial representation 1 with multiplicity one. In fact, one knows that

End(ρ) ∼= ρ⊗ ρ∨ = 1⊕ Ad(ρ).
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Lemma 2.2.1. Given an irreducible representation (ρ, V ), its adjoint Ad(ρ) is

irreducible if and only if both its symmetric square Sym2(ρ) and its alternating

square Λ2(ρ) are irreducible.

Proof. As noticed above, ρ is irreducible if and only if 1 is not contained in

Ad(ρ), so Ad(ρ) is irreducible if and only if 1 is not contained in Ad(Ad(ρ)).

However, Ad(ρ) is readily seen to be self-dual, since ρ⊗ρ∨ and 1 are. Therefore,

Ad(ρ)⊗2 = Ad(ρ)⊗ Ad(ρ)∨ = 1⊕ Ad(Ad(ρ)).

Consider

σ = (ρ⊗ ρ∨)⊗ (ρ⊗ ρ∨).

On one hand, we get

σ = (1⊕ Ad(ρ))⊗2 = 1⊕ Ad(ρ)⊕2 ⊕ Ad(ρ)⊗2.

This shows that Ad(ρ) is irreducible if and only if 1 is contained in σ with

multiplicity 2, i.e., dim HomG(1, σ) = 2.

On the other hand, we can write

σ = (ρ⊗ ρ)⊗ (ρ⊗ ρ)∨ = (Sym2(ρ)⊕ Λ2(ρ))⊗ (Sym2(ρ)⊕ Λ2(ρ))∨,

which implies that dim HomG(1, σ) is greater than or equal to

dim HomG(1, Sym2(ρ)⊗ (Sym2(ρ))∨) + dim HomG(1,Λ2(ρ)⊗ (Λ2(ρ))∨) ≥ 2.

The equality takes place if and only if both Sym2(ρ) and Λ2(ρ) are irreducible,

so the conclusion follows.
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Recall that a representation ρ is said to be essentially self-dual if ρ∨ = ρ⊗χ,

for some character χ. Note than when ρ is essentially self-dual there is a direct

sum decomposition

ρ⊗ ρ∨ = Sym2(ρ)⊗ χ⊕ Λ2(ρ)⊗ χ.

Since dim Λ2(ρ) = n(n−1)
2

it follows that if n ≥ 3 and ρ is essentially self-dual

then Ad(ρ) is reducible. Therefore, for n ≥ 3 the irreducibility of Ad(ρ) forces

ρ to be non essentially self-dual (i.e., ρ is not essentially self-dual).

2.2.1 Primitivity

Recall that an irreducible representation (ρ, V ) of G is called imprimitive if V

can be written as a direct sum

V = V1 ⊕ · · · ⊕ Vm

for m > 1 subspaces Vi (forming a system of imprimitivity), on which G acts

transitively. We call V primitive, if it is not imprimitive. We shall prove that

primitivity is a necessary condition for Ad(ρ) to be irreducible.

The next known lemma (cf. [19]) shows how imprimitive representations

can be viewed as inductions.

Lemma 2.2.2. (a) Let H be a proper subgroup of G and let (σ,W ) be a repre-

sentation of H. Then the induced representation IndGH(W ) is imprimitive.

(b) Every imprimitive representation (ρ, V ) of G is induced from a represen-

tation of a proper subgroup H of G.
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Proof. (a) Let m > 1 be the index [G : H] and T = {t1, . . . , tm} be a (left)

transversal for H in G. Then

IndGH(W ) = (t1 ⊗W )⊕ · · · ⊕ (tm ⊗W ).

Now for any g ∈ G, and any fixed 1 ≤ i ≤ m, pick tj such that g(tiH) = tjH.

Then we have that g(ti ⊗W ) = tj ⊗W , so {t1 ⊗W, . . . tm ⊗W} is a system

of imprimitivity for IndGH(W ) and the action of G is transitive.

(b) Write V = V1 ⊕ · · · ⊕ Vm, and let H := {g ∈ G : gV1 = V1} be the

stabilizer of V1. Since the action of G is transitive it follows that m = [G : H],

so we can choose a transversal T = {t1, . . . , tm} for H such that Vi = tiV1

(1 ≤ i ≤ m) and

V = t1V1 ⊕ . . . tmVm.

For v1, . . . , vm ∈ V1, the map f given by

f :
m∑
i=1

ti ⊗ vi 7→
m∑
i=1

tivi

is an isomorphism of IndGH(V1) onto V .

Moreover, note that f is also a G-equivariant map. Indeed, for g ∈ G and

ti ∈ T , there exist uniquely determined tj ∈ T and h ∈ H such that gti = tjh.

Then

f(g(ti ⊗ vi)) = f(tjh⊗ vi) = f(tj ⊗ hvi) = tjhvi

= gtivi = gf(ti ⊗ vi).

In conclusion, f is a G-equivariant isomorphism and therefore IndGH(V1) '

V.
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Proposition 2.2.3. Let (ρ, V ) be an irreducible representation of G such that

Ad(ρ) is irreducible. Then (ρ, V ) is primitive.

Proof. Suppose that V is imprimitive. Then by Lemma 2.2.2: ρ = IndGH(τ)

for some proper subgroup H of G, and a representation τ of H. As a result

ρ⊗ ρ∨ = IndGH(τ)⊗ IndGH(τ∨) = IndGH
(

ResHG (IndGH(τ))⊗ τ∨
)
,

where for the second equality we have used the push-pull formula:

σ1 ⊗ Indσ2 = Ind(Res(σ1)⊗ σ2).

By Mackey’s Decomposition Theorem we know that

ResHG (IndGH(τ)) =
⊕

s∈H\G/H

IndHH∩sHs−1(τ s),

where s runs through a set of representatives of (H,H) double coset of G and

τ s(h) is defined to be τ(s−1hs), for h ∈ H. Hence

ρ⊗ ρ∨ =
⊕

s∈H\G/H

IndGH
(

IndHH∩sHs−1(τ s)⊗ τ∨
)
.

Using s as the identity in the above summation, we note that the induction

is reducible, so in order for Ad(ρ) to be irreducible there can be no more

summands, i.e, |H\G/H| = 1. However, since G is the disjoint union of HsH

for s ∈ H\G/H, it follows that G = H, which contradicts the assumption that

H is a proper subgroup.
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2.3 Low dimensions

2.3.1 The case n = 2

Let sl2(C) be the 3-dimensional Lie algebra of 2× 2 matrices with trace zero,

and let 
 1 0

0 −1

 ,

 0 1

0 0

 ,

 0 0

1 0


be an ordered basis for sl2(C). The group GL2(C) acts on sl2(C) by conjuga-

tion, and the corresponding representation can be explicitly described (with

respect to the chosen basis) as

 a b

c d

 7→ 1

ad− bc


ad+ bc −ac bd

−2ab a2 −b2

2cd −c2 d2

 .

The kernel of this representation is composed only of the scalar matrices, so

the representation factors through

GL2(C)/C? ∼= PGL2(C).

Hence, the aforementioned representation is the 3-dimensional adjoint repre-

sentation

Ad : GL2(C)→ GL3(C).

Moreover, GL2(C) also acts on the space of 2× 2 symmetric matrices by

g · x = gxgt,

where g ∈ GL2(C), gt is its transpose, and x is a symmetric 2× 2 matrix.
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This action with respect to the ordered basis
 0 1

1 0

 ,

 0 0

0 1

 ,

 1 0

0 0


is given by

Sym2:

 a b

c d

 7→


ad+ bc ac bd

2ab a2 b2

2cd c2 d2

 .

Thus, in fact, Ad and Sym2⊗ det−1 are equivalent representations.

For an irreducible 2-dimensional representation ρ : G→ GL2(C), the pro-

jective image G is a finite subgroup of PGL2(C) ∼= SO3(C). The group SO3(C)

has five finite subgroups: the cyclic group Cn, the dihedral group Dn, the tetra-

hedral group A4, the octahedral group S4, and the icosahedral group A5.

Proposition 2.3.1. Let ρ : G→ GL2(C) be an irreducible 2-dimensional rep-

resentation of a finite group G, and let G be its projective image in PGL2(C).

Then Ad(ρ) is irreducible if and only if G ' A4, S4 or A5.

Proof. We rule out Cn and Dn since these groups do not have 3-dimensional

irreducible representations. The group A4 has three 1-dimensional and one 3-

dimensional irreducible representations. Thus Ad(ρ) is the unique irreducible

3-dimensional representations (as the trivial representation is not contained in

Ad(ρ)). The irreducibility of Ad(ρ) when G = S4 follows by restricting to the

normal subgroup A4.

Finally, A5 has one 1-dimensional, two 3-dimensional, one 4-dimensional

and one 5-dimensional irreducible representations. Hence any 3-dimensional

representation, and in particular Ad(ρ), must be irreducible.
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2.3.2 The case n = 3

Here we make use of Hambleton and Lee’s modern geometric account ([16])

of Blichfeldt’s classification for the finite subgroups of PGL3(C) ([7]). Using

the primitivity condition proved in the previous section, we can restrict our

attention to the primitive subgroups only. There are three primitive simple

subgroups of PGL3(C), namely: A5,PSL2(F7) and A6. The remaining three

primitive subgroups of PGL3(C) are all solvable. We describe them in terms

of the following 3× 3 matrices in GL3(C):

S=


1 0 0

0 ω 0

0 0 ω2

 (ω3 = 1) , U=


ε 0 0

0 ε 0

0 0 εω

 (ε3 = ω2) ,

T=


0 1 0

0 0 1

1 0 0

 , V=
1√
−3


1 1 1

1 ω ω2

1 ω2 ω

 .

With this notation, the primitive, solvable subgroups of PGL3(C) are:

(i) G216, the Hessian group of order 216, generated by S, T, V, U ;

(ii) G72, a subgroup of G216 of order 72, generated by S, T, V, UV U−1;

(iii) G36, a subgroup of G216 of order 36, generated by S, T, V .

Proposition 2.3.2. Let ρ : G→ GL3(C) be an irreducible 3-dimensional rep-

resentation of a finite group G, and let G be its projective image in PGL3(C).

Then Ad(ρ) is irreducible if and only if G ' PSL2(F7), A6, G72 or G216.

Proof. As we have already seen, the icosahedral group A5 has no irreducible 8-

dimensional representations. The group PSL2(F7) has one 1-dimensional, two
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3-dimensional, one 6-dimensional, one 7-dimensional and one 8-dimensional

irreducible representations. The trivial representation is not contained in

Ad(ρ), so Ad(ρ) is irreducible. Finally, the Valentiner group A6 has one 1-

dimensional, two 5-dimensional, two 8-dimensional, one 9-dimensional, and

one 10-dimensional irreducible representations. Thus Ad(ρ) is irreducible in

this case.

For the remaining three groups (which are all solvable) we use [13] to

investigate their character tables. The group G36 has four 1-dimensional rep-

resentations and two 4-dimensional irreducible representations, hence Ad(ρ)

must be the sum of the two 4-dimensional irreducible representations. The

character table of G72 shows that it has four 1-dimensional representations,

one 2-dimensional irreducible representation and one 8-dimensional irreducible

representation. By the aforementioned arguments, Ad(ρ) is induced from ei-

ther of the two 4-dimensional representations of the normal subgroup G36 and

therefore Ad(ρ) is irreducible. Likewise, G216 has four 1-dimensional represen-

tations, one 2-dimensional representation, eight 3-dimensional representations,

two 6-dimensional representations, and one 8-dimensional representation. It is

not hard to see that Ad(ρ) is induced from non-normal extensions of degrees

4 and 8, and it is irreducible.

2.3.3 The case n = 4

We refer to the list of the finite primitive subgroups of PGL4(C) given by

Blichfeldt in [7]. The simple groups on this list are A5, A6, A7,PSL2(F7) and

PSp4(F3). We remark that all the solvable groups on the list are mapped by

ρ into either GO4(C) or GSp4(C), i.e., ρ is either orthogonal or symplectic.
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Proposition 2.3.3. Let ρ : G→ GL4(C) be an irreducible 4-dimensional rep-

resentation of a finite group G, and let G be its projective image in PGL4(C).

Then Ad(ρ) is irreducible if and only if G ' A7 or PSp4(F3).

Proof. We first show that if ρ is either orthogonal or symplectic then ρ is self-

dual. Indeed, given an action of G on a quadratic (or symplectic) vector space

W we have an action of G on the dual space W∨ given by

(gf)(x) = f(g−1x),

for all g ∈ G, f ∈ W∨, x ∈ W . Any bilinear form β : W ×W → C induces an

isomorphism φ : W → W∨ given by

x 7→ (φx : y 7→ β(x, y)), y ∈ W.

Since β(gx, gy) = β(x, y) it follows that φ is a G-equivariant isomorphism and

hence the action of G is self-dual. However, we know from Section 2.2 that

Ad(ρ) must be reducible in this case. Thus, Ad(ρ) cannot be irreducible if G

is solvable.

The three simple groups, A5, A6 and PSL2(F7) have no irreducible 15-

dimensional representations. The group A7 has one 1-dimensional, one 6-

dimensional, two 10-dimensional, two 14-dimensional, one 15-dimensional, one

21-dimensional and one 35-dimensional irreducible representations, so in this

case Ad(ρ) is irreducible. Finally, as mentioned in the introduction, the adjoint

of the Weil representation of Sp2n(F3) is irreducible. In particular, if G ∼=

PSp4(F3) then Ad(ρ) is irreducible.
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2.4 An infinite family for n = pr

Let p be an odd prime and r a positive integer. The object of this section is to

construct an infinite family of groups G with irreducible representations (ρ, V )

of degree n = pr, whose adjoint Ad(ρ) is irreducible. In this case, the group

G will arise as the normalizer in SL(V ) of a suitable extraspecial p-group P .

Recall that a finite p-group P is called extraspecial if its center Z(P ) is

a cyclic group of order p which coincides with the commutator group [P, P ],

such that P/Z(P ) is elementary abelian (i.e, every nontrivial element has order

p). Up to isomorphism there are two nonabelian extraspecial groups of order

p3: one of exponent p and one of exponent p2. We will be mainly interested

in the groups of exponent p. Their isomorphism class is represented by the

Heisenberg group of 3 × 3 upper-triangular matrices over Fp with 1’s on the

main diagonal:




1 a c

0 1 b

0 0 1

 : a, b, c ∈ Fp

 .

Below we collect some classical results about the extraspecial groups. Fur-

ther properties of these groups can be found in [3].

Lemma 2.4.1. Let P be an extraspecial p-group. Then there exists r ≥ 1

such that |P | = p2r+1 and P is the central product of r non-abelian subgroups

of order p3, i.e., there exist normal subgroups N1, . . . , Nr such that

(i) P = N1 . . . Nr;

(ii) [Ni, Nj] = 1, whenever i 6= j;
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(iii) N1 . . . Ni−1Ni+1 . . . Nr ∩Ni = Z, ∀ i.

Proof. Denote by Z the center Z(P ) of P , and let z be a generator of this

cyclic group of order p. Then P/Z can be naturally viewed as a vector space

W over Fp, the finite field of integers modulo p. We define a map

β : W ×W → Z

as follows: for any pair x, y ∈ P , if their commutator [x, y] = x−1y−1xy equals

za (with 0 ≤ a ≤ p − 1), we set β(xZ, yZ) = a. It is easy to check that β is

nondegenerate, bilinear and skew-symmetric, which gives W the structure of

a nondegenerate symplectic space over Fp. Then W has a symplectic basis

{x1, y1, . . . , xr, yr}

such that

β(xi, yi) = 1, β(xi, yj) = 0 for i 6= j

and

β(xi, xj) = β(yi, yj) = 0 for all 1 ≤ i, j ≤ r.

Hence W = ⊕Ni, where Ni = 〈xi, yi〉. Letting Ni be the preimages of Ni in P

we obtain the desired characterization for P .

Lemma 2.4.2. Let P be an extraspecial group of order p2r+1. Then P has

exactly p2r + p− 1 inequivalent irreducible representations over C:

• p2r are representations of degree 1.

• p − 1 are faithful representations of degree pr, which are completely de-

termined by their restriction on the center Z.
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Proof. Since P/Z is an elementary abelian group, we infer that the centralizer

CP (x) of any element x ∈ P \ Z has order p2r, showing that the class of x

has [P : CP (x)] = p elements. By the class equation, it follows that there are

(p2r+1 − p)/p = p2r − 1 conjugacy classes in P \ Z. Considering that every

element of the center is its own conjugacy class, we conclude that there are

exactly p2r+p−1 conjugacy classes in P , which is also the number of irreducible

complex representations of P . The number of 1-dimensional representations

is equal to the index in P of the commutator group [P, P ] = Z, so it is

[P : Z] = p2r.

Since P/N is abelian for any nontrivial normal subgroup N of P , all ir-

reducible representations of P of dimension greater than 1 are faithful. Let

λ1, . . . , λp−1 be all faithful linear characters of Z, let µi be an extension of λi

to a maximal normal abelian subgroup A of G (of order pr+1). Then, as shown

in [18], IndPA µ1, . . . , IndPA µp−1 are all distinct faithful irreducible characters of

P and

IndPA µi(x) =

p
rλi(x) if x ∈ Z,

0 if x /∈ Z.

Lemma 2.4.3. ([38]) Let P be an extraspecial group of order p2r+1 and expo-

nent p. If

G̃ = {α ∈ Aut(P ) : α|Z = 1}

and Inn(P ) is the group of inner automorphisms then

G̃/Inn(P ) ' Sp2r(Fp).
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2.4.1 The main construction

Now we have all the tools to prove Theorem 2.1.1, the first main result of

this chapter. Recall that G is taken to be the normalizer in SL(V ) of an

extraspecial group P with a faithful irreducible representation (ρ, V ) of degree

pr. Note that for p = 5 and r = 1, this group G ' P o SL2(F5) is used in

[17] to construct an indecomposable rank 2 vector bundle on P4 with 15000

symmetries (the order of G).

Proof of Theorem 2.1.1. First we relate G to the symplectic group Sp2r(Fp)

by the means of the following lemma:

Lemma 2.4.4. Let E be the centralizer in SL(V ) of P . Then

G/EP ' Sp2r(Fp).

Proof. The automorphisms AutSL(V )(P ) of P induced by SL(V ) are given by

G/E. Let G̃ be the group introduced in Lemma 2.4.3, i.e., G̃ is the normal

subgroup of Aut(P ) that acts trivially on Z. Then

G̃ ⊇ AutSL(V )(P ).

If α ∈ G̃ then considering that the irreducible representation of dimension

pn have distinct central characters (by Stone-von Neumann Theorem) it follows

that ρ ∼= ρ◦α, showing that α ∈ AutSL(V )(P ). Consequently, G̃ = AutSL(V )(P )

and Lemma 2.4.3 assures that

G/EP ' G̃/ Inn(P ) ' Sp2r(Fp).
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We know from Lemma 2.4.1 that P/Z can be viewed as a 2r-dimensional

symplectic space W over Fp. The corresponding symplectic form β gives an

isomorphism φ : W → W∨ between W and its dual space W∨, sending

x 7→ (φx : y 7→ β(x, y)).

Since Sp2r(Fp) preserves β, so does G (by Lemma 2.4.4), which implies that φ is

a G-equivariant isomorphism. Furthermore, the group Sp2r(Fp) is transitive on

W \{0}, while the dual group W∨ can be identified with the group of characters

Hom(W,C) of W . Therefore, G acts transitively on the set Hom?(W,C) of

nontrivial characters of W .

Given x ∈ W , consider a lift x̃ to P and put x ·M = x̃Mx̃−1, which is

independent of the choice of the lift. Since W is an elementary abelian group,

we can decompose Ad(ρ) according to the eigenspaces corresponding to the

characters of W . For χ ∈ Hom(W,C) consider the corresponding weight space

for W on Ad(ρ):

Aχ = {M ∈ Ad(ρ) : trM = 0 and x ·M = χ(x)M,∀ x ∈ W}.

If

Λ = {χ ∈ Hom(W,C) : Aχ 6= 0}

is the set of weights then Ad(ρ) decomposes as Ad(ρ) =
⊕

χ∈ΛAχ. The groupG

permutes the weight spaces by gAχ = Agχ, g ∈ G, χ ∈ Λ. Since Ad(ρ) does not

contain the trivial representation, it follows that Λ ⊆ Hom?(W,C). Moreover,

since G is transitive on Hom?(W,C) we obtain that Λ = Hom?(W,C). The

dimensions of the p2r − 1 weight spaces add up to the dimension of Ad(ρ),

which is p2r − 1. Therefore, each space Aχ is of dimension 1.
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If W ′ ⊂ Ad(ρ) is a G-invariant subspace then W ′ restricted to W is con-

tained in ⊕χ∈ΛAχ, and since each summand is 1-dimensional it follows that

Aχ ⊂ W ′ for some χ. However, in that case

Ad(ρ) = G · Aχ ⊂ G ·W ′ = W ′,

which is a contradiction. Consequently, G is irreducible on Ad(ρ).

Remark 2.4.5. (i) When p = 3 and r = 1 the projective image G in

PGL3(C) of the group G constructed above is the Hessian group G216

found in Proposition 2.3.2. One can check that (cf. [1], Proposition 4.1)

G = G216 ' (Z/3Z)2 o SL2(F3),

with the natural action of SL2(F3) on (Z/3Z)2.

(ii) Theorem 2.1.1 also holds for p = 2, however in that case one needs to

take P to be the central product of a cyclic group of order 4 with an

extraspecial group of order 22r+1.
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2.5 An application to Galois representations

of Artin-type

We start with a brief discussion on the Artin L-functions before proving The-

orem 2.1.2, the second main result of this chapter.

Let F be a number field and let ρ : GF → GL(V ) be a continuous rep-

resentation of the absolute Galois group GF = Gal(F/F ) on a n-dimensional

C-vector space V . The continuity implies that ρ has finite image, so it fac-

tors through the projection Gal(F/F )→ Gal(K/F ), for some finite extension

K/F . The Artin L-function attached to ρ is the Euler product

L(ρ, s) =
∏
v

Lv(ρ, s),

with the local factors defined as

Lv(ρ, s) = det([1− ρ(Frobv)q
−s
v ]|V Iv )−1.

Here Frobv ∈ Gal(Fv/Fv) is a Frobenius element at a place v, V Iv is the

subspace of V fixed by the inertia group Iv at v, and qv is the order of the

residue field of Fv.

Let S be the finite set of places outside which ρ is unramified. Then for

v /∈ S, since the Frobenius conjugacy class {ρ(Frobv)} is semi-simple, the

eigenvalues α1,v, . . . , αn,v of the corresponding linear transformation are roots

of unity. Accordingly, the local factor can be written as

Lv(ρ, s) =
n∏
j=1

(1− αj,vq−sv )−1.
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Denote by av the trace of the Frobenius at v, i.e., av =
∑n

j=1 αj,v. Notice that

logLv(ρ, s) =
av
qsv

+
∑
m≥2

∑n
j=1 α

m
j,v

qmsv
.

Using the fact that |αj,v| = 1 we obtain for real s > 1

∑
m≥2

|
∑n

j=1 α
m
j,v|

qmsv
≤ n

∑
m≥2

1

qmsv
,

which implies that

logL(ρ, s) ∼
∑
v/∈Σ

av
qsv

as s→ 1+,

where the relation ∼ means that the two sides agree up to a function of s

which is o(log( 1
s−1

)), and

Σ = {v finite | av = 0}.

Proof of Theorem 2.1.2. Consider the Artin L-function L(ρ, s) attached to a

continuous irreducible n-dimensional representation (ρ, V ) of the absolute Ga-

lois group GF , and let Σ as defined above.

The order of the pole at s = 1 of L(ρ, s) is the multiplicity of the trivial

representation in ρ. Therefore, if ρ is irreducible then −ords=1L(ρ⊗ρ∨, s) = 1.

Since ρ⊗ ρ∨ = 1⊕ Ad(ρ) we have

ρ⊗ ρ∨ ⊗ (ρ⊗ ρ∨)∨ = 1⊕ 2 Ad(ρ)⊕ Ad(ρ)⊗2.

The key observation is that the trivial representation is contained in Ad(ρ)⊗2



27

with multiplicity
∑N

i=1 m
2
i , therefore

−ords=1L(ρ⊗ ρ∨ ⊗ ρ⊗ ρ∨, s) = 1 +
N∑
i=1

m2
i .

Since ρ is a C-representation of a finite group, the dual representation ρ∨ is

isomorphic to the complex conjugate representation ρ, and so the Frobenius

trace of v on ρ⊗ ρ∨ is given by av · av = |av|2. Therefore we get

logL(ρ⊗ ρ∨, s) ∼
∑
v/∈Σ

|av|2

qsv
∼ log

( 1

s− 1

)

and similarly

logL(ρ⊗ ρ∨ ⊗ (ρ⊗ ρ∨)∨, s) ∼
∑
v/∈Σ

|av|4

qsv
∼
(

1 +
N∑
i=1

m2
i

)
log
( 1

s− 1

)
.

Consider the sequence {bv}, with bv = 1 if v /∈ Σ and bv = 0, otherwise. By

the Cauchy-Schwarz inequality, it follows that

∑
v/∈Σ

|av|2

qsv
=
∑
v

|a2
vbv|
qsv
≤

(∑
v

|av|4

qsv

)1/2(∑
v

bv
qsv

)1/2

.

If δ(Σ) is the density of the set Σ then by construction

∑
v

bv
qsv
∼ (1− δ(Σ)) log

( 1

s− 1

)
and so the previous inequality reads as

1 ≤ (1 +
N∑
i=1

m2
i )(1− δ(Σ)).
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This yields

δ(Σ) ≤ 1− 1

1 +
∑N

i=1m
2
i

.

As a consequence, it follows that when Ad is irreducible (i.e., N = 1 and

m1 = 1) the traces of Frobenius classes in finite Galois groups are nonzero for

at least half of the primes.

2.5.1 Some examples

As previously seen in the preliminaries, the irreducibility of Ad(ρ) forced ρ to

be non essentially self-dual in dimension n ≥ 3. Since the density estimate in

Theorem 2.1.2 depends only on the multiplicity of the irreducible constituents

of Ad(ρ), one could also consider self-dual representations ρ for which Ad(ρ)

has only two inequivalent simple components (and thus δ(Σ) ≤ 2/3 by Theo-

rem 2.1.2). We provide two examples of such representations.

Example 2.5.1. (based on [29]) Take G = SL2(F5) and let

π : G→ GL2(C)

be an irreducible 2-dimensional representation. By Proposition 2.3.1, since the

projective image of G in PGL2(C) is A5, we infer that Ad(π) is an irreducible

3-dimensional representation. If ρ = Ad(π) then using the fact that

Ad(π) = Sym2(π)⊗ det(π)−1

it follows that

Sym2(ρ) = Sym4(π)⊗ det(π)−2 ⊕ 1.

Now, Ad(ρ) is the sum of ρ and Sym4(π)⊗det(π)−2, which are both irreducible.
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Example 2.5.2. Take G = SL2(F9) (the double cover of A6) and let

ρ : G→ GL4(C)

be an irreducible 4-dimensional representation. Using [23] (Proposition 3.1)

we find that Sym2(ρ) is an irreducible 10-dimensional representation. Further-

more, Λ2(ρ) contains the trivial representation with multiplicity one, so we can

write

Λ2(ρ) = 1⊕ τ,

where τ is a 5-dimensional representation that factors through A6. By the

character table of SL2(F9) it has one 1-dimensional, two 4-dimensional, two 5-

dimensional, four 8-dimensional, one 9-dimensional and three 10-dimensional

irreducible representations. Thus, τ must be irreducible and Ad(ρ) is the sum

of τ and Sym2(ρ).
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Chapter 3

Non-extremality of Frobenius
traces in Hilbert modular forms

3.1 Introduction

Let F be a totally real number field of degree n over Q, with ring of integers

OF . Let f be a Hilbert modular newform of parallel weight 2, level n and

trivial character. The Fourier coefficients am, as m runs over ideals in OF are

the eigenvalues of f relative to Hecke operators Tm (i.e., Tm(f) = amf). These

eigenvalues generate a finite extension E over F . By Taylor [33] and Blasius-

Rogawski [6], for every prime ideal q of E over a rational prime q, one can

attach to f a continuous 2-dimensional Galois representation

ρ := ρf,q : Gal(Q/F )→ GL2(Eq)

that is unramified outside the set of primes dividing nq. For any prime ideal

p - nq, the characteristic polynomial of the (geometric) Frobenius Frobp of

Gal(Q/F )at p is the Hecke polynomial

x2 − apx+N(p),
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where N(p) is the norm of p.

We shall call the Fourier coefficient ap extremal if a2
p = 4N(p). This is

equivalent to the fact that the Hecke polynomial has a double root. If p ∈ OF
is a prime ideal above a rational prime p then the degree of the finite extension

OF/p over the prime field Fp is called the degree of p. The primary purpose

of this chapter is to prove in a number of cases (explained below) that for

degree one primes p the Fourier coefficient ap is never extremal, i.e., the Hecke

polynomial at such p has always distinct roots.

The analogous statement for classical elliptical modular forms has been

been known for some time by the work of by Coleman and Edixhoven ([9]),

which has been a source of inspiration for us. Our methods extend theirs,

while employing some new ideas in the Hilbert setting.

It is known that such a Hilbert newform f generates a cuspidal automorphic

representation π = ⊗vπv of GL2(AF ), where AF is the ring of adeles of F and

πv is a representation of GL2(Fv) for each finite place v of F , unramified for

almost all v. Suppose that one of the following two situations holds: (i) the

degree n of the extension F/Q is odd or (ii) n is even and there exists a finite

place v of F at which πv is square integrable (special or supercuspidal). Then

we prove in Theorem 3.3.1 that for any unramified prime p of degree one

the Fourier coefficient ap is not extremal. This is achieved by transferring to

a quaternionic Shimura curve via the Jacquet-Langlands correspondence and

adapting the approach in [9]. When f is a CM form we obtain in Theorem 3.4.1

an unconditional result for any prime p of degree one, even if one may not be

able to move directly to a Shimura curve

We expect ap not to be extremal for any odd degree prime p. In section 3.3.1

we show that for certain primes p of even degree the coefficients ap may be



32

extremal. One can see this by taking f to be a base change of a classical

modular form, and p a prime ideal above a rational prime of supersingular

reduction.

In general, the non-extremality of the ap coefficients (for degree one p)

follows from the semi-simplicity of the Frobenius element in the crystalline

cohomology. This is done in Theorem 3.5.1. There, we consider the motivic

piece W (π) corresponding to π in the cohomology group H2(X) (here X is

a Shimura surface, or an appropriate compactification of a Hilbert modular

surface), and show that it is the tensor induction of V (π) (determined by

ρ). The main ingredient is to use the weak-admissibility of the crystalline

realization of W to deduce the semi-simplicity of Frobp on V (π).

Finally, in Section 3.6 we explain how the above semi-simplicity condition

can be obtained from the strong form of the Tate conjecture for a product

of two surfaces over a finite field. More precisely, if X̃ is the reduction of

X modulo a good prime p and we assume that the order of the pole of the

zeta function ζ(X̃ × X̃, 2) is equal to the rank of the group of codimension 2

cycles on X̃ × X̃ up to numerical equivalence, then we show that the Hecke

polynomial at p has distinct roots.

3.2 Quaternion algebras

In this section we give a brief overview of some aspects of the theory of quater-

nion algebras that we will use throughout the chapter.

Let F be a field. A quaternion algebra B over F is a central simple F -

algebra of dimension 4. When the characteristic of F is not 2, a quaternion

algebra B is given by some a, b ∈ F×, as the F -algebra of basis 1, i, j, k with
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i, j ∈ B, k = ij and

i2 = a, j2 = b, ij = −ji.

Such a quaternion algebra will be denoted by B =
(
a,b
F

)
. For example, if

a = b = −1 and F = R then
(
−1,−1

R

)
is just the division algebra H of

Hamilton quaternions. Any quaternion algebra that is not a division algebra

is isomorphic to M2(F ), the algebra of 2× 2 matrices over F .

A quaternion algebra B =
(
a,b
F

)
is endowed with an anti-involution θ 7→ θ

called conjugation, such that θθ ∈ F for θ ∈ B. The map nrd(θ) = θθ is

referred to as the reduced norm. One can also define the reduced trace as

trd(θ) = θ + θ. Explicitly, if θ = x+ yi+ zj + wij ∈ B then

θ = x− yi− zj − wij

nrd(θ) = x2 − ay2 − bz2 + abw2

trd(θ) = 2x ∈ F,

and thus the characteristic equation θ2 − trd(θ)θ + nrd(θ) = 0 is satisfied.

Now let F be a number field contained in a larger field K, then by tensoring

we get a quaternion algebra over K

(a, b
F

)
⊗F K ∼=

(a, b
K

)
.

We say that K splits B if

B ⊗F K ∼= M2(K).

For any place v of F let Fv denote the completion of F at v. Clearly, if v

is a complex place then Bv = B ⊗F Fv necessarily splits. For a non-complex
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place v, we say that B is ramified at v if Bv is a division ring. Otherwise,

Bv
∼= M2(Fv) and we say that B is unramified (or split) at v.

The set of places at which a quaternion algebra B ramifies is finite and of

even cardinality. Conversely, given an even number of (non-complex) places

there exists a quaternion algebra that ramifies at precisely those places. Two

quaternion algebras are isomorphic if and only if they are ramified at the same

places. The product of the finite ramified places is an ideal in the ring of

integers OF of F , called the discriminant disc(B) of B.

An order of B is a subring O ⊂ B (containing 1) which is a finitely gen-

erated OF -module generating B over F . If O = OF ⊕ ai ⊕ bj ⊕ ck then the

reduced discriminant of O is the ideal

d(O) = abc trd((ij − ji)k),

whose square is called the discriminant disc(O) of O, i.e., disc(O) = d(O)2.

An order O that is not properly contained in any other order is called a

maximal order. Equivalently, O is maximal if and only if d(O) = disc(B). If

O is the intersection of two (not necessarily distinct) maximal orders then it

is called an Eichler order. The level of an Eichler order O is the ideal n ⊂ OF
satisfying disc(O) = n disc(B).

To construct an Eichler order of a given level n (coprime to disc(B)) one

can choose a maximal order O ⊂ B and an embedding ιn : O ↪→ M2(OF,n),

with OF,n the completion of OF at n. Then

O(n) = {θ ∈ O : ιn(θ) mod n is upper triangular}

is an Eichler order of level n.
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3.3 The Shimura curve case

Let F be a totally real number field of degree n = [F : Q] and let OF be

its ring of integers. Let f be a Hilbert cuspidal eigenform for F of parallel

weight 2, level n (an ideal of OF ), and trivial character. We associate to f

an automorphic representation π = ⊗vπv of GL2(AF ), where AF is the ring of

adeles of F and πv is a representation of GL2(Fv) for each finite place v of F .

Recall that the degree of a prime ideal p ∈ OF above some rational prime

p is the power of p in the norm N(p) of p (i.e., the cardinality of the quotient

ring OF/p). Let ap be the Hecke eigenvalue at a prime p. Occasionally, we will

use the notation ap(f) or ap(π) for ap to emphasize the underlying eigenform

or the automorphic representation.

The purpose of this section is to prove that for primes of degree one the

Hecke roots are distinct, provided that one can transfer to a quaternionic

Shimura curve via the Jacquet-Langlands correspondence. More precisely, we

establish the following result.

Theorem 3.3.1. Let F, n, f, n and π be as above. When n is even, suppose in

addition that there is a finite place v′ of F such that the local component πv′

is square integrable (i.e., special or supercuspidal). Then for any degree one

prime p - n the Hecke polynomial

x2 − apx+N(p)

has distinct roots.

Proof. We first describe how to obtain a Shimura curve using an appropri-

ate quaternion algebra B over F . Then we adapt the methods of Coleman-

Edixhoven from [9] to our setting.
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Let ρ1, . . . , ρn : F → R be the real embeddings of F . We distinguish two

possible cases:

• If n is odd, we let B be the unique quaternion algebra that is split at

the archimedean place corresponding to ρ1 and ramified at the places

corresponding to ρ2, . . . , ρn.

• If n is even, we let B be the unique quaternion algebra that is ramified

at v′ and at the n− 1 places corresponding to ρ2, . . . , ρn.

Denote by ram(B) the set of places at which B is ramified, and by disc(B)

the product of all the finite places in ram(B) (which, by definition, is the

discriminant of B).

Let n′ be an ideal such that n = n′ disc(B). By the Jacquet-Langlands

correspondence, given any Hilbert modular newform f of weight 2 and level n

of the type above, there exists a unique newform g of weight 2 on the upper

half-plane relative to a congruence subgroup ΓB(n′) (see below), such that

av(f) = av(g) for any finite place v - n. Let π′ be the cuspidal automorphic

representation of B(AF )× generated by g. Then πv ' π′v, for any v /∈ ram(B).

Now we shall construct an arithmetic group that generalizes the modular

group SL2(Z). To get the prescribed level structure, we take an Eichler order

O(n′) in B of level n′ and consider the group

O1(n′) = {θ ∈ O(n′) | nrd(θ) = 1}.

Since our B is split at exactly one real place, there is a map

B ↪→ B ⊗Q R 'M2(R)×Hn−1.
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Letting ι : B ↪→ M2(R) be the projection onto the first factor, we obtain an

arithmetic Fuchsian group (i.e., a discrete subgroup of PSL2(R))

ΓB(n′) = ι(O1(n′)) ⊂ GL+
2 (R).

This group acts by linear fractional transformations on the upper half-plane

H and the (compact) quotient ΓB(n′)\H can be viewed as the complex points

of the connected component of a Shimura curve CB, which has a canonical

model defined over F .

Let Ef = Q({ap}) be the field generated over Q by all the coefficients ap

of f . There exists an abelian variety associated to π′ (and hence to π) defined

over F of dimension [Ef : Q], arising (uniquely up to F -isogeny) as a quotient

of the Jacobian of CB. We shall call it Ag.

Consider the `-adic Tate module of Ag

T`(Ag) = lim←−
k

Ag[`
k],

which is the inverse limit of the torsion subgroups Ag[`
k] (of Ag(F )) of order

dividing `k. One can attach to π′ a rank two E ⊗Q`-module

V` = T`(Ag)⊗Z`
Q`.

Again, by the Jacquet-Langlands correspondence L(s, f) = L(s, π′) so V` is

also attached to f . More precisely, for any prime ` and any ideal p (over some

rational prime p) not dividing n` we have

ap = tr(Frobp |V`).
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Assume by contradiction that the Hecke polynomial x2 − apx + N(p) has

a double root λ. Then ap = 2λ and N(p) = λ2 = p (recall that p is taken to

be a prime of degree one).

Let Op = OF,p be the the completion of OF at p, Fq = Op/pOp and Ãg the

reduction of Ag over Fq. Since Ag has good reduction at p, the inertia group

at p acts trivially on H1(Ag ×F ,Q`), and the inertial invariants are known to

be identified with the H1 of the reduction. Hence, the dual of V` satisfies:

H1(Ag × F ,Q`) ∼= H1(Ãg × Fq,Q`).

The endomorphism ring End(Ãg) of Ãg is semi-simple (in fact, it is a division

algebra if Ãg is simple). Therefore, the Frobenius endomorphism of Ãg acts as

a semi-simple operator. On the other hand, by the Eichler-Shimura congruence

relations:

(Frobp−λ)2 = 0,

as endomorphisms over the residue field. Now applying the semi-simplicity of

Frobp we get that

Frobp = λ in End(Ãg). (?)

To get a contradiction from (?), we need to also consider (as in [9]) the

first de Rham cohomology group M of the associated Néron model A of Ag

over Op, with its Hodge filatration

Fil1M := H0(A,Ω1) ⊂M.

Since Fil1(M) is locally isomorphic to OE ⊗Op and λ2 = p we get that p does

not divide λ, so Fil1(M)⊗Fq is not annihilated by λ. However, Frobp = λ has
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differential zero, implying that λ annihilates H0(Ãg,Ω
1) = Fil1(M) ⊗ Fq. In

conclusion, the Hecke polynomial has distinct roots.

Remark 3.3.2. The condition requiring p to be a degree one prime is crucial.

Indeed, if p were a prime of degree two, then λ2 = p2 would imply that λ = ±p.

Accordingly, p would divide λ and hence the above argument would not work.

3.3.1 An example

It is important to mention that there are examples of Hilbert modular forms

obtained by base-changing classical newforms, for which the Hecke roots at

certain primes are the same. We present below one such example due to R.

Kottwitz, which we learnt about from M. Emerton:

Let f be the unique cusp form of weight 2 and level

Γ0(11) =

{ a b

c d

 ∈ SL2(Z) | c ≡ 0 (mod 11)

}
.

For convenience, we will denote by E the corresponding elliptic curve

X0(11) = Γ0(11)\H.

It is known that E has conductor 11 and it is given by the equation (for more

details see [37])

y2 + y = x3 − x2 − 10x− 20.

By a result of Elkies (which holds true for any elliptic curve over Q, cf. [11]),

we know that there are infinitely many primes p such that ap(f) = 0 (i.e., E
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has supersingular reduction at p). For instance, the first odd prime of this

type is p = 19.

Fix an odd supersingular prime p and choose a real quadratic extension F

of Q such that p remains inert in F . Denote by p the prime of F lying above

p. Under the base-change from Q to F , one can lift f to a (parallel) weight 2

Hilbert modular form f̃ for F . (The level of f̃ will be the product of primes

of F dividing 11. In particular, it is prime to p.)

Since p is inert, it follows that N(p) = p2 and

ap = a2
p − 2p = −2p.

Therefore, the polynomial

x2 − apx+N(p) = (x+ p)2

has a double root at −p. This gives an example of an even degree prime p, for

which the coefficient ap of f̃ is extremal (i.e., a2
p = 4N(p)).

3.3.2 Further analysis

The example presented above is not an isolated situation. To generate similar

constructions start with an elliptic curve E over Q and a prime p of good

supersingular reduction. Pick any real quadratic field F in which p is inert.

Let f be a newform associated to E by the modularity theorem. If f̃ denotes

the base-change of f to F , then at the prime p of degree 2 over p, one has that

ap(f̃) is extremal.

Note also that given a prime p, there exist infinitely many real quadratic

fields F such that p is inert in F .



41

Finally, we can fix a real quadratic field F , and a prime p of degree 2 over

a rational prime p. Take an elliptic curve E over Q with CM by an order

O in an imaginary quadratic field K in which p is inert. Then E has good

supersingular reduction at p, and the same phenomenon happens.

A closer analysis between the coefficients leads to the following observation.

Proposition 3.3.3. Let K/F be a quadratic extension of totally real fields.

Let f be a Hilbert newform for F of weight 2 and trivial character, and P a

prime of K (away from the level of f), which is of degree 2 over a prime p of

F . Suppose πP is a base change of the representation π0,p of GL2(Fp). Then

aP is extremal if and only if either ap is extremal or ap = 0.

Proof. If p is inert in K (i.e., p = POK) then

aP = a2
p − 2N(p).

Since N(P) = N(p)2, note that aP is extremal if and only if

aP = ±2N(P)1/2 = ±2N(p).

Combining the last two relations it follows that the extremality condition of aP

is equivalent to a2
p being equal to either 4N(p) (in which case ap is extremal)

or to 0, as desired.

If p splits in K then aP = ap, and the conclusion follows.
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3.4 The CM case

We maintain the setting of f being a weight 2 Hilbert modular eigenform of

level n for a totally real field F of degree n = [F : Q], with trivial character.

In this section we will assume that f is a CM form associated to a character

χ of an imaginary quadratic extension K/F . Under this assumption we will

settle the case not covered by the last section: namely, when n is even and

the automorphic representation π has no discrete series component at a finite

place (so one can not move to a Shimura curve directly).

For any unramified prime p, we will show that ap is not extremal by con-

structing a certain character µ defined by some local relations. As a result,

the automorphic representation π′ corresponding to χµ will have the following

two properties:

(P1) ap(π) and ap(π
′) have the same Hecke polynomial.

(P2) π′ has a discrete series representation at some auxiliary finite place v′.

This way, by switching from π to π′ we reduce the problem to the situation

treated in the previous section.

Theorem 3.4.1. Let F, n, f, n and π be as above. Assume f is associated

to a Hecke character χ of an imaginary quadratic extension K of F , so that

L(s, f) = L(s, χ) (viewed as degree two Euler products over Q). Then for any

degree one prime p - n the Hecke polynomial

x2 − apx+N(p)

has distinct roots.
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Remark 3.4.2. Note that Theorem 3.4.1 holds for any degree n without any

further restrictions on π. Evidently, this also includes the case when n is

even and the associated automorphic representation π has no square integrable

component at a finite place, which was not addressed in Theorem 3.3.1.

Proof. Since f is a CM form, there exists a quadratic character ε of F corre-

sponding to K/F such that f = f ⊗ ε. By hypothesis, π has trivial central

character, i.e., χ|F = ε.

Fix an unramified prime p of F . If p is inert in K then ap = 0 (recall that

f is a CM form), so ap can not be extremal. Therefore, we can assume that p

splits in K. Denote by q and q′ the primes above p in K.

If π has a discrete series component πu, we are done by Theorem 3.3.1. So

assume otherwise, and pick an auxiliary finite place v′ of F that remains inert

in K. Consider the set

S = {q, q′, v′}

of places of K. To each element of S we shall associate a local character as

follows:

• For q and q′, simply take the trivial characters of K×q and K×q′ .

• For v′, choose λ to be a quadratic character of K×v′ such that λ 6= λ ◦ c,

where c is the non-trivial element of Gal(Kv′/Fv′). More concretely, we

will tale λ to be the quadratic character of K×v′ attached to its unique

unramified quadratic extension.

By the Grunwald-Wang theorem (see [2], Theorem 5) there exists a (finite

order) global character µ of K such that

µq = µq′ = 1, µv′ = λ and µ∞ = 1.
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Take π′ to be the induced representation IndFK(χµ).

Lemma 3.4.3. π′ satisfies the properties (P1) and (P2).

Proof. Since p = qq′, the coefficient ap can be written as ap(π) = χq(ω)+χq′(ω),

where ω is an uniformizer of Fp
∼= Kq

∼= Kq′ . The condition µq = µq′ = 1

implies that χqµq = χq and χq′µq′ = χq′ . Hence

ap(π) = ap(π
′).

To establish property (P1) it suffices to show that π′ has trivial character at p.

This is equivalent to showing that χpµp = εp, which is true because p splits.

Moreover, by our construction it follows that

π′v′ = Ind
Fv′
Kv′

(χv′µv′) = Ind
Fv′
Kv′

(χv′λ).

Since π has no supercuspidal component, we get that χv′ = χv′ ◦ c. Therefore,

since λ was chosen such that λ 6= λ ◦ c, we obtain

χv′λ 6= χv′λ ◦ c.

This means that the local Galois representation at v′ is irreducible. By local-

global compatibility, known for CM forms, one gets the local component π′v′

to be supercuspidal and so (P2) also holds.

In view of the lemma, one can change π and look at a related π′, for

which Theorem 3.3.1 can be applied. As a result, the coefficient ap(π
′) is not

extremal. Consequently, the same is true for ap(π), since we showed that ap(π)

and ap(π
′) have the same Hecke polynomial.
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3.5 Semi-simplicity of Frobenius

3.5.1 Cohomology decomposition

Let F be a totally real quadratic extension of Q. We will denote by AF,f the

ring of finite adeles of F , and by G = RF/Q GL2 the Weil restriction of scalars.

For an arbitrary compact open subgroup K of G(AF,f ) consider the asso-

ciated Shimura variety

Y = SK = G(F )\(F ⊗ C− F ⊗ R)2 ×G(AF,f )/K.

We denote by Y ? its Bailey-Borel compactification over Q. Then for a

finite set of cusps Y ∞ we have

Y ? = Y ∪ Y ∞.

A rational cone decomposition defines a smooth toroidal compactification

X := Ỹ = Y ∪ Ỹ ∞,

which we choose to be minimal. The Hecke operators (acting as correspon-

dences) preserve Y ? but not X, so we consider the intersection cohomology

IH2(Y ?) that appears in the decomposition

H2(X) = IH2(Y ?)⊕H2
Ỹ∞

(Ỹ ∞).

The semi-simple action of the Hecke algebra H commutes with the action

of the Galois group ΓQ = Gal(Q/Q) on IH2(Y ?). Now IH2(Y ?) has a motivic
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decomposition

IH2(Y ?) = IH2
res(Y

?)⊕ IH2
cusp(Y ?)

into a residual part IH2
res and, what will be of main interest to us, a cuspidal

part IH2
cusp. The automorphic representations that appear in the cuspidal part

are of the form D2⊗πf , with D2 the lowest discrete series of GL2(R) of weight

2 with trivial character, and πf is an irreducible admissible representation of

G(AF,f ) (cf.[28]). Furthermore, we have a H× ΓQ-equivariant decomposition:

IH2
cusp(Y ?) =

⊕
πf

W (π)m(πf ,K).

Given πf there is a suitable K (associated to the conductor of π) such that

the multiplicity m(πf , K) = 1.

Each isotypic component W (π) can be thought of as a motivic summand

H2(X)[π] of H2(X) corresponding to π and this motive is of rank 4 over its

field of coefficients. So it makes sense in various realizations, such as Betti

(WB(π)), De Rham (WdR(π)), and étale (W`(π)).

3.5.2 Galois representations

For the remainder of this section, f will be a Hilbert modular newform of

weight 2 and level n, with associated automorphic representation π of trivial

central character.

By the work of Taylor ([33]) and Blasius-Rogawski ([6]), there exists a 2-

dimensional irreducible representation V`(π) of ΓF = Gal(Q/F ) that satisfies

L(s, π) = L(s, V`(π)). More precisely, for any prime p - n`:

ap(π) = tr(Frobp |V`(π)).
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One can decompose W` into a tensor product of two 2-dimensional repre-

sentations of ΓF . Since X is a surface, H2(X) admits a symmetric bilinear

form under intersection, which preserves IH2(Y ?). This leads to the ΓQ repre-

sentation on W`(π) landing in the group of orthogonal transformations O(W`).

Using Harder-Langlands-Rapoport [15], the restriction to ΓF lands in SO(W`),

which is surjected on by GL2×GL2:

W`(π)|ΓF
' V 1(π)⊗ V 2(π).

The choice of the pair (V 1(π), V 2(π)) is not unique, for it can be replaced by

the pair (V 1(π)⊗ν, V 2(π)⊗ν−1), for some character ν. However, by the semi-

simplicity of W` and V`, one can choose V 1(π) = V`(π) and V 2(π) = V`(π)θ

(here θ is the non-trivial automorphism of F over Q), so that

W`(π)|ΓF
' V`(π)⊗ V`(π)θ.

This way

W`(π) ' ⊗ Ind
ΓQ
ΓF

(V`(π)),

where ⊗ Ind is the tensor induction.

3.5.3 Shimura surface

Let E be a totally real number field, and let B be a quaternion algebra over

E that is split at exactly two infinite places w and w′. Consider the algebraic

group G over E, so that for any E-algebra A:

G(A) = (B ⊗E A)×.
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There exists a Shimura surface S defined over a subfield

H := {σ : Hom(E,Q) | σ preserves {w,w′}},

such that

S(C) = G(E)\(C− R)2 ×G(AE,f ).

Moreover, for every compact open subgroup K of G(AE,f ) we get an actual

projective surface SK defined over E, such that

SK(C) = S(C)/K.

One advantage of working with the Shimura surface instead of the Hilbert

surface is that the former is already compact. In this case, one avoids the

technicalities associated with the appropriate compactification, since the in-

tersection cohomology IH2 coincides with the usual cohomology H2. Another

advantage constitutes the fact that we have such a Shimura surface over any to-

tally real E, so one does not have to restrict only to the (totally) real quadratic

case, as in section 3.5.1.

3.5.4 Non-extremality when Frobenius is semi-simple

The motivic piece W (π) of H2(X) corresponding to π has a crystalline real-

ization M of rank 4 over the field Ef of coefficients of f (here X is taken to

be a Shimura surface, or the minimal smooth toroidal compactification of a

Hilbert modular surface).

Consider the reduction X̃ modulo a good prime p. The Galois represen-

tation is then unramified at p, and the intertial invariants of the cohomology
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of X in characteristic zero can be identified with the cohomology of X̃. The

p-adic Galois representation W is crystalline since it comes from a smooth

projective variety with good reduction at p. This means that W has the

same dimension as the space of Galois invariants of W ⊗Qp Bcris, where Bcris is

Fontaine’s crystalline ring of periods. Accordingly, we have an induced action

of the crystalline Frobenius φ of M .

Moreover, the comparison map between étale and crystalline cohomology

is functorial for the action of algebraic correspondences, and our motive M is

cut out of H2(X) using a projector coming from algebraic correspondences.

In addition, by [20], we know that Frobp and φ have the same characteristic

polynomial, namely x2 − apx+N(p).

Theorem 3.5.1. Let f be a Hilbert modular newform for a totally real number

field F of weight 2, level n and trivial character. Suppose that the crystalline

Frobenius φ is semi-simple on M . Then the polynomial

x2 − apx+N(p)

has distinct roots, for any degree one prime p - n.

Proof. Consider a totally real quadratic extension E of F in which p splits as

q and q′. Let π be the automorphic representation of GL2(AF ) generated by

f and write πE for the base change of π to GL2 over E. By construction

πE,q = πE,q′ = πp

and so

aq = aq′ = ap.
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Let ΣF and ΣE be the set of all the archimedean places of F and E, respec-

tively. We can assume (by Theorem 3.3.1) that [F : Q] is even, so that both

ΣF and ΣE have even cardinality.

Fix and element w ∈ ΣF and let w̃, w̃′ ∈ ΣE be the places above w in E.

Consider the (indefinite) quaternion algebra B over E that is ramified only at

ΣE − {w̃, w̃′}. Then

B ⊗Q R 'M2(R)×M2(R)×H[E:Q]−2.

By the Jacquet-Langlands correspondence, πE transfers to a cuspidal auto-

morphic representation Π of B(AF )× with the same central character, such

that for all finite primes P , aP(Π) = aP(πE).

Consider the Shimura surface SK(C) defined over E (here K is the level

subgroup), which is obtained from B as in section 3.5.3. Take the component

W corresponding to Π in H2(SK) as in section 3.5.1:

W := H2(SK)[Π].

Arguing as for the Hilbert surface case in section 3.5.2, one can write

W = V ⊗ V ′ as ΓE-modules,

where V can be chosen to be the restriction of ΓE of the 2-dimensional rep-

resentation V0 associated to f by Taylor and Blasius-Rogawski. Also, V ′ is

obtained from V by applying the non-trivial automorphism of E/F . As a

result

V ′ ' V0|ΓE
= V, so W = V ⊗2.
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Since W occurs in the cohomology of a smooth projective variety with

good reduction at p, it is crystalline. The comparison isomorphism relating

de Rham and crystalline cohomology allows us to consider a Hodge filtration

Fil◦ on M (recall that M was defined to be the crystalline realization of W ):

M = Fil0(M) ⊃ Fil1(M) ⊃ Fil2(M) ⊃ Fil3(M) = 0,

where Fil1(M) and Fil2(M) are of rank 3 and 1, respectively. (Over C, the

Hodge structure MB has Hodge weight 2, with Hodge numbers h2,0(MB) =

h0,2(MB) = 1, and h1,1(MB) = 2.)

By a theorem of Faltings (see [12], Theorem 5.6), M is admissible, which

is now known to be equivalent to weakly admissible (as a φ-module). This

means that the Newton polygon of every subobject M ′ of M (in the category

of filtered φ-modules) lies on or above its Hodge polygon (also, both polygons

share the same endpoint). Recall the Hodge number tH(M) defined as

tH(M) :=
∑
i∈Z

i · dim Fili(M)/Fili+1(M),

and the Newton number tN(M) defined as

tN(M) := vp(det(φ)),

where vp is the p-adic valuation. Then the condition that M is weakly admis-

sible can be restated as follows:

tN(M ′) ≥ tH(M ′) for any subobject M ′ of M , and tN(M) = tH(M).

Now, assume by contradiction that the polynomial x2 − apx+N(p) has a
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double root α (such that α2 = N(p) = p), then we would get that (Frobp−α)2 =

0. We know (by assumption) that φ is semi-simple on M , which is equivalent

(by [20]) to saying that Frobp is semi-simple on W = V ⊗2. Consequently, ap-

plying a result of Serre ([31]), we see that Frobp is semi-simple on V . Hence,

the identity (Frobp−α)2 = 0 gives that Frobp = α on V . Thus Frobp acts by

α2 on W , implying that φ acts by α2 on M .

The filtration Fil◦ is preserved by φ, so φ also acts by α2 on the rank 1

subobject Fil2(M) ⊂M . Therefore, the Newton number is just

tN(Fil2(M)) =

(
1

2
+

1

2

)
[Ef : Q] = [Ef : Q].

However, since tH(Fil2(M)) = 2[Ef : Q] we obtain that

tH(Fil2(M)) > tN(Fil2(M)),

which contradicts the weak-admissibility condition for the subobject Fil2(M).

In conclusion, ap cannot be extremal.

3.6 The Tate conjectures

As we have seen in Theorem 3.5.1, the non-extremality of the trace ap of

Frobenius at a good prime p of odd degree is implied by the semi-simplicity

of the crystalline Frobenius φ. This leads us to the Tate conjectures that

contain such semi-simplicity statements for Frobp on the étale cohomology,

which correspond by Katz-Messing to φ. In this section we provide a non-

extremality criterion, as a consequence of the Tate conjecture for a product of
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two surfaces over a finite field.

Let X be a smooth projective variety of dimension d over a field k, which

is finitely generated over its prime field. Let

X = X ⊗k k

be the base change of X to the algebraic closure of k. We have a Galois action

of Γk on X via the second factor.

Fix a prime `, different from the characteristic of k. The Galois group

Γk acts on the `-adic cohomology Hj(X,Q`) by a representation ρj. Denote

by Hj(X,Q`(r)) (known as the r-th Tate twist) the representation of Γk on

Hj(X,Q`) defined by ρj ⊗ χr` , where χ` is the `-adic cyclotomic character. A

Tate class on X over k is an element of H2r(X,Q`(r))
Γk .

An algebraic cycle of codimension r ≤ d is an element of the free abelian

group (denoted Zr(X)) generated by the irreducible closed subvarieties of X of

codimension r. By `-adic Poincaré duality, to every algebraic cycle Z ∈ Zr(X)

we can associate (via the class map) a class in H2r(X,Q`(r)) that is invariant

under Γk. Such a cohomology class is said to be algebraic.

One version of the Tate conjecture (sometimes referred to as the weak Tate

conjecture) asserts that every Tate class on X is algebraic, i.e,

• (T1(X, r)) The Q` subspace of H2r(X,Q`(r)) generated by the algebraic

classes is precisely the space H2r(X,Q`(r))
Γk left fixed by the Galois

action.

For our purposes, we will also need a stronger version of the Tate conjecture

that involves the zeta function ζ(X, r) of X over a finite field. Henceforth, we

will assume that k = Fq is a finite field. In this case, the zeta function of X
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over k has the form

ζ(X, s) =
P1(q−s)P3(q−s) . . . P2d−1(q−s)

P0(q−s) . . . P2d(q−s)
,

where Pj(q
−s) is the characteristic polynomial of the geometric Frobenius on

Hj(X,Q`).

The strong Tate conjecture can be stated as follows:

• (T2(X, r)) The order of the pole of ζ(X, s) at s = r is equal to the rank

of the group of numerical equivalence classes of codimension r cycles on

X.

As is to be expected, one knows that T2(X, r) implies T1(X, r) (cf. [32]).

Proposition 3.6.1. Let X̃ be the reduction modulo a good prime p of a com-

pact Shimura surface or of the minimal smooth toroidal compactification of a

Hilbert modular surface as in section 3.5.4. Assume that T2(X̃ × X̃, 2) holds.

Then the polynomial x2 − apx+N(p) has distinct roots.

Proof. An observation of Milne (see [27], Remark 8.6), tells us that the semi-

simplicty of the Frobenius element on Hj(X,Q`(r)) is implied by the strong

Tate conjecture T2(X̃ × X̃, 2). Therefore (since ` is distinct from the char-

actersitic of k) if T2(X̃ × X̃, 2) is true, then the crystalline Frobenius φ is

semi-simple on Hj(X,Q`). It remains to apply Theorem 3.5.1 to get the de-

sired conclusion.

While the semi-simplicity condition follows from T2(X, r), one may find

it easier to approach T1(X, r) instead. If we specialize to case r = 1 (then

Z1(X) is the group of divisors on X) the two conjectures are shown to be

equivalent (e.g., [34], Proposition 9.4). We also remark that T1(X, 1) is known

for Hilbert-Blumenthal surfaces over finite fields (see [21], [22]).
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Blumenthal-Flächen, J. Reine. Angew. Math. 366 (1986), 53-120.

[16] I. Hambleton and R. Lee, Finite Group Actions on P2(C), J. Algebra 116

(1988), no. 1, 227-242.

[17] G. Horrocks and D. Mumford, A rank 2 vector bundle on P4 with 15000

symmetries, Topology 12 (1973), 63-81.

[18] G. Karpilovsky, Group Representations, North-Holland Mathematics

Studies (1992), vol 1, part B, 808-813.



57

[19] G. Karpilovsky, Induced Modules over Group Algebras, North-Holland

Mathematics Studies (1990), 45-48.

[20] N.M. Katz, W. Messing, Some consequnces of the Riemann hypothesis for

varieties over fiite fields, Invent. Math. 23 (1974), 73-77.

[21] A. Langer, On the Tate-conjecture for Hilbert modular surfaces in finite

characteristic, J. reine angew. Math. 570 (2004), 219-228.

[22] A. Langer, Zero-cycles on Hilbert-Blumenthal surfaces, Duke Math. J.

103 (2000), no. 1, 131-163.

[23] K. Magaard, G. Malle, Irreducibility of alternating and symmetric squares,

Manuscripta Math. 95 (1998), 169-180.

[24] K. Magaard, G. Malle and P.H. Tiep, Irreducibility of tensor squares,

symmetric squares and alternating sqaures, Pacific J. Math. 202 (2002),

no. 2, 379-427.

[25] G. Malle, Almost irreducible tensor squares, Comm. Algebra 27 (1999),

no. 3, 1033-1051.

[26] G. Malle and A. E. Zalesskii, Prime power representations of quasi-simple

groups, Arch. Math. 77 (2001), 461-468.

[27] J.S. Milne, Values of zeta functions of varieties over finite fields, Amer.

J. Math. 108 (1986), no.2, 297-360.

[28] V.K. Murty, D. Ramakrishnan, Period relations and the Tate conjecture

for Hilbert modular surfaces, Invent. Math. 89 (1987), 319-345.

[29] D. Ramakrishnan, An exercise concerning the selfdual cusp forms on

GL(3), Indian J. Pure Appl. Math. 45 (2014), no. 5, 777-784.



58

[30] J.P. Serre, Quelques applications du théoremè de densité de Chebotarev,
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