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PREFACE 

 “All cell biologists are condemned to suffer an incurable secret sorrow: the size of the objects of 

their passion.... But those of us enamored of the cell must resign ourselves to the perverse, lonely 

fascination of a human being for things invisible to the naked human eye.”  

- L.L. Larison Cudmore, Opening sentence from The Center of Life: A Natural History of the Cell 

(1977, 1978) 

Growing up in the forests of southern New Hampshire, I always had a fascination for nature and the 

beauty within living things. You can only imagine my surprise and excitement when I first began 

working in developmental biology, and saw the splendor and intricacies of living cells. To me there 

is no greater beauty than seeing a glowing fluorescent image light up a pitch-black room, and taking 

in the wonder of directly being able to see something critical to the life and health of an organism.  

Finding out exactly what makes an organism tick has been both trying and thrilling. The balance is 

so incredibly delicate and something as small as a change of a single base can create havoc and 

even death.  My work has involved studying cell behavior, where cells move, twist, and bend until 

they reach their final shape and position within an organism. It has been an incredible journey 

documenting the many minute inputs necessary for a cell to do its job of creating a healthy, happy 

organism.  Even if I have only found out the tip of the iceberg of what contributes to C. elegans utse 

biology, I am so grateful to have unearthed this information.    

Someone once told me that it is a privilege to be in graduate school because you are basically 

creating knowledge. I am not pompous enough to say that I created knowledge on utse outgrowth 

(if anyone could be given credit for “creating this knowledge” it would the scores of nematodes 

whose uteruses I observed during my Ph.D.). However, I am so happy that my work has established 

this cell as a new model for studying outgrowth and shape change.  There is much to be learned 

about the utse, and I am so excited to see what others discover next.  
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ABSTRACT 

The molecular inputs necessary for cell behavior are vital to our understanding of development and 

disease. Proper cell behavior is necessary for processes ranging from creating one’s face (neural 

crest migration) to spreading cancer from one tissue to another (invasive metastatic cancers).  

Identifying the genes and tissues involved in cell behavior not only increases our understanding of 

biology but also has the potential to create targeted therapies in diseases hallmarked by aberrant cell 

behavior.  

A well-characterized model system is key to determining the molecular and spatial inputs necessary 

for cell behavior. In this work I present the C. elegans uterine seam cell (utse) as an ideal model for 

studying cell outgrowth and shape change. The utse is an H-shaped cell within the hermaphrodite 

uterus that functions in attaching the uterus to the body wall. Over L4 larval stage, the utse grows 

bidirectionally along the anterior-posterior axis, changing from an ellipsoidal shape to an elongated 

H-shape. Spatially, the utse requires the presence of the uterine toroid cells, sex muscles, and the 

anchor cell nucleus in order to properly grow outward. Several gene families are involved in utse 

development, including Trio, Nav, Rab GTPases, Arp2/3, as well as 54 other genes found from a 

candidate RNAi screen.  The utse can be used as a model system for studying metastatic cancer. 

Meprin proteases are involved in promoting invasiveness of metastatic cancers and the meprin-likw 

genes nas-21, nas-22, and toh-1 act similarly within the utse. Studying nas-21 activity has also led 

to the discovery of novel upstream inhibitors and activators as well as targets of nas-21, some of 

which have been characterized to affect meprin activity. This illustrates that the utse can be used as 

an in vivo model for learning more about meprins, as well as various other proteins involved in 

metastasis.  
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CHAPTER 1 

Introduction Part I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2 
1.1 Thesis Overview 
 
During development, cells not only divide, but change their shape and move before reaching their 

final positions within an organism. This process is termed cell behavior, and is controlled by a 

variety of molecular and spatial inputs. Cell behavior is essential for the viability of an organism 

and disease models, including promoting formation of facial structures (neural crest cell migration, 

Le Douarin et al., 2007), forming the Drosophila gut (caudal visceral mesoderm cells, Kadam et al., 

2012), and forming invasive structures in metastatic cancer (van Zijl et al., 2011).  Characterizing 

genetic and tissue interactions not only creates a more thorough understanding of these processes 

but can lead to the creation of targeted therapies in diseases whose pathologies are characterized by 

changes in cell behavior.  

C. elegans is a small free living nematode that has been well characterized for its roles in molecular 

biology.  The cell lineage of C. elegans is stereotypic and well characterized (Brenner 1974; Byerly 

et al., 1976; Sulston et al., 1983) and therefore ideal for studying cell behavior. Specifically in this 

work, I have characterized one cell in the C. elegans uterus, the C. elegans uterine seam cell (utse).   

In Chapter 2, I describe non-neuronal cell outgrowth in C. elegans (Ghosh and Sternberg, in prep 

1), demonstrating that this organism is an ideal model for studying cell behavior. I discuss the 

spatial and molecular inputs necessary for eleven different systems including utse outgrowth, 

anchor cell invasion, sex muscle formation, male tail formation, excretory cell outgrowth, dorsal 

intercalation, ventral enclosure, early elongation, late elongation, muscle arm formation, and head 

mesodermal cell projection formation.  I have also characterized genes that act in outgrowth of 

different tissues, identifying global regulators of cell outgrowth in C. elegans.  

Chapter 3 involves characterizing the utse as a model for studying cell outgrowth (Ghosh and 

Sternberg, 2014). The utse is an H-shaped cell found in the hermaphrodite uterus (Newman et al., 

1996). The utse functions in attaching the uterus to the seam cells of the body wall, and during the 

L4 larval stage, the utse changes from an ellipsoidal shape to an elongated shape by growing 

outward along the anterior-posterior axis (Newman et al., 1996, Ghosh and Sternberg, 2014).  In 

this work, I have used laser ablation experiments to identify spatial inputs necessary for utse 

development. I show that the presence of two cells that line the lumen of the uterus (uterine toroid 1 

and uterine toroid 2), the sex muscles, and the anchor cell of the nucleus are necessary for utse 

development. After determining that these tissues are necessary for mediating utse outgrowth, I 
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performed a candidate RNAi screen against genes that were expressed in these tissues and saw that 

several gene families were involved in utse development. Trio (unc-73), Nav (unc-53), RabGTPases 

(rab-1, rab-5, rab-6.1, rab-10, and rab-11.1), and their downstream factors promote outgrowth. 

Genes that are necessary for promoting anchor cell invasion (fos-1, cdh-3, him-4, mig-10, zmp-1, 

and egl-43) also must remain transcriptionally active for proper utse development. This work also 

presents a role for the novel gene RASEF ortholog rsef-1, which mediates signals from the uterine 

toroids to the utse.  

Chapter 4 shows how the utse can be used as a model for studying genes that are involved in 

metastatic cancer (Ghosh et al., in prep). Meprin metalloproteases are a class of zinc 

metalloproteases upregulated in breast, pancreatic, and colorectal cancers (Matters and Bond, 1999; 

Bond et al., 2005; Dietrich et al., 1996; Minder et al., 2012) and are thought to promote invasive 

activity by degrading components of the extracellular matrix (Köhler et al., 2000; Kruse et al., 

2004).  The two human meprin metalloproteases, MEP1A and MEP1B, contain an astacin domain 

which is a HExxHxxG/NxxH/D zinc binding sequence (Rawlings and Barrett. 1995; Sterchi et al., 

2008). C. elegans contains 40 astacin genes (Park et al., 2010), termed nas genes (nematode 

astacin), and three nas genes, nas-21, nas-22, and nas-26, are involved in utse development (Ghosh 

et al., in prep). RNAi knockdown of these genes results in utse outgrowth defects, and these three 

genes are either expressed in the utse or essential surrounding tissues (uterine toroids and sex 

muscles). Like meprins, nas-21 and nas-26 affect expression of components of the extracellular 

matrix. nas-21 affects levels of laminin (lam-1) and nas-26 affects levels of collagen IV (emb-9). 

nas-21, nas-22, and nas-26 also affect levels of sydecan (sdn-1), a type I transmembrane heparan 

sulfate proteoglycan in the extracellular matrix (Kinnunen et al., 2014) that has not been previously 

associated to be a target of meprins.  Overexpression of nas-21 results in an expansion of the utse 

along the dorsal-ventral axis, and using this phenotype I was able to identify protease inhibitors and 

upstream activators that are acting on nas-21. Our network includes protease inhibitors that have 

been previously characterized to be acting upstream of meprins (cystatin, cpi-1; Hedrich et al., 

2010; Jefferson et al., 2012; Hashmi et al., 2006), as well as protease inhibitors that have previously 

not been characterized to act with meprins (F35B12.4, mec-1).  Therefore, in this work I present the 

utse as a model that can be used to study meprin activity in vivo, since I have recapitulated known 

interactions between meprins and its regulators as well as identified new players in the network.  
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Chapter 5 characterizes a candidate RNAi screen performed against genes that were thought to be 

affecting utse development (Ghosh and Sternberg, in prep 2).  In order to identify the genetic inputs 

necessary for utse development, I created a list of 116 genes, 54 of which were shown to have 

significant utse defects upon RNAi knockdown. I have organized these genes into different 

subcategories, highlighting the diverse biological processes that are required for proper utse 

development. Categories included genes that had been previously characterized to affect neuronal 

guidance, cell adhesion, and nuclear migration, as well as genes that encoded structural components 

and transcription factors. This work indicates the breadth of information that remains to be 

investigated in utse development, and is meant to be a resource for those that plan on studying this 

cell in the future.  

These findings present the utse as a powerful new model system for studying cell behavior. Not 

only is the utse an exciting new developmental system, but it also effectively serves as an in vivo 

model studying mechanisms involved in metastatic cancer. My work has identified the spatial cues 

necessary for utse development, and the molecular interactions necessary for mediating these spatial 

cues, and used the utse to create an interaction network used by genes that promote invasiveness of 

metastatic cancers.  Much is left to be learned from the utse, and I hope that my work is the  first of 

many studies that present this cell an incredible model for understanding cell biology.   
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CHAPTER 2 

Introduction Part 2: An overview of non-neuronal outgrowth in C. elegans 
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2.1 Abstract 

Cell outgrowth is a hallmark of developing cells, as well as certain diseases (i.e., metastatic 

cancers).  Understanding the mechanisms that control cell outgrowth not only adds to our 

knowledge of tissue and organ development, but also can shed light on the pathologies of diseases. 

C. elegans is highly useful for analysis of gene and protein function and has several cell types that 

undergo outgrowth during development. Here we discuss the outgrowth mechanisms used by 

eleven different C. elegans cell types. We will focus specifically on the how the cell grows outward 

and what types of interactions the growing cell makes with its environment.  We will also identify 

gene families that are involved in the outgrowth of each specific cell type.  Our meta analysis 

identified genes that are involved in multiple cell outgrowth systems, defining potiential C. elegans 

master regulators of cell outgrowth.  

2.2 Introduction 

Cell outgrowth is the process in which cells expand outward to change their shape.   This is a 

common behavior that occurs during morphogenesis, during which cells change their shape with the 

eventual goal of forming organs. Examples of normal outgrowth during morphogenesis include cell 

outgrowth in the mouse facial primodia (Yamaguchi et al., 1999), outgrowth of regenerating fins in 

zebrafish (Kujawski 2014), and dramatic cell shape changes in Drosophila cardioblast cells 

(Macabenta et al., 2013).  Cell shape change is also characteristic of certain diseases such as 

endometriosis, which involves the outgrowth of endometrium cells outside the uterus (Baranov et 

al., 2015), and metastatic cancer, which is the spread of tumors from one tissue to another (Nguyen 

et al., 2009). Understanding the mechanisms that control cell outgrowth therefore not only sheds 

light on the genetic inputs that control development, but also provides information on the 

pathologies of certain diseases.  

C. elegans is a small free-living nematode whose cell lineage is stereotypic and well characterized 

(Brenner 1974; Byerly et al., 1976; Sulston et al., 1983).  This model organism is also transparent, 

which makes it a powerful tool to study cell morphology. Though much of C. elegans development 

is composed of cells simply dividing and taking on different fates, certain cell types undergo cell 

outgrowth during morphogenesis. In this review, we wish to describe the mechanisms these cell 

types use to undergo outgrowth. We are specifically focusing on non-neuronal cells because there 
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are numerous neuronal cells that undergo outgrowth, and addressing each neuronal cell type would 

result in content that would encompass its own review. Also, C. elegans neuronal outgrowth has 

already been well characterized (Hobert 2005; Forrester and Garriga 1997; Mehta et al., 2004; 

Wightman et al., 1996; Garriga et al., 1993; Stringham et al., 2002; Ackley 2013). 

We will describe cell outgrowth behavior of the uterine seam cell (utse), the anchor cell (AC), 

excretory cell, sex muscles, male tail, four types of embryonic outgrowth (dorsal intercalation, 

ventral enclosure, early elongation and late elongation), muscle arms, and head mesodermal cells.  

2.3 utse  

The C. elegans uterine seam cell (utse) attaches the uterus to the lateral epithelial seam cells of the 

body wall (Newman et al., 1996). 

The utse lineage begins with the Z1 and Z4 cells that generate the somatic gonad in the beginning of 

the L1 stage (Hubbard and Greenstein, 2000; Kimble and Hirsh, 1979).  These cells divide 

anteriorly (a) and posteriorly (p) to give rise to Z1.ppa , Z4.aap, and Z4.aaa, all of which eventually 

become parts of the ventral uterus or VU cells.   Either Z1.ppp or Z1.aaa will become the anchor 

cell (AC), with the other becoming a VU cell. Both Z1.ppp and Z4.aaa express low levels of the 

Notch family receptor LIN-12 and the Delta family ligand LAG-2; however, once Z1.ppp and 

Z4.aaa decide their fates, the VU cell expresses higher levels of LIN-12 and the AC expresses 

higher levels of LAG-2 (Riddle et al., 1997; Greenwald et al., 1983; Lambie and Kimble, 1991).  

At late L3 stage, six of the VU granddaughter cells are induced via LAG-2-LIN-12 Notch-Delta 

signaling from the AC to become π cells (Newman et al., 1995). After these six π cells are induced, 

they divide to make 12 π-progeny cells (Newman et al., 1996). Four of these 12 π-progeny cells 

become uv1 cells via EGF signaling (Chang et al., 1999) from the vulval VulF cells.  The eight 

π-progeny cells that do not become uv1 will form the utse nuclei as υ (upsilon) cells (Ghosh and 

Sternberg, 2014).  During early L4, the AC has fuses with the υ cells (Newman et al., 1996; Ghosh 

and Sternberg, 2014). This fusion, enabled by the fusogen AFF-1 (Sapir et al., 2007), is essential for 

utse development because the expression of genes found within the anchor cell nucleus is necessary 

for utse outgrowth (Ghosh and Sternberg, 2014). Over the next eight hours after fusion, the utse cell 

body grows bi-directionally along the anterior-posterior axis, and the utse nuclei segregate into two 

groups, migrate along the anterior-posterior axis, and settle at the anterior/posterior edges of the utse 
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cell body (Figure 1; Newman et al., 1996; Ghosh and Sternberg, 2014).  The utse cell body extends 

ahead of its nuclei during development, indicating that separate mechanisms control the movement 

of the cell body and the nuclei (Ghosh and Sternberg 2014).  

During development, the utse needs to mediate interactions between several cells within the C. 

elegans uterus. Four uterine toroids line the lumen of the uterus. They are denoted uterine toroid 1 

to uterine toroid 4, with numbers increasing for cells that are more distal to the vulva (Newman et 

al., 1996). The presence of uterine toroid 1 and uterine toroid 2 is essential for proper utse 

outgrowth because ablation of these cells leads to defects in utse outgrowth (Ghosh and Sternberg, 

2014).  The sex muscles, which lie proximal and distal to the utse or either side of the body wall, are 

also necessary for utse development, because both ablation and knockdown of genes expressed in 

the sex muscles lead to defects in utse development.  

Several gene families are involved in utse development. These include the unc-73/TRIO and its 

interacting factors (rho-1, let-502, unc-13, and unc-64), Rab-like and RabGTPases (rsef-1, rab-1, 

rab-11.1, rab-6.1, rab-10, and rab-5), which are expressed within the uterine toroids, unc-53/NAV, 

which is found within the sex muscles, and the FGF receptor egl-15, as well as genes involved in 

anchor cell invasion (aff-1, fos-1, cdh-3, egl-43, him-4, zmp-1, and mig-10) that act on the utse after 

fusion with the anchor cell nucleus.  

We have also performed a screen against candidate genes involved in cell behavior to identify genes 

that affect utse nuclear migration and cell outgrowth (Ghosh and Sternberg, in prep). From this 

screen, we identified 54 genes that affect utse development: the importins ima-1, ima-2, ima-3, imb-

2, imb-3, the SUN/KASH proteins nud-2, anc-1, unc-83, and unc-84, the nuclear lamin lmn-1, the 

Arp2/3 complex components arx-2 and arx-3, the WAVE/SCAR complex members gex-1/wve-1, 

gex-2, and toca-1, the globin glb-12, the integrins ina-1 and pat-3, vinculin deb-1, paxilin pxl-1, 

beta-G spectrin unc-70, fibulin fbl-1, Wnt cwn-1, the Notch receptor glp-1, the LIM domain 

transcription factors egl-13, lin-11 and ttx-3, the LIM PINCH domain containing genes unc-97 and 

lim-9, orthologs of human GIPC PDZ domain containing 1 protein C35D10.2/gipc-1 and 

f44d12.4/gipc-2, the homolog of isoform 2 of Suppressor of tumorigenicity 7 F11A10.5, the 

forkhead transcription factors lin-31 and daf-16, the Deformed and Sex combs homeodomain 

protein lin-39, the ZFH class homeodomain protein zag-1, the inositol 1,4,5-trisphosphate receptor 

(IP(3)R) itr-1, the NCK-interacting kinase mig-15, the ortholog of the yeast SCC-2 protein pqn-85,  
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the ortholog of human FERM domain containing 6 protein frm-2, the Pax-6 homeodomain protein 

vab-3, the homeobox protein zc123.3/zfh-2, the homolog of AF10  zfp-1, the component of the 

exocyst complex sec-15, the RhoGAP rrc-1, the synaptotagmin dh11.5, the serine/threonine kinase 

sax-1, the ortholog of human bridging integrator 2 amph-1, the RAB-11 homolog  f55c12.1, the 

IgCAM  ncam-1, the L1 CAM sax-7, the microtubule binding protein CRMP unc-33, and  the 

GPCR srsx-18, and RanGAP ran-2 and its guanine nucleotide exchange factor RCC-1 ran-3. 

2.4  Anchor cell  

The anchor cell (AC) undergoes cell shape change when it invades its underlying basement 

membrane to interact with vulval epithelial cells and establish vulval cell fates (Sherwood and 

Sternberg, 2003).   

As mentioned earlier, either Z1.ppp or Z1.aaa will become the AC (with the other becoming a VU 

cell), and once fate has been established by lateral signaling (Sedoux and Greenwald, 1989), the VU 

cell expresses higher levels of LIN-12 and the AC expresses higher levels of LAG-2 (Greenwald et 

al., 1983; Lambie and Kimble, 1991; Sedoux and Greenwald, 1989). During the L3 larval stage, the 

AC extends a process ventrally to mediate a connection with the descendants of the 1° vulval 

precursor cell P6.p (Figure 2; Sherwood and Sternberg, 2003).   Once the P6.p divides so that it 

reaches a two-cell stage (mid L3) (Figure 2B), the basement membrane underneath the AC is 

interrupted, and the basolateral portion of the anchor cell crosses the membrane (Figure 2C). At the 

P6.p four cell stage (mid to late L3), the basement membrane is interrupted, and the AC extends a 

fine cellular process that reaches ventrally between the P6.pap and P6.ppa cells (Figure 2D). This 

invasive structure remains in place as the P6.p granddaughter cells continue to divide and the vulva 

invaginates. By L3 lethargus/early L4, the anchor cell positions itself in the dorsal apex of the vulva 

and has completed the invasion process. The AC then induces surrounding ventral uterine cells to 

take on π cell fate through LAG-2-LIN-12 Notch-Delta, and at mid L4, the AC fuses with the υ 

(upsilon) cells to create the utse cell body (Newman et al., 1995; Ghosh and Sternberg, 2014; Sapir 

et al., 2007).  

The presence of the 1° vulval cells are required for the AC to initiate invasion (Sherwood and 

Sternberg, 2003). The 1° vulval cells are specified via LIN-3 signaling from the AC in late L2 early 

L3 larval stage (Kimble, 1981, Hill and Sternberg, 1992). Without lin-3, all vulval precursor cells 

take on 3° fate and become external epithelial cells (Sulston and White, 1980; Kimble, 1981). lin-3 



 

 

12 
mutants, which have 3° vulval cells instead of 1° vulval cells, do not exhibit AC invasion 

(Sherwood and Sternberg, 2003). Also, when P8.p is ectopically induced by ablating all other vulval 

precursor cells in L2, the AC directs its projections to the distal P8.p cells, indicating that a long-

range cue from the  1° vulval cells induces invasion.  

Several gene families are involved in inducing AC invasion and removing the basement membrane 

underlying the AC. Our lab has identified a pathway involving the c-fos transcription factor 

ortholog fos-1 and its downstream effectors zinc metalloprotease zmp-1, the protocadherin cdh-3, 

the zinc finger protein egl-43, the hemicentin extracellular matrix protein gene him-4, and 

lamillopodin/mig-10 (Sherwood et al., 2005; Hwang et al. 2007; Wang et al., 2014; Rimann and 

Hajnal, 2007). Other genetic interactions/gene families that promote invasion include that between 

E3 ubiquitin ligase substrate-recognition subunit zif-1and cdc-42 (Armenti et al., 2014; Matus et al., 

2010), the netrins with the netrin ligand unc-6 being expressed in the basement membrane and the 

netrin receptor unc-40 in the AC plasma membrane (Ziel et al., 2009; Morrissey et al., 2013; Wang 

et al., 2014), the α/β integrin complex ina-1/pat-3, which targets the netrin receptor unc-40 to the 

plasma membrane of the AC (Ihara et al., 2011; Hagedorn et al., 2009), the transcription factor hlh-

2, which regulates levels of  the cdh-3 and hemicentin him-4 in a separate pathway from fos-1 

(Schindler and Sherwood, 2011), the protein kinase vrk-1 (Klerkx et al., 2009), and the Mid1 

homolog madd-2, which prevents ectopic invasive structures from emanating from the AC (Morf et 

al., 2013).  

 
2.5 Excretory cell  

The excretory cell is the largest cell in C. elegans (Buechner, 2002). The excretory cell originates 

from the AB cell within the embryo, specifically AB plpappaap (Sulston, 1983).  During the 

threefold embryonic stage, this cell grows outward dorsolaterally toward the lateral midline (Figure 

3A-C; Buechner, 2002; McShea et al., 2013). The proximal and distal edges of the cell, known as 

canals, initially grow outward dorsally (Figure 3C), then branch out and extend anteriorly and 

posteriorly (Figure 3D). By the time the worm hatches, the posterior canal has extended outward, 

measuring half the length of the organism. Extension is completed within the L1 larval stage 12-14 

hours after hatch, when the canal spans the entire worm body, from the anterior tip to the tip of the 

tail (Figure 3E; Buechner and Hedgecock, 1992). The canal connects to the hypodermis through 

gap junctions, and once canal extension is completed, the canal grows as the body of the worm 
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grows, growing from approximately 300 mm at L1 to its adult size of 1 mm (McShea et al., 2013). 

As the worm ages, the canal tip can detach from the hypodermis, causing the canal to shorten.  

Since this review focuses on cell outgrowth, we will not examine the luminal formation of the 

excretory cell.  

The tail hypodermis acts in mediating excretory cell outgrowth (Sawa et al., 1996; Buechner 2002). 

Mutations in genes that control tail hypodermis integrity (lin-17 and bli-6) result in exaggerated 

posterior canal growth (Park and Horvitz, 1996).   

Several basement membrane proteins are necessary for proper excretory canal outgrowth. These 

include both α integrins ina-1 and pat-2 and their corresponding β integrin pat-3 (Baum and 

Garriga, 1997; Gettner et al., 1995), the perlecan unc-52 (Rogalski et al., 2001), and the laminins 

epi-1 and lam-1 (Zhu et al., 1999; Hutter et al., 2000). In pat-3 mutants, canals grow approximately 

30% slower than in wild type animals during the L1 and do not reach the ends of the animal. Canals 

continue to grow with the rest of the animal throughout later larval stages, but do not extend further 

along the hypodermis, indicating that separate mechanisms control canal outgrowth and passive 

canal growth as the worm grows. The seam cells may also affect excretory cell outgrowth, since 

knockdown of cdh-3, which is expressed in the seam, generates outgrowth defects (Pettitt et al., 

1996).  

Other genes that are involved in promoting excretory cell outgrowth are the Nck-interacting kinase 

mig-15 (Poinat et al., 2002), NAV/unc-53 (Stringham et al., 2002), which acts with the ADAM unc-

71 (Marcus-Gueret et al., 2012), TRIO/unc-73 (Steven et al., 1998), lamellipodin mig-10 (Manser et 

al., 1997), the C. elegans Enabled/VASP homolog unc-34 (Forrester and Garriga, 1997), and three 

kinesins unc-116, unc-104, and vab-8 (Patel et al., 1993; Otsuka et al., 1991; Wightman et al., 1996) 

The kinesin motor protein vab-8 acts with sax-3/ROBO, slt-1/Slit, and eva-1 in the excretory cell 

(Marcus-Gueret et al., 2012). vab-8 also acts on unc-73b in a parallel pathway to affect excretory 

cell outgrowth. Another gene that acts in multiple pathways in excretory cell outgrowth is abi-1. 

abi-1 acts with both mig-10 and unc-53 to promote outgrowth of the excretory cell by promoting 

branched actin accumulation through activation of the Arp2/3 complex (McShea et al., 2013; 

Schmidt et al., 2009).  

 Netrins (the ligand unc-6 and the receptor unc-5) act as dorsal guidance cues for the canals 

(Hedgecock et al., 1990; Merz et al., 2001; Wang and Wadsworth, 2002). Many of the genes in the 
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above paragraph, as well as lin-17 and bli-6, also affect guidance of neurons, indicating that they 

could be diffusible cues from the basal surface that affect outgrowth of multiple tissues (Buechner, 

2002).  

2.6 Vulval muscles  

During egg-laying, vulval muscles contract to open the vulva and allow eggs to be laid. Vulval 

muscles orginate from the M cell in L1 (Sulston and Horvitz, 1977). The M cell divides to create 

precursors for body wall muscles, coelomocytes, and two sex myoblasts. These sex myoblasts 

migrate anteriorly until they reach the position where the vulva will form. The sex myoblasts then 

divide in L3 larval stage to produce 16 muscle cells. The 16 cells are arranged in four sectors in the 

uterine/vulval area. The two sets of 4 cells that lie proximal to the vulva become vulval muscles 

(vm1 and vm2), and the two sets of 4 cells distal to the vulva become uterine muscles.  Musculature 

takes its final position in L4 and twitches to allow egg laying.   

In L3, the vulval myoblasts (two sets of 4 cells that will become vm1 and vm2) extend processes 

ventrally to attach the vulva to the hypodermis and longitudinally towards the seam cells (Figure 4; 

Sulston and Horvitz, 1977; Stringham et al., 2002). The NAV/unc-53 is necessary for generating 

these longitudinal processes (Stringham et al., 2002). In unc-53 mutants these processes fail to 

form, and muscles attach to myofilaments and take a rounded shape.  

2.7 Male tail   

The male C. elegans is distinguished from the hermaphrodite in a variety of ways, specifically in 

the development of its somatic gonad. The male somatic gonad can be found in the male tail, and 

consists of the fan, the rays, the spicules, the proctodeum, the gubernaculum, and the hook 

(Emmons, 2005).  Cell shape change and outgrowth occur during fan and ray formation, and 

therefore we will be characterizing the development and molecular inputs for these two processes.  

The male rays and fan originate from the lateral epidermal seam cells (Emmons and Sternberg, 

1997).  The three most posterior seam cells, V5, V5 and T, give rise to the ray precursor cells, or 

Rn.p cells (Sulston and White, 1980). These Rn.p cells eventually form nine pairs of sensory rays. 

These rays each consist of a hypodermal cell and two neurons, which allow the rays to function as 

peripheral sensory organs (Baird et al., 1991).  During late L4, the tail tip becomes rounded and 
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retracts anteriorly by losing adhesion with the cuticle, leaving behind a clear fluid in the 

extracellular space (Figure 5B; Sulston and White, 1980; Nguyen et al., 1999). The hypodermal 

cells hyp8-11 fuse together and withdraw from the L4 cuticle, along with other anterior cells 

(Emmons, 2005).  At the start of this process, the ray cells form papillae on the edge of the tail cell 

body (Figure 5C and Figure 5D) , and these papillae eventually become the distal edges of the rays, 

which attach to the fan cuticle through an adherens junction (Figure 5E; Baird et al., 1991; Chow et 

al., 1995). As the fan extends from the cell body, it pulls the papillae with it, allowing the rays to 

extend outward.  

Several genetic inputs are required for the formation of the rays. mab-21  is necessary for 

maintaining cell shape in ray 6. In wild-type males, ray 6 is thicker and more conical than other 

rays, whereas in mab-21 mutants, ray 6 takes on the morphology of other rays. sma-2 and sma-3 are 

necessary for preventing rays 5 and 7 from taking on ray 6 morphology. In sma-2 and sma-3 

mutants, ray 5 and ray 7 take on the thicker ray 6 shape. Also, daf-4, mab-20, mab-21, mab-26, 

sma-2, sma-3, and sma-4 mutants can have rays that are fused together, caused by displacement of 

papillae prior to retraction (Emmons and Sternberg, 1997; Baird et al., 1991; Chow and Emmons, 

1994; Savage et al., 1996; Chow et al., 1995). mab-21 mutants also exhibit an ectopic tenth papillae 

between rays 5 and 7. Also the ram genes (ray morphology abnormal) ram-1, ram-2, and ram-4 

(Emmons, 2005; Baird and Emmons, 1990) affect collagen within the male tail, and mutants of 

these genes have rays with an expanded, lumpy shape. Other genes that affect ray shape include the 

thioredoxin-like protein dpy-11, and the prolyl hydroxylase dpy-18. (Hill et al., 2000; Ko and 

Chow, 2002; Winter and Page, 2000).  The transmembrane protein mab-7 and ray morphology 

abnormal gene ram-5 also mediate communication between the ray cells and the hypodermis 

(Emmons, 2005; Yu et al., 2005).  

Molecular regulatory inputs have also been characterized for male tail retraction. The C2H2 Zn-

finger presumptive transcription factor tlp-1 promotes hyp8-11 anterior retraction (Zhao et al., 

2002). The doublesex-related DM gene dmd-3 is also necessary to trigger retraction during L4 

(Mason et al., 2008).  Oftentimes if defects in retraction are present, ray formation is also affected. 

The RBCC (Ring finger-B box-Coiled coil) protein lin-41 functions with let-7 to regulate male tail 

retraction (Del Rio-Albrechtsen et al., 2006).  Reduced function lin-41 mutants begin retraction in 

L3, and either form disrupted fans or rays or no fans or rays at all. The hox gene egl-5 mediates the 

retraction of cells other than hyp8-11, and in egl-5 mutants, rays and the fan do not form (Chisholm, 
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1991).  The notch homolog let-765/nsh-1 also is necessary for retraction and ray formation; let-765 

reduced function mutants do not form rays or fans (Simms and Baillie, 2010).  rme-8, which is 

necessary for receptor mediated endocytosis, also  plays a role in both retraction and ray and fan 

morphogenesis; RNAi against this gene causes defects in the disruption of these behaviors (Nelson 

et al., 2011).  Nelson et al. 2011 also identified 27 other genes that are involved in mail tail 

retraction:  the ABC-transporter  

 abcx-1 and wht-5, the ADP-Ribosylation Factor  arl-1, the zinc finger and SET domain-containing 

protein blmp-1, the serine/threonine kinases bub-1, the RhoGTPase cdc-42, DNA-replication 

licensing factor cdt-1, TGF-β Receptor daf-4, the GATA transcription factor egl-18, the innexins 

inx-12 and inx-13, the chromosome condensation complex and condensin  mix-1 and smc-4, the 

nuclear hormone receptor nhr-25, the non-muscle myosin nmy-2, Abd-B Homeodomain 

transcription factor nob-1, the nucleoporins npp-3 and npp-6, Abd-B Homeodomain transcription 

factor php-3, the polo-like serine/threonine kinase  plk-1, the eukaryotic-type DNA primase  pri-2, 

the Tau-like microtubule binding protein  ptl-1, the RCC1 domain containing protein  ran-3, the 

calcipressin and negative regulator of calcineurin rcn-1, the DNA-binding replication protein  rpa-

1, the SMAD  sma-3, and  the nuclear export factor xpo-2.  

2.8 Embryonic epidermal cell outgrowth/shape change   

The epidermal cells of C. elegans are generated during the ninth round of embryonic cell divisions, 

at which point the embryo is made up of around 365 cells (Chisholm and Hardin, 2005; Gendreau et 

al., 1994; Page et al., 1997). Epidermal cells originate from four cell types, ABarp, ABpla, ABpra, 

and C. These cells undergo several rounds of division, with the majority of epidermal cells 

localizing to the dorsal region of the embryo. Once terminal divisions are complete, three groups of 

major epidermal cells are generated. These groups are the dorsal epidermal cells, seam epidermal 

cells and ventral epidermal cells. The dorsal and ventral epidermal cells take on sheet-like shape 

and then undergo morphogenetic movements to encase the remaining cells of the embryo. Before 

the embryo can undergo elongation, two morphogenetic movements must occur: dorsal 

intercalation and ventral enclosure (Williams-Masson, 1998). Both dorsal intercalation and ventral 

enclosure require changes in cell shape and cell outgrowth, which is why we have characterized 

them in this review.  After dorsal intercalation and ventral enclosure are complete, the embryo 
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undergoes an elongation, which also involves cell shape change. Different mechanisms are used in 

different phases of elongation, known as early and late elongation.  

2.8.1 Dorsal intercalation 

Dorsal intercalation is the process by which dorsal epidermal cells form a single row across the 

dorsal midline (Sulston et al., 1983; Williams-Masson, 1998; Priess and Hirsh, 1986). During this 

process, dorsal epidermal cells arrange themselves into six rows and change their shape from a 

more rounded shape to a wedged shape (Figure 6A; Williams-Masson, 1998). These cells then 

begin intercalating, with the anterior cells interdigitating first and then continuing down the 

anterior-posterior axis (Figure 6A-B).  The interdigitating cells intercalate by forming basolateral 

protrusions (Figure 6B), which touch neighboring cells and help the cells move towards one another 

(Chisholm and Hardin, 2005; Williams-Mason, 1998; Hardin and Walston, 2004; Heid et al., 2001).  

Molecular inputs controlling the cell shape change event in which rounded cells take on wedge 

shapes have been characterized. The T box transcription factors tbx-8 and tbx-9 are inputs for this 

process, for tbx-8 and tbx-9(RNAi) treated animals do not form this wedge shape and intercalation 

arrests prematurely (Pocock et al., 2004).  Another gene that affects cell shape of dorsal epidermal 

cells is Robo/sax-3, which functions cell autonomously within the dorsal epidermal cells (Ghenea et 

al., 2005).  

Though many sets of genes have been found to be involved in dorsal intercalation, including those 

characterized above, as well as apr-1, wve-1, gex-2, gex-3 arp-2, ced-10, mig-5, frk-1, rib-1 and ten-

1 (Hoier et al., 2000; Soto et al., 2002; Patel et al., 2008; Giuliani et al., 2009; Sawa et al., 2003; 

Walston et al., 2006; Putzke et al., 2005; Kitagawa et al., 2007; Mörck et al., 2010), none have been 

found to promote protrusion formation. Dorsal intercalation and protrusion formation may not be 

related, for in die-1 mutants, protrusions form normally, but intercalation does not occur (Heid et 

al., 2001). Therefore, it may be useful to further analyze genes that have been implicated in dorsal 

intercalation for roles in dorsal protrusion formation.  

2.8.2 Ventral enclosure  

Ventral enclosure involves the ventral epidermal cells moving towards the ventral midline to encase 

underlying cells in an epithelial sheath  (Chisholm and Hardin, 2005). Specifically, the epidermal 
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sheet migrates laterally and ventrally to encase the embryo (Figure 7A-B; Williams-Masson et al., 

1997).  This process commences when two anterior leading cells, known as ventral marginal cells 

(Figure 7A), extend large protrusions towards the ventral midline and then form epithelial junctions 

(Chisholm and Hardin, 2005; Williams-Masson et al., 1997). Once these cells reach the midline, the 

remaining cells, known as ventral pocket cells (Figure 7A), also move towards the midline via 

extending protrusions, eventually encasing the embryo. Presence of ventral marginal cells is 

necessary to mediate the rest of ventral enclosure, for if the marginal cells are ablated, ventral 

enclosure cannot occur (Williams-Masson et al., 1997). Marginal and pocket cell protrusions 

consist of actin filaments at the apical domain, which constrict as the ventral pocket closes.  

The formation of these protrusions is modulated by several molecular cues.  The WAVE complex 

and WASP and Ena/VASP activate the Arp2/3 complex, which enables actin polymerization at the 

leading edge of ventral marginal cells (Soto et al., 2002, Sawa et al., 2003; Withee et al., 2004).  

Knocking down components of each of these complexes, which include unc-34, arx-1, arx-2, arx-3, 

arx-4, arx-5, arx-6, arx-7, gex-2, gex-3, and wsp-1, causes defects in ventral enclosure. The 1,4,5-

inositol trisphosphate receptor (IP3) itr-1 is also necessary for generating filopodia and organizing 

actin at the leading edge of marginal cells (Thomas-Virnig et al., 2004).  Cadherin, α-catenin and β-

catenin, encoded by hmr-1, hmp-1 and hmp-2, respectively, and also known as the CCC complex, 

are necessary for enabling protrusions to make adhesive contacts with the ventral midline (Costa et 

al., 1998; Raich et al., 1999; Pásti and Labouesse, 2014). The receptor tyrosine kinase vab-1 and its 

ligands vab-2, efn-2, and efn-3 properly direct protrusions in both marginal and pocket cells 

(George et al. 1998; Wang et al., 1999; Chin-Sang et al., 1999; Ikegami et al., 2012).  The 

semaphorin mab-20 is necessary for preventing the formation of ectopic protrusions in the ventral 

pocket cells (Roy et al., 2000; Chin-Sang and Chisholm, 2000). The Plexin plx-2 binds with mab-

20, but acts redundantly with mab-20 and vab-1 to generate protrusions in the pocket cells (Ikegami 

et al., 2012; Nakao et al., 2007). phy-1, which encodes the catalytic domain of collagen prolyl 4-

hydroxylase, acts with tenurin, ten-1, to prevent ectopic protrusion formation; in ten-1 phy-1 double 

mutant animals, ventral protrusions were present after ventral enclosure had completed (Topf and 

Chiquet-Ehrismann, 2011). Dishevelled dsh-2 is necessary for mediating the length of the 

protrusions formed by marginal cells, for dsh-2 mutants have marginal cells with longer protrusions 

than normal (King et al., 2009). dsh-2 mutant marginal cell protrusive activity also lags behind 

pocket cell protrusion formation, which prevents ventral enclosure from occurring.  
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Other genes that affect ventral enclosure but not protrustion formation have been characterized.  

These genes have been found to affect migration of epidermal cells and include the APC related 

gene apr-1, as well as rib-1 and rib-2, which are involved in heparan sulfate biosynthesis  (Hoier et 

al., 2000; Kitagawa et al. 2007) 

The kalikrein kal-1 acts with efn-4 to mediate ventral epidermal cell migration (Hudson et al., 

2006). wip-1, which activates WASP, also affects ventral epidermal cell migration, but since wsp-1 

affects protrusion formation, wip-1 may also act in the protrustion formation pathway (Sawa and 

Takenawa, 2006). The Fer-related kinase-1 frk-1 also affects enclosure (Putzke et al., 2005). Actin 

distribution is normal in mutants of the PAF1C complex member ctr-9; however, defects in closure 

are present (Kubota et al., 2014).  The anilin ani-1 is necessary for aligning cells as they come 

together during enclosure (Fotopoulos et al., 2012). The GTPase Arl2 homolog evl-20 is necessary 

for mediating integrity of the hypodermis during ventral enclosure  (Antoshechkin and Han, 2002).  

2.8.3 Early embryonic elongation   

Once ventral enclosure is complete, the hypodermis closes and then elongates through constriction 

of circumferentially aligned actin microfilaments and microtubules (Figure 8; Priess and Hirsh, 

1986). This process changes the embryo from an ellipsoidal shape to an elongated shape (Chisholm 

and Hardin, 2005).  Hypodermal epidermal cells elongate along the anterior posterior axis while 

constricting along the apical axis (Priess and Hirsh, 1986; Chisholm and Hardin, 2005). Prior to 

elongation, actin microfilaments and microtubules arrange themselves circumferentially on the 

apical surfaces of the dorsal and ventral hypodermal cells (Preiess and Hirsh, 1986; Costa et al. 

1997).  As these bundles contract, the internal cells are squeezed so that these cells can elongate 

along the anterior-posterior axis. The lateral epidermal cells strongly contract and act as a “motor” 

for elongation, while the dorsal and ventral epidermal cells act more passively and hold tension in 

the embryo (Wissman et al., 1999).   

Several molecular inputs involved in early embryonic elongation have been characterized. The CCC 

complex, consisting of cadherin (hmr-1), α-catenin (hmp-1) and β-catenin (hmp-2) promotes 

elongation; in fact, hmp-1 and hmp-2 are so named because of the “humpback” phenotype present 

in hmp-1 mutants, which have defective elongation  (Costa et al., 1998; Raich et al., 1999; Pásti and 

Labouesse, 2014). hmr-1, hmp-1, and hmp-2 are necessary for mediating connections between the 

circumferentially arranged actin filaments in the dorsal hypodermis to adherens junctions (Costa et 
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al., 1998).  The claudin-like protein vab-9 is necessary for organization of circumferential actin 

bundles and requires hmr-1 for its proper localization and hmp-1 and hmp-2 to maintain its 

distribution (Simske et al., 2003). Zonula occluden zoo-1 acts with hmr-1 and vab-9 to mediate 

connections between actin and adherens juctions (Lockwood et al., 2008).  Tropomodulin unc-94 

acts with hmp-1 to weaken connections between actin filaments and adherens junctions (Cox-

Paulson et al., 2012), as does the PDZ-domain containing, tight junction-associated protein magi-1 

(Lynch et al., 2012). The catenin homolog jac-1 works with hmp-1 to promote circumferential actin 

filament bundle formation (Pettitt et al., 2003). ajm-1 localizes to a portion of the epidermis that is 

apical to the basal domain of the CCC complex (Köppen et al., 2001). ajm-1 acts with let-413 and 

dlg-1 to maintain junctional integrity in epidermal cells.   

The let-502 mechanism controlling embryonic elongation is very well characterized. The rho 

binding kinase let-502 is necessary for the elongation process and acts antagonistically with the 

myosin phosphatase mel-11 in embryonic elongation (Piekny et al., 2000; Wissmann et al., 1999). 

Loss of function of let-502 reduces elongation, whereas loss of function of mel-11 causes excessive 

constriction of actin, causing hyper contraction; null mutations of either gene suppress the activity 

of the other gene. The serine/threonine-protein kinase mrck-1 acts as an inhibitor of mel-11, which 

inhibits mcl-4 (Gally et al., 2009). The PI3 kinase age-1, the insulin receptor daf-2, and Rho/Rac 

mig-2 function in regulating let-502/mel-11. unc-73 (Trio) acts parallel to let-502 by acting 

upstream of ced-10, which acts on pak-1 (described below) (Piekny et al., 2000; Martin et al., 

2014). The actin microfilament-associated RhoGAP rga-2 acts as an inhibitor of the RhoGTPase 

rho-1, which in turns activates let-502 (Diogon et al., 2007). The p21-activated kinase homolog 

pak-1 phosphorylates the myosin light chain mlc-4 (Gally et al., 2009), which is a target of let-502 

(Shelton et al., 1999) and regulates two non-muscle myosin heavy chains nmy-1 and nmy-2 (Piekny 

et al., 2003).  The CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF) pix-1 acts in 

parallel with fem-2 as an upstream activator of pak-1 (Martin et al, 2014).  The formin fhod-1 is 

necessary for formation of actin bundles and acts with let-502 and mel-11 to regulate mlc-4 and 

nmy-1 and nmy-2 (Vanneste 2013).   

Aside from the CCC and let-502 pathway, many other genes also affect early elongation.  The α-

spectrin spc-1 is necessary for actin organization during elongation (Norman and Moerman, 2002). 

The β spectrin sma-1 mediates the interaction between actin and the apical membrane because in 

sma-1 mutants, actin disassociates from the hypodermal membrane (Praitis et al., 2005). Therefore, 
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these two spectrins act together to organize and stabilize the actin cytoskeleton during elongation. 

Semaphorin mab-20 is also necessary for alignment of the circumferential actin bundles (Roy et al., 

2000). The PAF1C complex member ctr-9 is necessary for microtubule alignment during 

elongation (mutations in ctr9 affect microtubule organization more severely than actin filaments) 

(Kubota et al., 2014).  The hedgehog related gene wrt-5 also affects elongation in the two-fold 

stage, though its affects on elongation (specifically regarding how it affects actin distribution) have 

not been characterized (Hao et al., 2006).  The ARL2 GTPase evl-20 is necessary for mediating 

microtubule activity during elongation, specifically regulating levels of tubulin necessary for 

elongation (Antoshechkin and Han, 2002).   Mutants of the transcription factor hlh-1 also arrest 

during two-fold stage when elongation is occurring, though its specific effect on elongation has not 

been characterized (Chen et al., 1994). Other genes thought to be involved in early elongation are 

the nuclear hormone receptor transcription factor nhr-2 (Sluder et al., 1997), the Fer-related kinase-

1 frk-1 (Putzke et al., 2005), the anilin ani-1 (Fotopoulos et al., 2012), and the ESCRT-III protein 

vps-32  (Michelet et al., 2009). 

2.8.4 Late embryonic elongation  

Elongation continues after the two-fold stage, but uses a different set of mechanisms. During this 

elongation stage, body wall muscles mediate connections with the epidermis (Gotenstein et al., 

2010).  Muscles induce hemidesmosome-containing attachment structures known as fibrous 

organelles to the epidermal and cuticle, and then forces generated via the muscles induce elongation 

(Francis and Waterston, 1991; Hresko et al., 1994).  

The exact mechanism by which these muscles promote cell elongation is unknown (Chisholm and 

Hardin. 2005); however, many molecular inputs for later stage elongation have been characterized.  

These include the peroxidasin pxn-2 (Gotenstein et al., 2010), components of fibrous organelles 

such as the muscle positioning gene mup-4 (Gatewood et al., 1997; Hahn and Labouesse, 2001), the 

fragile muscle attachment gene mua-3 (Plenefisch et al., 2000; Hahn and Labouesse, 2001),  

myotactin let-805  (Hresko et al., 1999; Hahn and Labouesse, 2001), and the HECT domain E3 

ubiquitin ligase eel-1, which acts through let-805 to coordinate fibrous organelle maturation 

(Zahreddine et al., 2010), the intermediate filaments ifb-1 and ifa-3 (Woo et al., 2004), SUMO 

(smo-1), which are involved in regulating ifb-1  (Kaminsky et al., 2009), the plakin vab-10, which is 

necessary for connecting the epidermis to the cuticle (Bosher et al., 2003), tenurin ten-1 and 
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collagen prolyl 4-hydroxylase phy-1, which act together to regulate distribution of emb-9 (collagen 

IV) (Topf and Chiquet-Ehrismann, 2011), the serine-threonine kinase unc-82,  which is necessary 

for M line localization (Hoppe et al., 2010), the ankyrin repeat protein vab-19 (Ding et al., 2003), 

which recruits the signaling adaptor eps-8 to fibrous organelles (Ding et al., 2008), the heparan 

sulfate transporter pst-1 (Bhattacharya et al., 2009), the RNA binding protein mec-8, which is 

involved in alternative splicing for unc-52 (also involved in elongation, see below) (Spike et al., 

2002), the WD40 repeat protein smu-1, which also regulates alternative splicing for unc-52 (Spike 

et al., 2001), daf-18, which also works with mec-8 to regulate alternative splicing for unc-52 

(Suzuki and Han, 2006), the cyclin-dependent kinase cki-1 (Fukuyama et al., 2003), the 

extracellular leucine-rich repeat only (eLRRon) proteins let-4 and sym-1, which are necessary for 

epithelial junction integrity (Mancuso et al., 2012), the Mago nashi homolog mag-1 (Li et al., 2000), 

the nuclear hormone receptor transcription factor nhr-40, which is involved in actin distribution in 

myofilaments (Brozová et al., 2006) and whose loss-of-function phenotypes result in embryonic 

arrest, the actopaxin pat-6, which is necessary for body wall muscle attachment (Lin et al., 2003), 

and unc-45, which controls muscle thick filament assembly (Venolia et al., 1999) 

Components of the basement membrane are necessary for mediating adhesion between the body 

wall muscles and the epidermis during late elongation. These include the collagen emb-9, the F-

spondin spon-1, and perlcan unc-52 (Gupta et al., 1997; Woo et al., 2008; Hresko et al., 1994) 

A class of phenotypes known as Pat (paralyzed, arrested elongation at twofold) has been 

characterized to affect later elongation (Williams and Waterson, 1994).  Loss-of-function of certain 

genes causes this phenotype, and these genes include troponin-c pat-10 (Terami et al., 1999), the α1 

subunit of a putative voltage-activated Ca2+ channel protein egl-19 (Lee et al., 1997), the flightless 

homolog fli-1 (Lu et al., 2008), the α integrin pat-2, the β integrin pat-3, the pleckstrin homology 

domain-containing protein unc-112, the LIM domain-containing protein of the PINCH family unc-

97, the serine/threonine kinase pat-4, actopaxin pat-6 , perlecan unc-52 (Williams and Waterson, 

1994), and the nuclear zinc finger protein  pat-9 (Liu et al., 2012).  

If mutants of a certain gene arrest in two-fold stage, they are thought to have defects in late 

elongation; however, the exact mechanism by which many of these genes affect elongation is not 

known. These genes include the nuclear hormone receptor transcription factor nhr-25 

(Gissendanner and Sluder, 1997), the protein O-fucosyltransferase gene pad-2 (Menzel et al., 2004), 
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the clathrin adaptor ap-1 (Shafaq-Zadah et al., 2012), and the uridine-5’-monophosphate synthase 

umps-1 (Levitte et al., 2010).  

2.9 Muscle arms   

The plasma membrane of body wall muscles extends out protrusions to motor neurons called 

muscle arms in order to make neuromuscular junctions (Figure 9; White et al., 1986). These muscle 

extensions contain a thin stalk from the body wall muscle, and the ends of these protrusions 

bifurcate (Dixon and Roy, 2005). 79 of 95 body wall muscles create extensions, 16 of which extend 

from the neck to the nerve ring; the remaining 63 extend towards the nearest motor neuron on the 

nerve cord. When motor neurons take on aberrant paths, muscle arms extend in the paths of those 

aberrant neurons, indicating that these muscle arms respond to chemoattractant cues from motor 

neurons (Hedgecock et al., 1990). Muscle arms are also thought to direct their extensions towards 

areas containing dense core vesicles. In unc-104 mutants, muscle arms extend towards areas with 

increased localizations of dense core vesicles (Hall and Hedgecock, 1991; Zhou et al., 2001). 

Muscle arms form stereotypically throughout development. L1 larvae have about 1-2 muscle arm 

extensions (Hall and Hedgecock, 1991), L2 have on average 3.4 muscle arms per body wall muscle, 

and adults have 3-5 muscle arms per body wall muscle (Dixon and Roy, 2005). Muscle arms use 

actin to generate protrusions, and knockdown of genes that affect actin (act-1,act-2, act-3) reduces 

muscle arm formation.  

Alexander et al. 2009 performed a screen identifying genes necessary for muscle arm protrusion. 

They found ten genes which are listed as follows: gex-2, madd-2, unc-33, unc-40, unc-51, unc-54, 

unc-60B, unc-73, unc-93, and unc-95. Knockdown of these genes causes a muscle arm extension 

defect, also known as a Mad defect. The cofilin unc-60B specifically affects muscle arm extension 

by regulating actin severing activity (Dixon and Roy, 2005).  Tropomyosin is known to antagonize 

cofilin activity (Bernstein and Bamburg, 1982; Blanchoin et al., 2000; DesMarais et al., 2002; Ono 

and Ono, 2002), and C. elegans tropomyosin lev-11 acts to stabilize actin in muscle arms (Dixon 

and Roy, 2005). Other genes involved in muscle arm extension include adhesion factors such as the 

α integrin pat-2, the integrin linked kinase pat-4, actopaxin pat-6, the laminins lam-1, lam-2, and 

epi-1, and perlecan unc-52 (Dixon et al., 2006). The dense body components unc-97 and unc-98 

(Alexander et al. 2009), as well as components of the WAVE complex gex-3, wve-1 and wsp-1, also 

regulate muscle arm extension. Myosin heavy chain B unc-54 is also necessary for muscle arm 
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formation; loss-of-function results in fewer arms and changes in arm width (Dixon and Roy, 2005). 

The ADAMs ortholog madd-4 and the netrin ligand unc-6 also act with the netrin receptor unc-40 

and its coreceptor eva-1 to form and guide muscle arm extensions (Seetharaman et al., 2011; Chan 

et al, 2014). lin-12 and madd-2 act through unc-40 to affect muscle arm development (Alexander et 

al., 2010; Li et al, 2013).  

The FGF pathway is also involved in forming muscle arm extensions; when let-756(FGF), egl-

15(FGF receptor), sem-5(GRB2) are knocked down, ectopic muscle membrane extensions (EME) 

form (Dixon 2006).   Loss-of-function of other FGF components such as let-60, soc-2, ptp-2, egl-

17, soc-1, and sos-1 also results in EME formation. The BWM-expressed receptor tyrosine 

phosphatase which inhibits egl-15 activity (Kokel et al., 1998), also affects muscle arm extension by 

suppressing the EME phenotype from egl-15 knockdown and by causing the MAD phenotype when 

knocked down on its own (Dixon et al., 2006).  

  2.10 Head mesodermal cells   

The head mesodermal cells are branched cells that lie dorsal to the terminal bulb of the pharynx 

(Figure 10; Sulston et al., 1983; Altun and Hall, 2009). These cells, which originate from hmcR and 

hmcL (head mesodermal cell right and head mesodermal cell left), are the sister cells of Z1 and Z4 

(Sulston et al., 1983).  These cells migrate circumferentially to the dorsal midline, and once they 

reach this position, hmcR undergoes programmed cell death. hmcL then extends processes 

anteriorly and posteriorly along the dorsal and ventral margins of the body wall (Altun and Hall, 

2009). These two branches split at the pharynx and grow adjacent to the terminal bulb of the 

pharynx. The ventral process grows along the anterior loop of the right excretory gland and adjacent 

to the ventral hypodermal ridge. This process also runs adjacent to the body wall muscle and makes 

gap junctions with the body wall muscle (Altun and Hall, 2009; White et al., 1976). The dorsal 

process grows adjacent to the dorsal hypodermal ridge and also makes gap junctions with arms 

from dorsal muscles.  

The homolog of human myotonic dystrophy-associated homeodomain protein Six5 unc-39 is 

involved in regulating the processes formed by head mesodermal cells (Yanowitz et al., 2004). 

When unc-39 is knocked down, ectopic processes form around the nerve ring, and posterior directed 

processes become shorter.  
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Netrins (unc-5, unc-6, and unc-40) affect hmcL cell body positioning but not arm projections 

(Hedgecock et al., 1990).  

2.11 Analysis of Gene Families   

In this work, we have discussed 252 genes involved in 11 different systems (Table 1). We wished to 

determine which genes were acting as master regulators of non-neuronal cell outgrowth in C. 

elegans.  Therefore, we identified genes that control cell outgrowth in multiple tissues (Table 1 and 

Table 2) and found that 54 (Table 2; Figure 11) genes were involved in affecting outgrowth in more 

than one tissue.  

We created a matrix looking at pairwise interactions between different tissues (Table 2). From this 

matrix we saw that four genes were involved in four different tissues; these genes are Trio/unc-73, 

β-integrin/pat-3, the netrin ligand unc-6, and the WAVE complex component gex-2. Each of these 

three genes belongs to families that are also involved in cell outgrowth. unc-73/Trio is a Rho GNEF 

that acts with rho-1 and let-502 (Spencer et al., 2001; Steven et al., 1998) in both the utse (Ghosh 

and Sternberg, 2014) and in early elongation (Piekny et al., 2000; Wissmann et al., 1999) and with 

unc-13 and unc-64 (McMullan et al., 2006) in the utse only. The β-integrin/pat-3 acts with the α 

integrin ina-1, which affects cell outgrowth in the utse, the anchor cell and the excretory cell (Ghosh 

and Sternberg, 2014; Ihara et al., 2011; Baum and Garriga, 1997; Gettner et al., 1995), and the α 

integrin pat-2 in the excretory cell, late elongation, and muscle arms  (Baum and Garriga, 1997; 

Gettner et al., 1995; Williams and Waterson, 1994; Dixon et al., 2006). Netrins are well-

characterized guidance cues, and the netrin receptor unc-40 is involved in regulating outgrowth in 

the anchor cell, ventral enclosure, and muscle arm extension (Ziel et al., 2009; Alexander et al. 

2009; Seetharaman et al., 2011; Chan et al, 2014).  gex-2 is a member of the WAVE/SCAR 

complex necessary for actin initiation, and many components of the WAVE/SCAR complex are 

involved in multiple tissues characterized in this work (as described below). gex-1/wve-1  is 

involved in the utse, dorsal intercalation, and muscle arms (Ghosh and Sternberg, 2014, Soto et al., 

2002; Alexander et al. 2009).  gex-3 is involved in dorsal intercalation, ventral enclosure, and 

muscle arm extension (Soto et al., 2002; Patel et al., 2008; Dixon and Roy, 2005). Therefore, we 

believe that these four master cell outgrowth regulators function in multiple tissues and are 

differentially activated through interaction with other components of their gene families.    
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We also wanted to determine whether there were regulators of cell outgrowth that were specific to 

tissue type. In this work, we characterized two primary groups of tissues: the gonad (utse, anchor 

cell, and sex muscles) and the embryo (dorsal intercalation, ventral enclosure, early elongation, and 

late elongation). We categorized genes that were involved in multiple tissues based on whether they 

affected these two tissues, as well as the number of gonadal and embryonic tissues affected (Figure 

11). By using a colored heat map to assign function in either gonadal or embryonic tissues, we were 

able to categorize genes that act as master regulators in these tissues. Yellow represents a more 

gonadal identity and blue represents a more embryonic identity.  

Genes that exclusively affect gonadal tissues are the genes that regulate anchor cell invasion and 

utse outgrowth (aff-1, fos-1, egl-43, zmp-1, him-4). We also identified genes that affect two gonadal 

tissues and one non-gonadal/non-embryonic tissue, which were cdh-3, ina-1, mig-10, and unc-53. 

Aside from genes that have been found to control anchor cell invasion, we did not identify any 

specific gene or gene family that acted as a master regulator in gonadal outgrowth.  

Conversely, we found 12 genes that act exclusively in embryonic cell outgrowth. Genes involved in 

multiple embryonic outgrowth processes are frk-1, ten-1, apr-1, rib-1, ced-10, ani-1, ctr-9, evl-20, 

hmp-1, hmp-2, hmr-1, and phy-1.  Six of these genes are involved in both ventral enclosure and 

early elongation (ani-1, ctr-9, evl-20, hmp-1, hmp-2, hmr-1). This is not surprising, because these 

two outgrowth processes occur temporally after one another in embryonic development (Chisholm 

and Hardin, 2005).  The CCC complex consists of Cadherin, α-catenin and β-catenin and is encoded 

by hmr-1, hmp-1, and hmp-2 (Costa et al., 1998; Raich et al., 1999; Pásti and Labouesse, 2014).  

From our list of genes that function exclusively in embryonic cell outgrowth, we observed that all 

members of the CCC complex were present. We therefore believe the CCC complex to be a master 

regulator of embryonic outgrowth.    

2.12 Conclusions   

In this chapter, we discussed both the process and mechanisms used by 11 tissues in C. elegans to 

control cell outgrowth. We have identified lineages from which these tissues emerge, as well as 

characterized in detail how these tissues and cells change their shape and grow outward during 

development. We have also characterized the genes that are necessary for mediating this outgrowth 

and shown that several gene families/gene types regulate outgrowth in multiple tissues, including 

WAVE/SCAR, integrins, and netrins.   
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We hope that this work can be used as a resource not only for better understanding cell outgrowth 

but for presenting a broad set of model organisms that can be used for studying cell outgrowth. In 

our previous work studying the mechanisms involved in utse development, we were able to glean 

more information about utse outgrowth by testing genes involved in outgrowth in other tissues. Cell 

outgrowth is a process that is present in a plethora of developing systems, and studying multiple cell 

outgrowth systems can shed light on the specific ways cells change their shape and how genes that 

regulate these behaviors function. Through this work, we hope to present a list of genes that can be 

characterized in other outgrowth systems, as well as other outgrowth systems that can be studied 

when trying to better understand the function of a specific gene.  
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abi-1 Abelson interactor-

1  
   X        

act-1 actin isoform          X  
act-2 actin isoform          X  
act-3 actin isoform          X  
aff-1 fusogen  X X          
age-1 PI3 kinase         X    
ajm-1 apical junction 

molecule 
       X    

amph-1 ortholog of human 
bridging integrator 
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X           

anc-1 homolog to SYNE1 
and SYNE2 
proteins, 
SUN/KASH 
complex member 

        X X  

ani-1 anilin       X X    
ap-1 clathrin adaptor          X   
apr-1 APC related gene       X X     
arl-1 ADP-Ribosylation 

Factor   
    X       

arx-1 Arp 2/3 complex 
component 
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arx-2 Arp 2/3 complex 
component 

X     X X     

arx-3 Arp 2/3 complex 
component 

X      X     

arx-4 Arp 2/3 complex 
component 

      X     

arx-5 Arp 2/3 complex 
component 

      X     

arx-6 Arp 2/3 complex 
component 

      X     

arx-7 Arp 2/3 complex 
component 

      X     

bli-6 collagen     X        
blmp-1 zinc finger and SET 

domain-containing 
protein 

    X       

bub-1 serine/threonine 
kinase 

    X       

C35D10.2/gipc-1 ortholog of human 
GIPC PDZ domain 
containing 1 protein  

X           

cdc-42 RhoGTPase  X   X       
cdh-3 protocadherin  X X  X        
cdt-1 DNA-replication 

licensing factor  
    X       

ced-10 RacGTPase      X  X    
cki-1 cyclin-dependent 

kinase  
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ctr-9 PAF1C complex 
member  

      X X    

cwn-1 Wnt X           
daf-16 forkhead 

transcription factor 
X           

daf-18 lipid phosphatase         X   
daf-2 insulin receptor         X    
daf-4 TGF-β Receptor      X       
dh11.5 synaptotagmin X           
die-1 zinc finger protein       X      
dlg-1 MAGUK protein        X    
dmd-3 doublesex-related 

DM gene 
    X       

dpy-11 thioredoxin-like 
protein  

    X       

dpy-18 prolyl hydroxylase      X       
dsh-2 Disheveled       X     
eel-1 E3 ligase          X   
efn-2 ortholog of human 

ephrin-B3 
      X     

efn-3 GPI-modified 
ephrin 

      X     

egl-13 LIM domain 
transcription factor  

X           

egl-15 FGF receptor          X  
egl-17 FGF-like protein          X  
egl-18 GATA transcription     X       
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egl-19 α1 subunit of a 
putative voltage-
activated Ca2+ 
channel protein 

        X   

egl-43 EVI1 proto-
oncogene 

X X          

egl-5 hox gene      X       
emb-9 collagen IV         X   
epi-1 α-laminin    X      X  
eps-8  cell signaling 

adaptor protein 
        X   

eva-1 Netrin co-receptor    X      X  
evl-20 ARL2 GTPase        X X    
F11A10.5 homolog of isoform 

2 of Suppressor of 
tumorigenicity 7  

X           

f44d12.4/gipc-2 ortholog of human 
GIPC PDZ domain 
containing 1 protein  

X           

f55c12.1 RAB-11 homolog   X           
fbl-1 fibulin X           
fem-2 PP2c phosphatase        X    
fhod-1 formin         X    
fli-1 flightless homolog          X   
fos-1 c-fos transcription 

factor  
X X          

frk-1 Fer-related kinase-1       X X X    
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frm-2 ortholog of human 
FERM domain 
containing 6 protein 

X           

gex-2 WAVE/SCAR 
complex 
component 

X     X X   X  

gex-3 WAVE/SCAR 
complex 
component 

     X X   X  

glb-12 globin X           
glp-1 Notch receptor  X           
him-4 hemicentin X X          
hlh-1 MYOD homologue        X    
hlh-2 Class I basic helix-

loop-helix (bHLH) 
transcription factor, 
ortholog of the 
mammalian E and 
Drosophila 
Daughterless  

 X          

hmp-1 α-catenin        X X    
hmp-2 β-catenin        X X    
hmr-1 cadherin       X X    
ifa-3 intermediate 

filament 
        X   

ifb-1 intermediate 
filament 

        X   
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ima-1 importin X           
ima-2 importin X           
ima-3 importin X           
imb-2 importin X           
imb-3 importin X           
ina-1 α-integrin X X  X        
inx-12 innexin     X       
inx-13 innexin     X       
itr-1 1,4,5-inositol 

trisphosphate 
receptor (IP3)  

X      X     

jac-1 p120 catenin 
homologue 

       X    

kal-1 kalikrein       X     
lam-1 laminin β    X      X  
lam-2 laminin γ          X  
let-4 extracellular 

leucine-rich repeat 
only (eLRRon) 
protein 

        X   

let-413 ERBIN        X    
let-502 Rho-binding 

Ser/Thr kinase 
X       X    

let-60 Ras          X  
let-7 microRNA      X       
let-756 FGF     X     X  
let-805 myotactin         X   
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lev-11  tropomyosin          X  
lim-9 LIM PINCH 

domain 
X           

lin-11 LIM domain 
transcription factor 

X           

lin-12  Notch          X  
lin-17 Frizzled homolog    X        
lin-31 forkhead 

transcription factor 
X           

lin-39 Deformed and Sex 
combs 
homeodomain 
protein  

X           

lin-41 RBCC (Ring 
finger-B box-
Coiled coil) protein 

    X       

lmn-1 nuclear lamin  X           
mab-20 semaphorin     X  X X    
mab-21 MAB-21 ortholog     X       
mab-26 ephrin ligand     X       
mab-7 protein with 

hydrophobic type II 
transmembrane 
region at the N-
terminus, an EGF-
like motif, a ShKT 
motif and a long C-

    X       
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madd-2 homolog of the 
Opitz syndrome 
gene 

 X        X  

madd-4 ADAMs ortholog           X  
mag-1 Mago nashi 

homolog 
        X   

magi-1 PDZ-domain 
containing, tight 
junction-associated 
protein 

       X    

mcl-4 myosin regulatory 
light chain 

       X    

mec-8 RNA binding 
protein  

        X   

mel-11 Rho-binding kinase        X    
mig-10 lamillopodin X X  X        
mig-15 NCK-interacting 

kinase  
X   X        

mig-2 RhoGTPase        X    
mig-5 Dishevelled      X      
mix-1 SMC2 homolog     X       
mrck-1 serine/threonine 

kinase 
       X    

mua-3 ortholog of human 
collagen, type XIV, 
alpha 1  

        X   
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mup-4 muscle positioning 
gene  

        X   

ncam-1 IgCAM X           
nhr-2 nuclear hormone 

receptor 
transcription factor  

       X    

nhr-25 nuclear hormone 
receptor  

    X   X    

nhr-40 nuclear hormone 
receptor 
transcription factor  

        X   

nmy-1 non-muscle myosin        X    
nmy-2 non-muscle myosin     X   X    
nob-1 Abd-B 

Homeodomain 
transcription factor  

    X       

npp-3 nucleoporin     X       
npp-6 nucleoporin     X       
nud-2 SUN/KASH 

complex member 
X           

pad-2 protein O-
fucosyltransferase 

        X   

pak-1 p21-activated 
kinase homolog  

       X    

pat-10 troponin C         X   
pat-2 α-integrin    X     X X  
pat-3 β-integrin X X  X     X   
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pat-4 integrin linked 
kinase  

         X  

pat-6 actopaxin            
pat-9 nuclear zinc finger 

protein   
        X   

php-3 Abd-B 
Homeodomain 
transcription factor  

    X       

phy-1 collagen prolyl 4-
hydroxylase 

      X  X   

pix-1 CDC42/RAC-
specific Guanine-
nucleotide 
Exchange Factor 
(GEF)  

       X    

plk-1 polo-like 
serine/threonine 
kinase 

    X       

pqn-85 ortholog of the 
yeast SCC-2 protein 

X           

pri-2 eukaryotic-type 
DNA primase   

    X       

pst-1 PAPS transporter         X   
ptl-1 Tau-like 

microtubule 
binding protein  

    X       

ptp-2 SH2 domain-          X  
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pxl-1 paxilin X           
pxn-2 peroxidasin         X   
rab-1 RabGTPase X           
rab-10 RabGTPase X           
rab-11.1 RabGTPase X           
rab-5 RabGTPase X           
rab-6.1 RabGTPase X           
ram-1 abnormal RAy 

Morphology  
    X       

ram-2 abnormal RAy 
Morphology  

    X       

ram-4 abnormal RAy 
Morphology  

    X       

ram-5 abnormal RAy 
Morphology  

    X       

ran-2 RanGAP X           
ran-3 RanGAP guanine 

nucleotide 
exchange factor 
RCC-1  

X    X       

rcn-1 negative regulator 
of calcineurin  

    X       

rga-2 RhoGAP        X    
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rho-1 RhoGTPase X       X    
rib-1 homolog of human 

tumor suppressor 
EXT gene 

     X X     

rib-2 ortholog of human 
EXT2 

      X     

rme-8 DNA J domain-
containing protein 

    X       

rpa-1 DNA-binding 
replication protein 

    X       

rrc-1 RhoGAP X           
rsef-1 RASEF ortholog  X           
sax-1 serine/threonine 

kinase  
X           

sax-3 Robo    X  X      
sax-7 L1 CAM  X           
sec-15 exocyst complex  X           
sem-5 GRB2          X  
slt-1 Slit    X        
sma-1 β-spectrin         X    
sma-2 SMAD     X       
sma-3 SMAD     X       
sma-4 SMAD     X       
smo-1 SUMO         X   
smu-1 WD40 repeat 

protein  
        X   

soc-1  multisubstrate          X  
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soc-2 leucine-rich repeat 
protein 

         X  

sos-1  ortholog of Son of 
sevenless 

         X  

spc-1 α-spectrin         X    
spon-1 F-spondin          X   
srsx-18 GPCR X           
sym-1 extracellular 

leucine-rich repeat 
only (eLRRon) 
protein 

        X   

tbx-8  T box transcription 
factor 

     X      

tbx-9  T box transcription 
factor  

     X      

ten-1 tenurin      X X  X   
tlp-1 C2H2 Zn-finger 

presumptive 
transcription factor  

    X       

toca-1 F-BAR protein X           
ttx-3 LIM domain X           
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umps-1 uridine-5’-
monophosphate 
synthase  

        X   

unc-104 kinesin    X        
unc-112 pleckstrin 

homology domain-
containing protein 

        X   

unc-116 kinesin    X        
unc-13 Rho target X           
unc-33 microtubule 

binding protein 
CRMP  

X         X  

unc-34 Enabled/VASP 
homolog 

   X   X     

unc-39  homolog of the 
human myotonic 
dystrophy-
associated 
homeodomain 
protein Six5 

          X 

unc-40 netrin receptor  X        X X 
unc-45 muscle-specific 

protein 
        X   

unc-5 Netrin receptor    X       X 
unc-51 serine/threonine 

protein kinase 
         X  

unc-52 perlecan    X     X X  



 

 

58 
 
 
 

Gene name 

 
 
 
Description  ut

se
 

an
ch

or
 c

el
l 

se
x 

m
us

cl
es

 

ex
cr

et
or

y 
ce

ll 

m
al

e 
ta

il 

do
rs

al
 

in
te

rc
al

at
io

n 

ve
nt

ra
l 

en
cl

os
ur

e 

ea
rl

y 
el

on
ga

tio
n 

 

la
te

 e
lo

ng
at

io
n 

 

m
us

cl
e 

ar
m

s 
 

he
ad

 
m

es
od

er
m

al
 c

el
l 

unc-53 NAV X  X X        
unc-54 muscle myosin 

class II heavy chain 
         X  

unc-6 netrin ligand  X  X      X X 
unc-60B cofilin          X  
unc-64 syntaxin X           
unc-70 beta-G spectrin  X           
unc-71 ADAM protease    X        
unc-73 Trio X   X    X  X  
unc-82 serine/threonine 

kinase  
        X   

unc-83 SUN/KASH 
complex member 

X           

unc-84 SUN/KASH 
complex member 

X           

unc-93 component of a 
multi-protein 
complex containing 
the SUP-9 two-pore 
potassium channel 
and the SUP-10 
transmembrane 
protein 

         X  

unc-94 Tropomodulin        X    
unc-95 LIM domain-

containing protein 
         X  

unc-97 LIM PINCH X        X X  
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unc-98  dense body 
component 

         X  

vab-1 Ephrin receptor 
tyrosine kinase 

      X     

vab-10 plakin         X   
vab-19 ankyrin repeat 

protein 
        X   

vab-2 ephrin       X     
vab-3 Pax-6 

homeodomain 
protein  

X           

vab-8 kinesin    X        
vab-9 claudin        X    
vps-32 ESCRT-III protein         X    
wht-5 ABC-transporter      X       
wip-1 WASP-interacting 

protein homologue  
      X     

wrt-5 hedgehog related 
gene  

       X    

wsp-1 WAVE/SCAR 
complex 
component 

      X   X  

wve-1 WAVE/SCAR 
complex 
component 

X     X    X  

xpo-2 nuclear export     X       
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zag-1 ZFH class 
homeodomain 
protein 

X           

zfh-2 homeobox protein  X           
zfp-1 homolog of AF10   X           
zif-1 E3 ubiquitin ligase 

substrate-
recognition subunit 

 X          

zmp-1 zinc 
metalloprotease  

X X          

zoo-1 Zonula occluden         X    
 
 
Table 1: Table of all genes involved in cell outgrowth and their associated tissues. 

Genes listed with their descriptions as well as the tissues in which they function.  
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utse 

anchor 
cell 

sex 
muscles 

excretory 
cell 

male 
tail  

dorsal 
intercalation  

ventral 
enclosure 

early 
elongation 

late 
elongation 

muscle 
arms  

head 
mesodermal 
cell 

utse   

aff-1, 
cdh-3, 
egl-43, 
fos-1, 
him-4, 
ina-1,  
mig-10, 
pat-3, 
zmp-1 unc-53 

cdh-3, 
ina-1,mig-
15,  mig-
10, pat-3, 
unc-53,  
unc-73 ran-3 

arx-2, gex-2, 
wve-1 

arx-2, arx-
3, gex-2, 
itr-1 

let-502, 
unc-73, 
rho-1 

pat-3, unc-
97 

 gex-2, 
unc-33,  
unc-97, 
wve-1 

unc-40, unc-
73 

anchor cell 

aff-1, 
cdh-
3, 
fos-1, 
egl-
43, 
him-
4,  
ina-1, 
mig-
10, 
pat-3, 
zmp-
1   

 

cdh-3, 
ina-1, 
mig-10, 
pat-3, 
unc-6 

cdc-
42 

   
pat-3 

madd-
2, unc-
6, unc-
40 unc-6 

sex muscles  
unc-
53 

 
  unc-53 
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excretory 
cell 

cdh-
3, 
ina-1, 
mig-
10, 
mig-
15,  
pat-3, 
unc-
53, 
unc-
73 

cdh-3, 
ina-1, 
mig-10, 
pat-3, 
unc-6 unc-53   

 
sax-3 unc-34 unc-73 

pat-2, pat-
3, unc-52 

epi-1, 
eva-1, 
lam-1, 
pat-2, 
unc-6, 
unc-52, 
unc-73 unc-5, unc-6 

male tail  ran-3 cdc-42 
  

  
 

mab-20 
mab-20, 
nmy-2 nhr-25 let-756 

 

dorsal 
intercalation 

arx-
2, 
gex-
2, 
wve-
1 

  
sax-3 

 
  

apr-1, arx-
2, frk-1, 
gex-2, 
gex-3, rib-
1, ten-1 

ced-10, 
frk-1 ten-1 

gex-2, 
gex-3, 
wve-1 

 

ventral 
enclosure 

arx-
2, 
arx-
3,  
gex-
2, itr-
1 

  
unc-34 

mab-
20 

apr-1, arx-2, 
frk-1, gex-2, 
gex-3 ,rib-1, 
ten-1   

ani-1, evl-
10, frk-
1,hmp-1, 
hmp-2, 
hmr-1, 
mab-20, 
ctr-9 

phy-1, ten-
1 

gex-2, 
gex-3, 
wsp-1 

 

early 
elongation 

let-
502, 
unc-
73, 
rho-1 

  
unc-73 

mab-
20, 
nmy-
2 ced-10, frk-1 

ani-1, evl-
10, frk-
1,hmp-1, 
hmp-2, 
hmr-1, 
mab-20, 
ctr-9   

  
unc-73 
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late 
elongation  

pat-3, 
unc-
97 pat-3 

 

pat-2, 
pat-3, 
unc-52 

nhr-
25 ten-1 

ten-1, phy-
1 

 
  

pat-2, 
pat-6, 
unc-52, 
unc-97 

 

muscle arms  

gex-
2, 
wve-
1, 
unc-
33, 
unc-
97 

madd-
2, unc-
6, unc-
40 

 

epi-1, 
eva-1, 
lam-1, 
pat-2, 
unc-52,  
unc-6, 
unc-73 

let-
756 

gex-2, gex-3, 
wve-1 

gex-2, 
gex-3, 
wsp-1 unc-73 

pat-2, pat-
6, unc-52 
unc-97   

unc-6, unc-
40 

head 
mesodermal 
cell  

unc-
73 

unc-6, 
unc-40 

 

unc-5, 
unc-6 

     

unc-6, 
unc-40   

 
 

Table 2: Matrix of pairwise interactions of genes in different tissues 

Rows and colums show which genes are shared between tissues in a pairwise fashion.  
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Figure 1: utse outgrowth over time 

Schematic of utse outgrowth over time (A) Early L4 vulva and uterus. The utse has just formed at 

this stage after the fusion of eight ρ cells and the anchor cell. The cell has an ellipsoidal shape. 

Outlines indicate positions of vulva and uterus. utse is indicated in red. Blue dashed arrows indicate 

direction of outgrowth.  (B) Mid L4 vulva and uterus. utse has begun elongating along the anterior-

posterior axis. Outlines indicate positions of vulva and uterus. utse is indicated in red. (C) L4 

lethargus vulva and uterus. utse has completed its outgrowth, and has taken on an elongated shape 

with the edges of its arms extending along the dorsal/ventral axis. Outlines indicate positions of 

vulva and uterus. utse is indicated in red. 
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Figure 2: Anchor cell invasion  

Schematic anchor cell invasion. Anchor cell shown in red, vulva shown in gray. Basement 

membrane shown in thick line.  (A) Anchor cell at P6.p two cell stage during mid L3. Basement 

membrane (shown in thick line) is intact. Anchor cell is dorsal to the P6.p 1° VPC daughters (two 

circles below). (B) Anchor cell at P6.p four cell stage during mid to late L3.  Anchor cell has 

generated a gap in the basement membrane (see separation between thick lines). Edges of the 

anchor cell are still in contact with the anchor cell.  (C) Anchor cell at P6.p late four cell stage (late 

L3). The anchor cell has begun forming protrusions that will invade the vulva (see dashed green 

arrow).  (D) Anchor cell at P6.p late four cell stage (late L3). The anchor cell has completely 

invaded the vulva, specifically invading between the 1° VPC granddaughters. (E) Anchor cell at 

early L4 stage. The 1◦ VPCs have divided and proximal cells are shown. Vulval invagination has 

occurred and anchor cell will soon fuse with the ρ cells to form the utse. 
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Figure 3: Excretory cell outgrowth 

Schematic of excretory cell outgrowth. Excretory cell in red, outline of worm in black.   (A-D) 

Excretory cell outgrowth during three-fold embryonic stage. (A) Excretory cell at birth, cell has a 

spherical shape.  (B) Cell takes on an ellipsoidal shape as it is preparing to undergo outgrowth. (C) 

Apical and basal edges of the excretory cell begin migrating dorsally. (D) Edges of dorsal 

protrusions bifurcate and begin to grow outward laterally along the anterior posterior axis. (E) 

Completed excretory cell outgrowth (L1). Cell has extended laterally along the anterior posterior 

axis to span the entire length of the worm.  
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Figure 4: Sex muscle outgrowth 

Schematic of sex myoblasts at L3 larval stage (A) Lateral view of L3 vulva. Sex myoblast daughter 

cells (shown in red) extend protrusions ventrally towards the vulva. (B) Top-down view of L3 

vulva. Sex myoblasts are in between the vulval epithelium and the seam cells of the hypodermis. 

Sex myoblasts extend protrusions longitudinally towards the seam cells. 
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Figure 5: Male tail cell shape change and outgrowth 

Schematic of male tail retraction and ray formation from L3 to adulthood. (A) Male tail at L3, 

retraction and ray formation have not occurred and entire cell is composed to tail epithelium. (B) 

Beginning of tale retraction in L4. Light red indicates fluid filled extracellular space previously 

inhabited by tail epithelium. (C) L4 stage. Continuation of retraction in male tail, start of ray 

formation. (D) L4 stage, male tail has finished retracting and rays have all formed. (E) Adult male 

tail. Rays have reached their final shape. Fluid filled extracellular space has taken peloderan shape.  
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Figure 6: Dorsal intercalation 

Schematic of dorsal intercalation.  (A) Dorsal view of embryo undergoing intercalation. 

Intercalating epidermal cells shown in red. Dashed lines indicate cells that have already intercalated.  

Cells that are intercalation are changing from a rounded shape to a more wedge/protrusion like 

shape. (B) Expanded view of intercalating cells. Basolateral protrusions that also which touch 

neighboring cells, and help the intercalating cells move towards one another.   
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Figure 7: Ventral Enclosure 

Schematic of ventral enclosure.  Ventral epidermal cells shown in red, neuroblasts shown in gray 

spheres.  (A) Outgrowth of epidermal cells during ventral enclosure. Ventral marginal cells are 

indicated with blue arrow and pocket cells are indicated with green arrow. (B) Expanded view of 

ventral epidermal cells moving along the neuroblast substratum.  
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Figure 8: Embryonic Elongation  

Schematic of embryonic elongation. Body of worm shown in red. (A) Beginning of embryonic 

elongation. Top image shows the shape of the worm body prior to elongation. Inset below is from 

yellow box. Yellow arrows in inset shows the forces that are mediated by circumferential actin 

bundles within the embryo. (B) Completion of embryonic elongation. Top image shows the shape 

of the worm after completed elongation. Inset below is from yellow box. Yellow arrows in inset 

shows the result of forces that are mediated by circumferential actin within the embryo.  
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Figure 9: Muscle arm extension 

Schematic of muscle arm extension (A) Example of muscle arms extension. Muscle arms have 

formed from the dorsal body wall muscles towards the dorsal nerve cord.   
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Figure 10: Head mesodermal cell 

Schematic of head mesodermal cell. (A) Positioning of head mesodermal cell in adult worm. Head 

mesodermal cell lies dorsomedial to the terminal bulb of the pharynx. It extends out processes that 

split at the pharynx and extend anteriorly and posteriorly along the dorsal and ventral margins of the 

body wall. These processes also lie adjacent to the intestine as well as the excretory gland cell.  
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Figure 11: Gene families figure  

A) Schematic of types of tissues involved. Vertical axis shows number of tissues involved, 

horizontal axis indicates which tissue types genes are involved in. Yellow indicates genes that have 

greater involvement in gonad cell outgrowth and blue indicates genes that have greater involvement 

in embryonic cell outgrowth. By using a colored heat map to assign function in either gonadal or 

embryonic tissues, we were able to categorize genes that act as master regulators in these tissues. 

Yellow represent more gonadal identity and blue represents more of an embryonic identity.  
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CHAPTER 3 

Spatial and molecular cues for cell outgrowth during C. elegans 
uterine development 
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3.1 Abstract  

The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the 

uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this 

synctium undergoes remarkable shape change during development. Using cell ablation experiments, 

we show that three surrounding cell types affect utse development: uterine toroids, the anchor cell, 

and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for 

proper utse development, and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1, and mig-10 

promote utse cell outgrowth.  Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and 

uterine toroid 2 (ut2), mediate proper utse outgrowth, and we show roles in utse development for 

the following uterine toroid localized genes: RASEF ortholog rsef-1 and Trio/unc-73. The SM 

localized gene unc-53/NAV regulates utse cell shape and ablation of sex myoblasts (SMs), which 

generate uterine and vulval muscles, and cause defects in utse morphology. Our results clarify the 

nature of the interactions that exist between utse and surrounding tissue, identify new roles for 

genes involved in cell outgrowth, and present the utse as a new model system for understanding cell 

shape change and, putatively, diseases associated with cell shape change.    

3.2 Introduction  

Understanding the mechanisms necessary for one cell’s behavior can shed light on the genetic 

inputs necessary for a broad range of tissues.  Many growing cells reorganize their cytoskeletons 

and respond to attractive and repulsive cues to reach their final developmental destinations, 

promoting tissue development, as seen with cells in the vertebrate neural crest, the Drosophila 

caudal visceral mesoderm, and neural growth cones (Hall, 2009; Le Douarin and Kalcheim 1999; 

Theveneau and Mayor, 2012; Bronner and Le Douarin, 2011; Kadam et al., 2012; Vitriol and 

Zheng, 2012; Ramón y Cajal, 1890; Gomez and Zheng, 2006).  C. elegans is a useful model for 

understanding these types of cell behavior. For instance, the TLX/tailless ortholog nhr-67 controls 

C. elegans male gonad linker cell migration (Kato and Sternberg, 2009), and is well characterized in 

the developing Drosophila nervous system (Pignoni 1990), and in mouse neural stem cell 

generation (Zhang et al., 2008). Netrin/UNC-6 and its receptor, UNC-40, were also discovered in C. 

elegans (Hedgecock et al., 1997; Hedgecock et al., 1990; Ishii et al., 1992) and are key attractive 

and repulsive cues necessary for growth cone outgrowth. Therefore, characterizing the cell biology 
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of C. elegans tissues has had broader implications in understanding mechanisms of other cell 

systems.  

The Caenorhabditis elegans uterine seam cell (utse) is a syncytium that undergoes a striking 

outgrowth and nuclear migration during its development.  Given the power of genetics in C. 

elegans, we thought that the utse offered an excellent system to study novel molecular mechanisms 

involved in cell outgrowth, cell shape change, and syncytial cell biology.   

Studying cell outgrowth and shape change provides valuable insights for a variety of systems.  

Aside from its role in growth cone migration and metastatic cancers, cell outgrowth and cell shape 

change are also involved in wound healing, through the recruitment of keratinocytes that extend 

lamellipodia towards the wound site (Martin and Leibovich, 2005; Grinnell, 1992; Martin, 1997), as 

well as during TGF-β signaling driven transformation of fibroblast cells to myofibroblasts (which 

form cytoplasmic filamentious apparatuses cells in the presence of the wound) (Gabbiani 2003; 

Gabbiani et al., 1971).  Study of utse outgrowth can provide important information to the regulation 

of these systems.  

The utse is a syncytium formed by the fusion of nine cells. Several syncytial systems exist in 

biology, including embryonic and adult musculature, and vertebrate placenta (Biressi et al., 2007; 

Robertson et al., 1990; Robertson et al., 1993; Cross, 2000).  The fusion events that contribute to the 

creation of these tissues have been well characterized; studying the cell behavior of the utse can 

contribute to understanding the morphogenetic movements that these syncytiums undertake. For 

instance, after fusion of post-mitotic precursor cells that make up the syncytial layer of the placenta, 

the syncytioblast, this syncytial layer expands and flattens to form a layer of tissue between the 

mother and fetus (Cross, 2000). Genetic inputs that control this behavior are not characterized and 

the utse can act as a model to study syncytial movement. Furthermore, abnormal placental 

formation can result in a slew of diseases, including preeclampsia, and therefore information 

contributing to the syncytium regulation can prove vital.  

The utse is also a heterokaryon, since it results from the fusion of two cell types, uterine υ cells and 

the anchor cell. Investigating utse cell biology can contribute to our understanding of heterokaryons, 

which occur broadly in biology. Some examples include their presence in fungi, such as in 

Schizophyllum commune, where genes from two types of nuclei (SC3/SC4) come together to 

interact with one another transcriptionally (Schuurs et al., 1998); their involvement in cell 
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reprogramming (the fusion of embryonic stem cells with somatic cells induces pluripotency (Tada 

et al., 2001)); their promotion of tumor proliferation (through fusion of tumor cells with non-

tumorigenic cells) (Berndt et al., 2013); and their association with multiple sclerosis (fusion of bone 

marrow cells and cerebelluar Purkinje cells in brain tissue of patients with multiple sclerosis) 

(Kemp et al., 2012).  

Due to the unique characteristics of the utse being both a syncytium and a heterokaryon, and 

because its mechanisms for outgrowth are predominantly uncharacterized, we chose to study the 

molecular inputs involved in utse development. In this work, we sought to determine which 

surrounding uterine cells play a role in utse development.  Using laser ablation we identified four 

cell types involved in utse development: the anchor cell (AC), uterine toroid 1 (ut1), uterine toroid 2 

(ut2), and the sex myoblasts (SMs).  We show that genes involved in AC invasion have an 

additional role promoting utse cell outgrowth.  ut1 and ut2 are epithelial cells that are part of the 

uterine lumen, and through a candidate RNAi based screen on genes expressed in these cells, we 

identified two genes that play roles in for utse-ut interactions: RASEF/rsef-1 and Trio/unc-73. The 

SMs form the uterine and vulval muscles that laterally flank the utse, and we show roles for the SM 

localized gene, unc-53/NAV, in utse outgrowth. These results identify both external and internal 

cues necessary for utse development and characterize genes contributing to the production of these 

cues.   

3.3 Materials and Methods  

Strains and genetics: C. elegans were handled as described previously (Brenner, 1974). All strains 

used (listed in supplementary material Table S1) are derivatives of C. elegans wild-type strain (N2 

Bristol).  

RNAi experiments: RNAi was performed by feeding nematodes dsRNA-producing bacteria using 

standard procedures (Timmons et al., 2001) modified as follows. Overnight starter cultures were 

grown with 1 ml LB supplemented with 25 µg/ml carbenicillin and 12.5 µg/ml tetracycline 

inoculated with a bacterial colony containing a plasmid producing dsRNA targeting a gene of 

interest. Starter cultures were diluted 1:80 the next day, using 100 ul of starter culture in 8ml LB 

containing 25 ug/ml carbenicillin. Cultures were grown between 6-8 hours to OD600 ~ 0.5.  6 cm 

Petri plates containing NGM agar that had been dried for at least three days at room temperature 

were prepared by using sterile glass beads to spread 50 µl of 25 mM carbenicillin, and 1 mM IPTG 
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in M9 on each plate. RNAi cultures were then transferred to 1.5 ml microcentrifuge tubes (1 

tube/plate) and then spun at 5000 rpm for 5 minutes. The majority of the supernatant was removed, 

leaving about 50ul of liquid plus bacterial pellet. Pellets were then resuspended in this solution, and 

then spread using sterile glass beads on the NGM agar + carbenicillin + IPTG Petri plates described 

in the preceding step. Plates were grown at room temperature overnight, and, if not used 

immediately, were stored at 4˚C for no more than a week.  On the day of the experiment, plates 

were pipetted with 50 µl of a 1:5 solution of 1M IPTG:M9. Plates were then dried for 10 minutes 

near a Bunsen burner.  Eggs were bleached onto RNAi plates and allowed to hatch and develop. 

Phenotypes were scored at the L4 lethargus stage.  For RNAis used see Table S2.  

Scoring utse phenotypes: Animals were scored using a wide-field epifluorescence microscope at 

young adult or L4 lethargus stage.  Wild-type utse cell body length is between 300-400 µm, and 

distance between wild-type nuclei is between 250-350 µm. Animals were classified as abnormal if 

both the utse cell body and nuclear distance were 50 µm greater or less than that of the wild type 

range (i.e., an animal was still classified as abnormal if its cell body was within the wild-type range 

but its nuclear distance was not.) All abnormal animals in this publication fit within this criteria and 

some exhibit other defects, such as missing arms, abnormal shape, or holes in portions of the 

cytoplasm.   

Transgenics: To make the exc-9::mcherry construct, 20ng/µl of exc-9::mcherry plasmid (pBK162, 

exc-9::mcherry gateway plasmid, from M. Buechner, WBperson81) was injected into unc-119(ed4) 

with an unc-119 rescue construct.  

Ablations: Cell ablation experiments were performed as described (Bargmann and Avery, 1995). 

Dorsal uterine cells and uterine toroid cells were ablated at late L3 (see Figure 2B-B’’’ and Figure 

3A). Anchor cells were ablated at early L4 (see Figure 2D-D’’’ and Figure 4A). Sex myoblasts were 

ablated at L1 (see Figure 9M,O,Q). All ablated worms were scored between late L4 and L4 

lethargus.  

3.4 Results  

3.4.1 Wild-type C. elegans utse behavior  
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The hermaphrodite uterus is composed of several different cell types (Figure 1A). The uterus lies 

dorsal to the vulva, and is derived from the dorsal uterine (DU) and ventral uterine (VU) cell 

lineages (Figure S1A; Newman et al., 1996).  The DU and VU lineages generate several different 

cell types, such as the dorsal uterine cell (du), which makes up the dorsal most portion of the uterus, 

uterine toroid (ut) cells, which line the uterine lumen, and the uterine-vulva (uv) cells, which 

connect the uterus to the vulva (Figure 1A, 1F, 3A and 4A).  

The utse attaches the uterus laterally to the body wall via the seam cells (Figure 1A).  The utse in C. 

elegans mid L4 hermaphrodite is shown in Figure 1B. utse nuclei are marked with egl-13::gfp, 

which marks the υ cells (see below for definition), and cdh-3::PH::mcherry, which uses the 

phospholipase-C plekstrin-homology (PH) domain fused to mCherry to direct expression in the utse 

cell body/plasma membrane (Figure 1D-E; Ihara et al., 2011).  At mid L4 (Figure 1B-1E) the utse is 

undergoing both cell outgrowth and nuclear migration and it will reach its final shape at L4 

lethargus (Figure 10-1R). The ventral view of the utse (Figure 1F) highlights its H-shaped form, 

with the middle of the H lying above the vulval opening, and the two sides mediating a connection 

between the seam cells of the body wall and ut2 (Figure 1F-1J).  

At late L3 stage, six of the VU granddaughter cells are induced via LAG-2-LIN-12 Notch-Delta 

signaling from the AC to become π cells (Figure S1B-C; Newman et al., 1995).  After these six π 

cells are induced they divide to make 12 π-progeny cells (Figure S1C-D; Newman et al., 1996). 

Four of these 12 π-progeny cells become the uv1 via EGF signaling (Figure S1E; Chang et al., 

1999) from the vulval VulF cells; the remaining eight will later fuse with one another and then with 

the AC to form the syncytial cell body of the utse by the mid fourth larval (L4) stage via the 

fusogen AFF-1 (Figure S1F; Figure 1K-N; Sapir et al., 2007). We will henceforth refer to the eight 

π-progeny cells that do not become uv1 and form the utse nuclei as υ (upsilon) cells.  During early 

L4, as visualized in Figure 2B-B’’’, the AC induces surrounding π cells but has not yet fused with 

these cells (since cdh-3::PH::mcherry expression is limited to the AC), and later in L4, as seen in  

Figure 2C’-C’’’, the AC has fused with the π-progeny cells, the υ cells (cdh-3::PH::mcherry has 

spread throughout the entire utse cell body).   

Over the next eight hours the utse cell body grows bi-directionally along the anterior-posterior axis, 

and the utse nuclei segregate into two groups (Figure 2F’’-F’’’), migrate along the anterior posterior 

axis, and settle at the anterior/posterior edges of the utse cell body (Figure 2H-H’’’; Newman et al., 
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1996). The utse cell body extends ahead of its nuclei during development (Figure 2E’’’), indicating 

that separate mechanisms may be controlling these two behaviors; however, we observe defects in 

cell morphology associated with aberrant nuclear positioning (Figure 6). Therefore, both aberrations 

in nuclear migration and cell outgrowth were used to characterize defective utse development (see 

Materials and Methods for specific criteria for scoring phenotypes).    

Two genes have been previously characterized for their roles in proper utse cell elongation and 

nuclear migration: the LIM domain transcription factor lin-11 and the SOX domain transcription 

factor egl-13 (Newman et al., 1999; Hanna-Rose and Han, 1999; Cinar et al. 2003). Both lin-11 and 

egl-13 are involved in AC fusion with the utse, as well as induction of π cell fate, and their role in 

utse cell outgrowth/nuclear migration has been attributed to these behaviors.  We wished to better 

understand the role of the AC in utse development, as well as identify cues from surrounding 

uterine cells acting on the utse.  

3.4.2 Surrounding uterine cells have an effect on utse development 
 

We hypothesized that interactions between the utse and its surrounding tissues would be necessary 

for proper utse development. To this end, we ablated surrounding uterine cells and observed 

subsequent effects on utse development (Figure 3A). utse development was assessed by examining 

υ cell nuclei marked with nuclear-localized GFP driven by an egl-13 promoter, and by examining 

utse cell bodies marked by exc-9::gfp translational fusion reporter. (Figure 3B-3I; Wendy Hanna-

Rose personal communication, Tong and Buechner, 2008).  

Without the presence of egl-38-dependent EGF signal necessary for uv1 cell fate, presumptive uv1 

cells take on υ cells identities and fuse with the naturally occurring υ cells to form a wild-type utse 

with extra nuclei (Chamberlin et al., 1997). cog-3/pnc-1 mutants lack the EGF signal necessary for 

uv1 fate and do not form uv1 cells, and these mutants show no defects in utse cell fate specification 

or morphology (Huang and Hanna-Rose, 2006).  We therefore infer that uv1 cells do not affect utse 

development and chose not to ablate these cells.  

We hypothesized that the du cell could potentially be pushing downward on the utse, causing it to 

stretch outward.  However, du ablation had no effect on utse cell behavior (0%, n=26). Next, we 

tested the effect of the surrounding uterine toroid cells on utse development by ablating each set of 
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uterine toroid cells. Cell ablations were performed at early L4 stage. At this stage the four nuclei 

found within each toroid cell were easily visualized, lumen formation had not occurred (uterine 

toroid lumen formation occurs at mid L4), and utse development had not commenced (Figure 2B-

B’’’, Figure 3A, Newman et. al, 1996). Figure 3A shows the progression of ut1 ablation.  Animals 

were scored at L4 lethargus, approximately 6-8 hours after ablation. Mock ablations with exposure 

to anesthetic used (3mM levamisole) had no effect on utse development (0% defect, n=10; Table 1; 

Figure 3B-C).   Ablations of uterine toroid 1 (ut1) or uterine toroid 2 (ut2) caused defects in utse 

development (Figure 3D-3G, Table 1). 88% percent of ut1-ablated worms (n=26) showed defects in 

nuclear migration (compare Figure 3D to 3B) and had utse cell bodies that were both shorter than 

wild type and missing portions (compare Figure 3E to 3C). ut2 is the second most proximal toroid 

cell to the utse, and is the last toroid cell with which the utse makes contact (Newman et al., 1996). 

91% of ut2 ablated worms showed defects (n= 12, Table 1) including reduced distance between utse 

nuclei in ut2 ablated worms (compare Figure 3F to 3B), and shorter cell bodies containing missing 

portions and vacuoles (compare Figure 3G to 3C). Ablation of the next most distal ut cell, ut3, 

which has no direct contact with the utse, caused no defects in nuclear migration or cell outgrowth 

(Compare Figure 3H-I to Figure 3B-C). We conclude that ut1 and ut2 are involved in utse 

development. 

3.4.3 Internal signals involved in utse development 
 

Since the AC fuses with the utse during early L4 (Figure 2C-C’’’; Sapir et al., 2007) we asked if 

transcription within the AC-derived nucleus was necessary for utse development. We performed the 

cell ablations after mid L4, the stage at which the AC had already induced π cells and fused with the 

υ cell nuclei, and its nucleus could be easily identified due to its position in a unique plane of focus 

relative to other nuclei in the worm (Figure 2D-D’’’, Figure 4A; Félix and Sternberg, 1996). This 

timing of the ablation avoided any secondary effects that could have resulted from earlier ablations 

of the AC. AC nuclear ablation caused defects in utse development (86% abnormal, n=23). utse 

nuclei were clustered together in AC nuclear ablated worms (compare Figure 3B to 4B) and utse 

cell bodies were short and deformed (compare Figure 3C to 4C).  As a control, we ablated υ cell 

nuclei to determine if defects were truly AC nuclei specific or a result of ablating any nucleus in the 

utse. Ablation of υ cell nuclei resulted in wild-type phenotypes (0% defects, n=6; Table 1). Since 

we specifically ablated the AC nucleus after fusion, we also eliminated the possibility that the AC 
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cytoplasm was contributing to utse outgrowth.  The finding that the AC nucleus is necessary for 

utse development suggests that transcription factors expressed in the nucleus are required, as 

addressed below.  

3.4.4 AC fusion is necessary for utse development 
 
To verify if the AC was necessary for utse development, we observed utse development in the 

absence of AC-utse fusion. During early L4, the AC fuses with the utse via the fusogen aff-1 (Sapir 

et al., 2007). aff-1(RNAi) treatment resulted in a clear failure of AC fusion as assayed by the cdh-

3::PH::mcherry; egl-13::gfp marker initially expressed in the AC (Figure 5A-C; Table 2) and 

defective utse cell outgrowth, as assayed by exc-9::gfp (Figure 5D). Even though there is no AC 

fusion in these worms, the υ cell nuclei still migrated outward, albeit at a distance shorter than that 

of wild type (Figure 5C).  

To rule out that these defects did stem from global issues in cell fusion, we examined the function 

of eff-1, which is involved in heterologous fusion events in C. elegans (Podbilewicz et al., 2006).  

Worms treated with eff-1(RNAi) showed a small but statistically significant defect in utse nuclear 

migration (11%, n= 43, P-value 0.0087; Table 2E) and no defects in utse cell outgrowth (0%, n=7; 

Table 2E).  

3.4.5 AC invasion genes act during L4 to affect utse development 
 
During late L3, the AC forms protrusions that span the basement membrane between the uterus and 

the vulva to invade the vulval epithelium (Sherwood and Sternberg, 2003). Because the AC changes 

its shape during protrusion formation, we hypothesized that genes involved in this process can also 

contribute to utse cell shape change. During AC invasion, the c-fos transcription factor ortholog fos-

1 promotes expression the zinc metalloprotease zmp-1, the protocadherin cdh-3, the zinc finger 

protein egl-43, of the hemicentin extracellular matrix protein gene him-4, and lamillopodin/mig-10; 

the activities of these genes induce the AC to form ventrally directed protrusions that breach the 

basement membrane (Figure 6A; Sherwood et al., 2005; Hwang et al. 2007; Wang et al., 2014). 

RNAi against the AC invasion genes resulted in defects in utse development (Table 2E; Figure 6B-

D; 6F-H; 6J-L; 6N-P; 6R-T; 6V-X), supporting our hypothesis that genes involved in AC protrusion 

formation also affect utse development. 
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Each of these genes are expressed within the AC during invasion (Sherwood et al., 2005; Hwang et 

al. 2007; Wang et al., 2014). Since the AC nucleus is necessary for utse development, we asked if 

these genes were transcriptionally active throughout L4 and were present in the utse.  We observed 

that transgene reporters for fos-1, egl-43, zmp-1, cdh-3, and mig-10 were all expressed in the utse at 

L4 lethargus or young adult (Figure 6E, I, M, U), consistent with a role in utse development. mig-10 

is expressed in uterine toroids in L4 (Figure 6Y), and could be acting on the utse via signals from 

the uterine toroids, or internally like the other invasion genes. him-4 encodes the extracellular 

matrix protein hemicentin, which assembles into polymers at areas of cell contact to help mediate 

the connection between the uterus and the hypodermis (Newman et al., 1995; Vogel et al., 2006).  

As it is necessary for mediating cell-cell interactions, and is expressed ventral to the utse (Figure 

6Q), it is not surprising that lack of hemicentin in him-4(RNAi) also results in utse defects even 

though him-4 is not expressed in the utse (Figure 6Q).  

fos-1(RNAi) and egl-43(RNAi) treated worms showed severe defects not only in utse development 

but in somatic gonad development (data not shown). This effect was partially due to their 

involvement in π cell induction (Oommen and Newman, 2007; Rimann and Hajnal, 2007), which 

made nuclear migration difficult to score. The majority of fos-1(RNAi) and egl-43(RNAi) treated 

worms did not form π or υ cells (Table 2E), but those shown in Figure 6 and Table 2E were animals 

in which π and subsequently υ cell induction occurred. Both fos-1 and egl-43 are expressed in the 

utse at late L4 and young adult stages, indicating that they likely also act in the utse, and defective 

phenotypes from RNAi treatment against these genes is not wholly due to lack of π cell production.   

Due to the presence of utse defects upon knockdown of AC invasion genes, as well as expression of 

the invasion genes within and surrounding the utse cell body, we believe to have discovered a new 

role for the AC in uterine development.  

3.4.6 Molecular signals from ut1 and ut2 affect utse development 
 
After determining that the uterine toroid cells (specifically ut1 and ut2) play a role in utse 

development we examined underlying genetic requirements. To this end, we generated a list of 37 

genes expressed in the uterine toroids through a WormBase expression pattern search. We 

performed RNAi against these candidates and screened for defects in utse development (see Table 

2A). Defects resulting from these genes would be significant since their expression (and potentially 
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site of action) in the uterine toroids would bolster our finding that the presence of the uterine 

toroids affect utse development.  

Of the 37 genes, 7 exhibited extremely significant defects in utse development (Table 2A): helicase 

dog-1, the serine carboxypeptidase F41C3.5, the phosphatase gsp-1, the EGF vulval induction gene 

lin-3, the cell fusion annexin nex-1, the divergent Rab GTPase RASEF/rsef-1 (formerly known as 

tag-312), and the GNEF (guanine nucleotide exchange factor) Trio-like protein unc-73 (Youds et 

al., 2007; Saleh et al., 2006; Hristova et al., 2005; Rutledge et al., 2002; Hill and Sternberg, 1992; 

Hwang and Sternberg, 2004; Satoh et al., 2000; Daigle and Creutz, 1999; Shaye and Greenwald, 

2011; Schmidt et al., 2009; Stringham et al., 2002; Wu et al., 2002). We focused on two of these 

genes: rsef-1, due to its uncharacterized nature, and unc-73, due to the high frequency and severity 

of utse defects from RNAi knockdown of this gene (Figure 9A-F). 

rsef-1 is the C. elegans ortholog of RASEF (WormBase 2014), a potent tumor suppressor and lung 

cancer biomarker (Oshita et al., 2013). It is necessary for PLM axon growth and is a known C. 

elegans spermatheca and spermatheca-uterine junction (sujn) marker (Chen et al., 2011).  Exposure 

to rsef-1(RNAi) caused defects both in utse nuclear migration (Figure 7E) as well as cell outgrowth 

(Figure 7F). rsef-1(RNAi) also caused problems in uterine lumen formation (Figure 7D), suggesting 

that the site of action is in the uterine toroids. To examine rsef-1 expression we used a 

transcriptional fusion of rsef-1 (Mounsey et al., 2002). Expression is absent during early and mid L4 

stages, but is present both in the spermatheca and spermathecal-uterine junction at L4 lethargus 

(Figure 7G), and in the uterine toroids at young adult stage (Figure 7H; 7J). We observed 

phenotypic consequences of rsef-1 silencing in the utse/uterine toroids prior to detecting expression 

of the rsef-1::gfp reporter, so we are likely missing some component of its expression. 

3.4.7 Rab GTPases affect utse development 
 
rsef-1 is largely uncharacterized and its upstream and downstream effectors are unknown. Using 

software that computationally predicts interactions between genes (geneorienteer.org; Zhong and 

Sternberg, 2006), we performed an RNAi screen against 14 of the top 15 predicted rsef-1 interactors 

(Table 2B). (RNAi against Y69H2.2 resulted in an absence of UTSE nuclei, data not shown.)  RNAi 

treatment against three genes caused defects in utse development: the transcription factor athp-1, 

and two Rab GTPases, rab-1 and rab-11.1 (Figure 8D-G, 8U-X). athp-1 has been shown to affect 

nuclear migration, potentially through the SUN/KASH pathway (S.G., unpublished observations).  
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RNAi against rab-1 and rab-11.1 resulted in severe defects (Figure 8D-G, 8U-X). rab-1 is 

expressed in several cell types including the uterine toroids (Figure 8B). As rsef-1 encodes a Rab 

family protein, we asked whether other Rab GTPases also affect utse development. Strikingly, of 21 

tested, six Rab GTPases showed defects in utse development (Table 2C; Figure 8D-X). These Rab 

GTPases are involved in several parts of the cell trafficking pathway, including vesicle trafficking 

between the ER and the Golgi (rab-1, rab-6, rab-10), transport to the early endosome (rab-5 and 

rab-10), and transport from the early endosome to the recycling endosome (rab-11.1) (Figure 8C, 

Nishimura and Sasaki, 2008; Chen et al., 1993; Martinez et al., 1994). Since Rab GTPases are 

expressed globally, site of action experiments will be necessary to determine whether these Rab 

proteins exert their effects on utse development by acting in the toroids, the utse, elsewhere, or in 

multiple tissues. 

3.4.8 unc-73 regulates the environment of utse 

unc-73 encodes a Rho GNEF related to the mammalian Trio protein (Steven et al., 1998), which 

regulates cell outgrowth, cell migration, and cytoskeletal rearrangements (Seipel et al., 1999). We 

observed that 82% of unc-73(RNAi) (n= 50) treated worms showed defects such as a thick, 

truncated utse cell bodies (Figure 9B-C), and nuclei that failed to segregate into two groups and 

instead were linearly arranged (Figure 9A,C). 

 We next examined the expression pattern of unc-73 in the uterus using the unc-73 reporters. unc-73 

exists in eight isoforms which are as follows: unc73a, unc-73b, unc-73c1, unc-73c2, unc-73f, unc-

73d1, and unc-73d2) (Steven et al., 2005). Of these different isoforms, combinations of four were 

reported to be expressed in the uterine epithelium at late L4 (unc-73a,b::gfp and unc-73d::gfp) (Ziel 

et al., 2009). unc-73a,b::gfp was expressed in the vulva at early L4 (specifically the vulE and vulF 

cells) and later in the uterine toroid4/spermatheca-uterine junction at mid and late L4 (data not 

shown). The unc-73d::gfp construct drove expression in ut2 in early L4 (Figure 9G), ut1 and ut2 

and the utse at mid L4 (Figure 9H), and in both the uterine toroids and the utse by L4 lethargus 

(Figure 9I). Though unc-73a,b::gfp and unc-73d::gfp are predominantly expressed in the gonad, 

they are also expressed in other tissues, such as the pharynx and certain neurons. This, combined 

with the fact that the expression patterns of unc-73c and unc-73f have not been characterized, leads 

us to note that defects we are seeing from knockdown of unc-73 may also be due to indirect effects 

of unc-73 knockdown in other tissues.  
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We next identified genes downstream of unc-73 that affect utse development. unc-73 encodes a 

guanine nucleotide exchange factor required for activating Rho and Rac GTPases (Steven et al., 

1998). The N-terminal RhoGEF-1 domain activates the Rac family of GTPases (Wu et al., 2002; 

Steven et al., 1998; Kubiseski et al., 2003) whereas the C-terminal RhoGEF-2 domain activates the 

RhoGTPase rho-1 (Spencer et al., 2001). We noted that expression in ut1, ut2 and utse results from 

the unc-73d::GFP reporter. This isoform contains the RhoGEF2 domain (Ziel et al., 2009) 

responsible for activating RHO-1. We tested the C. elegans ortholog of RHO-1, rho-1, and 

observed significant defects in utse development (94% rho-1(RNAi) cause defects, n=17, Table 2D.) 

let-502, a Rho-binding serine-threonine kinase, is a downstream effector of rho-1, but does not have 

an effect on utse development (0% defects, n=10, see Table 3);  however, another downstream 

effector of rho-1, unc-13, may play a role (50% unc-13(RNAi) caused defects, n= 24; Table 2D) 

(Spencer et al., 2001; McMullan et al., 2006).   unc-13 is a target of diacyl glycerol (DAG) 

signaling (Lackner et al., 1999), a pathway downstream of rho-1 necessary for vesicle release.  One 

of unc-13’s downstream effectors, unc-64/syntaxin, also affected utse development (50% unc-

64(RNAi) caused defects, n= 30; Table 2D). Other members of the DAG pathway, such as pkc-1, a 

serine-threonine kinase, also yield utse defects (30%  pkc-1(RNAi) caused defects, n= 30; Table 

2D). (Note RNAi for dgn-1/dystroglycan, another downstream effector, was unavailable and 

therefore not tested.) The data suggests that UNC-73 acts on the utse by activating RHO-1, which 

then activates UNC-13 and potentially induces release of a chemoattractant through vesicle release 

via the DAG pathway. 

3.4.9 The unc-73 interactor, unc-53, affects utse development via the SMs 
 

unc-73 acts together with unc-53/NAV and unc-71 to promote guidance of SMs (uterine and vulval 

muscle progenitor cells) in the absence of the gonad (Branda and Stern, 2000; Chen et al., 1997) 

(Marcus-Gueret et al., 2012; Siddiqui, 1990; Wightman et al., 1997). unc-53 is a cytoskeletal 

binding protein related to the mammalian NAV1 protein (neuronal navigators) (Maes et al., 2002). 

RNAi knockdown of unc-53 resulted in high frequency of defects (73% of unc-53(RNAi) (n= 52)) 

that were phenotypically similar to defects caused by unc-73(RNAi) (Table 2D).  Specifically, unc-

53(RNAi) treated animals exhibit a thick, truncated utse cell body (Figure 9H-I) and nuclei are 

linearly arranged (Figure 9G, I). unc-71(RNAi) had slight utse defects (25%, n=8). Since unc-

73(RNAi) and unc-53(RNAi) exhibit stronger and more penetrant phenotypes, we infer that these 
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two genes work together in utse development. unc-73 and unc-53 also work together without unc-

71 to direct posterior outgrowth of the excretory canal, axonal guidance and outgrowth of PLM 

neurons, and growth cone guidance along the ventral nerve cord (Marcus-Gueret et al., 2012; 

Siddiqui, 1990; Wightman et al., 1997.) 

We determined the unc-53 expression pattern using a reporter containing its full length promoter of 

unc-53 (pABunc-53::gfp) (Stringham et al., 2002). Expression was present in the sex myoblasts 

(SMs )(Figure 6K) as well as the vulval and uterine muscles they generate (Figure 9K, M, O). The 

SMs laterally flank the utse from L3 onwards (Figure 9J,L,N; Sulston and Horvitz, 1977). Since 

unc-53 expression was limited to the SM lineage, we investigated the role of the SMs (and their 

descendants, the uterine and vulval muscles) in utse development via cell ablation. The SMs 

originate from the M cell, and migrate to the uterine region before generating the uterine and vulval 

muscles, also known as sex muscles (Sulston and Horvitz, 1977). We ablated the M cell in the L1 

larval stage (Figure 9P), and then observed the utse at L4. In the absence of the SMs, the utse cell 

body exhibits abnormal morphology and expands beyond its normal position (Figure 9S, T, Table 

1). Defective utse development occurs in the absence of other genes localized to the SMs, such as 

treatment the FGF receptor egl-15(RNAi) (78.9% defect, n = 19), substantiating our hypothesis that 

the SMs play a role in utse development. We conclude that the presence of the SMs or their 

descendants are necessary to mediate signals to the utse.  

3.5 Discussion  
 
Our results identify certain cellular and genetic requirements necessary for proper utse development 

(Figure 10). Using laser cell ablations, we identified four cell types in the environment of the utse 

that affect its development: AC, ut1, ut2, and the SMs. We show that genes involved in AC 

invasion have a secondary role in promoting utse outgrowth. An RNAi screen against two genes 

expressed in the uterine toroids, rsef-1 and unc-73, was necessary for utse development. rsef-1 is a 

divergent Rab GTPase and we found that several Rab GTPases affect utse development, indicating 

that membrane trafficking may play a crucial role. Our results also show that rho-1, unc-13, and 

unc-64 potentially act downstream of unc-73. We also see that unc-53 played a role in utse 

development through the SMs, and that the presence of SMs was necessary to maintain utse 

morphology.  
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3.5.1 Cell fusion and utse development 

This study addressed the extent to which external cells affect the utse, and the role of cell fusion and 

subsequent internal signals on utse development. Transmission of genetic material between cells 

can change cell behavior; for instance, cell fusion between differentiated cells and embryonic stem 

cells can induce pluripotency in the formerly differentiated cell (Tada et al. 2001). Specifically, we 

found that the AC, which fuses with the utse during L4, affects utse development. The AC nucleus 

is necessary for utse development, and the AC invasion genes fos-1, cdh-3, egl-43, him-4, zmp-1, 

and mig-10 promote utse cell outgrowth.  

3.5.2 rsef-1 and external cues in utse development 

Surrounding tissues are known to have an impact on a cell’s behavior and development; for 

instance, C. elegans dorsal muscle cells express slt-1/Slit1 ligand to repel axons that express its 

corresponding receptor sax-3/Robo, and the ventrally expressed unc-6/Netrin ligand attracts axons 

that express its receptor unc-40/DCC/Frazzled (Killeen and Sybingco, 2008). Though we have 

determined that rsef-1 and unc-73 are expressed in the environment of the utse, we do not know the 

cells in which they function to affect utse development. The RASEF ortholog, rsef-1, is detectable 

in the uterine toroids and it could act in the uterine toroids, the utse, or both. 

3.5.3 Rab GTPses and vesicular trafficking in uterine development 

This study addressed the extent to which external cells affect the utse, and the role of cell fusion and 

subsequent internal signals on utse development. Transmission of genetic material between cells 

can change cell behavior; for instance, cell fusion between differentiated cells and embryonic stem 

cells can induce pluripotency in the formerly differentiated cell (Tada et al. 2001). Specifically, we 

found that the AC, which fuses with the utse during L4, affects utse development. The AC nucleus 

is necessary for utse development, and the AC invasion genes fos-1, cdh-3, egl-43, him-4, zmp-1, 

and mig-10 promote utse cell outgrowth.  

rsef-1 is computationally predicted to interact with other Rab GTPases (rab-11.1) (Zhong and 

Sternberg, 2006). We showed that the predicted interactors rab-1 and rab-11.1, and several other 
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Rab GTPases (rab-5, rab-6.2, and rab-10) are required for proper utse development (Figure 6, 

Table 2C). It is striking that we observe defects for multiple Rabs, which has not been the case in 

other C. elegans assays, suggesting that the utse development is sensitive to perturbations in 

membrane trafficking.  

A potential role in the toroids could be that Rab GTPases are active in the uterine toroids and 

traffick cargo between the toroids to the utse. These Rab GTPases might deliver guidance cues to 

the utse that are necessary for development, or might deliver components of the extracellular matrix 

(ECM) to the growing utse. In some C. elegans tissues, Rab GTPase function has been found, but 

the cargo that these GTPases are transporting has not been identified. For instance, rab-6.2 

promotes vesicular transport necessary for grinder formation of C. elegans, yet its cargo is unknown 

(Straud et al., 2013). However, the Rab GTPases could also be transporting components of the 

extracellular matris to the utse. For instance, rab-11.1 has been characterized to deliver cortical 

granules containing chondroitin proteoglycans to the developing embryonic extracellular matrix 

(Sato et al., 2008). Rab GTPases can also transport guidance cues for utse cell outgrowth. Wnts are 

well-known guidance cues for cell and neuronal migration in C. elegans (Zinovyeva et al., 2008; 

Minor et al., 2013).  RAB-7 is required for trafficking proteins that mediate Wnt secretion (Wntless, 

Wls) between the endosome and trans-Golgi network and it affects Wnt protein EGL-20 function 

(Lorenowicz et al., 2013). RAB-10 is involved in trafficking of glutamate receptors (Glodowski et 

al., 2007) and glutamate receptors are necessary for transducing signals for both proper neural cell 

outgrowth (Beraldo et al., 2011) and migrating neural progenitor cells (Castrén et al., 2005).   

3.5.4 Trio, NAV and internal and external cues affecting the utse 

The Trio RhoGNEF unc-73 affects utse development and is expressed in the cell’s environment as 

well as within the utse. Since we see unc-73 expression within the utse, unc-73 could lead to the 

modification of components of the ECM to promote proper utse outgrowth. unc-73 is expressed 

within the Q neuroblasts and promotes protrusion formation within these cells (Dyer et al. 2010) 

through rearrangements of the actin cytoskeleton. unc-73 is also expressed in the uterine toroids, 

and could be involved in the secretion of guidance cues between the uterine toroids and the utse. 

Evidence for this type of function has a precedent in unc-73’s role in growth cone formation, for 

unc-73 increases the ability of slt-1 (slit) and unc-6 (netrin) to influence posterior guidance cues (Hu 

et al., 2011; Watari-Goshima et al., 2007).  
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unc-73 acts with unc-53 and unc-71 to guide SM migration in a gonad-independent  mechanism 

(Branda and Stern, 2000; Chen et al., 1997).  This led us to test unc-53 and discover a new role of 

unc-53 in utse development. Since unc-53 is solely expressed in the SMs, we ablated the SMs to 

determine their role in utse development and saw that they are necessary for maintaining proper utse 

cell shape and size. Since the SMs generate the vulval and uterine muscles that flank the utse 

(Sulston and Horvitz, 1977) we propose that the SMs or their descendants secrete a cue that helps 

maintain utse cell shape. One precedent for SMs providing a cue to surrounding tissues is their role 

in providing sources of Wnt to the vulval precursor cell P7.p (Minor et al. 2013). unc-53 is a 

homolog of the human neuronal navigator genes NAV1, NAV2, and NAV3 (Maes et al., 2002), and 

promotes guidance in muscle, excretory cells, and neurons, albeit in a cell autonomous manner 

(Stringham et al. 2002). Therefore, we propose a new non-autonomous role for unc-53 promoting 

utse outgrowth via the SMs.   

3.5.5 Broad implications of identification of utse genetic inputs 

A variety of cell biological systems and disease models use mechanisms that function in utse 

development. Several of the genes identified, such as unc-73 and unc-53, are key growth cone 

regulators, indicating that the utse could be used as a model to study genes involved in neurite 

outgrowth. RabGTPases are well characterized in several migratory systems, and the number of 

Rabs found in the utse makes it an ideal system for studying these GTPases. 

Since the utse and the synctiotrophoblast layer of the placenta (Cross 2000) are both syncytia, the 

utse can act as a potential model to study morphogenetic movements in this system. Extravillious 

trophoblast (EVT) tissue invades the synctiotrophoblast and RhoA is necessary for migration of 

EVT (Nicola et al., 2008). Here we have shown that rho-1, a homolog of RhoA, is involved in utse 

outgrowth, illustrating the potential to use the utse as a model to study factors involved in placental 

development. Poor placental formation can deplete the fetus of nutrition, causing birth defects, and 

can cause preeclampsia, indicating a need for study of this tissue.  

Metastatic cancers also use several of the mechanisms that function in utse development. The unc-

73 homologue Trio is involved with the migration and invasiveness of glioblastoma cells (Fortin et 

al., 2012) and in breast cancer cell metastasis (Li et al., 2011). Alterations of NAV3, an ortholog of 

unc-53, are characteristic of colorectal cancer cells (Carlsson et al., 2011), and certain Rab GTPases 

are upregulated in ovarian and breast cancer (Cheng et al., 2005). The utse grows outwards in a 
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manner similar to that of metastatic cancer cells (through rearranging its cytoskeleton and changing 

from an ellipsoid to a linear shape.) Therefore, the C. elegans utse may serve as a new model to 

understand the normal function of genes implicated in metastatic cell behavior.  
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Tables  

Table 1: Uterine cell ablations 
Genotype % Defect n P value 
mock ablation 0 10 

 du ablated 0 26 
 UT1 ablated(nuclear)  84.6 13 <0.0001 

UT1 ablated (cell membrane) 92.3 13 <0.0001 
UT1 ablated (total)  88.5 26 <0.0001 
UT2 ablated(nuclear)  85.7 7 <0.0001 
UT2 ablated (cell membrane) 100 5  <0.0001 
UT2 ablated (total)  91.67 12  <0.0001 
UT2 ablated(nuclear)  0 7 

 UT3 ablated (cell membrane) 0 4 
 UT2 ablated (total)  0 11 
 Anchor cell ablated (nuclear) 83.3 18 <0.0001 

Anchor cell ablated (cell membrane) 100 5 <0.0001 
Anchor cell ablated (total) 86.9 23 <0.0001 
Sex Myoblasts 90 10 <0.0001 
υ cell nuclei 0 6 

  

Table 1 

 Uterine toroid 1, uterine toroid 2, anchor cell, and sex myoblasts are necessary for utse 

development.  All phenotypes were scored at L4 lethargus or young adult. P-values were were 

calculated in comparison with wild type cdh-3::mcherry;egl-13::worms using Fisher's exact test. 
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Table 2: RNAis tested on utse 
Genotype % Defect N P-value 
empty vector RNAi 0.97 103 

 A)  genes expressed in the uterine toroids 
C25A1.5(RNAi)  0 20 1 
cdh-4(RNAi) 0 11 1 
ceh-24(RNAi)  8 25 0.1 
ckb-2(RNAi) 0 20 1 
cog-1(RNAi) 9 11  0.18 
dcar-1(RNAi)  14 7 0.12 
dog-1(RNAi) 50 20 <0.0001 
egl-36(RNAi) 0 10 1 
F22G12.5(RNAi) 0 10 1 
F33H2.3(RNAi) 0 10 1 
F41C3.2(RNAi) 30 10 0.002 
F41C3.5(RNAi) 37 46 <0.0001 
gly-2(RNAi)  0 4 1 
gsp-1(RNAi) 38.5 39 <0.0001 
hex-2(RNAi) 0 21 1 
homt-1(RNAi) 0 10 1 
inx-11(RNAi) 0 24 1 
inx-8(RNAi) 0 14 1 
lin-3(RNAi) 37.5 24 <0.0001 
mls-1(RNAi) 0 20 1 
nck-1(RNAi) 0 10 1 
nex-1 (RNAi) 50 28 <0.0001 
nhr-111(RNAi) 0 10 1 
nhx-3(RNAi) 10.5 19  0.06 
osm-9(RNAi) 15.4 13  0.03 
pha-4(RNAi) 0 3 1 
plc-3(RNAi) 0 10 1 
rsef-1(RNAi) 66.7 18 <0.0001 
sca-1(RNAi) 3.7 27 1 
ser-2(RNAi) 21.4 14 0.01 
tag-24(RNAi) 8.3 12 0.2 
tdc-1(RNAi) 0 26 1 
tyr-2(RNAi)  0 25 1 
unc-73(RNAi) 82 50  <0.0001 
unc-94(RNAi) 17.4 23 0.004 
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W01A11.1(RNAi) 12.5 8 0.14 
Y45F10C.2(RNAi) 0 11 1 
B) rasf-1 predicted interactors*** 

! !athp-1(RNAi) 40 20 <0.0001 
cdc-42(RNAi) 0 20 1 
ced-10(RNAi) 0 13 1 
F33A8.4(RNAi) 5.9 17 0.26 
F55G1.13(RNAi) 9.5 21 0.07 
let-502(RNAi) 0 10 1 
let-60(RNAi) 9.1 11 0.18 
rab-1(RNAi) 53 17 <0.0001 
rab-11.1(RNAi) 90.6 32 <0.0001 
rap-1(RNAi) 5 20 0.3 
rap-2(RNAi) 0 10 1 
ras-1(RNAi) 0 9 1 
spt-5(RNAi) 20 20 0.002 
tag-336(RNAi) 0 9 1 
C) RabGTPases 

! !C56E6.2(RNAi) (rab-6 homolog) 0 20 1 
F11A5.3 (RNAi) (rab-2 homolog) 0 14 1 
rab-1 (RNAi) 52.9 17 <0.0001 
rab-10(RNAi) 95.5 22 <0.0001 
rab-11.1(RNAi) 90.6 32 <0.0001 
rab-14(RNAi) 0 27 1 
rab-19(RNAi) 0 9 1 
rab-2(RNAi) 33.3 9 0.001 
rab-21(RNAi)  0 15 1 
rab-28(RNAi) 0 24 1 
rab-30(RNAi) 0 2 1 
rab-3(RNAi) 0 10 1 
rab-33(RNAi) 0 10 1 
rab-35(RNAi) 0 10 1 
rab-37(RNAi) 0 13 1 
rab-39(RNAi) 0 14 1 
rab-5(RNAi) 70.8 24 <0.0001 
rab-6.1(RNAi)  40 20 <0.0001 
rab-6.2(RNAi) 68.2 22 <0.0001 
rab-7(RNAi) 28.6 7 0.01 
rab-8(RNAi) 18.2 11 0.02 
D) unc-73 and unc-53 downstream genes 

!
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cdc-42(RNAi) 0 20 1 
ced-10(RNAi) 0 13 1 
egl-15(RNAi) 79 19 <0.0001 
mig-2(RNAi) 0 10 1 
pkc-1(RNAi) 30 30 <0.0001 
rho-1(RNAi) 94.1 17 <0.0001 
sem-5(RNAi) 16 25 0.0051 
unc-13(RNAi) 50 24 <0.0001 
unc-53(RNAi) 73.1 52 <0.0001 
unc-64(RNAi) 50 30 <0.0001 
unc-71(RNAi) 25 8 0.01 
E) genes involved in Anchor Cell fusion and invasion 

!aff-1(RNAi) 67.9 28 <0.0001 
aff-1(RNAi) cell fusion defective 100 11 <0.0001 
cdh-3(RNAi) 38.5 26 <0.0001 
eff-1(RNAi) 11.1 43 0.01 
eff-1(RNAi) cell outgrowth 0 7 1 
egl-43(RNAi) 100 29*** <0.0001 
fos-1(RNAi) 100 15** <0.0001 
him-4(RNAi) 42.9 49 <0.0001 
mig-10(RNAi) 86.7 15 <0.0001 
zmp-1(RNAi) 62.5 24 <0.0001 

* genes in this section have gene orienteer scores that designate computational interaction between 

rsef-1  

**38 additional worms were scored but had no pi cell nuclei  

***52 additional worms were scored but had no pi cell nuclei 

Table 2 

Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to empty vector 

(RNAi) using Fisher's exact test. 
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Figures 

 

Figure 1 Wild-type utse development  
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Figure 1 Wild-type utse development  

(A) Lateral schematic of a mid L4 uterus. (B-E) utse development at mid L4. (B) mid L4 somatic 

gonad; utse is shown underneath red asterisk. (C) υ cell nuclei (hereafter referred to as utse nuclei) 

shown with egl-13::gfp. D) utse cell body marked with cdh-3::mcherry. (E) merge of C-D.  (F) 

Ventral schematic of L4 lethargus uterus.  (G-J) Ventral view of young adult uterus. (G) young 

adult somatic gonad. (H) utse nuclei (υ cell nuclei) marked with lin-11::gfp. (I) cell body marked 

with exc-9::mcherry. (J) merge of H-I. (K-R) utse nuclei marked with egl-13::gfp and cell body 

marked with exc-9::mcherry.  (K-N) utse development at early L4, here nuclei. (L,N) are clustered 

together and the cell body (M,N)  has an ellipsoid shape. (O-R) utse development at L4 lethargus 

(O); here the cell body (Q,R) has elongated in an anterior-posterior manner and nuclei (P,R) have 

migrated to distal tips of utse.  Scale bar, 100µm. 
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Figure 2 utse development from L3 to young adult  

Sections (A) through (I) are in chronological order from earliest (L3) to latest (young adult). Each 

section includes a Nomarski image, expression of the cdh-3::mCherry marker in the cytoplasm of 

the AC and later the utse, expression of the egl-13::gfp marker in the nuclei of the υ cells and later 

the utse cell, and a merge of mCherry and gfp expression. Nuclei are marked with egl-13::gfp and 

cdh-3:: mcherry egl-13::gfp egl-13::gfp;cdh-3::mcherryL3   

early L4  

mid L4  

L4 lethargus

young adult

A A’ A’’ A’’’

B B’ B’’ B’’’

C C’ C’’ C’’’

D D’ D’’ D’’’

E E’ E’’ E’’’

F F’ F’’ F’’’

G G’ G’’ G’’’

H H’ H’’ H’’’

I I’ I’’ I’’’
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cell body is marked with cdh-3::mcherry. 10 worms were scored for each stage, and most 

representative image is shown. (A-A’’’) L3, AC invasion, pi cells have not been specified. (B-B’’’) 

Early L4, pi cells are specified by the anchor cell.  (C-C’’’) fusion between υ cell nuclei an anchor 

cell. (D-D’’’). Mid L4, cell body outgrowth has commenced, nuclei are rearranging and have begun 

migrating slightly.  (E-G’’’) Cell body outgrowth continues, with outgrowth occurring at a faster 

rate than nuclear migration. (H-H’’’) L4 lethargus, nuclear migration, and cell outgrowth have 

completed, and the utse has taken its final shape.  (I-I’’’) Young adult, utse cell body will maintain 

this shape until egg-laying occurs. Scale bar, 100µm. 
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Figure 3 Uterine toroid ablations. 

(A) Schematic of early L4 uterus. Lightning bolt indicates ablation of ut1 and borderless cells 

indicate cell death. (B) Completed nuclear migration in mock ablation worm (nuclei marked with 

egl-13::gfp). (C) Completed utse cell outgrowth in mock ablated worm (cell body marked with exc-

9::gfp). (D-E) ut1 ablated worms. (D) Shorter nuclear migration. (E) Short and perforated cell 

body. (F-G) ut2 ablated worms. (F) Shorter nuclear migration. (G) Short and perforated cell body 

(see asterisks). (H-I) ut3 ablated worms (H) Nuclei distance in ut3 ablated worms is comparable to 

wild-type, C. (I) utse cell body in ut3 ablated worm looks similar to wild-type, (E) Scale bar, 

100µm. 
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Figure 4 AC ablations 

(A) Schematic of mid L4 uterus. Lightning bolt indicates point at which AC nucleus was 

ablated. (B-C) Images of worms with anchor cell ablated. (B) Nuclei are clustered 

together, migration has not occurred. (C) Cell body has not undergone cell outgrowth. 

Scale bar, 100µm. 
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Figure 5 AC fusion and its role in utse development 

(A-C) utse cell body is marked with cdh-3::mcherry and utse nuclei are marked with egl-13::gfp. 

(A-D) aff-1(RNAi) treated worms (A,C) shorter nuclear migration, cartoon in F and C indicate wild-

type nuclear spacing.  (B,C) AC has not fused with υ cells in aff-1 (RNAi) treated worms; however, 

nuclear migration has continued, though at a shorter distance comparable to wild-type. (D) Shorter 

utse cell body (marked with exc-9::gfp) upon treatment with aff-1(RNAi). Scale bar, 100µm. 

 

 

 

 

 

 

 

 

 

 

 

aff-1(RNAI) exc-9::gfp 

DA B C

aff-1(RNAi) egl-13::gfp aff-1(RNAi) cdh-3::mcherry
aff-1(RNAi) egl-13::gfp;cdh-

3::mcherry
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Figure 6 AC invasion genes effects on utse development 

(A) Schematic of AC invasion genes. (B-D, F-H, J-L, N-P, R-T, V-X) utse cell body is marked 

with cdh-3::mcherry and nuclei are marked with egl-13::gfp. (F,N,R) Cartoons show wild-type utse 

nuclei positions. (B-D) fos-1(RNAi) treated worms. (B,D) When π cells were induced, nuclei 

clustered and ceased migrating. (C,D) Cell body is misshaped. (E) fos-1a expression pattern, 
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expressed in areas near the utse cell body at young adult (dashed lines show borders of expression).  

(F-H) cdh-3(RNAi) treated worms. (F, H) Shorter nuclear migration. (G,H) Cell body is misshapen 

and shorter. (I) cdh-3 expression pattern, cdh-3::mcherry is expressed throughout the utse cell body. 

(J-L) egl-43(RNAi) treated worms. (J, L) υ cell is boxed, limited υ cell formation. (K,L) Cell body 

is misshapen. (M) egl-43 expression pattern. Faint expression in area around utse at L4 lethargus 

(dashed lines show borders of expression).   (N-P) him-4(RNAi) treated worms. (N,P) Shorter 

nuclear migration. (O,P) Shorter cell body. (R) him-4 expression pattern, expression in the 

basement membrane underneath utse. (R-T) zmp-1(RNAi) treated worms. (R,T) Shorter nuclear 

migration. (S,T) Shorter cell body. (U) zmp-1 expression pattern, expression at late L4, localizes to 

υ cell nuclei. (V-X) mig-10(RNAi) treated worms. (V,X) Misplaced and lower number of υ nuclei. 

(W-X) Shorter and misshapen cell body. (Y) mig-10 expression pattern. mig-10 localizes to utse 

(see dashed border) and uterine toroids (see arrow). Scale bar, 100µm. 
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Figure 7 rsef-1 in utse development 

(A-F) utse cell body marked with exc-9::gfp and nuclei marked with lin-11::gfp. (A-C) Wild-type 

utse development. (A) Wild-type L4 lethargus. (B) Wild-type nuclear distance. (C) Wild-type cell 

shape. (D-F) rsef-1(RNAi) treated worms. (D) Problems in lumen formation in toroids (see 

asterisks). (E) Reduced nuclear migration. (F) Reduced cell outgrowth. (G-J) rsef-1::gfp 

expression. (G) rsef-1 is expressed in the spermatheca at L4 lethargus. (H) rsef-1 is expressed in the 

uterine toroids at young adult. Scale bar, 100µm. 
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Figure 8 RabGTPases in utse development 

(A,B) rab-1 expression patterns at L4 lethargus in the uterine toroids. (C) Schematic of 

RabGTPases involved in utse development. (D-G) utse cell body is marked by cdh-3::mcherry and 

utse nuclei is marked by egl-13::gfp. rab-1(RNAi) treated worms (note rab-1(RNAi) treated worms 

grew three times slower than wild type, worms were staged based on vulval morphology and size). 

(D) stage for E-G.  Uterine toroid lumen formation has not occurred (see red asterisk). (E, G) Cell 

body is misshapen and no outgrowth has occurred. (F,G) Nuclei have not migrated. (H-X) utse cell 
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body marked with exc-9::gfp and utse nuclei are marked with lin-11::gfp. (I,M,R) Dashed red 

cartoon indicates wild-type utse shape  (H-K) rab-5 (RNAi) treated worms. (H, J) Stages for I and 

K were taken, respectively. Note, in J, lumen formation has not occurred (see red asterisk) and part 

of utse has detached (see yellow asterisks).  (I) Cell body missing sections. (K) Nuclei are faint (see 

red box). (L-O) rab-6.2 (RNAi) treated worms. (L, N) Stages for M and O, respectively. (M) Cell 

body is misshapen. (O) Shorter nuclear migration, nuclei contained in red box. (P-T) rab-10 (RNAi) 

treated worms. (P, S) Stages for R and T, respectively. Note, in S, problems in lumen formation are 

present (see red asterisk).  (R) Cell body is misshapen. (T) Nuclei are clustered. (U-X) rab-11.1 

(RNAi) treated worms. (U,W) Stages for V and X, respectively. Bleb formed in cell membrane in U 

and defective lumen formation are present in W (see red asterisks). (V) Cell body is shorter and 

missing parts. (X) Shorter nuclear migration. Scale bar, 100µm. 
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Figure 9 unc-73, unc-53 and SMs in utse development 

(A-C; G-I) utse cell body marked with cdh-3::mcherry and nuclei marked with egl-13::gfp. (A-C) 

unc-73(RNAi) treated worms. (B, C) Nuclei have not segregated into two groups or migrated. (B, 

C) Cell body is thick and misshapen.  (D-F) unc-73d::gfp pattern. (D) Expression in early L4, white 

dashed lines indicate ut2 expression. (E) Expression in mid L4, white dashed lines show ut1 and ut2 

expression and yellow dashed lines show utse expression. (F) Expression in L4 lethargus worms, 

yellow dashed lines show utse expression. (G-I) unc-53(RNAi) treated worms. (G, I) Nuclei are 

arranged linearly (similar to utse nuclei in unc-73(RNAi) treated worms), and have defective 

migration. (H,I) Cell body is thick and misshapen also similar to unc-73(RNAi) treated worms. (J, 

L, N) Schematics showing different stages of sex myoblast (SM) development. (K, M, O) pABunc-

53::gfp expression pattern. (J) Sex myoblast position at early L4. (K) unc-53 expression in sex 

myoblasts.  (L) Lateral view of sex muscles in young adult. (M) unc-53 expression in sex muscles 

(vulval muscles shown, uterine muscle expression in separate plane, not shown). (N) Ventral view 

of sex muscles in young adult. (O) unc-53 expression in sex muscles.  (P) Schematic of M cell (SM 

precursor) ablation at L1. (Q-T) utse cell body marked with cdh-3::mcherry and nuclei marked with 

egl-13::gfp. (Q-R) Wild-type utse development. (Q) Mid L4 utse, vertical dashed line shows widest 



 

 

118 
point of utse. (R) L4 lethargus utse, horizontal dashed line shows wild-type length. (S) Mid L4 utse 

in M cell ablated worm. utse is wider (see vertical dashed line at widest point). (T) Late L4 utse in 

M cell ablated worm, utse is longer (see horizontal dashed line for comparison to wild-type length).  

Scale bar, 100µm. 
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Figure 10 Mechanisms involved in utse development 

(A) Schematic of different factors influencing utse development at mid L4.  ut1 and ut2 are 

expressing unc-73, rsef-1, RabGTPases, and sex muscles are expressing unc-53, which together 

influence utse outgrowth exteriorly. AC invasion genes are directing outgrowth internally. 

Downstream factors are shown in box insets.  
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Figure S1: utse lineage  

(A) L1 larval stage, ventral uterus is composed one anchor cell (AC) precursor (Z1.ppp or Z1.aaa) 

shown in red, and three remaining ventral uterine (VU) cells (from Z1.ppp, Z1.ppa , Z4.aap, and 

Z4.aaa). (B) L3, VU cells divided twice to produce 12 VU granddaughter cells, and AC has taken 
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its fate. (C) Late L3, AC induces surrounding VU granddaughter cells to π cell fate (shown in light 

green) via lin-12/lag-2 Notch-Delta signaling, remaining dark green cells show ρ cells which will 

eventually comprise the uterine toroid cells. (D) π cells divide to form 12 π daughter cells. (E) 

Vulval VulF cells induce 4 π daughter cells to take on uv1 (uterine-vulval 1) (lime green cells) fate, 

and the remaining 8 π cells take on υ cell fate (yellow cells). (F) Early L4, υ cells fuse together to 

form the utse syncytium, and the AC fuses with this syncytium. (G) L4 lethargus, hermaphrodite 

uterus with utse that had undergone full cell outgrowth. 
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CHAPTER 4 

An ECM protease/inhibitor network regulates cell outgrowth 
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4.1 Abstract 

Meprin metalloproteases have been characterized for their roles in metastatic cancer but have thus 

far been primarily studied in vitro. We have used the C. elegans uterine seam cell (utse) as a model 

to study meprin activity in vivo. Three meprin-like genes, nas-21, nas-22, and toh-1, exhibit high 

degrees of sequence similarity with the zinc metalloprotease active sites of human meprin gene 

MEP1A and MEP1B, and are necessary for proper utse outgrowth. Using nas-21 gain-of-function 

phenotypes, we have identified four genes that act as protease inhibitors upstream of nas-21; two of 

these genes are known meprin protease inhibitors (cpi-1 and srp-2) and two are novel protease 

inhibitors (F35B12.4 and mec-1). nas-21 and toh-1 act on the C. elegans extracellular matrix in a 

similar manner to that of meprins, through controlling levels of collagen IV (emb-9) and laminin 

(lam-1). nas-21, nas-22, and nas-26 control levels of a syndecan, an ECM protein target that has not 

yet been shown to interact with meprins.  Our results present a new model for studying meprin 

activity, by identifying novel regulators and targets for meprin-like proteins. 

4.2 Introduction 

Metastasis is the major cause of death from cancer (WHO Cancer, 2014). Determining the 

underlying mechanisms that tumors use to invade other tissues can provide valuable information in 

stopping metastasis. Specifically, targeted drugs can be developed against molecular factors that are 

responsible for metastatic behaviors.  For instance, autocrine motility factor (AMF) induces 

tumorigenicity, and causes cell detachment from the primary tumor site through promoting cell 

motility (Iiizumi et al., 2008; Liotta et al., 1986).  This leads to an increase in metastasis in 

colorectal, lung, kidney, breast, and gastrointestinal carcinomas (Baumann et al., 1990; Filella et al., 

1991; Patel et al., 1995; Dobashi et al., 2006; Tsutsumi et al., 2002; Yanagawa et al., 2004; 

Funasaka et al., 2007). Treatments have been developed against AMF, including carbohydrate 

phosphate inhibitors such as E4P, D- mannose-6-phosphate, and 5-phospho-D-arabinonate (5PAA), 

which block both AMF enzymatic activity and AMF-induced cell motility (Tanaka et al., 2002; Sun 

at al., 1999). Another treatment involves the use of antibodies against AMF  (Talukder et al., 2000), 

which partially block HRG-induced invasiveness of human breast cancer MCF-7 cells.  Therefore, 

identifying characteristics of metastatic cancers can yield effective treatments against this disease.  
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Metastasis occurs in several different stages, which include local invasion, intravasation (the entry 

of tumor cells into the bloodstream), circulation through the bloodstream, extravasation (the exit of 

tumor cells from capillary beds into the parenchyma of an organ), and colonization (Nguyen et al., 

2009). Tumors initially begin by initiating genetic mutations that provide unlimited proliferative 

potential. These mutant cells tolerate cell division defects and an unstable genome, maintain 

progenitor-like phenotypes, and support other cell-autonomous functions that generate 

oncogenically transformed cells (Hanahan and Weinberg, 2000).  However, in order to become 

metastatic, these tumors need to take on the additional ability to spread and proliferate in other 

tissues.  This involves entering circulation, exiting circulation, and then infiltrating other organs. A 

subset of genes, known as metastasis initiation genes, promotes these invasive activities by inducing 

cell motility, epithelial to mesenchymal transition (EMT) and extracellular matrix (ECM) 

degradation (Chiang and Massagué, 2008).  

Genes that encode proteases are a major type of metastasis initiation gene. In metastasis, proteases 

degrade components of the ECM so that tumor cells can breach barriers that exist between tissues. 

Several types of proteases are involved in degrading the ECM, including cathepsins, trypsins, 

threonine proteases, and matrix metalloproteases (Rakashanda et al., 2012).  We are interested in 

studying the role of one family of zinc metalloproteases: the meprins.   Meprins are a class of 

metalloproteases that are exclusively expressed in vertebrates and exist as two subunits: meprin α 

and meprin β (Sterchi et al., 2008).  Meprins contribute to metastatic activity (Matters and Bond, 

1999; Bond et al., 2005; Dietrich et al., 1996; Minder et al., 2012). Meprin β is upregulated in 

breast, pancreatic, and colon carcinoma cell lines (Matters and Bond, 1999; Bond et al., 2005; 

Dietrich et al., 1996) and meprin α is expressed in three fold higher levels in metastatic colorectal 

cancer cells versus nonmetastatic cells (Minder et al., 2012). In vitro studies have shown that 

meprins cleave components of the ECM including laminin-1, laminin-5 (Köhler et al., 2000), 

collagen IV, fibronectin, and nidogen (Kruse et al., 2004).  All of this work has been done using in 

vitro cell culture, and though important insights regarding meprin function have been determined, 

studying meprins in vivo can provide many new insights. By studying meprins within an organism, 

we wish to shed light on the mechanisms meprins use to degrade components of the ECM, identify 

upstream and downstream regulators of meprins and determine how meprins, affect cell shape 

change.  
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Developing cells exhibit behaviors similar to that of metastatic cancers, and model organisms are 

valuable tools for studying genes involved in metastasis. Cell motility and shape change are a key 

aspects of organism development. The caudal visceral mesoderm (CVM) cells migrate anteriorly in 

the Drosophila embryo to eventually form muscles of the gut (Kadam et al., 2012). Vertebrate 

neural crest cells undergo epithelial to mesenchymal transition followed by migration to give rise to 

critical components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes 

and ganglia of the peripheral nervous system (Bronner and Le Dourian, 2012).  And in C. elegans, 

the anchor cell degrades its underlying basement membrane to form protrusions, which allows the 

anchor cell to induce vulval fates (Sherwood et al., 2005).  Each of these systems has not only 

elucidated aspects of cell behavior, but also clarified mechanisms involved in metastasis. For 

instance, the FGF receptor heartless is involved in regulating CVM migration (Kadam et al., 2012), 

and blockage of FGFR can reduce metastasis from prostate cancer cells into bones (Wan et al., 

2014).  Both migrating neural crest cells as well as colon carcinoma cells lose cadherin expression 

at their leading edge (Nakagawa and Takeichi 1998; Prall 2007).  Netrin/UNC-6 and its receptor, 

UNC-40, guide protrusion formation during AC invasion (Hagedorn et al., 2013); similarly, netrins 

are known to promote liver, colorectal, and cervical cancer cell metastasis (Yan et al., 2014; Ko et 

al., 2013; Zhang et al., 2013).  

We wish to study meprin activity using a C. elegans cell: the uterine seam cell (utse).  The C. 

elegans uterine seam cell attaches the uterus to the body wall and undergoes cell outgrowth during 

development (Ghosh and Sternberg, 2014).  During the L4 larval stage, the utse begins as an 

ellipsoidal cell, and then elongates outwards in a bidirectional manner along the anterior-posterior 

axis.  Several genes involved in utse development have been implicated in cancer progression 

including Trio/unc-73, which is involved in the migration and invasiveness of gliblastoma cells 

(Fortin et al., 2012), NAV3/unc-53, which is found in colorectal cells (Carlsson et al., 2011), and 

several Rab GTPases (rab-1, rab-5, rab-6.2, rab-10, rab-11.1), which are upregulated in breast and 

ovarian cancers (Cheng et al., 2005).  Since utse changes its shape and uses similar molecular inputs 

as metastatic cancer cells, we believe that it is an ideal model to study genes involved in cancer 

progression. 

Here we focus on three C. elegans genes, nas-21, nas-22, and nas-26/toh-1, to study meprin 

activity.  These three genes are members of a class of proteases known as nematode astacins (nas) 

(Möhrlen et al., 2003). The astacin family of proteases was isolated from the crayfish Astacus 
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astacus and encompass a family of than 120 reported sequences, detected in a wide range of 

organisms including bacteria, hexapodes, nematodes, molluscs, insects, and mammals (Gomis-Rüth 

2003).  Meprins belong to the astacin family (Sterchi et al., 2008) and therefore we believe that 

studying nas-21, nas-22, and toh-1 will increase our understanding of meprin function and 

regulation. In this work we use the utse to identify upstream and downstream regulators of these 

three genes, and show that nas-21, nas-22, and toh-1 are necessary for cell shape change, and 

characterize the effects of nas-21, nas-22, and toh-1 on the extracellular matrix.  

4.3 Materials and Methods 

Strains and genetics: C. elegans were handled as described previously (Brenner, 1974). All strains 

used (listed in supplementary material Table S1) are derivatives of C. elegans wild-type strain (N2 

Bristol).  

RNAi experiments: RNAi was performed by feeding nematodes dsRNA-producing bacteria using 

standard procedures (Timmons et al., 2001) modified according to our previous work (Ghosh and 

Sternberg, 2014). For RNAis used see Table S2.  

Scoring utse phenotypes: Animals were scored using a wide-field epifluorescence microscope at 

young adult or L4 lethargus stage. Abnormal utse outgrowth was classified using criteria from our 

previous work (Ghosh and Sternberg, 2014).  Expanded utse were characterized as utse cell with 

portions of its cell membrane having widths of 40 µm or greater in areas that were not the anterior 

or posterior most edges of the cell.  

Imaging: ECM protein expression patterns were acquired using a Zeiss LSM 710 Inverted confocal 

microscope with a ×100 Plan-APOCHROMAT objective and ZEN 2012 acquisition software 

Three-dimensional reconstructions were built from confocal z-stacks using Fiji (Schindelin et al., 

2012). All acquired images were processed using Photoshop CS3 Extended (Adobe Systems). 

Fluorescent intensity of images in Figure 8 were quantified (through ROI manager and determining 

the mean average intensity) using Fiji (Schindelin et al., 2012).  

Transgenics: To make the nas-21(gk375710); exc-9::mcherry  strain, 60ng/µl of exc-9::mcherry 

plasmid (pBK162, exc-9::mcherry gateway plasmid, from M. Buechner, WBperson81) and 40ng/ 

µl bluescript carrier DNA (pBSKS ) was injected into nas-21(gk375710). To create the nas-21 
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overexpression strain we created a construct that included 2989 bp upstream of the nas-21 

transcription start site, the entire coding region, as well as 794 bp of the nas-21 3’utr. Primers used 

were F:  aaacaaacgttcacaacaatc and R: ctgtgcttgcaattgtgctt. This construct was highly toxic and 1ng/ 

µl was injected along with 60ng/ µl of pBK162 and 59ng/ µl of bluescript carrier DNA (pBSKS). 

To create the F35B12.4p::GFP construct, we fused a 643 bp region upstream of the F35B12.4 

transcription start site in front of a construct consisting of GFP and the unc-54 3’UTR. The PCR 

fusion was conducted according to techniques detailed in Hobert 2002.  Primers used were (A) 

F35B12.4 F: cgcttaatgcgaggtcatt, (B) F35B12.4 R + GFP: 

AGTCGACCTGCAGGCATGCAAGCTtcccgcccctttaaactatt, (C) GFP + F35B12.4: 

aatagtttaaaggggcgggaAGCTTGCATGCCTGCAGGTCGA, (D) unc-54 utr R: 

AAGGGCCCGTACGGCCGACTAGTAGG. A nested: tgcgaggtcatttctgttaaa, D nested: 

GGAAACAGTTATGTTTGGTATATTGGG. We injected 60ng/ µl of pBK162, 20 ng/ µl of our 

F35B12.4 construct, and 40 ng/ µl of bluescript carrier DNA (pBSKS).  

Sequence analysis: Analysis of meprin and astacin protein sequences was performed using Clustal 

Omega (Sievers et al., 2011). Phylogenetic tree of astacins and meprins was created using Clustal X 

(Larkin et al., 2007) and FigTree v1.4.2 (FigTree).  

4.4 Results  

4.4.1 nas-21, nas-22, and toh-1 affect utse development 

The C. elegans utse is a cell whose function is to attach the uterus to the body wall (Figure 1A and 

1E).  During its development the utse begins as an ellipsoidal cell and then grows outward along the 

anterior posterior axis to become an elongated H- shaped cell (Ghosh and Sternberg 2014). The utse 

is a syncytium, and contains nine nuclei that also migrate along the anterior posterior axis (Newman 

et al., 1996). In our previous work (Ghosh and Sternberg, 2014) we found that the presence of 

certain cell types were necessary for proper utse outgrowth. These cell types included the uterine 

toroid cells (which comprise the lumen of the C. elegans uterus), and the sex myoblast cells (Figure 

1E). While screening for genes expressed in these tissues, we found two genes, nas-21 and nas-22, 

that were solely expressed in the utse or uterine toroid cells (Park et al., 2010, Figure 1B and 1C).  

nas-21(RNAi) and nas-22(RNAi) treated worms showed defective utse cell outgrowth and nuclear 

migration (Compare 1F-F’’’ to 1G-G’’’ and 1H-H’’’). nas-21(RNAi) treatment caused defects that 
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were more severe than those caused by nas-22(RNAi), indicating that this gene may play a greater 

role in utse development.  nas-21 and nas-22 are members of the astacin family (Möhrlen et al., 

2003).  C. elegans contains 40 astacin genes, referred to as nematode astacins of nas- genes.  We 

performed RNAi against 37 of the 40 astacin genes (the remaining three astacins did not have RNAi 

clones available) and screened for defects in utse development (Table 1). Using a P-value lower 

than 0.001 to assign significance in the face of multiple hypothesis, we saw that worms treated with 

RNAi against nas-12, nas-19, nas-21, nas-22, and nas-26/toh-1 showed significant levels of 

defects. Of this group we chose to focus on genes that were expressed in the utse or cells involved 

in utse development (uterine toroids, sex muscle cells). This expanded our targeted astacin list to 

include nas-26/toh-1 (hereby referred to as toh-1). (nas-5 is also expressed in the utse (Park et al., 

2010); however, RNAi treatment against nas-5  did not result in a significant amount of defects.) 

toh-1 is expressed in the sex muscles (Figure 1D) and RNAi against toh-1 results in a shorter utse 

(Figure 1I’’-I’’’) as well as a decreased nuclear migration (Figure 1I’ and I’’’).  

4.4.2 NAS-21, NAS-22, and TOH-1 exhibit similarity to meprins  

Meprins are a subclass of the astacin protease family (Sterchi et at. 2008). Meprins are distinguished 

from other astacins by the presence of a transmembrane domain and are mainly found in 

vertebrates.  Because meprins are upregulated in metastatic cancer (Matters and Bond, 1999; Bond 

et al., 2005; Dietrich et al., 1996, Minder et al., 2012), we were interested to see if nas-21, nas-22, 

and toh-1 were related to human meprin genes. Human meprins exist in two forms: a gene that 

encodes the meprin α subunit, Mep1A, and a gene that encodes the meprin β subunit, Mep1B 

(Sterchi et at. 2008).  These two subunits (hereby referred to as MEP1A for meprin α subunit and 

MEP1B for the meprin α subunit) can dimerize to form homo- (mep α, α) or heterodimers (mep α, 

β) (Bond and Benyon 1995).  

We first wished to compare the sequences of MEP1A and MEP1B to NAS-21, NAS-22, and TOH-

1.  We used Clustal Omega (Sievers et al., 2011) to align their protein sequences (Figure 2B) and 

noted their percent identity to one another (Table 2).  When comparing the sequence of MEP1A 

with all other nematode astacin sequences, NAS-21 shows 18.33% identity, NAS-22 shows 

17.12%, and TOH-1 shows 19.22% similarity. NAS-14 exhibits the highest percent identity 

(26.04%) to MEP1A; however, RNAi treatment resulted in gross defects (worms did not develop 

past L2 stage), which prevented us from screening the utse (Table 1). When comparing MEP1B to 

all other nematode astacins, NAS-21 shares 21.59% identity, NAS-22 shares 22.45% identity, and 



 

 

129 
TOH-1 shares 20.36% identity (Table 2). NAS-4 shows the highest percent identity to MEP1B 

(33.21%);  however, RNAi treatment of NAS-4 resulted in no utse defects (Table 1). 

Comparison of the complete protein sequences of NAS-21, NAS-22, and TOH-1 show low 

percentage similarity with meprins, indicating that on the whole NAS-21, NAS-22, and TOH-1 may 

not be related to meprins. MEP1A, MEP1B, NAS-21, NAS-22, and TOH-1 do share similar 

domains (Figure 2A). We therefore analyzed these domains to determine if NAS-21, NAS-22, and 

TOH-1 shared domain similarity with the meprins.  

MEP1A, MEP1B, NAS-21, NAS-22, and TOH-1 each contains a zinc metalloprotease domain  

(Figure 2A, domain shown in red) (astacins and meprins belong to the metzincin superfamily, 

which contains a zinc binding sequence at its active site) (Sterchi et at. 2008), an EGF domain 

(Figure 2A shown in blue), as well as a signal sequence and prodomain (Figure 2A in green and 

purple). These domains were annotated primarily using the SMART database (Schultz et al., 1998). 

Other domains were predicted by aligning sequences of NAS-21, NAS-22, and TOH-1 proteins 

from other nematode species using Clustal Omega (Sievers et al., 2011). We used sequences from 

C. briggsae, C. remanei, C. brennerei, and C. japonica sequences to identify conserved regions in 

NAS-21, NAS-22, and TOH-1 protein sequences, and were able to identify the signal peptide, 

prodomain of EGF domains of NAS-21, the prodomains of NAS-22 and TOH-1 (Figure S1).   

MEP1A and MEP1B have three distinct domains from NAS-21, NAS-22, and TOH-1:  the MAM 

domain, the TRAF domain, and a transmembrane domain. The MAM domain (shown in orange in 

Figure 2A), which spans amino acids 264-433 in MEP1A and 260-429 in MEP1B, is a domain that 

is characteristic to meprins and functions as an interaction and adhesion domain (Beckmann and 

Bork, 1993). The MAM domain is also necessary for correct folding and transport through the 

secretory pathway (Tsukuba and Bond, 1998). The MATH domain (shown in dark blue in Figure 

2A, Table S3) is involved in self-association and receptor interaction (Sunnerhagen et al., 2002).  

MEP1A and MEP1B also contain transmembrane domains (shown in black in Figure 2A, Table 

S3). Although NAS-21, NAS-22, and TOH-1 do not have transmembrane domains, other nematode 

astacins (such as NAS-4, NAS-8, NAS-14, NAS-25, NAS-29, NAS-37, and NAS-39; see Table S3) 

have characterized transmembrane domains.  The transmembrane domain anchors both MEP1A 

and MEP1B to the luminal side of the ER (endoplasmic reticulum) and to the plasma membrane in 

MEP1B (Sterchi et al, 2008). MEP1A also contains an I domain (shown in beige in Figure 2A) that 
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is necessary for proteolytic processing (Marchand et al, 1995). The I domain causes MEP1A to be 

secreted unless coexpressed with MEP1B to form a dimer. Therefore MEP1B exists as a 

transmembrane protein and MEP1A exists (when acting as a homodimer with itself) as a secreted 

protein.   

NAS-21, NAS-22, and TOH-1 also share a distinct domain not found in MEP1A and MEP1B -- a 

CUB domain. This domain (shown in yellow in Figure 2A) is a developmentally regulated domain 

consisting of 110 residues found almost exclusively in extracellular and plasma membrane-

associated proteins (Bork and Beckmann, 1993).  Several other nematode astacins posses a CUB 

domain, specifically NAS-23 and NAS-27 through NAS-39 (Table S3). Since all nematode astacins 

do not posses these domains, we infer that these nematode astacins interact with factors involved in 

C. elegans development.  

MEP1A and MEP1B, NAS-21, NAS-22, and TOH-1 all posses a signal peptide (shown in green, 

Figure 2A). Since NAS-21, NAS-22, and TOH-1 do not have transmembrane domains, we infer 

that NAS-21, NAS-22, and TOH-1 are all secreted extracellularly (according to SMART domain 

analysis, these proteins are also characterized as being secreted extracellularly)  (Schultz et al., 

1998).  Using Clustal Omega (Sievers et al., 2011), we looked at the percent similarity between the 

signal peptides of NAS-21, NAS-22, TOH-1, MEP1A, and MEP1B (Table 2).  The majority of 

nematode astacins also contain signal peptides, so we compared these signal sequences as well.  

When compared to the MEP1A signal peptide, NAS-21 shares 7.14% identity, NAS-22 shares 

14.29% identity, and TOH-1 shares 14.29% identity.  NAS-31 shares the highest percent identity 

with the signal sequence of MEP1A (37.5%); however, RNAi against NAS-31 did not any exhibit 

any utse defects (0%, Table 1).  When compared to the signal peptide MEP1B, NAS-21 shares 

6.67% identity, NAS-22 shares 20% identity, and TOH-1 shares 20% identity (Table 2).  NAS-23 

shared the highest percent identity with the signal peptide of MEP1B (41.67%), no RNAi against 

NAS-23 was present, and we were unable to determine if knockdown of this gene would affect utse 

development.  

NAS-21, NAS-22, TOH-1, MEP1A, and MEP1B all posses prodomains. The prodomain of meprins 

must be cleaved off for activation (Sterchi et al., 2008).  Meprins usually need trypsin-like 

proteinases to cleave off the prodomain from the N-terminus so that they can become active 

(Grünberg et al., 1993).  Lack of the prodomain results in the biosynthesis of an immature and 
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transport-incompatible protein which is degraded intracellularly and cannot reach the plasma 

membrane. Therefore, the prodomain may potentially function as a chaperone that is essential for 

correct folding.  The prodomain is near the N-terminus (Shown in purple in Figure 2A) and we 

compared the sequences of the meprin prodomains to the predicted prodomains of NAS-21, NAS-

22, and TOH-1 (Table 2).  When compared to the MEP1A prodomain, NAS-21 shares 7.69% 

identity and TOH-1 shares 22.73% identity (the NAS-22 prodomain sequence did not result in a 

Clustal output in the percent identity matrix). When compared to the MEP1B prodomain, NAS-21 

shares 0% identity, and TOH-1 shares 25% identity (NAS-22 did not result in a Clustal output in the 

percent identity matrix).   

Another domain that NAS-21, NAS-22, TOH-1, MEP1A, and MEP1B share is an EGF domain 

(shown in light blue in Figure 2A).  The erole of EGF domains is not known in meprins; however, 

the EGF domain of MEP1A remains attached to the plasma membrane after MEP1A is secreted due 

to proteolytic cleavage at the I domain (Richter et al., 1999).  EGF domains are characteristic of 

proteins that are membrane bound or secreted extracellularly (Davis 1990). Using Clustal Omega 

(Sievers et al., 2011), we looked at the percent similarity between the EGF domains of NAS-21, 

NAS-22, TOH-1, MEP1A and MEP1B (Table 2).  Nematode astacins NAS-16 through NAS-39 

contain EGF domains (Table S3), and we compared these sequences as well.  When compared with 

the EGF domain of MEP1A (Table 2), NAS-21 shares no identity (0%), NAS-22 shares 18.18% 

identity, and TOH-1 shares 16.22% identity.  The two EGF domains of NAS-39 (Table S3) share 

the highest percent identity among all the nematode astacins (33.33%), and although 23% of worms 

treated with NAS-39 (RNAi) exhibit defects (Table 1), we chose not to focus on this gene because 

its function as a BMP homolog has been characterized, specifically in molting (Park et al., 2010, 

Suzuki et al., 2004).  

The zinc metalloprotease domain is a characteristic domain of MEP1A, MEP1B, NAS-21, NAS-22, 

and TOH-1 (shown in red in Figure 2A).  This domain shares a conserved  HExxHxxG/NxxH/D 

zinc binding sequence in its active site (Sterchi et al., 2008; Stöcker et al., 1995;  see transparent red 

box in Figure 2B) as well as a  conserved methionine-containing turn (Met-turn) backing the zinc 

site (see darker red box in Figure 2B).  The HExxH (Rawlings and Barrett. 1995) is thought to have 

the highest degree of similarity between zinc metalloproteases (boxed in Figure 2B).  Zinc activates 

these proteases, and is held in place with the amino acids present in the active site.  Using Clustal 

Omega (Sievers et al., 2011), we looked at the percent similarity between the entire zinc 
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metalloprotease domain of NAS-21, NAS-22, TOH-1, MEP1A, and MEP1B, as well as the percent 

identity between their active sites (Table 2).  Compared to entire zinc metalloprotease domain of 

nematode astacins to MEP1A (Table S3), NAS-21 shows 25.19% identity, NAS-22 shows 25.55% 

identity, and TOH-1 shows 27.21 percent identity (Table 2).  NAS-13 and NAS-14 exhibited the 

highest percent identity (42.45%); however, RNAi against each of these astacins showed no utse 

defects (Table 1).  When comparing the entire zinc metalloprotease domain of nematode astacins to 

MEP1B (Table S3), NAS-21 shows 28.03% identity, NAS-22 shows 28.36% identity, and TOH-1 

shows 28.57% identity (Table 2).  NAS-37 exhibits the highest percent identity with MEP1B 

(41.22%); however, NAS-37(RNAi) treatment showed a low percentage of utse defects (9.1%, 

Table 1) .  We also compared the active site between MEP1A, MEP1B, NAS-21, NAS-22, and 

TOH-1 (outlined by green box Figure 2B).  When compared to MEP1A, NAS-21 shares 47.37% 

identity, NAS-22 shares 57.89% identity, and TOH-1 shares 63.16% identity (Table 2). When 

compared with MEP1B, NAS-21 shares 47.37% identity, NAS-22 shares 63.16% identity and 

TOH-1 shares 68.42% identity.  These percentages are significantly higher than any of the other 

domain comparisons, indicating that NAS-21, NAS-22, and TOH-1 are related to MEP1A and 

MEP1B through its zinc metalloprotease domain active site.  

We also generated phylogenetic trees to determine relationships between MEP1A and MEP1B with 

NAS-21, NAS-22, and TOH-1 (Figure S2 and Figure S3).  When comparing the entire sequence 

(Figure S2), we see that the astacins diverge into three major clades (which we have termed clade I, 

clade II, and clade III). Interestingly, the MEP1A and MEP1B fall into clade I, NAS-21 and NAS-

22 fall into clade II, and NAS-26/TOH-1 falls into clade II, showing that there are high levels of 

sequence diversity between these proteins. We also created a tree using the zinc metalloprotease 

domains of MEP1A, MEP1B, NAS-21, NAS-22, and TOH-1 (Figure S3).  Interestingly, MEP1A, 

MEP1B, and NAS-26/TOH-1 are all in the same clade (clade I), but NAS-21 and NAS-22 are in a 

different clade (clade II); however, if we move up one branching point, all become part of one 

monodelphic clade (see purple square). This verifies our findings that NAS-26/TOH-1 shows 

greater sequence similarity between MEP1A and MEP1B compared to NAS-21 and NAS-22.  

Aside from comparisons with the active site of the zinc metalloprotease domain, NAS-21, NAS-22, 

and TOH-1 do not share significant sequence identity with MEP1A and MEP1B. Therefore it does 

not seem that NAS-21, NAS-22, or TOH-1 are taking on a specific role as one of the meprin 

subunits within C. elegans but rahter exhibit meprin-like qualities. Although other astacins show 
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greater sequence identity with MEP1A and MEP1B, we chose to focus on NAS-21, NAS-22, and 

TOH-1 because of their effect on utse development. Because the utse changes its cell shape in a 

manner similar to that of a metastasizing cell (Ghosh and Sternberg, 2014) we believe that better 

understanding how NAS-21, NAS-22, and TOH-1 function can provide insight into how meprins 

function in metastatic cancer.   

4.4.3 Ectopic branch formation caused by nas-21 loss-of-function   

Because meprins are upregulated in metastatic cancer (Matters and Bond, 1999; Bond et al., 2005; 

Dietrich et al., 1996, Minder et al., 2012), we were interested to see how altering levels of NAS-21, 

NAS-22, and TOH-1 affected cell shape change. RNAi knockdown of these genes reduced utse 

outgrowth (Figure 1G’’, 1H’’, and 1I’’). However, we observed additional cell body defects with 

knockdown of nas-21. In wild-type utse development the utse elongates, forming two arms (on the 

proximal side and one on the distal side), each with two branches on each side (Figure 3H; Ghosh 

and Sternberg, 2014); however, in some nas-21(RNAi) treated worms, we would see an additional 

small branch form on the proximal anterior utse branch (Figure 3A-3D). (nas-22(RNAi) and toh-

1(RNAi) treated worms did not exhibit this phenotype). This defect occurred in a small percentage 

of nas-21(RNAi) treated worms (6.25%, Table 1). Interestingly, this branch also possessed nuclei 

(Figure 3B and 3D); however, the total number of nuclei (nine nuclei, Newman et al., 1996; Ghosh 

and Sternberg, 2014) remained constant, indicating that there was not a duplication event but rather 

a change in nuclear migration and cell outgrowth.  

We observed similar ectopic branching phenotypes in the nas-21 nonsense mutant nas-

21(gk375710) (Figure 3G, Table 3). nas-21(gk375710) has a substitution that generates a premature 

stop codon at amino acid 38 (AGA to TGA) (Figure 3E, Thompson et al., 2013).  This premature 

stop codon is within the prodomain of NAS-21; therefore, the mutant protein only contains the 

signal peptide and part of the prodomain (Figure 3E).  The main defect that nas-21(gk375710) 

exhibits is the formation of ectopic branches, and there is no shortening of the utse (Figure 3G), 

which was the primary defect of nas-21(RNAi) treated worms.  

One possibility as to why nas-21(gk375710) does not exhibit more severe defects is due to the 

presence of a potential secondary start site at amino acid 50 in NAS-21.  Alternative start sites have 

circumvented mutations in other systems (Ozisik et al., 2003).  This alternative start site would 

contain the entire astacin, EGF, and CUB domains (Figure 3E, Table S3).  In meprins the 
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prodomain is cleaved off for activation (Grünberg et al., 1993); therefore, this mutant may be 

mimicking what is occurring endogenously to NAS-21. The presence of the stop codon at position 

38 and not position 43 (which is the end of the NAS-21 prodomain) may also cause some 

misregulation in NAS-21 processing, which is why we are seeing some mutant phenotypes.  Since 

the prodomain is thought to be involved in proper folding of meprins, it could also be affecting 

folding in NAS-21, which may cause this branching defect.  

The nas-22 deletion mutant, nas-22(tm2888), in which a portion of the EGF and CUB domains are 

deleted (Figure S4A), showed no defects in utse development (Figure S4C; Table 3), which is why 

we chose to primarily focus on nas-21 activity in the remainder of this work.  

4.4.4 Overexpression of nas-21 expands the utse cell membrane  

After characterizing phenotypes that resulted from knockdown or loss-of-function of nas-21 (Figure 

1H’H’’’, Figure 3A-S, and Figure 3F-G), we wished to characterize nas-21 gain-of-function 

phenotypes. We generated a construct containing 2989 bp upstream of the nas-21 transcription start 

site, the entire nas-21 coding region and 794 bp downstream of the nas-21 stop codon (Figure 4A), 

hereby referred to as the nas-21 overexpression construct.  This construct was extremely toxic, and 

we were only able to obtain survivorship at low concentrations (1ng/µl). When compared to wild 

type (Figure 4B-C), animals injected with 1ng/µl of the construct showed an expansion of the cell 

membrane along the dorsal-ventral axis (Figure 4G, Table 3), hereby referred to as blebbing 

(Charras 2008). We are certain that this was due to the construct itself, because when the construct 

was injected at an even lower concentration (0.1 ng/µl) we observed no defects (Figure 4E, Table 

3).  (We created an overexpression construct for nas-22; however, even low levels of injecting this 

construct resulted in lethal toxicity, which is why we were not able to screen nas-22 overexpression 

phenotypes.)  

Meprins are known to degrade components of the extracellular matrix (ECM) (Kruse et al., 2004; 

Köhler et al., 2000). We believe that worms overexpressing nas-21 have expanded cell bodies, 

because an increase in levels of NAS-21 causes an increase in the degradation of the ECM (Figure 

5B). Our hypothesis is that in wild type the utse expands outwards due to NAS-21, NAS-22, and 

TOH-1 cleaving/degrading components of the ECM (Figure 5A).  This degradation cannot occur 

without the presence of these nematode astacins, which is why RNAi treatment of nas-21, nas-22, 

and toh-1 inhibits utse outgrowth (Figure 1G’’, Figure 1H’’, and Figure 1I’’).  When one of these 
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three nematode astacins is overexpressed, the increased levels of this astacin (such as with nas-21, 

Figure 4G) cleaves larger numbers of ECM components, causing an expansion of the utse 

membrane (Figure 5B).  This expansion occurs along the dorsal ventral axis (primarily ventrally) 

due to the presence of the basement membrane ventral to the utse (Ghosh and Sternbeg, 2014; 

Hagedorn and Sherwood, 2011).  

4.4.5 Protease inhibitors act upstream of nas-21 

We were interested in determining the mechanism NAS-21 uses to regulate utse outgrowth. We 

therefore wished to identify upstream and downstream regulators of NAS-21. We chose to screen 

known protease inhibitors to determine upstream regulators of NAS-21 and screen ECM 

components to identify downstream targets.  

We generated a list of 51 protease inhibitors using WormBase and a publication containing a list of 

genes with putative protease inhibitor domains (WormBase; Ihara et al., 2011) (Table 1).   We then 

used RNAi against these 51 genes and screened for utse defects, specifically defects that were 

comparable to the nas-21 overexpression phenotype (Figure 5B).  Knockdown of a NAS-21 

protease inhibitor would cause higher levels of NAS-21, similar to the nas-21 overexpression 

phenotype.  Of the 51 genes test, we saw that RNAi against 15 genes exhibited high levels (greater 

than 25%) of membrane blebbing, similar to that of the overexpression mutants (Figure 6B, 

compare to Figure 4G). The genes are as follows: C10G8.2, C10G8.3, cki-2, cpi-1, cpi-2, 

F35B12.4, K10D3.4, mec-1, mig-6, srp-2, T21D12.12, try-3, try-7, W0532.2, Y49G5A.1. 

We wished to determine if RNAi against these genes were causing the blebbling phenotype by 

specifically affecting levels of NAS-21.  We created an assay where we treated wild-type, nas-21 

overexpression mutant, and nas-21 loss-of-function mutant (nas-21(gk375710)) worms with 

protease inhibitor RNAi and identified interactions based on phenotypes observed. Increased levels 

of NAS-21 results in expanded membrane outgrowth and blebbing, and we hypothesized that using 

protease inhibitor RNAi in the nas-21 overexpression strain would exaggerate its existing 

phenotype if it was specifically acting on NAS-21 (Figure 5C). Conversely, protease inhibitor 

RNAi in the nas-21(gk375710) would have no effect on its phenotype since there would be no 

NAS-21 for the protease inhibitor to act on (Figure 5D). nas-21(gk375710) may have an alternate 

start site that renders a functional protein; however, in this mutant the prodomain is separated from 
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the rest of the protein. Since the prodomain is implicated in proper folding, we believe that this 

protein may be misfolded, which could potentially hinder interactions with protease inhibitors.  

We performed the aforementioned assay using RNAi against the 15 potential portease inhibitor 

genes and identified genes where RNAi treatment in the nas-21 overexpression strain showed an 

exacerbated defect and RNAi treatment in the  nas-21(gk375710) strain showed little to no defect 

(Table 4).  Of the 15 genes, RNAi against five genes showed significant levels (under 0.0015 P-

value) of exaggerated defects in the nas-21 overexpression strain: cpi-1, F35B12.4, mec-1, srp-2, 

and Y49G5A.1. Of these five genes, RNAi against three of those genes did not have significant 

levels of defects (P-value above 0.09) in nas-21(gk375710): cpi-1, F35B12.4, and mec-1. We 

therefore chose to characterize how these three genes in regulate nas-21 activity.  

4.4.6 Characterizing the role of specific protease inhibitors in utse development 

Ideally we would verify interactions by observing changes in expression of nas-21 caused by RNAi 

treatment of cpi-1, F35B12.4, and mec-1. However, we were unable to generate a nas-21 

translational fusion due to high levels of toxicity caused by injecting increased levels of NAS-21.  

Instead we have characterized the expression pattern of protease inhibitors (to predict if these 

inhibitors were in the vicinity of the utse/NAS-21 activity) and identified downstream effectors of 

these protease inhibitors by observing utse phenotypes.  

cpi-1 is a homolog of cystatin, a cysteine protease inhibitor (Hashmi et al., 2006). cpi-1 inhibits 

human cathepsin B, L, and S (Schierack et al., 2003) and is involved in defending nematodes 

against attack by plant parasites (Phiri et al., 2014). Interestingly, cystatin C is an inhibitor of 

MEP1A (Hedrich et al., 2010; Jefferson et al., 2012), and we are happy to have recapitulated 

finding with nas-21 in the C. elegans utse.  cpi-1::gfp  can only be induced in the presence of 

cysteine proteinases, and cannot be detected without protease treatment (Phiri et al., 2014; Dr. 

David de Pomerai, personal communication). Any induced cpi-1 expression was present globally 

through the worm. The other C. elegans cystatin homolog, cpi-2, was expressed in the gonad after 

protease treatment (Dr. David de Pomerai, personal communication); however, a low percentage 

and an insignificant level of utse defects were observed upon treatment with cpi-2(RNAi) (Table 1, 

27%, P-value 0.4575).  
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F35B12.4 contains two Kunitz (KU) serine protease inhibitor domains (Ihara et al., 2011). 

F35B12.4 contains one KU domain on its N-terminus (from amino acids 42 to 98) and one KU 

domain on its C-terminus (from amino acids 157 to 213) (Schultz et al., 1998). Kunitz domains are 

the active domains of certain serine protease inhibitors.  We created an F35B12.4p::GFP 

expression construct using a 643 bp region to drive GFP (see Materials and methods). We saw 

expression in the pharyngeal neuron M4 (Figure 6D) but saw no expression in the uterine region. 

Therefore, we infer that F35B12.4 is being secreted or acting through another pathway to affect 

levels of NAS-21 activity.  

Interestingly, cpi-1 and F35B12.4 are computationally predicted to interact with one another 

(geneorienteer.org; Zhong and Sternberg, 2006). Therefore they may be acting together on nas-21.  

mec-1 is involved in regulating mechanosensory behavior in C. elegans (Chalfie and Sulston, 1981; 

Emtage et al., 2004) and contains eight KU serine protease inhibitor domains (Ihara et al., 2011; 

Schultz et al., 1998).  Mutants defective in mec-1 lack accumulation of ECM proteins, specifically 

accumulation of the collagen mec-5. This is interesting because meprins cleave collagen IV (Kruse 

at al., 2004; Köhler et al., 2000), and therefore mec-1 affect accumulation of collagen through 

regulating levels of nas-21.  mec-5 RNAi does not induce utse defects, however, so we infer that 

mec-1 is acting on a  separate collagen in the utse outgrowth (Table 1).  mec-1 mutants have 

reduced sensitivity to touch response stimuli (Emtage et al., 2004). mec-1 is expressed in touch 

receptor neurons, lateral neurons (the SDQ, PLN, and ALN neurons and two neurons of the dorsal 

sublateral cord), the PVT neuron and intestinal muscle. The touch neurons lie adjacent to the seam 

(Altun and Hall, 2011), which is adjacent to the utse, and therefore mec-1 may be acting laterally on 

the utse and nas-21.  

We wanted to determine if these three protease inhibitors were acting solely through nas-21 or were 

affecting utse development via other downstream effectors. We therefore generated a list of genes 

predicted/known to interact with cpi-1, F35B12.4, and mec-1 and tested the effects of RNAi against 

these genes.   We tested predicted and known interactions using gene interaction database 

geneorienteer.org (Zhong and Sternberg, 2006).   

For cpi-1, we tested RNAi that was available for the top five listed genes on geneorienteer.org 

(Table 1), two of which were known interactions (dys-1 and pat-12) and all of which had a feature 

score higher than 16 (Figure S6). dys-1(RNAi) showed significant levels of utse defects (34.6%, P-
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value <0.0001; Table 1). dys-1 is the C. elegans homolog of the human dystrophin gene, mutations 

in which cause Duchenne muscular dystrophy (Bessou et al., 1998). dys-1 mutants are hyperactive 

and hyper contracted and hypersensitive to aldicarb. dys-1 is involved in cell positioning through 

tethering neurons to the actin cytoskeleton (Zhou and Chen, 2011). dys-1 positively activates cpi-1 

(Towers et al., 2008). Unusually, the utse of dys-1(RNAi) treated worms was shorter than that of 

wild type (Figure S5) (since dys-1 is predicted to activate cpi-1, we assumed that we would observe 

the overexpression phenotype), indicating that this gene may be involved in promoting utse 

outgrowth through a separate mechanism.   

Three genes were significantly predicted to interact with F35B12.4, cpi-1, cpi-2, and pat-2 (Table 1; 

Figure S6). We have already characterized cpi-1’s role as a potential protease inhibitor against nas-

21. RNAi against cpi-2 and pat-2 did not cause significant defects in utse development.  

Six genes were significantly predicted to interact with mec-1 (Table 1): unc-86, mec-4, mec-5, mec-

9, dop-1, and mec-7. RNAi against two of these genes caused defects in the utse – unc-86 and mec-

9. unc-86 is a transcription factor expressed in the touch receptor neurons that acts positively acts 

upstream of mec -1 (Baumeister et al., 1996). mec-9 is an extracellular protein that has a similar 

structure to mec-1, containing six EGF repeats and five Kunitz domains that positively regulates 

levels of mec-1 (Schultz et al., Emtage at al., 2004.)  We believe that when we knockdown mec-9 

and unc-86 we reduce expression of mec-1, which causes defects in utse development. RNAi 

against unc-86 showed defects similar to that of the overexpression construct, which further 

validates this model (Figure S5; Figure S6).  

We wished to further expand this network and also characterized the role of C. elegans homologues 

of known human cystatin and kunitz domain containing protease inhibitors in utse development.   

Cystatin acts on two groups of proteases – cysteine proteases (Grzonka et al., 2001) and cathepsins, 

which are cysteine lysosomal proteases (Haves-Zburof et al., 2011). We identified 23 C. elegans 

cysteine proteases (both capthepsin and non-cathepsin-like) and cysteine protease targets (Table 5) 

and performed RNAi against these genes. Of these genes, 7 genes showed significant levels of utse 

defects (Table 5, P-value <0.001): the cathepsin-like cysteine proteases cpr-1 and cpr-6 (Laraminie 

and Johnstone, 1996), the cathepsin target daf-4 (Jacobson et al., 1988), the cathepsin homolog asp-

3 (Tcherepanova et al, 2000), the cathepsin A homolog Y40D12A.1 (Miedel et al., 2012; Xu et al., 

2014) mrp-4, which acts upstream of cathepsin (Schaheen et al., 2006), and clp-1, which contains a 
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cysteine-protease active site (Joyce et al., 2012).  All of these genes exhibited overexpression 

phenotypes (like that of unc-86), indicating that these genes are inhibiting some gene that acts 

similarly to nas-21.   

Kunitz domain contains protease inhibitors with several types of proteases/proteins, including 

plasmin (Wan et al., 2013), thrombin (Wood et al., 2014), Factor Xa, and trypsin (Dennis and 

Lazarus 1994). We created a list of C. elegans genes that contain kunitz domains, are related to the 

known Kunitz domain inhibitor targets listed above, or are targets of the known Kunitz domain 

targets (Table 5).  We tested RNAi against these 22 genes and 7 of these genes showed significant 

levels of utse defects (Table 5, P-value under 0.001). The genes are as follows: the kunitz domain 

containing apl-1 (Salameh et al., 2009; Ewald and Li, 2012); the trypsins try-3, try-5, and try-7 

(Dennis and Lazarus, 1994; Shaye and Greenwald, 2011; Smith and Stanfied, 2011), the trypsin 

target unc-45 (Gazda et al., 2013; papilin (mig-6), which contains a Kunitz domain (Kramerova et 

al., 2000) and the plasmin target ECM protein nid-1 (Mayer et al., 1993; Kang et al., 2000).  

Through categorizing utse phenotypes (blebbing due to negative/inhibitory interactions, and 

reduced outgrowth due to activating/positive interactions) and information found in literature, we 

have created a tentative network based on these interactions, shown in Figure S6. 

4.4.7 Serine protease inhibitors regulate NAS-21 

Meprin-like proteases and serine protease inhibitors localize within spider digestive fluid (Foradori 

et al., 2006). TAILS analysis has also shown that Mep1A and Mep1B interact with the serine 

protease inhibitor LEKTI (Jefferson et al., 2012). Therefore we wished to determine if serine 

protease affects NAS-21 activity.  

While screening for protease inhibitors that were potentially affecting nas-21, we tested eight C. 

elegans serpins and saw that two showed overexpression phenotypes (srp-1 and srp-2; Table 1). 

Though srp-1 and srp-2 did not meet our criteria for specifically affecting nas-21 through our 

analysis used in Table 4, we were curious as to whether they could be affecting nas-21 activity 

indirectly. We chose to focus specifically on srp-2 due to its high level of severe overexpression 

phenotypes in the nas-21 overxpression constructs.  



 

 

140 
We characterized the srp-2 expression by using an srp-2 transcriptional fusion construct (srp-

2::gfp) (McKay et al., 2003).  srp-2 is expressed in the uterine toroid region, with expression 

concentrated at uterine toroid 1 (Figure 7D). The uterine toroids are cells that line the lumen of the 

uterus (Newman et al., 1996; Ghosh and Sternberg 2014) and we have shown that genes expressed 

in uterine toroid 1 contribute to utse outgrowth (Ghosh and Sternberg, 2014). srp-2 is therefore 

localized to an ideal region for  for regulating nas-21 activity.  

Since srp-2 RNAi showed some defects in nas-21(gk375710), we believe that srp-2 may be acting 

on the utse through pathways other than nas-21. In order to determine what other pathways srp-2 

may be using to affect utse development we performed RNAi against genes that were characterized 

to act downstream of srp-2 (Table 1)  as well as genes that are targets of serpins (Table 5). We used 

geneorienteer.org (Zhong and Sternberg, 2006) to generate a list of the top five genes predicted to 

interact with srp-2. RNAi against one of these genes, ubxn-3, showed significant utse defects. ubxn-

3  and srp-2 share a feature score of 7.22 on geneorienteer.org (Zhong and Sternberg, 2006). 

Specifically, both are expressed in C. elegans neurons, in Arabidopsis, and in mouse placenta. Both 

genes are also involved in regulating cell adhesion in rat, and are involved in similar biological 

processes in Drosophila, humans, and mouse. ubxn-3 contains a ubiquitin regulatory X domain, and 

is involved in sperm production (Sasagawa et al., 2010)) and is expressed in the spermatheca 

(which lies proximal to the uterus and utse) and nerve cells  (Yamauchi et al., 2007).  Therefore, we 

believe that srp-2 may also be acting on the utse through ubxn-3 (Figure S6).   

We also chose to look at proteins that have been characterized as serpin targets.  Chymotrypsin-like 

peptidases have been characterized as targets of srp-3, another C. elegans serpin (Pak et al., 2006). 

We therefore looked at genes that show similar activity to chymotrypsin or are targets of 

chymotrypsin (Table 5). Interestingly, in addition to being a trypsin target, unc-45 is also a 

chymotrypsin target (Lee et al., 2011; Price et al., 2002), and RNAi against unc-45 shows 

significant defects (Table 5).  unc-45 is a muscle specific protein that controls muscle thick filament 

assembly (Venolia et al., 1999). unc-45 is expressed in the sex muscles. We have shown that the sex 

muscles are one of the tissues that contributes to regulating proper utse outgrowth (Ghosh and 

Sternberg, 2014).  Therefore we believe that unc-45 also affects utse outgrowth, and is controlled by 

srp-2, as well as the two kunitz domain containing protease inhibitors F35B12.4 and mec-1 (Figure 

S6).   
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srp-2 also is an inhibitor of cathepsin-like proteases (Pak et al., 2004) We tested these proteases 

when investigating downstream effectors of cystatins and saw that cpr-1, cpr-6, daf-4, asp-3, 

Y40D12A.1, mrp-4, and clp-1 all have effects on utse development (Table 5). We therefore believe 

that srp-2 may be regulating these genes in utse development as well.   

Through analyzing the nas-21 overexpression phenotype we have identified four candidate protease 

inhibitors, and through scoring utse phenotypes we have added to this network by characterizing 

both upstream and downstream effectors of these protease inhibitors (Figure S6). This in itself 

shows the power of using C. elegans genetics to expand not only the NAS-21 regulatory network, 

but also the meprin regulatory network (Figure 11). In our study, not only have we recapitulated the 

presence of known meprin regulators (Cystatin/cpi-1 and serine protease inhibibors/srp-2), but have 

identified new candidates in this network (F35B12.4 and mec-1). We are excited to have generated 

these results and hope that this is just the beginning for using the C. elegans utse as a model to study 

meprins.  

4.4.8 Effect of nematode astacins on C. elegans extracellular matrix proteins  

Meprins cleave extracellular matrix proteins (ECM) in vitro (Kohler et al., 2000; Kruse et al., 

2004).  Specifically, meprin α (Mep1A) cleaves laminin 1 on the α1 chain and cleaves laminin 5 on 

the α3 chain (Kohler et al., 2000), and both meprin α and meprin β (Mep1A and Mep1B) degrade 

collagen IV (Kruse et al, 2004), and proteolytically cut fibronectin and nidogen at several sites.  

These studies indicate that meprin either degrades or cleaves components of the extracellular matrix 

so that metastasizing cells can move into surrounding tissues. We wanted to determine if the 

presence of meprin-like proteins (specifically NAS-21, NAS-22, and TOH-1) affect distribution of 

extracellular matrix proteins in uterine tissues.  We tested this by observing changes in expression 

levels of ECM proteins through treating translation fusion expression constructs of ECM proteins 

with nas-21, nas-22, and toh-1 RNAi. We hypothesized that nas-21, nas-22, and toh-1 knockdown 

will increase protein levels of ECM components.  

C. elegans collagen genes were ideal targets since both meprin subunits completely degrade 

collagen IV (Kruse et al, 2004). In order to determine if collagen was necessary for utse 

development, we performed RNAi against known C. elegans collagen genes (Table 1) and scored 

for utse defects.  We chose these three genes specifically because two of these genes (emb-9 and let-
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2) encode collagen IV in C. elegans, and mec-5, which is a collagen known to interact with 

protease inhibitor mec-1 (Emtage et al., 2004).  

RNAi against mec-5 resulted in no utse defects (Table 1). Instead we focused on let-2 and emb-9. 

RNAi against emb-9 generated utse defects (Table 1) and we used this protein to characterize the 

effect nematode astacins have on collagen distribution.  

Changes in expression pattern were difficult to visualize using wide-field epifluorescence 

microscopy. We therefore used confocal imaging to finely observe changes in ECM expression due 

to nas-21, nas-22, and toh-1 RNAi.  

We used a emb-9p::emb-9::dendra line to observe changes in emb-9 expression (Ihara et al., 2011). 

No changes in emb-9 expression were observed in the presence of nas-21 and nas-22(RNAi) (Figure 

8B and 8C); however, toh-1 RNAi did increase expression levels of emb-9 in the vicinity of the 

uterus (Figure 8D).  emb-9 expression can be categorized into two types: puncta/globule-like 

accumulations of expression in the body wall, and a thin line of expression in the utse (Figure 8A).  

In toh-1(RNAi) treated worms, we saw a large increase in the number of emb-9 globules in the body 

wall as well as an accumulation of gfp in the posterior uterine region (see red box Figure 8D).  We 

therefore believe that toh-1 specifically regulates levels of emb-9 in the C. elegans uterus.  

Since meprin α (Mep1A) cleaves laminin (Kohler et al., 2000), we also wanted to determine the 

effect of nas-21, nas-22, and toh-1 knockdown on C. elegans laminins.  C. elegans has four 

laminins: two encode the laminin α chain (epi-1 and lam-3), one encodes the laminin β  chain,  epi-

1, and one encodes the laminin γ chain, lam-2 (Kramer 2005). We wanted to determine if these 

laminins involved in utse development, and to this end, we performed RNAi against these four 

genes and screened for utse defects (Table 1).  Two of these genes, lam-1 and epi-1, show 

significant utse defects.  

Though RNAi against epi-1 generates severe (Figure S7B-D) defects in utse, we saw that epi-1 is 

not expressed in the vicinity of the uterus (Figure S7E). Therefore, we eliminated epi-1 among the 

laminins potentially being regulated by nas-21, nas-22, and toh-1.   

We used the lam-1 translational fusion, lam-1p::lam-1::gfp, to observe lam-1 expression (Ziel et al., 

2009).  lam-1 is expressed in the dorsal utse edge as well at the lumen of the C. elegans uterus and 
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in the distal tip cell (DTC) (Figure 8E).  RNAi against nas-22 and toh-1 had no effect on lam-1 

(Figure 8G and 8H).  However, nas-21(RNAi) treated worms showed an increase in the intensity of 

lam-1 expression in the uterus and in the distal tip cells (Figure 8F). We wished to quantify the 

change in intensity of lam-1 expression so that we could determine the fold by which LAM-1 levels 

had increased.  We chose two slices that were at comparable locations in the worm (based on vulval 

anatomy) from the lam-1p::lam-1::gfp and nas-21(RNAi) lam-1p::lam-1::gfp z-stacks (Figure 8M 

and Figure 8O). For each image, we quantified mean intensity in an area that contained the uterus 

(see whites boxes, Figure 8N and Figure 8P). Treatment of nas-21(RNAi) caused an 1.76 fold 

increase in fluorescent intensity.  Therefore, we believe that presence of nas-21 is necessary to 

control levels of lam-1 expression (Figure 8A).  

Since nas-21 is affecting levels of LAM-1, we wanted to see if knockdown protease inhibitors 

acting on nas-21 (cpi-1, srp-2, mec-1, F35B12.4) would affect levels of LAM-1. Ideally knockdown 

of protease inhibitors would increase nas-21 activity, which would increase amount of laminin 

cleavage by NAS-21 and reduce levels of lam-1 expression. srp-2, F35B12.4, and mec-1 RNAi 

treatment of lam-1p::lam-1::gfp did not affect lam-1 expression levels (Figure S8B-D). Since there 

are multiple genes that affect activity of nas-21, we believe that reducing the levels of these 

individual protease inhibitors by RNAi does not increase NAS-21 activity to the level where 

observable changes in lam-1 expression are apparent.  

Nidogen and fibronectin are also cleaved or degraded by meprins (Kruse et al., 2004). nid-1 

encodes the sole C. elegans nidogen homolog (Kang and Kramer 2000; Kim and Wadsworth 2000).  

RNAi against nid-1 generated significant utse defects (Table 1). Antibody staining shows nid-1 

staining within the dorsal edge of the uterus (Kang and Kramer, 2000), indicating that it may be 

acting in this region. However, nid-1::gfp expression is limited to the PLM neurons, the intestinal 

cells, and the distal tip cells of the gonad (Kim and Wadsworth 2000). Therefore we were unable to 

evaluate changes in uterine expression of nid-1 due to actacin knockdown.  

C. elegans lacks fibronectin (Meighan et al., 2004);  however, the C. elegans genome contains 23 

genes that contain fibronectin domains (Table 1) We saw that RNAi treatment against two of these 

genes, unc-73 and unc-40, resulted in significant utse defects (Table 1).  Interestingly, both of these 

genes are involved in branch formation (Struckhoff and Lundquist 2003; Hao et al., 2010), a 

phenotype we observed as a result of nas-21(RNAi) treatment and in nas-21(gk375710) (Figure 3C, 
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3D, 3G).  We hypothesize nas-21 regulates both branch formation activity and fibronectin 

production by acting upstream of these genes.  

We also wanted to use the utse to identify other meprin targets. One such target was the ECM 

protein sdn-1. sdn-1 is the C. elegans homolog of vertebrate syndecan, a type I transmembrane 

heparan sulfate proteoglycan  (Kinnunen 2014).  sdn-1 is expressed in the hypodermis, and is 

involved in HSN neuron migration. We used a sdn-1p::sdn::gfp reporter to visualize sdn-1 

localization, and saw expression in the hypodermis in the vicinity of the uterus (Figure 8I). nas-21, 

nas-22, and toh-1(RNAi) treatment of  sdn-1p::sdn::gfp resulted in an expansion of the sdn-1 

expression pattern along the anterior posterior axis (Figure 8J-L), indicating that these three astacins 

may be cleaving/degrading sdn-1. Therefore, using our model we have identified an additional 

ECM protein that meprin-like nas-21, nas-22, and toh-1 act on (Figure 11).  

4.4.9 Specificity of astacin activity across multiple C. elegans tissues 

We have shown that nas-21, nas-22, and toh-1 cleave/degrade ECM components, but wished to 

determine if these astacins specifically affect the utse. Therefore, we designed an assay where we 

observed changes in ECM in a tissue distal to the utse.  

Our distal tissue of choice was the C. elegans pharynx.  The pharynx, or foregut, is used by C. 

elegans to intake food (Mango, 2007).  The pharynx consists of two lobes connected by a tube, and 

is encased in a basement membrane. One of the components of this basement membrane is the type 

IV collagen emb-9 (Gupta et al., 1997). Since we knew that toh-1 affected emb-9 localization in the 

utse, wished to see if nematode astacins could affect levels of emb-9 within the pharynx.  

We first wished to determine if the presence of emb-9 was necessary for proper pharyngeal 

integrity. We performed emb-9(RNAi) on wild-type N2 worms and scored for pharyngeal defects. 

emb-9(RNAi) treated worms exhibited gaps within the tissue surrounding the pharynx (Figure 9B, 

Table 6),  indicating that the integrity of the basement membrane had been compromised. Since 

emb-9 plays a vital role in pharyngeal formation, we decided to characterize emb-9 expression in 

the presence of nematode astacin knockdown.  

As a positive control for our tissue specificity assay we chose three nematode astacins thought to 

affect pharyngeal function.  Of the 40 C. elegans astacins, we chose three astacins that were either 
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solely expressed in the pharynx or expressed in the pharynx and tissues distal to the utse. These 

astacins, hereby referred to as the pharyngeal astacins, were nas-1, nas-15, and nas-25 (Park et al., 

2010). nas-1, nas-15, and nas-25(RNAi) treatment caused gaps in the tissue adjacent to the pharynx 

(Figure 9C-E), indicating that these astacins were affecting tissue integrity in the pharynx. In order 

to test for specificity, we also observed the effect of nas-21, nas-22, and toh-1(RNAi), hereby 

referred to as the uterine astacins, on the pharynx. Surprisingly, nas-21 and nas-22(RNAi) also 

caused gaps within the tissue adjacent to the pharynx. toh-1(RNAi) also showed similar defects, 

though at a significantly lower penetrance compared to the other uterine RNAis (10%, Table 6).  

We next tested if pharyngeal astacins affect emb-9 expression in the utse. nas-1(RNAi) and nas-

15(RNAi) did not result in any gross utse defects; however, 16% of nas-25(RNAi) treated worms 

exhibited cell outgrowth defects (Table 1). Interestingly RNAi against all three pharyngeal astacins 

altered emb-9 expression. nas-1(RNAi) treated worms exhibited increased emb-9 expression in the 

utse (Figure 10B, see yellow arrow), and in globules ventral to the utse (Figure 10B, see white 

arrows). nas-15(RNAi) treated worms had reduced emb-9 expression (Figure 10C).  nas-25(RNAi) 

treated worms showed an increase in expression within collagen globules (Figure 10D, see white 

arrow). Since there was an increase in emb-9 expression with knockdown of nas-1 and nas-25, we 

believe that these two astacins act similarly to toh-1 and cleave/degrade collagen IV within the utse. 

We also hypothesize that nas-15 may be acting through an alterative pathway that positively 

regulates emb-9, which is why we see a reduction of emb-9 expression upon nas-15 knockdown.  

We also observed effects of pharyngeal and uterine astacin RNAi knockdown on emb-9 expression 

within the pharynx.  RNAi against all six astacins affected emb-9 pharyngeal expression. 

Specifically, number of collagen puncta in the vicinity of the pharynx decreased for all six astacins. 

Wild-type worms have 159 puncta, whereas nas-1(RNAi) treated worms had 121 puncta, nas-

15(RNAi) treated worms had 87 puncta, nas-25(RNAi) treated worms had 94 puncta, nas-21(RNAi) 

treated worms had 138 puncta, nas-22(RNAi) treated worms had 66 puncta, and toh(RNAi) treated 

worms had 84 puncta. We may be seeing these results due to the presence of gaps in tissue -- 

number of puncta may be reduced because the amount of total tissue surrounding the pharynx has 

decreased. However, number of puncta did not correlate with level of defects seen in N2 worms 

treated with pharyngeal and uterins astacin RNAi. Therefore these astacins may be functioning in 

some pathway that positively regulates emb-9 expression within the pharynx, which is why we see 

reduced numbers of puncta with astacin knockdown.  
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Our assay indicates that multiple astacins control integrity of the ECM in multiple tissues. We have 

added nas-1, nas-15, and nas-25 to our network (Figure 11) because these astacins also affect 

collagen IV expression in the utse (Figure 10B-D). We also observe that nas-1, nas-15, nas-25, nas-

21, and nas-22 affect integrity of tissues surrounding the pharynx (Figure 9). This result is 

somewhat puzzling since these two groups of astacins are expressed distally from their target 

tissues. nas-1, nas-15, nas-21, nas-22, and toh-1 all lack a transmembrane domain (Table S3), so it 

is possible that these astacins are secreted and have long-range effects. However, nas-25 contains a 

transmembrane domain, although this domain may be cleaved in proteolytic processing. Since we 

have shown that astacins have long-range effects, we believe that a comprehensive study of how all 

40 astacins is necessary to completely know the extent of how astacins affect the ECM.  

4.5 Discussion   

We have shown that three C. elegans nematode astacin genes, nas-21, nas-22, and toh-1, can be 

used to study meprin activity in vivo. Using the utse as a model, we demonstrate three meprin-like 

genes nas-21, nas-22, and toh-1, control cell shape change, regulate levels of ECM proteins (emb-9, 

lam-1 and sdn-1), and use signaling pathways that are similar to meprins (srp-2 and cpi-1). 

Additionally we identified two new upstream regulators of nas-21 (F35B12.4 and cpi-1) and 12 

other members of the nas-21 interaction network. We are eager to determine if these novel members 

of this interaction pathway are playing a role in meprin function and are plan on continuing to use 

the C. elegans utse as a model to study the in vivo function of meprins.   

4.5.1 Characterizing the role of nas-21 in the utse 

Though we saw that three astacins were expressed in the utse and surrounding tissues (nas-21, nas-

22, and toh-1), we primarily characterized nas-21 for two reasons: the severity of utse defects 

caused by nas-21 and availability of reagents. Using the cell outgrowth and overexpression 

phenotypes we were able to generate a network (Figure 11) of genes in which we believe nas-21 is 

acting.  

We observed an additional phenotype when characterizing nas-21 – the formation of ectopic 

branches from the utse. Several gene families are involved in utse development (Ghosh and 

Sternberg, 2014), and we believe that knockdown of nas-21 may be affecting function of other 

genes, which can induce branch formation. Specifically, two types of genes that we have 
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characterized in utse outgrowth, netrins and unc-73 (Ghosh and Sternberg, 2014; Ghosh and 

Sternberg in prep; Table 1), have roles in branch formation in other tissues. unc-73 mutants exhibit 

defects in axonal branching (Struckhoff and Lundquist 2003) and therefore knockdown of nas-21 

may be affecting unc-73 activity.  Misregulation of the Netrin ligand unc-6 and its receptor unc-40 

also cause defects in branching (Hao et al., 2010). Netrins are expressed on the invasive edge of the 

anchor cell (Ziel et al., 2009) and RNAi knockdown of the two C. elegans netrin ligands (unc-5 and 

unc-6) and the Netrin receptor (unc-40) results in defects in utse outgrowth (Table 1). Therefore we 

also hypothesize that nas-21 may be affecting regulation of these proteins to induce branch 

formation.  

4.5.2 Future directions  

Since we have shown that nas-21, nas-22, and toh-1 have meprin-like characteristics, including 

controlling levels of ECM proteins as well as using similar signaling pathways (srp-2 and cpi-1), we 

wish to later test if human MEP1A or MEP1B within the C. elegans utse can rescue nas-21 

knockdown phenotypes. We plan on creating a construct by using a utse specific promoter region 

(cdh-3) to drive the human coding region of MEP1A and MEP1B in a vector that contains a C. 

elegans 3’utr (unc-54). This type of analysis will bolster the role of the utse as an ideal in vivo 

model for studying meprin activity. 

4.5.3 Adding to the existing meprin interaction network  

Prior to this work, the major findings of the meprin network were generated through in vitro studies 

(Kruse et al., 2004; Köhler et al., 2000; Ambort et al., 2010; Rösmann et al., 2002; Tang and Bond, 

1998; Ohler et al., 2010; Herzog et al., 2014; Jefferson et al., 2012; Bien et al., 2012; Huguenin et 

al., 2008; Hedrich et al., 2010).  The current network for meprin α and meprin β contains six 

upstream activators for meprin α and seven upstream activators for meprin β, and seven 

downstream targets for meprin α and 10 downstream targets for meprin β (Figure 11A).  Of these 

interactions, 22 have been determined through in vitro work. Though this is valuable information, 

determining how these genes function in vivo can shed light on exactly how meprins affect a cell’s 

environment and identify other potential regulators. 

Certain in vivo studies of meprin activity have been conducted. Knockout mice for meprin α and 

meprin β have been generated (Banerjee et al., 2011; Normal et al., 2003). These knockouts have 
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been primarily used to determine phenotypes resulting from meprin loss-of-function.  For example, 

knockout mice show decreased levels of collagen deposition in the skin, indicating an in vivo 

interaction between meprins and collagen I (Broder et al., 2013). Changes in renal gene expression 

have been determined using microarray analysis of kidney RNA from meprin β knockout mice, and 

MMP1 downregulated meprin β and meprin α knockout mice, but these results are from observing 

fold change (Normal et al., 2003; Broder et al., 2013).  The meprin β knockout mouse has been used 

to determine certain interactions, such as Fra-2 acting as an inhibitor (Biasin et al., 2014) and Muc2 

being a target (Schütte et al., 2014). Though this is promising, using a model such as C. elegans, 

with fast generation time and powerful genetics, allows us to not only identify genes that are 

affecting meprin activity but how these genes are affecting meprin activity.  

4.5.4 Conclusions  

In our work we have not only identified genetic new interactions between nas-21, nas-22, and toh-1 

in the C. elegans utse, but we have also shown that these three genes can be used to study meprin 

activity in a new in vivo system. We have identified similar interactions that exist between 

nematode astacins in the utse and meprins and their interaction network (Figure 10A). Both 

nematode astacins and meprins act on ECM proteins (collagen IV and nidogen) and are regulated 

by serine proteases (srp-2 and KLKs) and cystatins (cpi-1). With the nematode astacin utse system 

we were able to identify multiple interactions systematically, and therefore we hope to continue 

using this powerful tool to further our understanding of meprins.  
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Tables 

Table 1 

Genotype % Defect N P-value 
Astacins 

   empty vector RNAi 0.97 103 
 nas-1(RNAi) 0 10 1 

nas-2(RNAi) No RNAi 
  nas-3(RNAi) No RNAi 
  nas-4(RNAi) 0 13 1 

nas-5(RNAi) 12.5 16 0.0472 
nas-6(RNAi) 10 20 0.0684 
nas-7(RNAi) 15.6 32 0.0029 
nas-9(RNAi) 14.8 27 0.0066 
nas-10(RNAi) 0 11 1 
nas-11(RNAi) 10 10 0.1844 
nas-12(RNAi) 9.1 22 0.0006 
nas-13(RNAi) 0 8 1 
nas-14(RNAi) 

 
too young 

 nas-15(RNAi) 0 10 1 
nas-16(RNAi) 0 12 1 
nas-17(RNAi) 0 12 1 
nas-18(RNAi) 0 10 1 
nas-19(RNAi) 28.6 14 0.0006 
nas-20(RNAi) 0 23 1 
nas-21(RNAi) 37.5 40 <0.0001 
nas-21(RNAi)* 6.25 16 0.2518 
nas-22(RNAi) 42.6 47 <0.0001 
nas-23(RNAi) No RNAi 

  nas-24(RNAi) 0 23 1 
nas-25(RNAi) 25 16 0.0011 
nas-26/toh-1(RNAi) 45.4 11 <0.0001 
nas-27(RNAi) 9.5 21 0.074 
nas-28(RNAi) 17.6 17 0.0088 
nas-29(RNAi) 0 10 1 
nas-30(RNAi) No RNAi 

  nas-31(RNAi) 0 23 1 
nas-32(RNAi) 0 11 1 
nas-33(RNAi) 30 10 0.002 
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nas-34/hch-1(RNAi) 0 11 1 
nas-35/dpy-31(RNAi) 6.6 15 0.239 
nas-36(RNAi) 0 22 1 
nas-37(RNAi) 9.1 11 0.1844 
nas-38(RNAi) 0 22 1 
nas-39(RNAi) 23 13 0.0075 
nas-40(RNAi) No RNAi 

  
    * indicates branching defect  

  
    
    Netrins 

   unc-5(RNAi) 35.00 40 <0.0001 
unc-6(RNAi) 34.78 23 <0.0001 
unc-40(RNAi) 34.29 35 <0.0001 

    
    Protease inhibitors  

   Genotype % Defect N P-value 
B0222.5(RNAi) 0 11 1 
B0238.12(RNAi) 9.1 11  0.6853 
bli-5(RNAi) 0 10 1 
C02F12.5(RNAi) 10 10 0.6853 
C10G8.2(RNAi) 42.9 28 0.0138 
C10G8.3(RNAi) 25 28 0.5961 
C10G8.4(RNAi) 0 10 1 
C25E10.8(RNAi) 0 10 1 
C25E10.10(RNAi) 0 9 1 
C25E10.7(RNAi) 0 7 1 
C34F6.1(RNAi) 7.7 13 0.4575 
C53B7.2(RNAi) 18.2 11 1 
cki-1(RNAi) 0 8 1 
cki-2(RNAi) 70 30 <0.0001 
cpi-1(RNAi) 58.1 31 <0.0001 
cpi-2(RNAi) 27.3 11 0.4575 
F30H5.3(RNAi) 0 10 1 
F32D8.3(RNAi) 14.7 34 0.7963 
F35B12.4(RNAi) 50 34 0.0013 
K05F1.10(RNAi) 0 8 1 
K07A1.6(RNAi) 0 7 1 
K10D3.4(RNAi) 50 36 0.0008 
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K11D12.6(RNAi) 18.2 22 1 
kal-1(RNAi) 0 10 1 
mec-1(RNAi) 30.3 33 0.2251 
mec-9(RNAi) 50 10 0.04 
mig-6(RNAi) 72 25 <0.0001 
mlt-11(RNAi) 0 10 1 
R12A1.3(RNAi) 13 23 0.7635 
srp-1(RNAi) 65 20 0.0004 
srp-10(RNAi) 20 15 1 
srp-2(RNAi) 58.8 17 0.0013 
srp-3(RNAi) 0 12 1 
srp-6(RNAi) 0 13 1 
srp-7(RNAi) 16.7 6 1 
srp-8(RNAi) 0 13 1 
srp-9(RNAi) 10 20 1 
T21D12.12(RNAi) 63.6 44 <0.0001 
tag-290(RNAi) 8.3 12 0.6904 
try-1(RNAi) 14.3 21 0.7616 
try-10(RNAi) 20 10 1 
try-3(RNAi) 60 10  0.0092 
try-4(RNAi) 20 10 1 
try-5(RNAi) 23.8 21 0.764 
try-6(RNAi) 10 10 0.6853 
try-7(RNAi) 44.4 9 0.0945 
try-8(RNAi) 11.1 18 0.5213 
W0532.2(RNAi) 40 10 0.2138 
Y49G5A.1(RNAi) 36.7 30 0.0818 

    Downstream of cpi-1 
   dys-1(RNAi) 26 34.6 <0.0001 

cpr-5(RNAi) No RNAi 
  F57F5.1(RNAi) 9 0 1 

cpr-6(RNAi) 13 0 1 
pat-12(RNAi) 10 0 1 

    Downstream of F35B12.4 
  pat-2(RNAi) 20.00 10 0.0203 

    Downstream of mec-
1 

   unc-86(RNAi) 70.00 10 <0.0001 
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mec-4(RNAi) 0.00 8 1 
mec-5(RNAi) 0.00 19 1 
mec-9(RNAi) 33.33 18 <0.0001 
dop-1(RNAi) 23.07 13 0.0042 
mec-7(RNAi) 0 11 1 

    Downstream of srp-2 
   ZK1098.4(RNAi) 0.00! 9! 1!

F15C11.2(RNAi) 5.56! 18! 0.2764!
cpl-1(RNAi) 13.33! 15! 0.0422!
nhr-48(RNAi) no RNAi 

  ubxn-3(RNAi) 27.58! 18! 0.0002!

    
    Collagen genes 

   mec$5(RNAi), 0.00! 19! 1!
emb-9(RNAi) 42.8 14 <0.0001 
let-2(RNAi) no RNAi 

  
    
    Laminin genes 

   epi-1(RNAi) 92.5 40 <0.0001 
lam-1(RNAi) 17 29 0.0019 
lam-3(RNAi) 

   lam-2(RNAi) 
   

    Nidogen 
   nid-1(RNAi) 39.3 28 <0.0001 

    Fibronectin genes 
   kal-1(RNAi) 0.00! 10! 1!

unc-22(RNAi) 
to be 
tested  

  
madd-2(RNAi) 

to be 
tested  

  
let-805(RNAi) 

to be 
tested  

  
ptp-3(RNAi) 

to be 
tested  

  
rig-6(RNAi) 

to be 
tested  

  icgm-1(RNAi) to be 
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tested  

icgm-2(RNAi) 
to be 
tested  

  
hcf-1(RNAi) 

to be 
tested  

  
mam-7(RNAi) 

to be 
tested  

  
sax-3(RNAi) 

to be 
tested  

  unc-40(RNAi) 34.29! 35! <0.0001!
unc-73(RNAi) 66.67! 48! <0.0001!

unc-89(RNAi) 
to be 
tested  

  
ttn-1(RNAi) 

to be 
tested  

  
syg-2(RNAi) 

to be 
tested  

  
syn-1(RNAi) 

to be 
tested  

  
syg-1(RNAi) 

to be 
tested  

  
vab-1(RNAi) 

to be 
tested  

  
lev-11(RNAi) 

to be 
tested  

  
lad-1(RNAi) 

to be 
tested  

  
ptp-1(RNAi) 

to be 
tested  

  
dig-1(RNAi) 

to be 
tested  

   

 
Table 1: Table of RNAi treated animals scored for cell outgrowth defects  

Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to empty vector 

(RNAi) using Fisher's exact test.  
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nas-1 29.31 29.31 30.77 0     30.22 33.09   
nas-2 26.24 25.56 21.43 26.67     31.58 30.77   
nas-3 24.66 25.78 28.57 13.33     31.58 30   
nas-4 29.89 33.21       36.96 37.5   
nas-5 21.58 25.52 20 25     26.62 30.88   
nas-6 29.12 32.98 20 25     36.96 39.26   
nas-7 26.67 26.94       34.53 33.82   
nas-8 26.67 29.17 23.53 15.79     30.22 33.09   
nas-9 21.65 20.47 25 21.43     26.85 25.71   
nas-10 23.76 22.7       27.54 26.67   
nas-11 25.26 22.81 7.14 31.25     28.26 28.89   
nas-12 25.26 22.65 21.43 6.67     29.41 27.41   
nas-13 31.63 31.61 14.29 6.67     42.45 39.71   
nas-14 26.04 26.06 23.08 16.67     42.45 41.18   
nas-15 24.1 25.17 30.77 7.14     37.41 36.76   
nas-16 18.24 17.4     18.18 24.24 26.12 26.72   
nas-17 18.55 19.48 9.09 18.18   21.43 28.57 23.7 25.76   
nas-18 16.56 17.89     18.18 21.21 23.31 26.92   
nas-19 16.93 18.55 12.5 17.65   15.15 21.21 26.15 23.62   
nas-20 17.61 19.67 11.76 22.22   18.18 24.24 25.6 27.87   
nas-21 18.33 21.59 7.14 6.67 7.69 0 0 7.69 25.19 28.03 47.37 47.37 
nas-22 17.12 22.45 14.29 20 n/a n/a 18.18 18.18 25.55 28.36 57.89 63.16 
nas-23 24.46 24.32 23.08 41.67   18.18 21.21 31.39 29.1   
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nas-24 17.5 17.24 12.5 5.88   15.15 21.21 24.81 24.6   
nas-25 19.25 23.84 21.43 13.33   18.18 15.15 27.21 32.33   
toh-1 19.22 20.36 14.29 20 22.73 25 16.22 16.67 27.21 28.57 63.16 68.42 
nas-27 22.97 24.93 15.38 6.67   18.18 12.12 27.74 29.85   
nas-28 22.04 24.73 16.67 7.14   12.9 16.13 32.61 34.07   
nas-29 22.46 23.66 19.05 35   27.27 21.21 32.85 32.09   
nas-30 22.61 23.4     25 25 38.81 39.69   
nas-31 18.87 19.83 37.5 25   21.62 27.78 31.11 32.58   
nas-32 18.7 22.75 16.67 15.38   21.62 22.22 28.57 33.85   
nas-33 21.85 22.84 23.08 14.29   18.18 15.15 38.81 39.69   
nas-
34/hch-1 23.82 24.62 20 18.75   21.21 15.15 35.29 33.08   
nas-
35/dpy-1 22.09 22.64 35.71 20   24.24 27.27 34.29 35.77   
nas-36 22.25 25.48 25 41.18   15.62 25 37.5 36.84   
nas-37 20.83 22.54 0 20   27.27 27.27 36.57 41.22   
nas-38 20.24 18.1 14.29 0   22.58 22.58 33.82 31.58   

nas-39 21.43 21.49 19.05 18.18   
33.33, 
33.33 

25.71,2
8.57 35 37.96   

nas-40             
 
Table 2: Percent identity shared among meprin sequnces and domains  
 
Percent identity determined using Clustal Omega.  
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Table 3: Gain-of-function and loss-of-function phenotypes 

 
    Genotype % Defect N P-value 
nas-21(gk375710)  5.88 17 1 
nas-22(tm2888)  0 10 1 
nas-21 overexpression (1ng/ul)   100 20 <0.0001 
nas-21 overexpression (0.1ng/ul)   0 10 1 

 

Table 3: Gain of Function and loss-of function phenotypes   

Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to empty vector 

(RNAi) using Fisher's exact test.  
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Table 4: nas-21 specificity assay 

        
          

 
Wildtype  

  
Overexpression  

  
Mutant  

  
Protease inhibitor RNAi  % defect N P-value  

% severe 
defect N P-value * % defect N P-value ***** 

C10G8.2 42.9 28 0.0138 24 17 0.036 70 10 0.0009 
C10G8.3 25 28 0.5961 30 10 0.0296 58 19 0.0013 
cki-2 70 30 <0.0001 33 6 0.0462 27 11 0.2694 
cpi-1 58.1 31 <0.0001 46 3 0.0015 31 13 0.1377 
F35B12.4 50 34 0.0013 60 20 <0.0001 21 19 0.342 
K10D3.4 50 36 0.0008 41** 11 0.0018 32 19 0.0918 
mec-1 30.3 33 0.2251 80 10 <0.0001 6 16 1 
srp-1 65 20 0.0004 33*** 16 0.0022 17 12 0.5534 
srp-2 58.8 17 0.0013 68 19 <0.0001 42 19 0.0198 
T21D12.12 63.6 44 <0.0001 36 11 0.0105 40 15 0.033 
Y49G5A.1 36.7 30 0.0818 69 13 <0.0001 83 6 0.001 

 
 
 
 
 
Table 4: nas-21 specificity assay 
 
Overexpression is from the nas-21::nas-21; exc-9::mcherry strain, mutant from the nas-21(gk375710) strain.  

*compare to overexpression percentages 

**91% showed oe phenotype 

***88% showed oe phenotype 

*****compared to mutant percentages 
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Table 5: Protein family targets/upstream regulators 

   
      Downstream of Cystatins 

    Genotype  type Reference % defect N P-value 
cpl-1 cathepsin-like protease   (Britton and Murray,  2004) 13.33 15 0.0515 
mec-4 cathepsin target  (Tavernarakis et al., 2001) 0.00 8 1 
unc-52 cathepsin target  (Hawdon et al., 1989) 20.00 10 0.0203 
ced-3 cysteine protease   (Xue D et al., 1996) 11.56 26 0.0257 
cpr-1 cathepsin-like cysteine protease  (Larminie and Johnstone 1996) 37.5 16 <0.0001 
cpr-2 cathepsin-like cysteine protease  (Larminie and Johnstone 1996) No RNAi 

  cpr-3 cathepsin-like cysteine protease  (Larminie and Johnstone 1996) to be tested 
  cpr-6 cathepsin-like cysteine protease  (Larminie and Johnstone 1996) 25 20 0.0004 

cpr-5 cathepsin-like cysteine protease  (Larminie and Johnstone 1996) No RNAi 
  cpz-1  cathepsin like cysteine protease  (Hashmi et al., 2004)  to be tested  
  clp-1 contains cysteine protease active site  (Cantacessi et al., 2010) 14.29 28 0.0074 

clp-2 contains cysteine protease active site  (Cantacessi et al., 2010) 30 10 0.002 
sep$1& cystine protease   (Siomos MF et al. 2001) 27.27 11 0.0026 
usp-46 cystine protease  (Kowalski  et al., 2011) 8.33 12 0.1986 
clp-6 calpain, has cystine protease active site  (Syntichaki et al., 2002) No RNAi 

  clp-7 calpain, has cystine protease active site  (Syntichaki et al., 2002) to be tested  
  tra-3 calpain, has cystine protease active site  (Barnes TM ; Hodgkin JA 1996) to be tested  
  cad-1 cathepsin  (Jacobson et al., 1988) to be tested  
  asp-4 cathepsin homolog  (Phillips et al., 2006) 11.11 9 0.1699 

asp-3 cathepsin homolog  (Tcherepanova et al, 2000) 50 8 0.0034 
daf-4 cathepsin target  (Clokey and Jacobson 1984) 42.8 7 <0.0001 
asp-1 cathepsin homolog  (Syntichaki et al, 2002) to be tested  

  mrp-4 upstream of cathepsin (Schaheen et al., 2006) 33.33 6 0.0075 
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Y40D12A.1 cathepsin A homolog  (Murata et al., 2012) 60 10 <0.0001 
Y40D12A.2 cathepsin A homolog  (Murata et al., 2012) 12.5 8 0.1396 

      Kunitz doman targets 
    Genotype  type Reference % defect N P-value 

odr-2 related to uPA, plasmin target (Chou et al., 2001) 8.00 25 0.0973 
apl-1 contains Kunitz domain (Ewald et al., 2012) 68.42 19 <0.0001 
inx-6 related to thrombin (Oshima et al., 2013) 9.52 21 0.074 
C54D10.10 related to TFPI, contains Kunitz domain (Wood et al., 2011); (Wormbase) 16.67 12 0.0284 
C25E10.8 related to factor Xa (Boag et al., 2002) 0.00 32 1 
C25E10.7 related to factor Xa (Boag et al., 2002) 0.00 18 1 
C36C3.6b  contains BPTI (type of Kunitz domain) (Teichmann  and Chothia 2000) No RNAi 

  bli-5 contains BPTI (type of Kunitz domain) (Stepek et al., 2010)  0.00 16 1 
try-1 trypsin (Dennis and Lazarus 1994) 14.29 21 0.0152 
try-10 trypsin (Dennis and Lazarus 1994) 20.00 10 0.0203 
try-3 trypsin (Dennis and Lazarus 1994) 60.00 10 <0.0001 
try-4 trypsin (Dennis and Lazarus 1994) 20.00 10 0.0203 
try-5 trypsin (Dennis and Lazarus 1994) 23.81 21 0.0005 
try-6 trypsin (Dennis and Lazarus 1994) 10.00 10 0.1699 
try-7 trypsin (Dennis and Lazarus 1994) 44.44 9 <0.0001 
try-8 trypsin (Dennis and Lazarus 1994) to be tested 

  unc-45 trypsin target  (Gazda et al., 2013) 36.36 11 0.0002 
mig-6 papilin (contains Kunitz domain)  (Kramerova et al., 2000) 72.00 25 <0.0001 
par-2 kalikrien target (Kunitz target) (Skorkowska and Adamiec 2005) 0.00 10 1 
nid-1 plasmin target  (Mayer et al., 1993) 39.29 28 <0.0001 
unc-52 plasmin target  (Bix and Iozzo 2008) 20.00 10 0.0203 
mec-8 interacts with unc-52  (Bix and Izzo 2008) 15.15 33 0.0033 



 

 

169 

      Serpin targets 
    Genotype  type Reference % defect N P-value 

gsnl-1 chymotrypsin target (Liu and Ono 2013) 18.18 22 0.0033 
unc-45 chymostrypsin target (Price et al., 2002)(Lee et al., 2011) 36.36 11 0.0002 
unc-18 chymotrypsin target (Sassa et al., 1996) 0.00 20 1 

 
Table 5: Protein family targets/upstream regulators 
 
Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to empty vector (RNAi) using Fisher's exact test 

 
Table 6: Gross Pharyngeal defects  

 
    Genotype % Defect N P-value 
N2 0 10 1 
emb-9(RNAi) 70 10 0.0031 
nas-1(RNAi) 63.6 11 0.0039 
nas-15(RNAi) 50 12 0.0152 
nas-25(RNAi) 88.9 9 0.0001 
nas-21(RNAi) 30 10 0.2105 
nas-22(RNAi) 66.7 9 0.0031 
toh-1(RNAi)  10 10 1 

Table 6: Gross Pharyngeal defects  

Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to N2) using Fisher's exact test 
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Table S1 and S2 not included since they list strains and RNAis only.  
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MEP1A 
1 to 
21  

71 to 
210  718 to 740  

673 
to 
710    

71 to 
210  

433 
to 
576  22 to 65  

MEP1B 
1 to 
22 

67 to 
207 654 to 676  

607 
to 
644   

260 
to 
429  

432 
to 
568 23 to 61  

nas-1 
1 to 
17 

76 to 
217       

 
 

nas-2 
1 to 
17 

77 to 
228       

 
 

nas-3 
1 to 
16 

66 to 
225       

 
 

nas-4  
100 to 
242 7 to 24      

 
 

nas-5 
1 to 
21 

67 to 
220       

 
 

nas-6 
1 to 
19 

77 to 
217  

299 
to 
335     

 

 

nas-7  
85 to 
226  

347 
to 
382     

 

 

nas-8 
1 to 
29 

117 to 
258 13 to 30 

337 
to 
373     

 

 

nas-9 
1 to 
14 

309 to 
456  

509 
to 
546     

 

 

nas-10  
321 to 
469  

523 
to 
560      

 

 

nas-11 
1 to 
17 

337 to 
485  

538 
to 
576     

 

 

nas-12 
1 to 
25 

79 to 
216  

286 
to 
326 
and     
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347 
to 
364 

nas-13 
1 to 
31 

115 to 
256  

367 
to 
405 
and 
413 
to 
450      

 

 

nas-14 
1 to 
25 

121 to 
265 5 to 27  

379 
to 
415 
and 
468 
to 
503     

 

 

nas-15 
1 to 
15 

119 to 
260  

353 
to 
389 
and 
415 
to 
434 
and 
535 
to 
571     

 

 

nas-16  
76 to 
228   

267 
to 
306    

 

 

nas-17 
1 to 
21 

64 to 
206   

251 
to 
284    

 

 

nas-18  
83 to 
220    

256 
to 
295    

 

 

nas-19  
1 to 
20  

46 to 
186   

225 
to 
264    

 

 

nas-20  
1 to 
20  

36 to 
164   

203 
to 
244    

 

 

nas-21  
1 to 
24 

52 to 
182   

263 
to 
279 

299#
377&   

 

27 to 43 

nas-22 
1 to 
16 

50 to 
192   

232 
to 

276&
to&   

 
38 to 42 
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270 365&

nas-23 
1 to 
16 

120 to 
262   

309 
to 
346 

356 
to 
469   

 

 

nas-24 
1 to 
20  

46 to 
186   

224 
to 
263    

 

 

nas-25 
1 to 
20  

46 to 
188  3 to 25   

232 
to 
275     

 

 

nas-26 
1 to 
20  

67 to 
216   

251 
to 
307  

308 
to 
413   

 

26 to 66 

nas-27  
1 to 
17  

63 to 
205    

250 
to 
291  

306 
to 
428    

 

22 to 65  

nas-28  
1 to 
14  

126 to 
269    

324 
to 
354  

374 
to 
483    

 

23 to 61  

nas-29  
1 to 
22  

143 to 
285  7 to 26   

330 
to 
370  

380 
to 
494    

 

 

nas-30   
273 to 
411   

483 
to 
494 

506 
to 
611   

 

 

nas-31 
1 to 
17  

167 to 
306   

531 
to 
565  

340 
to 
396  

397 
to 
512    

 

 

nas-32 
1 to 
21  

208 to 
345   

609 
to 
648  

380 
to 
433  

434 
to 
554   

 

 

nas-33  
1 to 
16  

198 to 
336   

380 
to 
420  

427 
to 
530  

550 
to 
596   

 

 

nas-34  
1 to 
19  

130 to 
274    

324 
to 
357  

367 
to 
469  

525 
to 
566   

 

 
nas-
35/dpy-
31  

1 to 
18  

132 to 
277    

321 
to 
361 

371 
to 
487  

493 
to 
540   

 

 

nas-36  
1 to 
21  

131 to 
272   

316 
to 
357  

367 
to 
481 

509 
to 
555  

 

 

nas-37  
1 to 
22 

120 to 
259  7 to 26   

303 
to 
343 

350 
to 
458  

579 
to 
627   

 

 

nas-38  
1 to 
25 

120 to 
262    

306 
to 

373 
to 

631 
to  
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345  487 676 

nas-39  
1 to 
30  

53 to 
196  7 to 29   

499 
to 
539, 
648 
to 
688 

249 
to 
381, 
382 
to 
499, 
542 
to 
648, 
692 
to 
804, 
805 
to 
923   

 

 
 

 

Table S3: Domain positions  

Domain locations determined through SMART database.  
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Figures 

 

Figure 1: Astacins are involved in utse development  

 (A) Wild-type utse development, cell body marked with exc-9::gfp. Line behind uterine seam cell 

(utse) is the excretory cell. (B) nas-22::gfp expression. nas-22 is expressed in the utse. (C) nas-

21::gfp expression. nas-21 is expressed in the utse and uterine toroids 1 and 2. (D) toh-1::gfp 

expression. toh-1 is expressed in the sex muscles. (E) Schematic of C. elegans uterus. utse and cells 

contribute to its development (uterine toroid 1, uterine toroid 2 and the sex muscles).  (F-I) nuclei 

marked with egl-13::gfp, cell body marked with cdh-3::mcherry. (F, G, H, I) L4 lethargus, stage at 

which each image set was taken. (F-F’’’) Wild-type utse development.  (F) Stage at which B’-B’’’ 

were taken. (F’, F’’’) Normal nuclear migration. (F’’, F’’’) Normal cell outgrowth. (F-F’’’) nas-

21(RNAi) treated worms. (G) Stage at which C’-C’’’ were taken. (G’, G’’’) Nuclei are slightly 



 

 

175 
closer together (see dashed white outlines of wild-type nuclei for comparison).  (G’’, G’’’) Cell 

body is malformed, slightly shorter. (H-H’’’) nas-21(RNAi) treated worms. (H) Stage at which D’-

D’’’ were taken. (H’, H’’’) Nuclei have not migrated outward. (H’’,H’’’) Cell body is significantly 

shorter than wild type. (I-I’’’) toh-1(RNAi) treated worms. (I) Stage at which E’-E’’’ were taken. 

(I’, I’’’) Nuclei have migrated to a distance shorter than that of wild type. (I’’, I’’’) Cell body is 

shorter than that of wild type.  Scale Bar 100 µm. 
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177 
Figure 2: Astacins share sequence homology with Meprins  

(A) Domain similarity between Human Meprin α, β, C. elegans NAS-21, NAS-22, and NAS-

26/TOH-1. Domains are colored coded (see key).  Transparent domains have been generated via 

sequence alignment with C. briggsae, C. remanei, C. japonica, and C. breneri.  Proteins share 

signal peptide, prodomain, protease domain, and EGF domain. See Figure S1 for detailed 

alignment.  (B) sequence alignment of MEP1A, MEP1B, NAS-21, NAS-22, and TOH-1. Red boxes 

indicate active site of zinc metalloprotease domain. Black outline shows high similarity between 

HEXXH site. Green outline shows part of active site used for aligment to determine percent 

identity.  Dark red box indicates a conserved methionine-containing turn (Met-turn) backing the 

zinc site. An * (asterisk) indicates positions which have a single, fully conserved residue. A : 

(colon) indicates conservation between groups of strongly similar properties - scoring > 0.5 in the 

Gonnet PAM 250 matrix. A . (period) indicates conservation between groups of weakly similar 

properties - scoring =< 0.5 in the Gonnet PAM 250 matrix. 
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Figure 3: Knockdown of nas-21 results in cell body defects 

(A-D) utse cell body marked with exc-9::mcherry  and utse nuclei marked with lin-11::gfp. Worms 

treated with nas-21(RNAi). (A) Stage at which B-D were taken. (B.D) utse nuclei are in aberrant 

positions in presence of  nas-21(RNAi). Yellow asterisk indicates position of abberant nuclei. (C, D) 

additional membrane branch formed in the presence of nas-21(RNAi). White asterisk indicates 

location at which branch was initiated. (E) Schematic of nas-21(gk375710) mutation. Position of 

substitution mutation is indicated by black asterisk. (F-G) nas-21(gk375710) phenotype. Cell body 

marked with exc-9::mcherry. (F) Stage at which G was taken. (G) Formation of ectopic branch in 

the nas-21(gk375710) mutant. Ectopic branch indicated by white asterisk. (H) Schematic of wild 

type and mutant ventral uterus. Cell types labeled in black, utse shown in yellow. Locations labeled 

in gray and ectopic branch labeled in red. Scale Bar 100 µm. 

 

Figure 4: Overexpression of nas-21 causes an expansion of the utse cell membrane  

Cell body marked with exc-9::mcherry. (A) schematic of nas-21 overexpression construct.  (B, D, 

F) Stages at which B, D, and F were taken, respectively. (B-C) Wild type utse. (C) Proper utse 

outgrowth. (E) utse exhibits normal outgrowth and shape in the presence of low levels of additional 

endogenous nas-21 (.1ng/µl) (G) utse cell body has expanded in the presence of high levels of 

additional endogenous (1ng/µl). White asterisks indicate areas of expansion. Scale Bar 100 µm. 

 

nas-21 overexpression 0.1ng
nas-21 overexpression 0.1ng; 

exc-9::mcherry

nas-21 overexpression 1.0 ng; 
exc-9::mcherrynas-21 overexpression 0.1ng

D

F

C

G

D

E

B

N2  exc-9::mcherry

*
*

A

nas-21 5’UTR (promoter region)

nas-21 coding region 

nas-21 3’UTR 

genomic regions drawn to scale

Figure 4: Overexpression of nas-21 causes an expansion of the utse cell 
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Figure 5: Schematic of how levels of NAS-21 affects utse outgrowth 

(A) Wild type utse outgrowth. Normal levels of NAS-21 (shown in blue) cleave enough 

components of the extracellular matrix (ECM) (shown in yellow and green and dark blue) to allow 

for proper utse outgrowth (shown in red). (B) Over expression of NAS-21. Increased levels of 

NAS-21 causes increased cleavage of ECM components. This allows for expansion of the utse cell 

body along the dorsal-ventral axis and into the basement membrane. A similar phenotype occurs 

when protease inhibitors (which limit levels of NAS-21) are knocked down via RNAi.  (C) 

Overexpression of NAS-21 in the presence of protease inhibitor knockdown. Increased levels of 

NAS-21 (due to the overexpression) along with protease inhibitor knockdown (which further 

increases levels of NAS-21) causes an exaggerated version of the phenotype from B. Further 
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expansion of the utse occurs on the dorsal-ventral axis into the basement membrane.  (D) Protease 

inhibitor knockdown in NAS-21 mutants.  Lack of presence of NAS-21 causes protease inhibitors 

to not have an effect. utse has wildtype or NAS-21 mutant phenotypes. 

 

Figure 6: Protease inhibitors that affect NAS-21 activity 

A) Stage at which B was taken. (B) Representative of RNAi phenotypes exhibited when protease 

inhibitors are knocked down. F35B12.4(RNAi) treated works exhibit blebbling on the dorsal ventral 

axis. Bleb indicated by white asterisk. (C) Stage at which D was taken. (D) F35B12.4 is expressed 

in the pharyngeal neuron M4.  Scale bar 100 µm.   
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Figure 6: Protease inhibitors that affect NAS-21 activity
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Figure 7: srp-2 expression pattern  

(A) Adult uterus, stage at which B was taken. (B) srp-2 is expressed in the uterine toroids. Uterine 

toroids are marked by white asterisks. (C) Adult tail, stage at which D was taken. (D) srp-2 is 

expressed in one of the tail neurons, potentially PDA. Scale bar 100 µm.   

 

Figure 8: Changes in ECM levels due to nas-21, nas-22, and toh-1 knockdown  
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Figure 8: Changes in ECM levels due to nas-21, nas-22 and toh-1 knockdown 
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(A-H) Images are z-projections of individual uterine sections.  (A-D) Collagen IV accumulation 

marked using emb-9p::emb-9::dendra construct. (A) Wild-type emb-9 gfp expression. 

Accumulation of emb-9 expression in globule like structures in body wall muscle as well as along 

the dorsal edge of the utse (shown with white arrow). (B) nas-21(RNAi) treatment. Expression 

similar to that of wild type (presence of globules in body wall muscle) and dorsal edge of utse 

(white arrow). (C) nas-22(RNAi) treatment. Expression similar to that of wild type (presence of 

globules in body wall muscle) and dorsal edge of utse (white arrow). (D) toh-1(RNAi) treatment. 

toh-1 RNAi treated animals show an increased number of globules in the body wall muscle as well 

as an accumulation of expression in the posterior uterine area (see red box).  (E-H) Laminin 

accumulation marked by lam-1p::lam-1::gfp. (E) Wild-type lam-1 expression. lam-1 is present in 

the dorsal edge of the utse (see white arrow) as well as the uterine lumen and distal tip cells (DTC). 

(F) nas-21(RNAi) treatment.  nas-21(RNAi) treated worms show increased concentration of lam-1 

throughout the uterus and in the DTC. Worms in E and F were imaged using identical parameters. 

(G) nas-22(RNAi) treatment. Expression similar to that of wild type. (H) toh-1(RNAi) treatment. 

Expression similar to that of wild type.  (I-L) Syndecan expression visualized by sdn-1p::sdn-

1::gfp. (I) Wild-type sdn-1 expression. sdn-1 is present in the hypodermis lateral to the utse. 

Anterior-posterior length shown with red dashed arrow. (J) nas-21(RNAi) treatment. sdn-1 

expression has expanded along the anterior-posterior axis. See red dashed arrow for reference to 

wild type anterior-posterior length of expression. (K) nas-22(RNAi) treatment. sdn-1 expression has 

expanded along the anterior-posterior axis. See red dashed arrow for reference to wild type anterior-

posterior length of expression. (L) toh-1(RNAi) treatment. sdn-1 expression has expanded along the 

anterior-posterior axis. See red dashed arrow for reference to wild type anterior-posterior length of 

expression.  Also note increased amounts of sdn-1 puncta after treatment with toh-1(RNAi).  (M-P) 

Images are individual slices taken from z-stacks of the uterine area. (M) Stack/stage at which J was 

taken. (N) lam-1p::lam-1::gfp wild type expression. Single slice taken from z-stack used to make 

projection in E. White box indicates area from which fluorescent intensity was quantified. (O) 

Stack/stage at which L was taken. K and L were taken at positions comparable to I and J based on 

vulval morphology. (P) nas-21(RNAi) lam-1p::lam-1::gfp expression pattern. Single slice taken 

from z-stack used to make projection in F. White box indicates area from which fluorescent 

intensity was quantified. Scale bar 100 µm.   
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 Figure 9: Pharyngeal defects caused by astacin RNAi 

All RNAi was performed on N2 strain. White arrows indicate gaps present in the tissue adjacent to 

the pharynx.  (A) Wild type N2 pharynx. (B) emb-9(RNAi) treated worms. (C) nas-1(RNAi) treated 

worms. (D) nas-15(RNAi) treated worms. (E) nas-25(RNAi) treated worms. (F) nas-21(RNAi) 

treated worms. (G) nas-22(RNAi) treated worms. (H) toh-1(RNAi) treated worms. Scale bar 100 

µm.   
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Figure 10: Changes in collagen IV expression with pharyngeal and uterine astacin 

knockdown 

Collagen IV accumulation marked using emb-9p::emb-9::dendra construct. (A-D) Effect of 

pharyngeal astacin knockdown on the utse. (A) Wild-type uterine collagen distribution. (B) 

Collagen distribution in nas-1(RNAi) treated worms. Increased emb-9 expression in the utse shown 

with yellow arrow. Increased emb-9 expression ventral to the utse shown with white arrows. (C) 

Collagen distribution in nas-15(RNAi) treated worms. Lower levels of emb-9 expression compared 

to wild-type. (D) Collagen distribution in nas-25(RNAi) treated worms. Increased emb-9 expression 

in puncta shown with white arrows. (E-K) Effect of pharyngeal and uterine astacin knockdown on 

the pharynx. (E) Wild-type pharyngeal collagen distribution. (F) Pharyngeal collagen distribution in 

nas-1(RNAi) treated worms. (G) Pharyngeal collagen distribution in nas-15(RNAi) treated worms. 

(H) Pharyngeal collagen distribution in nas-25(RNAi) treated worms. (I) Pharyngeal collagen 

distribution in nas-21(RNAi) treated worms. (J) Pharyngeal collagen distribution in nas-22(RNAi) 

treated worms. (K) Pharyngeal collagen distribution in toh-1(RNAi) treated worms. 
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Figure 11: Meprin interaction network 

A) Network of genes that regulate meprin α and meprin β.  Genes are divided into subcategories 

(see legend). Genes are divided by shape (see legend). Colored boxes indicate genes that have been 

characterized to be involved in meprin regulation. Solid arrow indicates known 

interactions/interactions. Green arrows indicate positive interactions, red arrows indicate 

negative/inhibitory interactions.  

 

Fetuin-A

Meprin α Meprin β

Fra-2

collagen I collagen I

collagen IV

collagen IV

Muc2
MMP1 MMP1

fibronectinfibronectin

nidogen1
nidogen1

tenascin-C

E-cadherin

KLK5 KLK5

plasmin

KLK4

KLK8

KLK7

APP

Human meprin interaction network 

cystatin

Fetuin-A

laminin 1

laminin 5

*

trypsin trypsin

nas-21

cpi-1F35B12.4

mec-1

srp-2

lam-1

unc-86
mec-9

protease inhibitors

meprin or meprin-like

extracellular matrix proteins

upstream factor

downstream target

known interaction/
interaction we have determined 

sdn-1

C. elegans astacin interaction network 

try-1
try-5try-7

positive interaction

inhibitory interaction

vs color indicates homology  

*    ADAM10 sheds Meprin αβ heterodimer

ADAM10
ADAM10

nas-1

emb-9

dys-1

nas-25

nas-15

toh-1

nas-22



 

 

187 

 

Figure S1: Predicted domains using multiple species protein alignment 

All alignments done using Clustal Omega (Sievers et al., 2011). (A) NAS-21 domain prediction. 

Sequences from C. brenneri NAS-21, C. remanei NAS-21, and C. elegans NAS-21 aligned with 

one another. Predicted signal peptide sequence highlighted in green, predicted prodomain sequence 

highlighted in purple, and predicted EGF domain shown in blue. (B) NAS-22 domain prediction. 

Sequences from C. brenneri NAS-22, C. remanei NAS-22, C. briggsae NAS-22, and C. elegans 

NAS-22 aligned with one another. Predicted prodomain shown in purple. (C) TOH-1 domain 

prediction.  Sequences from C. brenneri TOH-1, C. remanei TOH-1, C. briggsae TOH-1, C. 

japonica TOH-1, and C. elegans TOH-1 aligned with one another. Prodomain shown in purple.  
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Figure S2: Phylogenetic tree of meprins and astacins  

(A) Phylogenetic tree comparing entire meprin and astacin sequences. Red boxes show meprins, 

and blue boxes show astacins that we are characterizing in this work.  
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Figure S3: Phylogenetic tree astacin domain of meprins and astacins  

(A) Phylogenetic tree comparing zinx metalloprotease (astacin) domain of meprin and astacin 

sequences. Red boxes show meprins, and blue boxes show astacins that we are characterizing in this 

work. Purple box shows potential monodelphic clade to which NAS-21, NAS-22, NAS-26/TOH-1, 

MEP1A, and MEP1B all belong.  
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Figure S4: nas-22(tm2888) phenotypes 

(A) Schematic of nas-22(tm2888) mutation. tm2888 has a section of its EGF and CUB  domains 

deleted (amino acids 244 to 334). (B) Stage at which C was taken. (C) Cell body marked by exc-

9::mcherry. utse has wild type characteristics in nas-22(tm2888) mutation. Scale bar 100 µm. 
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Figure S5: unc-86(RNAi) phenotypes   

Cell body marked with cdh-3::mcherry and nuclei marked with egl-13::gfp (A) Stage at which B-D 

were taken. (B) Aberrant nuclear migration in dys-1(RNAi) treated worms. (compare to Figure 1F’).  

(C) Shorter cell body of in dys-1(RNAi) treated worms. (compare to 1F’’). (D) Merge of B and C. 

(E) Stage at which F-H were taken. (F) Aberrant nuclear migration in unc-86(RNAi) treated worms. 

Yellow asterisk indicates nuclei that have not completely migrated to wild type positions (compare 

to Figure 1F’).  (G) Cell body has extended along the dorsal-ventral axis similar to the nas-21 

overexpression construct (see Figure 4G). (H) Merge of F and G. Scale bar 100 µm. 

 

Figure S6: nas-21 expanded interaction network 

(A) Network of genes we believe are involved in regulating nas-21.  Genes are divided by shape 
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regulation (see Figure 9). Solid arrow indicates known interactions/interactions. Dashed arrows 

indicate predicted interactions. Green arrows indicate positive interactions, red arrows indicate 

negative/inhibitory interactions.  

 

Figure S7: epi-1 expression pattern and RNAi phenotypes    

(A-D) epi-1(RNAi) treated worms. (A) Stage at which B-D was taken. (B, D) epi-1(RNAi) causes 

nuclear migration defects. Nuclei are marked with egl-13::gfp. Nuclei in epi-1(RNAi) treated worms 

fail to migrate at all. (Compare to Figure 1F’ amd 1F’’’). (C, D) epi-1(RNAi) causes cell outgrowth 

defects. Cell membrane marked with cdh-3::mcherry. utse takes a square shape versus an elongated 

H shape (compare to Figure 1F’’and 1F’’’). (E) epi-1 expression pattern. epi-1 is expressed in seam 

cells. Scale bar 100 µm. 

 

Figure S8: Effect of protease inhibitor knockdown on lam-1 expression 
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Figure S6: epi-1 expression pattern and RNAi phenotypes   
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Figure S7: Effect of protease inhibitor knockdown on lam-1 
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(A) Wild-type lam-1 expression. lam-1 is present in the dorsal edge of the utse (see white arrow) as 

well as the uterine lumen and distal tip cells (DTC). (B) srp-2(RNAi) treatment. Expression similar 

to that of wild type. (C) F35B12.4(RNAi) treatment. Expression similar to that of wild type. (D) 

mec-1(RNAi) treatment. Expression similar to that of wild type. 
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CHAPTER 5 

A Candidate RNAi screen for cell outgrowth defects in the C. elegans utse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

195 
5.1 Abstract 

The C. elegans uterine seam cell (utse) undergoes cell outgrowth during development.  In order to 

determine the molecular inputs necessary to mediate this outgrowth, we performed a candidate 

RNAi screen against 116 genes. These genes were selected using a three part criteria: genes with 

reported expression patterns within the utse or surrounding tissues, genes which characterized roles 

affecting cell outgrowth and nuclear migration in other tissues, and genes that encode structural 

cellular components as well as their predicted ability to interact with genes in the above three 

categories.  We observed a high percentage of hits from our screen (46.6%, 54 genes of 116). We 

have categorized our hits into eight categories, including genes involved in neuronal regulation, 

nuclear migration, cell adhesion, cell structure, and cell transport.  Our results expand the role of the 

utse from simply acting as a model for studying cell shape change. This work presents the utse as a 

powerful tool that can be used to understand a diverse array of genetic pathways and cell behaviors.  

5.2 Introduction  

The C. elegans uterine seam cell, or utse, is a syncytial cell within the hermaphrodite somatic gonad 

that functions in attaching the uterus to the body wall (Newman et al., 1996; Ghosh and Sternberg, 

2014).  During the L4 larval stage, the utse grows outward along the anterior-posterior axis, 

morphing from an ellipsoidal shape to that of a sideways H (lateral view in Figure 1A, Ghosh and 

Sternberg, 2014). The utse contains nine nuclei, and these nuclei migrate from the middle of the cell 

to the anterior and posterior edges of the cell during development. This migration occurs at a slower 

rate than the cell outgrowth indicating that these behaviors are not be linked.  

Though the lineage of the utse is well characterized (Newman et al., 1996), the molecular inputs 

necessary to mediate cell outgrowth were not well known prior to our work. Specifically, two genes 

have been previously characterized for their roles in utse cell outgrowth and nuclear migration: the 

LIM domain transcription factor lin-11 and the SOX domain transcription factor egl-13 (Newman et 

al., 1999; Hanna-Rose and Han, 1999; Cinar et al. 2003).  However, these genes were mainly 

characterized for the roles in utse precursor cell and anchor cell fusion. 

We took a wide-scale approach to identifying additional genes that were necessary for utse cell 

outgrowth and nuclear migration. We designed a candidate RNAi screen against several classes of 

genes and scored for phenotypes exhibiting perturbed outgrowth and nuclear migration (Figure 3). 
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Specifically, we generated a list of the following types of genes: genes that were expressed in the 

utse and its surrounding tissues, genes characterized to affect cell behavior in other tissues and 

organisms, genes encoding structural components of cells, and genes that are predicted to act with 

genes of the previous three classes. We saw a high percentage of positive hits (Table 1; 46.6% of 

the 116 genes that we tested). These positive hits can be categorized into two major classes: genes 

that have been characterized to affect neurons and genes that play roles in nuclear dynamics. We 

also found genes that were involved in cell adhesion, encoded structural components of cells, and 

encoded transcription factors. We therefore not only present a list of genes that are involved in 

regulating utse development, but also present the utse as a powerful model for studying many 

aspects of cell biology.  

5.3 Materials and Methods   

Strains and genetics: C. elegans were handled as described previously (Brenner, 1974). All strains 

used (listed in supplementary material Table S1) are derivatives of C. elegans wild-type strain (N2 

Bristol).  

RNAi experiments: RNAi was performed by feeding nematodes dsRNA-producing bacteria using 

standard procedures (Timmons et al., 2001) modified according to our previous work (Ghosh and 

Sternberg, 2014). For RNAis used see Table S2.  

Scoring utse phenotypes: Animals were scored using a wide-field epifluorescence microscope at 

young adult or L4 lethargus stage. Shortened or elongated utse outgrowth was classified using 

criteria from our previous work (Ghosh and Sternberg, 2014). Positive RNAi results were 

categorized in two categories, hits of high confidence (found by using Bonferroni correction), and 

hits of medium confidence (hits found with a false discovery rate of 0.05). Empty vector RNAi was 

used as a control.  

5.4 Results and Discussion    

The C. elegans uterine seam cell is a syncytial cell that grows outward bidirectionally along the 

anterior-posterior axis (Newman et al., 1996; Ghosh and Sternberg, 2014). Prior to our work, 

limited information was available about the genetic inputs necessary for mediating proper utse 

outgrowth. Therefore we chose to perform a large-scale candidate RNAi screen (Figure 2). 
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Specifically, we generated a list of genes using the following criteria: genes expressed in the utse 

and surrounding tissues, genes that affect cell and nuclear migration in other tissues and organisms, 

genes that encode components of the extracellular matrix, and genes characterized to act upstream 

and downstream of genes in the previous three categories. We fed worms bacteria containing 

plasmids with dsRNA of these genes (Figure 2), and scored for defective utse outgrowth 

phenotypes (Table 1).  Our initial list consisted of 314 genes, and our findings from this list 

contributed to two publications. 84 of these genes were characterized in our publication where we 

examined spatial and molecular inputs that contribute to utse development (Ghosh and Sternberg, 

2014). 114 of these genes were characterized in a publication where we used the utse as a model for 

studying protease activity (Ghosh et al., in prep).  The remaining 116 genes from our list contained 

a high percentage of hits (Table 1; 54 genes out of 116). We wish to characterize these hits.  

We have characterized our positive results into two categories: hits of high confidence (found by 

using Bonferroni correction), and hits of medium confidence (hits found with a false discovery rate 

of 0.05). 29 genes fit our high confidence category and 54 genes fit our medium confidence 

category. We will describe hits of both high confidence and medium confidence (54 genes) in this 

work.  

Of the hits from our list, 18 genes were known to affect nuclear dynamics, 21 genes were either 

expressed in or affected behavior of neurons, 8 genes were involved in cell structure, 7 genes 

contained homeodomains, 7 genes affected cell adhesion, 5 genes were solely characterized as 

transcription factors, 4 genes were involved in intracellular transport, and 3 genes mediated cell 

signaling The remaining hits include a gene whose homolog regulates tumorigencity (F11A10.5), a 

gene involved in chromosome segregation (pqn-85), and a globin (glb-12). We have characterized 

the positive hits from our list below.  

5.4.1 Neuronal Genes 

The largest category of genes from our list contained genes that were either expressed in neurons or 

controlled neuronal behavior (specifically neuronal outgrowth). The 23 genes in this category are 

cwn-1, dh11.5, egl-13, gipc-1, gipc-2, ina-1, itr-1, lin-11, lin-39, mig-15, ncam-1, nud-2, pat-3, sax-

1, sax-7, srsx-18, ttx-3, unc-33, unc-70, unc-97, vab-3, zag-1, and zfp-1. The integrins ina-1 and pat-

3 are characterized in the cell structure section and cell adhesion sections, and the remaining genes 

have been described below.  
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Several of the neuronal hits were genes that affect neuronal outgrowth, migration, guidance, and 

cell shape. These genes are cwn-1, lin-11, lin-39, mig-15, ncam-1, sax-1, sax-7, ttx-3, unc-33, unc-

70, zag-1, and zfp-1. Since the utse undergoes anterior-posterior outgrowth during its development, 

we believe that these genes may be acting as guidance cues, or mediating structural components 

necessary for utse outgrowth. We have described the functions of these twelve neuronal outgrowth 

hits below.  

cwn-1 encodes a Wnt-ligand necessary for establishing guidance for the ALM neuron (Hilliard and 

Bargmann et al., 2006).  Specfically, in cwn-1 and egl-20 double mutants, ALM neurons migrate 

posteriorly rather than anteriorly. cwn-1 is expressed in the body wall muscle and sex myoblasts 

(Minor et al., 2013), and we have shown that genes expressed in the sex myoblast (unc-53, Ghosh 

and Sternberg, 2014) are necessary for proper utse development.  cwn-1 is also necessary for 

establishing vulval polarity (Minor et al., 2013) 

lin-11 is a LIM homeodomain transcription factor necessary for the formation of functional AIZ, 

RIC, AVG, AVH/AVJ neurons (Hobert et al., 1998). Specifically, lin-11 null mutants exhibit 

neuronal outgrowth defects -- AIZ and RIC form posteriorly directed processes, and posteriorly 

displaced cells with these neurons take unusual paths, and AVG and AVH/AVJ processes terminate 

prematurely (Hobert et al., 1998; Hutter 2003). lin-11 also specifies the fates of the AWA, ASG 

sensory neurons (Sarafi-Reinach et al., 2001). lin-11 is also mediates the fusion between the utse 

and the AC, and specifies π cells (which are utse precursor cells that fuse with the AC to form the 

utse) (Newman et al., 1999).  Therefore we may be seeing defects because of this role. However, 

due to its role in regulating genes involved in neuronal guidance we cannot elimate the possibility 

that lin-11 may also act as a utse guidance cue.  

Another LIM homeodomain protein that regulates neuronal outgrowth is TTX-3 (Hobert et al., 

1997). ttx-3 mutants exhibit defects in AIY axonal outgrowth. ttx-3 is also necessary for 

temperature sensing (Hobert et al., 1997) and olfactory learning behaviors (Remy and Hobert, 

2005).  

lin-39 is a homeodomain protein homologous to the Deformed and Sex combs reduced family of 

homeodomain proteins (Clark et al., 1993). lin-39 is necessary for QR neuroblast migration. The 

QR neuroblasts migrate along the anterior-posterior axis to form AVM, SDQR, and AQR neurons. 

In lin-39 mutants, QR descents never reach their normal anterior positions. lin-39 also specifies 
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vulval fates, and in the absence of lin-39 function  vulval precursor cells P(3-8).p fuse with hyp7 

epidermis in the L1 larval stage (Sternberg, 2005; Clark et al., 1993). The utse lies dorsal to the 

vulva and therefore outgrowth phenotypes may be attributed to the vulval defects.  

mig-15 is a NCK-interacting kinase necessary for proper axon outgrowth, specifically outgrowth in 

axon commisures (Poinat et al., 2002).  Axon commissures are sites where axons cross the midline 

from one side of the nervous system to the other. mig-15 interacts with beta integrin pat-3 (which 

was another hit from our screen, Table 1) to guide GABAergic neurons crossing the ventral cord.  

Interestingly, mig-15 is expressed in the vulval muscles, a tissue that we have identified to be 

involved in utse outgrowth (Ghosh and Sternberg, 2014).  

ncam-1 is a cell adhesion molecule of the immunoglobulin superfamily (IgCAM) neurons (Schwarz 

et al., 2009).  It mediates contact and communication between neurons. ncam-1 is expressed in 

several neurons, including ASI, ASJ, AVB, AVE, PVC, AIB, AIN, DA, DB, M2, and NSM and 

affects directional outgrowth of DA2/DB3 motorneuron commissures.  

sax-7 is another member of the immunoglobin superfamily involved in neural cell adhesion. sax-7 

encodes the sole C. elegans L1 CAM (an immunoglobin superfamily protein involved in neural cell 

adhesion (Chen et al., 2001)). sax-7 is necessary for proper positioning of AWB, AWC, AFD, and 

RIA neurons (Sasakura et al., 2005). sax-7 physically interacts with unc-44 (ankyrin, an adaptor 

proteins that mediates the attachment of integral membrane proteins to spectrin-actin based 

cytoskeleton) (Zhou et al., 2008).  

sax-1 encodes a serine/threonine kinase in the Ndr family and is necessary for maintaining cell 

shape in AWC, ASE, and ASJ (Zallen et al., 2000). sax-1 mutants exhibit defects in neurite 

initiation and in neuronal cell shape, including an extended, irregularly shaped cell body and ectopic 

neurite-like processes.  

unc-33 encodes the microtubule binding protein CRMP necessary for axon guidance and outgrowth 

(Li et al., 1992).  In unc-33 mutants, PVD and FLP neurons are prematurely terminated and PVD 

neurons have mislocalized dendrites (Maniar et al., 2011). unc-33 affects outgrowth by increasing 

the steady-state level of axonal microtubules and orienting asymmetric, plus-end distal microtubule 

growth while preventing plus-end dendritic microtubules growth distally. Like sax-7, unc-33 also 

interacts with ankyrin (unc-44) to organize microtubule positioning.  
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unc-70 encodes beta-G spectrin, a cytoskeletal protein that stabilizes the structure of cell 

membranes (Park et al., 1986; Hammarlund et al., 2000). unc-70 mutants display defects in 

outgrowth of GABAergic axon commissures that extend from the ventral to the dorsal cord. The 

defects include in ectopic branching, axon mislocalization, and large terminal expansions resemble 

growth cones. unc-70 is also necessary for sensation of mechanical stimuli in the AVM and ALM 

(Krieg et al., 2014) and maintenance of the muscle myofibril lattice (Hammarlund et al., 2000; 

Moorthy et al., 2000; Cox and Hardin, 2004).  

zag-1 is a ZFH class homeodomain complex necessary for neuronal branch formation and guidance 

(Wacker et al., 2003; Clark and Chiu, 2003). zag-1 is essential for proper development and behavior 

of several neurons, including the ALM, AVM, ADE, PDE,  DA, DB, DD, and VD motor neurons, 

interneurons of the ventral cord, as well as the VA, AVB, AVD, AVE ,PVC,  SABVR/L, AVEL/R, 

and PVQ interneurons (Wacker et al., 2003; Clark and Chiu, 2003).  zag-1 is also necessary for the 

differentiation of the HSN motor neuron, and induces tph-1 expression for neuron maturation (Clark 

and Chiu, 2003).  

zfp-1 is an ortholog of zinc finger protein 1, a plant homedomain protein and a homolog of AF10 

(Acute Lympho- blastic Leukemia 1-Fused gene from chromosome 10)  (Avgousti et al., 2013; 

Chaplin et al., 1995). zfp-1 promotes HSM migration (Kennedy and Grishok, 2014). Specifically, 

zfp-1 acts with RNAi DEficient 4 (rde-1) and other genes necessary for promoting RNAi in C. 

elegans to create an endogenous RNAi pathway within C. elegans (Grishok, 2012; Kennedy and 

Grishok, 2014). This endogenous RNAi system enables zfp-1 to regulate levels of pdk-1, a 

component of the insulin-signaling pathway necessary for mediating reactions to stress and 

controlling C. elegans lifespan (Mansisidor et al., 2011).  The zfp-1/pdk-1 interaction also regulates 

levels of daf-16 (a hit from our list that we have described in the nuclear genes section), which 

promotes HSN migration and nuclear localization within the hypodermis (Kennedy and Grishok, 

2014).  zfp-1 is expressed in the germline and is necessary for the production of viable oocytes 

(Avgousti et al., 2013). zfp-1 also interacts with the histone methyltransferase dot-1 to negatively 

regulate the level of polymerase II of widely expressed genes (Cecere et al., 2013).  

Nine of our hits were neuronal genes that regulated aspects of neurotransmitter release, cell fate, 

and behavior. Since the functions of these genes are not directly related to utse development, study 



 

 

201 
of these genes can shed light on connections between neurotransmitter release and utse 

development. The remaining nine hits are characterized below.  

dh11.5 shares sequence homology with synaptotagmins. Synaptotagmins are proteins that localize 

to synaptic vesicles and mediate the release of neurotransmitters by sensing calcium levels 

(Fernández-Chacón et al., 2001).  

egl-13 is a SOX domain transcription factor necessary for specifying the lineage of Q neuroblasts 

(Feng at el., 2013) and the fates of the BAG and URX O2 and CO2 sensing neurons (Gramstrup 

Petersen et al., 2013). egl-13 is also necessary for anchor cell and utse precursor cell fusion (Hanna-

Rose and Han 1999), which may be why we are observing utse defects as a result of its knockdown.  

gipc-1 and gipc-2 encode orthologs of human GIPC PDZ domain containing 1 protein (Hamamichi 

et al., 2008). gipc-1 is involved in protecting against neurodegenration of DA neurons, and is a 

potential target screening against Parkinsons’s diease. gipc-2 exhibits a 0.49 fold change in daf-2 

mutants, which have defective insulin signaling (Ding et al., 2013) 

itr-1 encodes the inositol 1,4,5-trisphosphate receptor (IP(3)R) and functions in mediating aversion 

responses to nose touch and the repellent benealdehyde in ASH (Walker et al., 2009). Gain-of-

function itr-1 rescues ovulation defects in the spermatheca in fos-1(RNAi) treated worms (Haitt et 

al., 2008).  fos-1 is a transcription factor involved in the formation of protrusions within the anchor 

cell (AC), a cell that eventually fuses with the utse (Sherwood et al., 2005). We have shown that 

fos-1 activity is necessary for mediating mediating proper utse outgrowth (Ghosh and Sternberg, 

2014). Therefore itr-1 may be acting with fos-1 in utse outgrowth as well.  itr-1 is also involved in 

C. elegans aging (Iwasa et al., 2010).  

srsx-18 is expressed in the linker cell and is an ortholog of human olfactory receptor 56B1 (Schwarz 

et al., 2012).  Olfactory receptors detect odorants to allow for odor perception. (Malnic et al., 2004).  

nud-2 encodes an ortholog of human NDE1 and NDEL1 (Locke et al., 2006).  nud-2 attaches the 

SUN/KASH complex to dynein during nuclear migration (Fridolfsson et al., 2010, see following 

section for more information on the SUN/KASH complex), and is necessary for preventing 

susceptibility of GABAergic neurons to pentylenetetrazole (which causes convulsions) and to 
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maintain proper distribution of synaptic vesicles in the GABAergic neurons (Locke et al., 2006). 

Therefore, study of nud-2 can shed light on mechanisms causing epilepsy.  

unc-97 is a LIM domain containing protein  (Hobert et al., 1999). Behavioral assays of unc-97 

mutants indicate that it is necessary for mechanosensory touch perception. unc-97  is also involved 

in regulating adhesion in other tissues, and its adhesive functions will be discussed further in the 

cell adhesion section.   

vab-3 is a homeodomain protein related to the Pax6 Drosophila eye development genes (Chisholm 

and Horvitz, 1995). vab-3 is necessary for the patterning of cells in the head, including neurons, 

seam cells, and alae of the cuticle. vab-3 is also necessary for the development of the male 

copulatory spicules and post cloacal sensilla (Johnson and Chamberlin, 2008).  

5.4.2 Genes that affect nuclear dynamics 

This category includes the following genes: arx-2, arx-3, anc-1, gex-1/wve-1, gex-2, ima-1, ima-2, 

ima-3, imb-2, imb-3, lmn-1, nud-2, ran-2, ran-3 toca-1, unc-83, and unc-84 (Table 1).  

Several of the above genes are involved in nuclear positioning. For instance, five of our hits (unc-

83, unc-84, anc-1, lmn-1, and bicd-1) are either members of or associate with the SUN, KASH and 

Syne families.  The SUN, KASH, and Syne protein families anchor the nucleus to the cytoskeleton 

and promote nuclear migration (Tapley and Starr, 2009). unc-84/SUN and anc-1/SYNE anchor 

nuclei in the C. elegans syncytial hypodermis (Starr and Han, 2003; Malone et al., 1999, Hedgecock 

and Thompson, 1982).  unc-83/KASH coordinates nuclear migration necessary for hyp7 nuclear 

positioning  (Malone et al., 1999; Starr et al., 2001). If the nucleus is to maintain its position within 

the cell (by tethering nuclei to actin), UNC-84 localizes to the inner nuclear membrane and attaches 

to the outer nuclear membrane protein ANC-1 (Hedgecock and Thompson, 1982; Starr and Han, 

2003; Starr and Han, 2002). If the nucleus will undergo migration, UNC-84 attaches to the outer 

nuclear membrane protein UNC-83 (Starr et al., 2001). UNC-83 promotes migration by tethering 

the nucleus to dynenin motor proteins on microtubules via nud-2 (a hit from our screen, Table 1) 

(Fridolfsson et al., 2010). LMN-1 is the sole C. elegans lamin and binds with nucleoplasmic domain 

of UNC-84 to further tether this protein to the inner nuclear membrane (Bone et al., 2014). 
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We also saw hits from two other complexes involved in nuclear migration: the Arp2/3 complex 

(arx-2, arx-3) and the WAVE/SCAR complex (gex-1/wve-1, gex-2) (Xiong et al., 2011).  Arp2/3 

and WAVE/SCAR complex affect embryonic nuclear migration (pronuclear migration is perturbed 

when embryos are treated with arx-2 and gex-3 RNAi and in wve-1 and gex-3 mutants).  The 

WAVE/SCAR complex acts as a switch to activate the Arp2/3 complex, which induces actin 

polymerization, leading to the formation of branched actin (Takenawa and Miki, 2001). This 

mechanism has been characterized in migrating cells, since branched actin accumulates on the 

leading edge of migrating C. elegans embryonic epithelial cells (Patel et al 2008). Although the 

exact mechanism used by the WAVE/SCAR and Arp 2/3 complex in nuclear migration has not 

been elucidated, initiation of branched actin within the nucleus may be one way these complexes 

enable this nuclear migration.  

toca-1 is an F-BAR protein that binds the  WAVE/SCAR complex to membranes (Giuliani et al., 

2009).  toca-1 mutants exhibit defective embryonic P-cell migration in the C. elegans 

embryo(Chang et al., 2012). It therefore may be acting with the WAVE/SCAR complex to mediate 

nuclear migration.  

It is not surprising that RNAi knockdown of genes involved in nuclear migration affect utse 

development. The utse is a syncytium composed of nine nuclei (Newman et al., 1996), and during 

L4 larval stage these nuclei migrate from the central portion of the cell to the anterior and posterior 

edges of the cell (Ghosh and Sternberg, 2014).  Both the SUN/KASH and WAVE/SCAR (with 

Arp2/3) complexes could potentially regulate utse nuclear migration since RNAi knockdown of 

genes in these complexes results in utse nuclear migration defects. We also sometimes observe 

defects in nuclear migration only (unc-83(RNAi) S.G. unpublished observation), though not always 

(arx-2(RNAi) induces cell outgrowth defects as well, unpublished observation) and therefore the 

utse can be used as a model to determine specificity of nuclear migration defects.  

RNAi against several C. elegans importins (ima-1, ima-2, ima-3, imb-2, imb-3) also cause utse 

defects (Table 1). Importins mediate nuclear transport. Importin α and β bind to proteins containing 

a nuclear localization sequence (NLS) and shuttle these proteins from the cytoplasm to the nucleus 

(Görlich and Kutay, 1999). The ima genes encode the importin α subunit and the imb genes encode 

the importin β subunit (Geles and Adam, 2001). Importins play a variety of roles in C. elegans 

development.  IMA-1 localizes to the P0 germline (Geles and Adam, worm meeting abstract 1999). 
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IMA-3 is required for the progression of meiotic prophase I during oocyte development (Geles and 

Adam, 2001).  IMA-2 is required for chromosomal dynamics in the germ line and early embryonic 

mitosis and nuclear envelope assembly (Geles et al., 2002). IMA-2 and IMB-1 also aid in 

embryonic mitotic spindle formation by interacting with the RanGAP ran-2 and its guanine 

nucleotide exchange factor for RCC-1 (ran-3)  (ran-2 and ran-3 were hits from our screen, Table 1) 

(Askjaer et al., 2002).  IMB-2 shares sequence homology with human TNPO1 (Transportin-1) and 

is necessary for localization and activation of the forkhead transcription factor daf-16 (another hit 

from our screen, Table 1) in L1 nuclei (Putker et al., 2013). IMB-3 shares sequence homology with 

yeast importin/karyopherin-beta3, which functions with RanGTPases to regulate nuclear import of 

ribosomal proteins (Yaseen and Blobel, 1997).  

Since the C. elegans utse is a syncytium it is not surprising that the activity of these importins are 

necessary to mediate proper utse development. We hypothesize that importins transport factors 

necessary for mediating nuclear migration and positioning. Since we have observed that knockdown 

of daf-16 also affects utse development, the utse can also be used as a model to study the role of 

importins in transporting transcription factors into the nucleus.  

5.4.3 Genes that encode structural components of cells  

The utse changes its shape over time. Rearrangements of the ECM, or structural proteins that make 

up the outer portion of a cell, are necessary. We therefore were not surprised to see that eight genes 

encoding structural proteins, or proteins that associate with structural proteins, were present in our 

hits. The genes are deb-1, fbl-1, frm-2, ina-1, pat-3, pxl-1, toca-1, and unc-70. toca-1 and unc-70 

have been described in the nuclear and neuronal genes sections of this work. The remaining genes 

are characterized below.  

deb-1 encodes vinculin, which is a cytoskeletal protein that links integrins to the actin cytoskeleton 

(Barstead and Waterston, 1989). deb-1 is expressed in the myoepithelial sheath of the 

hermaphrodite gonad and dense bodies of muscles (Ono et al., 2007; Mackinnon et al., 2002). deb-1 

acts with the β-integrin pat-3 (found in our screen, Table 1) and the a serine/threonine kinase 

orthologous to human integrin-linked kinase pat-4 to recruit actin to the dense bodies of muscles 

(Mackinnon et al., 2002). deb-1 also acts with two other hits from our screen, paxillin pxl-1 and the 

LIM domain-containing protein of the PINCH family unc-97, and its role interacting with those 

genes has been described in the neuronal and cell adhesion sections. Since deb-1 acts with three 
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other genes that from our screen, we believe that these interactions may have led us to discover an 

additional pathway involved in utse development.  

fbl-1 encodes fibulin, a basement membrane glycoprotein necessary for distal tip cell migration 

(DTC) (Barth et al., 1998; Hesselson et al., 2004).  fbl-1 acts antagonistically with the ADAMS 

metalloprotease gon-1 to control gonadal shape. gon-1 promotes elongation through its expression 

in the gonad, and the fibulin keeps gonad migration on track since it is present in the ECM and the 

edge of the DTC (Hesselson et al., 2004). This is particularly interesting because we have identified 

metalloprotease involvement in utse development (three astacin metalloproteases, nas-21, nas-22, 

and toh-1, Ghosh et al., in prep) and fibulin may be interacting with astacin metalloproteases within 

the utse.  

frm-2 encodes an ortholog of human FERM domain containing 6 protein and contains an ERM 

domain (Wormbase, INTERPRO:IPR000798). The ERM domain, or Ezrin/radixin/moesin-like 

domain, crosslinks the actin cytoskeleton with the plasma membrane (Tsukita et al., 1997).   frm-2 

is expressed in the epithelial seam cells and utse (McKay et al., 2003).  

Two C. elegans integrins were positive hits from our screen: the α integrin ina-1 and its 

corresponding β integrin pat-3 (Baum and Garriga, 1997). Integrins are surface receptors of the 

basement membrane (Harburger and Calderwood, 2009).  The ina-1/pat-3 complex is necessary for 

creating a breach in the basement membrane through which the anchor cell (AC) invases into vulval 

epithelium (Ihara et al., 2011). This is the same basement membrane that lies ventral to the utse, and 

we believe that pat-3/ina-1 may act on the utse by either degrading the underlying basement 

membrane or providing guidance cues for outgrowth (see below for ina-1/pat-3’s role in generating 

guidance cues).  

 ina-1/pat-3 activity is also required for migrations of the CAN, ALM, and HSN neurons, axon 

fasciculation, distal tip cell migration, embryonic cell corpse removal, and localization of cell cycle 

proteins in the hypodermis (Baum and Garriga, 1997; Meighan and Schwarzbauer, 2007; Hsieh et 

al., 2012; Kihira et al., 2012). 

pat-3 also associates with another alpha integrin -- pat-2. pat-2/pat-3 is involved in muscle cell 

organization and muscle attachment (Lee et al., 2001; Rogalski et al., 2000; Etheridge et al., 2012).    
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pxl-1 encodes paxilin, a signal transduction adaptor protein that links integrin to focal adhesions 

(Warner et al., 2011; Turner et al., 1990). pxl-1 localizes to the pharyngeal muscle and is necessary 

for pharyngeal muscle contractions (Warner et al., 2011). pxl-1 also localizes to the dense bodies, 

adhesion plaques, and M-lines in body wall muscle and binds with deb-1 (which was characterized 

earlier in this section) in vitro.  

5.4.4 Homeodomain genes  

Eight genes from our list contain homeodomains. The genes are lin-11, ttx-3, lin-39, vab-3, zag-1, 

zfh-2, and zfp-1 (Table 1). For the descriptions of lin-11, ttx-3, lin-39, vab-3, zag-1, and zfp-1 see 

neuronal genes section. zfh-2 has been described in the transcription factor section.  

Interestingly, two of the genes encoding homeodomain proteins posses LIM homeodomains (lin-11 

and ttx-3). Proteins that contain LIM domains are known to associate with LIM homeodomain 

proteins. We found an additional two hits that contained LIM domains, unc-97 and lim-9. Both are 

members of the LIM PINCH family (Hobert et al., 1999; Qadota et al., 2007) and are described in 

the cell adhesion and cell signaling sections of this work.  

5.4.5 Cell adhesion genes  

Seven of the hits from our list were genes involved in cell adhesion. The genes are ina-1, pat-3, 

ncam-1, pxl-1, unc-33, unc-70, and  unc-97. The integrins ina-1 and pat-3 have been described in 

the structural components section. ncam-1, unc-33, and unc-70 are involved in adhesion activities 

necessary for neuronal outgrowth and have been discussed in the neuronal genes section. pxl-1 was 

discussed in the cell structure section. unc-97 is characterized below.  

Aside from regulating mechanosensory responses, unc-97 is necessary for the assembly of adhesion 

complexes in C. elegans body wall muscle (Hobert et al., 1999; Norman et al., 2007).  unc-97 

regulates levels of the ECM proteins perlecan (unc-52) , vinculin (deb-1), and β-integrin (pat-3) 

(Hobert et al., 1999;  Norman et al., 2007). In unc-97 mutants, integrin and vinculin fail to organize 

properly at the basement membrane, preventing proper myosin organization within musculature. 

Interestingly unc-52, pat-3, and deb-1 are necessary for proper utse development (Table 1, Ghosh et 

al., in prep). unc-97 is also expressed in the vulval muscles (specifically sites in which vulval 

muscle attaches to the hypodermis) (Hobert et al., 1999). Genes expressed in vulval muscles are 
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necessary for utse development (Ghosh and Sternberg, 2014), and therefore unc-97 may be acting 

through the vulval muscles to regulate levels of ECM proteins and promote adhesion between the 

utse and the uterine epithelium during outgrowth.  

During its development, the utse grows outwards along the basement membrane of the ventral 

uterine epithelium (Newman et al., 1996 ; Ghosh and Sternberg, 2014). This adhesion behavior is 

mediated by a variety of genes, some of which we have characterized in our previous work (Ghosh 

and Sternberg, 2014); however, we believe that the seven genes described above play additional 

roles in utse outgrowth. Study of these genes will lead to a clearer and more complete 

understanding of the molecular inputs necessary to mediate adhesion behavior of the growing utse.  

5.4.6 Transcription factors 

Our screen has five hits that were primarily characterized as transcription factors. These 

transcription factors are as follows: daf-16, egl-13, lin-11, lin-31, and zfh-2. We have already 

described three of these transcription factors in previous sections (daf-16 in the nuclear and 

neuronal genes section and egl-13 and lin-11 in the neuronal genes section). The remaining two 

transcription factors are discussed below.  

lin-31 is a forkhead transcription factor involved in vulva development (Miller et al., 1993). lin-31 

is secifies the Pn.p vulval precursor cells and acts downstream of the ras homolog let-60. mpk-1 

phosphorylates lin-31, which disrupts a complex with lin-1 and promotes primary fate of P6.p (Tan 

et al., 1998). Since lin-31 is necessary for specifying primary vulval fates, RNAi against lin-31 may 

be affecting vulva development, and disrupting the vulva induces secondary effects on utse 

development. 

zfh-2 is a homeobox protein expressed in the vulval muscles (Reece-Hoyes et al., 2007). zfh-2 

regulates lifespan (Walter et al., 2011). Genes expressed in vulval muscles can affect utse 

development (Ghosh and Sternberg, 2014) and therefore zfh-2 may be controlling utse development 

by acting through this tissue.   
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5.4.7 Intracellular transport genes  

Four of the genes from our list affect intracellular transport. The genes are sec-15, rrc-1, amph-1, 

and f55c12.1.  

sec-15 encodes a component of the exocyst complex, a protein complex that directs vesicles from 

the Golgi complex to the plasma membrane and tethers said vesicles to the plasma membrane prior 

to fusion (Wu et al., 2005; Winter et al., 2012; Zhang et al., 2004). sec-15 is necessary for the 

distribution of rab-11 positive vesicles in the C. elegans intestine (Zhang et al., 2004; Chen et al, 

2014). rab-11.1 is necessary for utse development (Ghosh and Sternberg, 2014) and therefore sec-

15 may be acting with rab-11.1 to contribute to utse development.  

rrc-1 is a RhoGAP, which activates the RhoGTPases rac-1 and cdc-42 (Delawary et al., 2007).  rrc-

1 is expressed in the coelomocytes, excretory cell, GLR cells, and utse.  RhoGTPases regulate 

intracelleular signals necessary for organization of the actin cytoskeleton (Hall, 1998), and therefore 

rrc-1 may be acting in the utse by regulating actin cytoskeleton organization.   

amph-1 is the the ortholog of human bridging integrator 2 and localizes to the recycling endosome 

(Pant et al., 2009). amph-1 colocalizes with rme-1 (receptor mediated endocytosis/Eps15 

homology-domain containing 1) in the recycling endosome and amph-1 null mutants are defective 

in recycling cargo between the plasma membrane and early endosome.  

f55c12.1, also known as rfip-1, encodes the RAB-11 effector NUF (Winter et al., 2012). Loss of 

f55c12.1 causes defects in recycling endosome and late endosome positiong. As mentioned earlier, 

we have shown that rab-11.1 is involved in utse development (Ghosh and Sternberg, 2014), and 

therefore f55c12.1 may act through rab-11.1 to affect utse development.  

Mediating cell transport is an important aspect of utse behavior. In our previous work we have 

shown that six RabGTPases and one divergent Rab (rsef-1) are necessary for utse development 

(Ghosh and Sternberg, 2014). Though we have not yet identified the cargo being transported 

between the utse and its environment, further study of the hits in this section could shed light on 

how intracellular transport occurs within the utse.  
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5.4.8 Genes involved in signaling pathways 

Three genes were involved in cell-cell signaling or were part of characterized signaling pathways. 

The genes are as follows: cwn-1, glp-1, and lim-9. cwn-1 has been describedin the neuronal genes 

section of this work, and we discuss the remaining two genes below.  

glp-1 encodes a Notch receptor necessary for germ cell proliferation, specifying the distal tip cell 

and vulval cells, and promoting cell-cell interactions between pharyngeal precursor cells, while 

maintaining polarity within the embryo (Roehl et al., 1996; Austin and Kimble, 1987; Priess et al., 

1987; Crittenden et al., 1997; Berry et al., 1997). glp-1 exhibits specificity by interacting with 

different Delta ligands in different tissues, such as lag-2 in the germ cells and apx-1 in the embryo 

(Henderson et al., 1994; Gao and Kimble; 1995).  

lim-9 is a LIM domain protein that is part of the non-canonical Wnt pathway (planar cell polarity 

pathway) necessary for asymmetric division of the male specific blast cell (B cell) (Qadota et al., 

2007; Wu and Herman, 2006). lim-9 is expressed in the pharyngeal and body wall muscles, 

neurons, vulva, spermatheca, anal sphincter and depressor muscles, gonadal sheath, and the 

excretory canal (Qadota et al., 2007).  

Results from our screen show that several classical development pathways are involved in utse 

development, including Notch/Delta and Wnt, and therefore the utse can be used as a model system 

to better understand how these pathways regulate C. elegans development.  

5.4.9 Additional genes 

F11A10.5 is a homolog of isoform 2 of Suppressor of tumorigenicity 7 (Wormbase). F11A10.5 is 

expressed in the pharynx, intestine, and body wall muscle (McKay et al., 2003; Hunt-Newbury et 

al., 2007).  

glb-12 is a globin (Hoogewijs et al., 2004; Hoogewijs et al., 2007). glb-12 is expressed in the utse 

(Dehenau personal communication), and is an active inhibitor of germline apoptosis through 

modulating levels of reactive oxygen (Dehenau et al., 2013, International Worm Meeting abstract). 

glb-12 is also necessary for vulva development (glb-12(RNAi) causes a protruding vulva phenotype) 

(Dehenau et al., 2011, International Worm Meeting abstract). 
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pqn-85 (also known as scc-2) is the ortholog of the yeast SCC-2 protein, which is involved in sister 

chromatid cohesion (van Haaften et al., 2006; Ciosk et al., 2000). pqn-85 localizes to binding sites 

of condensin on the X chromosome (Kranz et al., 2013) and processes DNA double-strand breaks 

during meiotic recombination in the germ cells (Lightfoot et al., 2011). pqn-85 also acts with 

guidance factor mau-2 to regulate chromosome segregation in C. elegans embryos (Seitan et al., 

2006).   

5.4.10 Conclusions  

In this work we have described the functions of 54 genes whose knockdown cause utse defects. We 

hope that the results from this screen will highlight the endless possibilities of using the C. elegans 

utse as a model for studying a variety of behaviors and pathways.  
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Tables 

Genotype % Defect N P-value class 
confidence 

level 
empty vector  0.97 103 

! !  abi-1 10.6 19 0.0629 
  amph-1 20 25 0.001 cell transport medium 

anc-1 39.4 66 <0.0001 nuclear high 
app-1 10 20 0.0684 

  arx-2 82.8 29 <0.0001 nuclear high 
arx-3 50 26 <0.0001 nuclear high 
bar-1 6.7 15 0.239 

  bicd-1 0 10 1 
  c35a5.8 10.5 19 0.0629 
  C35D10.2/gipc-1 26.1 23 <0.0001 neuronal high 

ced-5 0 9 1 
  ckb-2 0 20 1 
  cls-1 10 10 0.1699 
  

cwn-1 14.3 21 0.0152 
neuronal, cell 
signaling medium 

d2092.1 0 9 1 
  

daf-16 37.5 8 0.001 
transcription 
factor medium 

daf-18 0 8 1 
  deb-1 40 10 0.0002 cell structure high 

dh11.5 21.7 23 0.0007 neuronal medium 
dpy-31 6.7 15 0.239 

  egal-1 0 5 1 
  

egl-13 23.5 102 <0.0001 
transcription 
factor; neuronal high 

egl-17 0 11 1 
  egl-26 0 10 1 
  egl-5 5.9 17 0.2643 
  

F11A10.5 23.4 47 <0.0001 
regulates 
tumorigencity high 

f44d12.4/gipc-2 20 10 0.0203 neuronal medium 
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f55c12.1 30 10 0.002 
cell cycle , cell 
transport medium 

fbl-1 14.3 21 0.0152 cell structure medium 
fmi-1 12.5 8 0.1396 

  frm-2 20 10 0.0203 cell structure medium 
gei-13 7.7 13 0.2124 

  gei-4 0 10 1 
  gex-1/wve-1 59.4 32 <0.0001 nuclear high 

gex-2 50 20 <0.0001 nuclear high 
glb-12 72.2 18 <0.0001 globin high 
glp-1 14.3 21 0.0152 cell signaling medium 
gpb-1 10 10 0.1699 

  gpb-2 15.4 13 0.0328 
  him-1 0 10 1 
  hlh-2 0 15 1 
  hmp-2 10 20 0.0684 
  hsp-12.3 0 17 1 
  ima-1 25 16 0.0011 nuclear medium 

ima-2 57.9 19 <0.0001 nuclear high 
ima-3 57.7 26 <0.0001 nuclear high 
imb-2 29.4 17 0.0002 nuclear high 
imb-3 42.9 14 <0.0001 nuclear high 

ina-1 77.4 53 <0.0001 
neruonal, cell 
structure high 

itr-1 33.3 30 <0.0001 neuronal high 
klc-2 0 12 1 

  let-23 0 17 1 
  let-756 9.1 11 0.1844 
  let-99 0 10 1 
  lim-9 37.5 24 <0.0001 cell signaling high 

lin-11 18.8 32 0.0007 

transcription 
factor, neuronal, 
homeodomain medium 

lin-26 0 14 1 
  

lin-31 50 10 <0.0001 
transcription 
factor high 

lin-39 100 10 <0.0001 
neuronal, 
homeodomain high 

lis-1 18.2 11 0.0242 
  lmn-1 26.3 19 0.0003 nuclear high 

mig-15 87.5 8 <0.0001 neuronal high 
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mnp-1 0 10 1 

  msp-19 10.3 29 0.0331 
  msp-3 5.9 17 0.2643 
  mua-6 20 5 0.0909 
  

ncam-1 21.1 19 0.002 
neuronal, cell 
adhesion medium 

nob-1 0 15 1 
  nud-2 22.2 9 0.0166 neuronal medium 

ooc-3 0 10 1 
  

pat-3 66.7 6 <0.0001 
neuronal, cell 
structure high 

pat-4 0 11 1 
  plc-3 0 10 1 
  

pqn-85 34.6 26 <0.0001 
chromosome 
segregation high 

ptc-1 0 20 1 
  

pxl-1 37.5 8 0.001 
cell adhesion, 
cell structure medium 

r06f6.6 9.1 22 0.0797 
  rab-11.2 12.5 8 0.1396 
  ran-1 6.3 16 0.2518 
  ran-2 15 20 0.0135 nuclear medium 

ran-3 17.6 17 0.0088 nuclear medium 
rbf-1 11.1 9 0.1549 

  rrc-1 28.6 14 0.0006 cell transport medium 
sax-1 20.8 24 0.0009 neuronal medium 
sax-2 0 10 1 

  sax-7 22.2 9 0.0166 neuronal medium 
sec-15 29.4 17 0.0002 cell transport high 
slt-1 11.1 9 0.1549 

  sma-6 0 9 1 
  smf-1 0 5 1 
  snt-4 16.7 6 0.1075 
  sos-1 0 9 1 
  srsx-18 11.5 52 0.006 neuronal medium 

syd-9 7.7 13 0.2124 
  sym-4 0 10 1 
  t16g12.6 11.1 9 0.1549 
  ten-1 0 20 1 
  

toca-1 13.9 36 0.0045 
cell structure, 
nuclear medium 



 

 

223 
tsr-1 0 20 1 

  
ttx-3 21.4 14 0.0052 

neuronal, 
homeodomain medium 

uig-1 11.1 9 0.1549 
  unc-112 5.9 17 0.2643 
  

unc-33 30 10 0.002 
neuronal, cell 
adhesion medium 

unc-44 25 4 0.0737 
  

unc-70 15.8 19 0.0118 

neuronal, cell 
structure, cell 
adhesion medium 

unc-76 10 10 0.1699 
  unc-83 52.4 21 <0.0001 nuclear high 

unc-84 33.3 30 <0.0001 nuclear high 

unc-97 64.3 14 <0.0001 
neuronal, cell 
adhesion high 

vab-3 29.6 27 <0.0001 
homeodomain 
protein high 

Y40H4A.2 4.8 21 0.3112 
  y69h2.2 0 0 1 
  

zag-1 30 10 0.002 
neuronal, 
homeodomain medium 

zc123.3/zfh-2 44.4 45 <0.0001 

neuronal, 
transcription 
factor, 
homeodomain high 

zfp-1 35.3 34 <0.0001 
homeodomain 
protein high 

zyg-8 0 10 1 
  zyg-9 10 10 0.1699 
   

 
Table 1: RNAi screen list of genes  

Phenotypes were scored at L4 lethargus. P-values were calculated in comparison to empty vector 

(RNAi) using Fisher's exact test. 

 

 



 

 

224 
Figures  

 

Figure 1: utse outgrowth phenotypes 

utse cell body is shown in red and utse nuclei is shown in solid green. (A) Wild-type utse 

development at L4 lethargus. utse has properly elongated along the anterior-posterior axis and 

nuclei have migrated to the anterior and posterior edges of the utse. (B) Defective utse development 

at L4 lethargus. utse exhibits shorter outgrowth and nuclei have not migrated.  

A. Wild-type utse development 

B. Defective utse development 

vulval and uterine epitheliumutse cell bodyutse nuclei

uterine lumen
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utse nuclei
vulval and uterine epithelium
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Figure 2: screen schematics 

(A) Schematic of how RNAi screen against utse phenotypes was performed.  
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Figure 3: Representative phenotypes 

utse cell body maked with cdh-3::mcherry and utse nuclei marked with egl-13::gfp. (A-C) wild-

type utse development. (A) wild-type utse cell body has properly grown outward along the anterior-

posterior axis. (B) wild-type utse nuclei have migrated to the anterior and posterior edges of the cell. 

(C) merge of (A) and (B). (D-F) utse development in ina-1(RNAi) treated animals.  (D) in ina-

1(RNAi) treated animals utse cell body has failed to grow the full length along the anterior-posterior 

axis and cell body is mishappen. (E) ina-1(RNAi) treated animals exhibit defects in nuclear 

migration. Nuclei have not properly migration and are mispositioned. (F) merge of (D) and (E). 

Scale bar indicates 100 µm. 
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6.1 Concluding remarks 
  
This work presents the C. elegans uterine seam cell (utse) new model system for studying cell 

biology. During its development, the utse grows outward along the anterior-posterior axis, changing 

from an ellipsoidal cell to an elongated H-shaped cell. We have identified spatial and molecular 

inputs necessary for utse outgrowth, and used the utse as an in vivo model to study proteases 

involved in metastatic cancer.  

Chapter 2 describes 11 different C. elegans systems that undergo outgrowth and cell shape change.  

While discussing the different genetic inputs necessary for each system, I observed that certain 

genes and gene families (netrins, Trio) were controlling outgrowth in multiple systems. It seems 

that these genes regulate different tissues through differentially interacting with tissue specific 

factors. A comprehensive study of these master genetic regulators of cell outgrowth in multiple 

tissues would be an ideal way to identify exactly how these genes are differentially regulated. 

Furthermore, in many cases I also saw that certain components of a pathway were involved in more 

than one tissue. For instance, the FGF receptor is involved in utse development, and the FGF 

ligands and receptor are involved in muscle arm development.  These two cell outgrowth systems 

are spatially distant from one another and have separate functions within the worm. Therefore, it 

would not be surprising if FGF was affecting other outgrowth systems in C. elegans, especially 

considering that FGF is known to affect cell migration and cell shape change in other organisms. 

FGF is but one example of a system that begs to be studied in other C. elegans tissues that grow 

outward. By selecting a few candidates that function in multiple systems and whose gene families 

have known outgrowth function in other organisms, we can identify other master regulators of C. 

elegans cell outgrowth by characterizing their inputs in multiple C. elegans growing tissues.  

Chapter 3 characterizes spatial and molecular inputs involved in C. elegans utse cell outgrowth. 

Specifically, in Chapter 3 I identified three tissues involved in utse development: the uterine lumen 

cells uterine toroid 1 and uterine toroid 2, and the sex muscles. I also identified that certain genes 

expressed in these tissues, rsef-1 and unc-73 in the uterine toroids and unc-53 in the sex muscles, 

promote utse outgrowth. One experiment that would bolster my findings would involve performing 

tissue specific rescues within these three tissues. For instance, if a uterine toroid 1 or 2 specific 

promoter were available, this promoter could specifically drive unc-73 expression in uterine toroid 

1 or 2 of an unc-73 null mutant. I also identified several genes involved in cell transport that 

promote utse outgrowth. These include the divergent Rab rsef-1, as well as five other RabGTPases. 
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Interestingly, in most C. elegans systems one or two RabGTPases exhibit activity, and therefore 

the utse is an ideal system to study multiple aspects of intracellular transport.  Some interesting 

future experiment would involve identification of the cargo being transported within the utse as well 

as imaging experiments to visualize intracellular transport within the utse.  

Chapter 4 characterizes three nematode astacin metalloproteases: NAS-21, NAS-22, and TOH-1, 

which share sequence similarity with meprins (a class of zinc metalloproteases upregulated in 

metastatic cancers).  Meprins function by cleaving/degrading components of the ECM, such as 

collagen IV, laminin, fibronectin, and nidogen. This cleavage/degradation promotes invasive 

activities of metasttic cancers. I have shown that NAS-21, NAS-22, and TOH-1 also negatively 

regulate expression levels of ECM proteins, such as collagen IV, laminin, and syndecan. An 

interesting future experiment could involve quantifying changes in protein levels of ECM proteins 

in response to nematode astacin knockdown. This would be done through Western Blot analysis 

against ECM proteins using utse/uterine lysate. I also performed a specificity assay through 

characterizing activity of pharyngeal nas genes within the utse and characterizing NAS-21, NAS-

22, and TOH-1 activity within the pharynx. Surprisingly, we saw that astacins expressed in the 

pharynx affected levels of ECM proteins within the uterus and knockdown of these astacins caused 

low levels of utse outgrowth defects. Knockdown of NAS-21, NAS-22, and TOH-1 also disrupted 

the integrity of tissues surrounding the pharynx and affected levels of ECM in tissues adjacent to 

the pharynx. C. elegans contains 40 astacins, the majority of which are secreted, and my results 

show that even if an astacins are expressed in one tissue, knockdown of this astacin can have long 

range effects on the ECM of many tissues. Future directions would involve characterizing the 

effects of all 40 astacins on the ECM of tissues that are both proximal and distal to the astacin 

expression site. Lastly, after generating a nas-21 overexpression construct, I was able to screen for 

phenotypes indicative of nas-21 upregulation and create a network.  While building this network, I 

identified several upstream activators and protease inhibitors whose homologs regulated meprin 

activity, further bolstering my claim that the utse can be used as a in vivo model to studying meprin 

activity. One experiment I believe would further this claim would be using human meprin contructs 

to rescue utse defects in a nas-21 null mutant. Currently a true nas-21 null does not exist, but could 

be generated using CRISPR directed mutagenesis. 

Chapter 5 details an RNAi screen performed against genes I thought could affect utse development. 

My screen identified 54 genes whose knockdown significantly perturbs utse development.  These 
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genes are from a wide variety of categories, including genes involved in neruronal regulation, 

genes that regulate nuclear migration, and genes that regulate cell transport. Detailed study of these 

genes can create novel roles for genes that have not traditionally been characterized to affect cell 

outgrowth.  

Overall my work shows that the utse is a powerful tool that I have used to learn about a variety of 

aspects of cell biology. I feel that my work has cemented the utse as a key model system for 

understanding cell outgrowth, but has only covered the tip of the iceberg of information that can be 

gleaned from studying this cell. I hope that my work is but one of many studies that will use the utse 

to learn more about the complicated nature of cell biology.  
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