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Abstract

Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused

at the location of kidney stones in order to pulverize them. Stone comminution is thought to be

the product of two mechanisms: the propagation of stress waves within the stone and cavitation

erosion. However, the latter mechanism has also been implicated in vascular injury. In the present

work, shock-induced bubble collapse is studied in order to understand the role that it might play in

inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is

developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside

a vessel phantom. The primary contributions of the numerical study are the characterization of

the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes

clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and

the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the

vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the

bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates

are made of the smallest injurious bubbles in the microvasculature during both the collapse and

jetting phases of the bubble’s life cycle. The present results suggest that bubbles larger than 1 µm

in diameter could rupture blood vessels under clinical SWL conditions.
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Chapter 1

Introduction

1.1 Motivation

Shockwave lithotripsy (SWL) is a medical procedure utilized to noninvasively treat kidney stones.

In typical clinical applications, approximately 2000 pressure pulses, with peak positive pressures

between 30 and 110 MPa and peak negative pressures between −5 and −15 MPa, are generated

by the lithotripter [26]. These pulses, or shockwaves, are delivered at a rate between 0.5 and 3

Hz and focused at the location of the stones in order to pulverize them and enable their expulsion

through the urinary tract. Both the effectiveness and safety of the treatment strongly depends on

the bubble dynamics excited by the passage of the shockwaves. Cavitating bubbles are documented

to occur during treatment in both urine and surrounding tissue [6]. In the vicinity of kidney stones,

cavitation erosion is thought to be an important mechanism of stone comminution [31, 34] and is

characterized by the formation of liquid jets and the emission of shockwaves, both with the potential

to inflict significant damage to nearby stones [65, 66, 91]. Unfortunately, cavitation in SWL is also

implicated in the onset of renal trauma [5, 6], specifically hemorrhage, which is instigated by the

rupture of small blood vessels, such as capillaries, arterioles and venules [114, 118], which have an

average lumen diameter of only about 8 to 30 µm [26]. Recent experiments in the vasculature of ex

vivo rat mesentery suggest that the growth and collapse of bubbles, along with liquid jet impact,

may deform small blood vessels sufficiently as to cause them to rupture [19–21]. In order to improve

the effectiveness and safety of SWL, it is therefore imperative to fully understand the mechanisms
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through which cavitation may contribute to both stone removal and vascular injury.

The relationship between cavitation and bioeffects, however, remains poorly understood in com-

parison to that between cavitation and stone comminution. Indeed, even fundamental inquiries

regarding vascular rupture, such as how it is initiated and what the size of injurious bubbles are,

remain to be clarified. In attempt to do so, the present study considers the numerical simulation of

the shock-induced bubble collapse in the free-field and a vessel phantom. The overarching objective

is to quantify and compare the resulting pressure fields, strain fields and vessel wall displacements

with available experimental data in order to characterize the potential for vascular rupture and its

underlying mechanisms under a variety of physiological and clinical SWL conditions.

1.2 Historical perspective

Hemorrhage is a nearly inevitable side effect of SWL [26] and understanding the interaction between

cavitation bubbles and surrounding tissue is paramount to reducing it. In both experiments and

simulations, however, characterization of the bubble-vessel dynamics has been difficult. Experimen-

tally, the challenges of performing measurements and observations in tissue and blood vessels are

exacerbated by small spatial and fast temporal scales. As a result, experimental work has primarily

been carried out in vitro, typically utilizing gels and vessel phantoms to simulate tissue and blood

vessels, respectively [13, 14, 73, 118]. The first observations of ex vivo bubble dynamics in blood

vessels and under clinical conditions were reported by Caskey et al. [17], in the case of ultrasonic

cavitation of microbubbles in rat cecum. Their results were cast in the context of gene therapy and

localized drug delivery and did not specifically address the potential mechanisms of vascular injury.

These mechanisms were the focus of subsequent work by Chen et al. [19–22], who performed analo-

gous experiments in ex vivo rat mesentery. Utilizing high-speed microphotography, they measured

the transient bubble-vessel interactions and correlated observable injuries with the magnitude of the

vessel deformations. They concluded that in the context of SWL, three mechanisms can potentially

result in the mechanical failure of blood vessels due to cavitation. These include vessel distention

due to bubble growth, vessel invagination due to bubble collapse, and finally, puncturing of the
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vessel wall due to bubble jetting.

Identifying these same mechanisms in numerical simulations has its own set of challenges. In

particular, the understanding of the rheology of tissue is incomplete. Recent efforts to study vessel

rupture mechanisms due to cavitating bubbles have circumvented this issue, modeling the wall of

the blood vessel in great detail and omitting the tissue in which it is embedded. These simulations,

performed by Ye and Bull [117] and Miao et al. [84], were carried out in an axisymmetric geome-

try, with both the bubble and vessel wall immersed in an incompressible fluid. Their efforts were

successful in demonstrating that ultrasonically excited microbubbles could generate sufficiently high

vessel wall stresses during distention as to induce rupture. Unfortunately, due to the axisymmetry

and incompressibility assumptions, the wall stresses that would arise from bubble collapse and liquid

jet impact could not be addressed.

The damage potential of bubble jetting was considered in the axisymmetric compressible flow

simulations of Freund et al. [43] and Kobayashi et al. [72], but in the context of the shock-induced

collapse of a bubble near a planar tissue simulant. Freund et al. set the properties of the simulant

to those of water but varied its shear viscosity in order to study how effectively various experimental

measurements in tissue could suppress the penetration of the liquid jet. Values between 0.01 and

10 Pa·s were considered. The results of the study showed that the penetration depth of the jet

into the boundary could greatly be suppressed by the larger viscosity measurements. The resulting

viscous shear stresses, however, were estimated to be sufficiently large on the surface of the tissue

as to potentially damage cells. Freund et al. postulated that this mechanism could be responsible

for the observed damage to the endothelium, a thin layer of cells that lines the inner surface of a

vessel wall. Kobayashi et al. [72] subsequently built on this work by examining the effects of tissue

density and stiffness in the inviscid case. Axisymmetric simulations of shock-induced bubble collapse

were performed near a tissue layer governed by the stiffened gas equation of state (EOS). Several

common tissues and tissue simulants, including fat, liver and a gelatin/water mixture were modeled

by matching their density and sound speed. Only minor variations in penetration depth were noted

across the different materials.
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1.3 Contributions and outline

In the present work, we build upon the computational efforts of Freund et al. [43] and Kobayashi

et al. [72] and parametrically study the three-dimensional (3D) shock-induced bubble collapse in a

vessel phantom, as well as in a free-field, in an effort to correlate the resulting flow features to the

damage potential of the collapse and jetting mechanisms. Resultantly, the main contributions of

this thesis are:

• Development and verification of a high-order accurate, quasi-conservative, shock- and interface-

capturing numerical scheme for the simulation of viscous and compressible multicomponent

flows.

• Characterization of the shock-bubble-vessel interaction as a function of vessel wall pressures

and displacements, across a parameter space that includes the geometric configuration of the

problem as well as estimates of tissue viscosity.

• Development of a methodology to extract the time-dependent, finite strain fluid deformations

from a 3D flow by utilizing particle tracking.

• Characterization of the finite strain flow deformations resulting from the shock-induced collapse

of a bubble in the free-field as a function of shockwave pressure.

• Correlation of vessel wall pressures and displacements, as well as finite strain flow deformations,

to vascular damage potential of the collapse and jetting mechanisms.

• Estimates of the minimum bubble sizes needed to rupture the blood vessels in the microvas-

culature as a function of the estimates of tissue viscosity and elasticity.

The remainder of this work is organized as follows. In Chapter 2, the physical model is first

motivated by a discussion on the origin and size of preexisting bubbles in the microvasculature, as

well as the structure and material properties of the latter, with a special emphasis on the physics

of importance when the two interact during SWL treatment. Subsequently, the governing equations

for viscous and compressible multicomponent flows are introduced and modeling considerations for
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the contents of the bubble, the surrounding blood, and soft tissue are discussed. In Chapter 3, the

numerical method utilized to simulate the shock-induced collapse of a bubble in a vessel phantom

and free-field is derived and verified, with challenging 1D, 2D and 3D test cases considered. The

results of the simulations are presented in Chapter 4, outlining the differences between the collapse

of a bubble in a free-field and a vessel phantom, as well as discussing how vascular damage potential

is expected to vary as a function of the problem geometry and tissue viscosity. Lastly, in Chapter 5,

finite strain flow deformations are extracted from free-field collapse simulations in order to estimate

the minimum bubble sizes that can result in vascular rupture during collapse and jetting. A spherical

bubble dynamics model and a jetting model are utilized to account for the effects of tissue viscosity

and elasticity in the results. Concluding remarks and suggestions for future work are made in

Chapter 6.
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Chapter 2

Physical model

2.1 Problem description

2.1.1 Origin and size distribution of bubbles in tissue

In SWL, preexisting bubbles originate as cavitation nuclei and grow more numerous, as well as

larger, as the treatment progresses [91]. These nuclei are present in the blood stream even under

normal physiological conditions, i.e. prior to the start of the treatment, and are the product of

homogeneous and heterogeneous nucleation [10]. Their initial distribution, however, is thought to

be scarce, at most 2.7 nuclei per liter of blood [18], and their size small, at most 1 µm in diameter

[10]. But with ongoing treatment, bubble splitting is thought to grow the population of these nuclei,

while rectified diffusion is anticipated to increase their size [44]. Bubbles O(10) µm in diameter can

be expected once extensive cavitation and injury are detected during treatment [32, 44].

It is hypothesized then that the bubble diameters for which a shock-induced collapse might

result in injury lie between 1 and 100 µm. The lower bound is given by the largest estimated

bubble size that might be available under normal physiological conditions, while the upper bound is

approximately the largest bubble size that can be expected upon the onset of extensive cavitation.

Presently, the focus is further narrowed down to bubble sizes that can fit inside the average lumen

diameter of the confining microvasculature, the structure of which is discussed next.
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Figure 2.1: The average inner diameter, or lumen diameter, and average wall thickness of arterioles,
venules and capillaries. The depicted dimensions of the vessels are scaled correctly with respect
to one another. The relative soft tissue composition of the vessel walls is also indicated, with the
contribution of the basement membrane difficult to visualize, and thus neglected, on this scale. The
figure is adapted from Burton [15] and Koeppen and Stanton [74].

2.1.2 Structure and material properties of the microvasculature

The microvasculature of the kidney is particularly susceptible to cavitation damage during SWL

[35, 114], presumably because the size and supporting structure of small blood vessels is insufficient

to either accommodate or suppress the growth and collapse of cavitation bubbles [19, 118]. Small

blood vessels are comprised of capillaries, venules and arterioles, whose lumen and walls are on

average only 8, 20 and 30 µm in diameter and 0.5, 1 and 6 µm in thickness [74], see Figure 2.1.

Capillaries are expected to be the most fragile of the three vessels, with a wall composed of only

endothelial cells mounted on a basement membrane. Venules, on the other hand, are anticipated

to be stronger than capillaries due to the presence of an additional wall layer comprised of fibrous

tissue, but weaker than arterioles, whose vessel wall, in addition to a layer of fibrous tissue, is also

comprised of a thick layer of smooth muscle and elastic tissue. The blood vessels are also provided

limited support by the surrounding connective tissue, see Koeppen and Stanton [74] for further

details on the microvascular anatomy. The present aim is to establish reasonable estimates for the

material properties of the structural components of microvessels.
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A significant obstacle to doing so, however, is the complex, nonlinear, viscoelastic response of

soft tissue, which is dependent on both strain and strain rate. Specifically, soft tissue behaves like

a non-Newtonian fluid, with a viscosity that usually decreases with increasing strain rate and an

elasticity that typically increases with increasing strain and/or strain rate [38, 95, 105, 115]. Both

the viscosity and elasticity of tissue can then be expected to vary across several orders of magnitude

during the shock-induced collapse of a bubble in a blood vessel [41], which will span infinitesimal to

finite tissue strains, and easily achieve strain rates beyond the megascale, based on the bubble sizes

and shockwave strengths expected in clinical SWL applications[33]. Establishing estimates for the

material properties of the structural components of microvessels thus requires material testing results

across a broad range of deformations and deformation rates, which unfortunately are only available

for certain tissues and even then, only for a narrow range of strains and strain rates. Consequently,

the available data are utilized here only to establish reasonable estimates for the values of tissue

viscosity and elasticity that could be expected during shock-induced collapse in SWL.

Material testing results indicate that the first structurally important layer in the microvasculature

is the basement membrane, which has a remarkably high stiffness for a biological material [104, 115].

Indeed, for capillaries and venules in ex vivo rabbit kidney with a scrubbed endothelium, Welling et

al. [115] reports a Young’s modulus of Y = 2−5 MPa for low strains and Y = 20−30 MPa for high

strains under quasi-static distention, with only negligible deviations in the measured moduli noted

in the cases with an intact endothelium. The basement membrane, however, is approximately only

0.1 µm thick and typically only constitutes a small fraction of the vessel wall [104, 115]. In vivo

distensibility experiments in cat mesentery at low strains and strain rates suggest elastic moduli

for the whole wall that are an order of magnitude smaller, Y = 0.37 MPa for capillaries and

Y = 0.39 MPa for venules [104]. At small strains but fast strain rates, 6− 20 MHz, the ultrasound

measurements of Yang and Church [116] on the ex vivo porcine kidney capsule exhibit a comparable

stiffness, Y = 0.546 MPa, but can be expected to be an order of magnitude smaller at lower strain

rates, O(10) Hz, according to the parallel plate rheometer experiments on the ex vivo porcine kidney

cortex of Nasseri et al. [87]. The experiments of Nasseri et al. also suggest that tissue viscosity at
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such small strain rates is quite large, µt = O(10) Pa·s, but is shown to decrease significantly at the

rapid strain rates utilized by Yang and Church, who measured µt = 0.0046 Pa·s. A recent numerical

study by Hosseinkhah et al. [57], however, which fitted a linear viscoelastic model to the relaxation

data of Chen et al. [23] for a venule in ex vivo rat mesentery distended by an ultrasound activated

contrast agent at 1 MHz, suggests that µt = 0.9 Pa·s, which is arguably a more relevant measurement

to the present study. Based on these measurements, tissue viscosities and elasticities in the ranges

0.01 ≤ µt ≤ 10 Pa·s and 0.01 ≤ G ≤ 10 MPa will be considered, where G is the shear modulus

and is approximately equal to one third of Young’s modulus since tissue is nearly incompressible.

The switch to the shear modulus is motivated by the convention of describing non-Newtonian fluid

elasticity.

Lastly, the characterization of the material response of microvessels is completed with a discussion

of the structural failure thresholds of tissue, which though not well understood for bubbles collapsing

in the vasculature, have been studied on the macroscale, predominantly with standard uniaxial

loading tests in ex vivo tissue. Though such tests are typically carried out at strain rates significantly

slower than would be expected in SWL, the rupture strain, i.e. ultimate strain, is shown to decrease

as a function of increasing strain rate for individual tissues [38, 95, 105], such that the available

experimental data can be used to establish conservative estimates.

Overall, it is expected that tissue can deform significantly prior to rupturing. Uniaxial tensile

tests of the porcine renal capsule at a strain rate of 200 s−1 suggest an ultimate Green-Lagrange

strain of Eu = 0.29 [105], which is comparable to that observed for the human liver parenchyma

at a strain rate of 10 s−1, where Eu = 0.24 [95], Tissue seems more difficult to rupture under

compression, however, with analogous tests of the human liver parenchyma showing an ultimate

strain of Eu = −0.35 at a nearly equivalent deformation rate, 7 s−1 [95]. The porcine kidney

cortex fails at approximately the same level of deformation as the human liver parenchyma, but at

a much slower strain rate, O(10−1) s−1 [38]. Finally, in the study of the distensibility of basement

membranes in ex vivo rabbit kidney, Welling et al. [115] reports two cases in which the membrane

ruptured. An average of the two samples suggests an ultimate strain of Eu = 0.23 for the basement
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Figure 2.2: Qualitative pressure waveform of a typical lithotripter at its focal region. The com-
pression front, or shockwave, along with the expansion tail, which includes a tensile component, are
indicated. The amplitude of the shockwave is given by Ps. The pulse is generated with the model
of Church [24].

membrane under quasi-static loading. All of these measurements will be utilized in establishing a

range for the vascular rupture criterion, see Section 5.2.

2.1.3 Characteristics of the lithotripter waveform

Recall from Section 1.1 that the lithotripter pulse is composed of both a compression front and

an expansion tail that includes a tensile component. In Figure 2.2, these features are illustrated

with a qualitative pressure waveform taken at the focal point of a typical lithotripter. In vitro,

the compression front, or shockwave, has a fast rise time, O(10) ns in water, while the subsequent

expansion and release of pressure to ambient conditions occurs on the microscale, O(1) µs [26].

As the lithotripter pulse travels through tissue, the amplitude of the shockwave is attenuated by

approximately 30%, and the rise time nearly doubles, though it remains on the nanoscale. The

expansion tail, on the other hand, is largely unaffected, as is the waveform qualitatively, due to

negligible dispersive effects of tissue inhomogeneities [27].

The interaction of the lithotripter pulse with a bubble first results in its shock-induced collapse

and is immediately followed by its growth due to the expansion tail. For bubble diameters under
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consideration, 1 ≤ Db ≤ 30 µm, the collapse occurs in O(10) ns in the free-field and can be expected

to be on the same order inside a blood vessel, as the confinement offered by the latter is unlikely

to be sufficient to significantly suppress the volumetric change [41, 43]. The collapse of the bubble

therefore occurs on the same time scale as the shockwave and the expansion component of the

lithotripter pulse should only play an important role in the dynamics of bubble growth and not

during the collapse phase. In the study of shock-induced collapse then, only the compression front

is considered and typical SWL pressures in the range 30 ≤ Ps ≤ 110 MPa are investigated [26]. The

attenuation of the shockwave amplitude in tissue is presently unaccounted for, since as to date, only

one study has investigated the effect.

2.1.4 Physics of shock-induced collapse in microvessels

Following the model of Church and Yang [25], which describes spherical bubble dynamics in a

liquid confined by a linear viscoelastic material, see Section 5.5.1 for details, the physics of the

shock-induced collapse of a bubble in a blood vessel can be expected to be governed by several

nondimensional parameters. These include the Reynolds numbers in the liquid, “l”, and tissue, “t”;

Rel = ρlUDb/µl and Ret = ρlUDb/µt; the Weber number, We = ρlU
2Db/σ; and the Cauchy

number, Ca = ρlU
2/G, where ρl is the density of the liquid, U is the characteristic velocity and σ

is the surface tension coefficient between the contents of the bubble and surrounding liquid. The

dimensionless quantities are arbitrarily defined with respect to the density of the liquid, which is

presumably blood, and has approximately the same density as tissue [36]. Following other studies of

shock-induced collapse [33, 43, 72], the characteristic velocity is given by U =
√
Ps/ρl. It is akin to

a sound speed, which again is approximately the same in both tissue and blood [36]. The Reynolds,

Weber and Cauchy numbers correspond to the ratios of inertial to viscous, capillary and elastic

forces, respectively, and describe the relative importance of these effects on the dynamics of bubble

and tissue. Other effects, such as mass and heat transfer, characterized by the Schmidt and Prandtl

dimensionless numbers, need not be considered based on the length of their time scales, which are

expected to be much greater than that of shock-induced collapse [66].
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The relevant dimensionless groups are first studied in the case of the shock-induced collapse of

a bubble in the absence of the vessel. Under such circumstances and under typical clinical SWL

conditions, 30 ≤ Ps ≤ 110 MPa [26], the dynamics of the bubble are expected to be primarily driven

by inertia [66]. Indeed, based on the density and viscosity of blood, ρl = 1027 kg/m3 and µl = 0.001

Pa·s [12, 36], the Reynolds number, Rel, is expected to range between O(102) and O(104) across

the estimated bubble sizes, 1 ≤ Db ≤ 30 µm, and typical shockwave amplitudes in SWL. This

suggests that the effects of viscosity, compared to the effects of inertia, should play a minor role in

the dynamics of the bubble. Similarly, inertial forces are anticipated to play a more prominent role

than capillary forces, given the surface tension coefficient between blood and air, σ = 0.056 N/m

[58], which yields a Weber number between O(102) and O(104).

In the presence of a blood vessel, however, the dynamics of the bubble may no longer be inertia

driven. In fact, the highest estimate of tissue viscosity considered, µt = 10 Pa·s, suggests the

possibility of a Reynolds number, Ret, in the Stokes’ flow regime, i.e. O(10−2), while the highest

estimate of tissue elasticity, G = 10 MPa, yields a Cauchy number that is O(1) – a flow regime

where the contributions of elastic and inertial forces are comparable. An inertial response can still

be expected, however, for the lowest estimates of tissue viscoelasticity considered, µt = 0.01 Pa·s

and G = 0.01 MPa, which suggest Reynolds and Cauchy numbers that are O(103) and O(104),

respectively.

Of course, a significant caveat in the above analysis is that it does not account for the change

in the relative contributions of inertia, surface tension, viscosity, and elasticity as a function of

time. In particular, beyond the collapse phase, the jetting of the bubble will introduce finer spatial

scales across which viscous dissipation and surface tension will play an increasingly larger role. The

viscoelastic response of tissue can also be expected to become stronger at later times, with the

progressive arrest of the jetting of the bubble. Nevertheless, the magnitude ranges of the Reynolds,

Weber and Cauchy numbers based on the estimated bubble sizes and tissue properties suggest the

possibility of a flow regime that, at least during the early stages of shock-induced collapse, is inertia

driven. The latter also suggest that in the case that tissue viscoelasticity cannot be neglected, tissue
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viscosity will play a larger role in suppressing the dynamics of the bubble than its elasticity. Both

of these assertions are further investigated and verified in Sections 4.3.7 and 5.5.2.

2.2 Idealized problem

2.2.1 Shock-induced collapse in a free-field

As discussed in Section 2.1.4, the smallest estimates of tissue viscosity and elasticity, as well as the

negligible mismatch in density and sound speed between blood and tissue, seem to indicate that the

simplest problem that can be considered in the study of shock-induced collapse in a blood vessel is

actually the collapse of a bubble in the free-field. Though the study of such a problem may initially

appear of limited value, its results are presently utilized not only to understand fundamental shock-

bubble dynamics, Section 4.2, which in the limit that tissue can be neglected are not expected to

be any different inside a blood vessel, but also to fit a model of jet propagation in viscous tissue so

to draw conclusions regarding vascular injury in the jetting phase as a function of tissue viscosity,

Section 5.6. Finally, finite strain deformations are also post-processed from the flow field surrounding

the bubble, Section 5.3, to provide a means of direct comparison with the estimated ultimate strains

of tissue.

The schematic of the initial condition and computational domain for the shock-induced bubble

collapse in a free-field is shown in Figure 2.3. The problem is characterized by the initial diameter

of the bubble, Db, as well as the shockwave and ambient pressures, Ps and Po, respectively. In

the schematic, the shockwave, modeled as a step discontinuity, is shown traveling in blood toward

the bubble, a spherical cavity in the plasma. Reflective boundary conditions (RBC) are utilized to

describe the symmetry of the problem across the x-y and x-z planes of the computational domain,

while non-reflective boundary conditions (NRBC) describe the free-field. Further modeling and

numerical considerations for the problem are discussed in Section 2.3 and Chapter 3, respectively.
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Figure 2.3: Schematic of the 3D initial condition and computational domain (−−) for the shock-
induced collapse of a bubble in a free-field in the x -y plane of symmetry.

2.2.2 Shock-induced collapse in a vessel phantom

In addition to the study of shock-induced collapse in a free-field, the collapse in a vessel phantom

is also considered. In this case, a tissue simulant is added to the free-field to confine the gas bubble

and surrounding blood. The simulant matches the density, sound speed, and viscosity of tissue but

neglects its elasticity, as elastic effects are expected to play a minor role in suppressing vascular

deformations compared to viscous effects, see Section 2.1.2. The tissue simulant also behaves like a

fluid, as motivated by the rapid strain rates anticipated during shock-induced collapse. The primary

motivation for the study of this problem is the characterization of the shock-vessel-bubble interaction

as a function of geometry, Sections 4.3.4–4.3.6, and tissue viscosity, Section 4.3.7. In contrast to the

study of free-field collapse, vessel wall pressures and displacements are utilized in the present case

to characterize the vascular damage potential of the collapsed bubble.

The schematic of the initial condition and computational domain for the shock-induced collapse

in a vessel phantom is shown in Figure 2.4. The problem is characterized by the initial bubble

and vessel diameters, Db and Dv, the x- and y-coordinates of the bubble centroid, Hx and Hy, the

shockwave and ambient pressures, Ps and Po, and finally, the tissue viscosity, µt. In the schematic,

the shockwave is shown traveling in tissue toward a cylindrical, blood-filled cavity that contains a
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Figure 2.4: Schematic of the 3D initial condition and computational domain (−−) for the shock-
induced collapse of a bubble in a vessel phantom in the x -y plane of symmetry.

gas bubble – a spherical cavity in blood. A RBC is utilized to describe the symmetry of the problem

across the x-y plane of the computational domain, while NRBCs extend the tissue to infinity. Further

modeling and numerical considerations for the problem are discussed in Section 2.3 and Chapter 3,

respectively.

2.3 Governing equations

2.3.1 Five-equation model

In the absence of mass transfer, the shock-induced collapse of a bubble inside a blood vessel may

be modeled as a multicomponent flow – a multiphase flow for which the individual species, i.e. the

gas in the bubble, the blood in the vessel and the surrounding tissue, are immiscible. By further

neglecting the effects of surface tension and heat transfer, the motion of each species in the flow

may be described by the compressible Navier-Stokes equations. For two fluids, this constitutes

a five-equation model for viscous and compressible multicomponent flows, Equations (2.1)–(2.5),

which was first introduced in its inviscid form by Allaire et al. [3] and Massoni et al. [83] and

subsequently extended to include viscous effects by Perigaud and Saurel [90]. The model consists of
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two continuity equations, Equations (2.1) and (2.2); a momentum and an energy equation, Equations

(2.3) and (2.4), respectively; as well as an advection equation for the volume fraction of one of the

two fluids, Equation (2.5); so to identify their material interface:

∂ (α1ρ1)

∂t
+∇ · (α1ρ1u) = 0, (2.1)

∂ (α2ρ2)

∂t
+∇ · (α2ρ2u) = 0, (2.2)

∂ (ρu)

∂t
+∇ · (ρuu + pI−T) = 0, (2.3)

∂E

∂t
+∇ · ((E + p) u−T · u) = 0, (2.4)

∂α1

∂t
+ u · ∇α1 = 0, (2.5)

where ρ is the density, u = (u, v, w)T is the velocity, p is the pressure, E is the total energy, α

is the volume fraction, T is the viscous stress tensor, and the subscripted variables indicate those

quantities which are specific to the individual fluids. The viscous stress tensor is given by

T = 2µ

(
D− 1

3
(∇ · u) I

)
, (2.6)

where µ is the shear viscosity and

D =
1

2

(
∇u + (∇u)

T
)

(2.7)

is the deformation rate tensor. The shear viscosity of each fluid is assumed to be constant and

the effects of bulk viscosity are neglected. The five-equation model is easily extended to account

for additional fluids by supplementing the equations of motion with a continuity equation and a

volume fraction advection equation for each new fluid that is added. For the sake of conciseness,

however, only the case with two fluids is presently discussed, with extensions to the more general

case considered when necessary.

Though other models may be utilized to describe viscous and compressible multicomponent flows,

the five-equation model is chosen because it meets several key criteria, foremost of which is that it
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is cast in a quasi-conservative form that ensures that when using a shock- and interface-capturing

scheme, such as that developed in Chapter 3, critical physical quantities are conserved, while spurious

oscillations at the material interfaces are avoided, see Allaire et al. [3]. The compressible Navier-

Stokes equations, Equations (2.1)–(2.4), are written in conservative form and conserve the mass of

the individual fluids, as well as the total momentum and energy. The advection equation for the

volume fraction, on the other hand, Equation (2.5), is not written in conservative form. This choice,

along with that of the transported quantity, ensures that the advection equation is consistently

coupled with the compressible Navier-Stokes equations so as to lead to an oscillation-free behavior

at material interfaces.

There are also multiple alternatives to the five-equation model that meet the above criteria. The

differences between these models and the present equations of motion range from conserving the total

mass of the two fluids, versus the mass of each, to transporting alternate scalar quantities, most

notably functions of the EOS parameters, versus the volume fraction [1, 97, 101–103]. However, in

an interface-capturing method, the former difference will typically lead to mass transfer between the

supposedly immiscible fluids, while advecting functions of the EOS parameters will not only lead to

the dependence of the complexity of the equations of motion on the EOS, but can also result in a

non-uniquely defined material interface position [67]. The latter two issues are further exacerbated

when more intricate EOS are considered and/or there are more than two fluids in the flow.

2.3.2 Stiffened gas EOS

In order to provide closure to the five-equation model, it is necessary to specify the appropriate

EOS, relating the density, internal energy, and pressure for the gas in the bubble, the blood inside

the vessel and the surrounding tissue. The gas in the bubble is usually a mixture of vapor and

non-condensible gas, the ratio between which is dictated by the effects of mass transfer. Since those

effects are neglected here, the bubble is assumed to be strictly composed of air, a common modeling

assumption for the type of problem under consideration and one to which the jetting dynamics

are not sensitive [43]. The blood and tissue are modeled by water and 10% gelatin, respectively,
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Table 2.1: Properties of air, helium, water and 10% gelatin at normal temperature and pressure.
These include the density, ρ, the sound speed, c, and the stiffened gas EOS fitting parameters, γ
and π∞.

Fluid ρ [kg/m3] c [m/s] γ π∞ [Pa]
Air 1.204 343 1.40 0

Helium 0.166 1008 1.67 0
Water 1000 1450 6.12 3.43× 108

10% Gelatin 1030 1553 6.72 3.70× 108

since water closely approximates the density and sound speed of plasma and 10% gelatin those of

soft tissue, like the liver and kidney [50]. Each of these components may then be described by

the stiffened gas EOS [40], which has widely been utilized in compressible multicomponent flow

applications to simultaneously describe pure gases, liquids and solids [30, 96, 97]:

p = (γ − 1) ρε− γπ∞, (2.8)

where ε is the specific internal energy, with ρε = E − 1
2ρuu, γ and π∞ are fitting parameters

deduced from fluid shockwave Hugoniot data, and c =
√
γ (p+ π∞) /ρ is the EOS sound speed. The

properties of air, water and 10% gelatin are tabulated in Table 2.1, along with those of helium, which

will be utilized in the verification of the numerical scheme in Section 3.6. The fitting parameters

for water and 10% gelatin are obtained based on the shockwave Hugoniot data of Gojani et al. [49],

following the fitting procedure of Cocchi et al. [30]. In the case of air and helium π∞ = 0 Pa and

the stiffened gas EOS reduces to the ideal gas law, with γ the specific heat ratio.

2.3.3 Mixture relationships

The closure of the five-equation model is completed with a set of rules for the properties of fluid

mixtures, which will arise in simulations as an artifact of numerical diffusion and are not a product of

mixing on a molecular level. The mixtures of fluids are confined to thin regions of space neighboring

material interfaces and despite being artificial, their properties must be determined in a thermody-

namically consistent manner in order to avoid introducing spurious oscillations in simulations. It

is common practice to define the following rules for the mixture volume fraction, Equation (2.9),



19

density, Equation (2.10), and internal energy, Equation (2.11):

1 = α1 + α2, (2.9)

ρ = α1ρ1 + α2ρ2, (2.10)

ρε = α1ρ1ε1 + α2ρ2ε2. (2.11)

Two additional rules may then be derived by assuming that each pure fluid of which the mixture is

composed is at the same pressure. This is referred to as the isobaric assumption and it is consistent

with the modeled flow physics in that in the absence of surface tension the pressure across an isolated

material interface should not vary, see Allaire et al. [3] for a more rigorous consistency analysis.

Combining Equations (2.8) and (2.11) with the isobaric assumption yields the mixture rules for two

functions of the stiffened gas EOS parameters:

Γ = α1Γ1 + α2Γ2, (2.12)

Π∞ = α1Π∞,1 + α2Π∞,2, (2.13)

where Γ = 1/(γ − 1) and Π∞ = γπ∞/(γ − 1). The closure of the five-equation model is finalized by

defining a mixture rule for the coefficient of shear viscosity. Following Perigaud and Saurel [90], we

choose

µ = α1µ1 + α2µ2. (2.14)

All of the above mixture properties are obtained through the linear combination of the analogous

properties of the pure fluids composing it. As such, extending Equations (2.9)–(2.14) to account for

additional fluids is straightforward.
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Table 2.2: Dimensionless parameter space for the study of the shock-induced collapse of a bubble
in a free-field and inside a vessel phantom. Parametric studies are carried out for the shockwave
strength, Ps/Po, in the free-field, and for vessel confinement, D∗v, vessel proximity, H∗x , shockwave
angle, θ = tan−1(H∗y/H

∗
x), and tissue viscosity, Ret, in the vessel phantom.

Free-field Vessel phantom

Parameter
Shockwave
strength

Vessel
confinement

Vessel
proximity

Shockwave
angle

Tissue
viscosity

Ps/Po [296, 1086] 395 395 395 395

D∗v ∞ [1.1, 4.0] 3.0 3.0 1.3

H∗x 0.00 0.00 [−0.75, 0.75]
√

0.752 −H∗y 2 0.00

H∗y 0.00 0.00 0.00 [0.00, 0.75] 0.00

Ret ∞ ∞ ∞ ∞ [10,∞)

2.3.4 Nondimensionalization and parameter space

In the study of the shock-induced bubble collapse in both a free-field and a vessel phantom, the

five-equation model is solved in dimensionless form – nondimensionalized by the diameter of the

bubble, Db, the density of water, ρl, the shockwave pressure, Ps, and the characteristic velocity,

U =
√
Ps/ρl. The resulting change of variables is given by

t∗ = t
U

Db
, x∗ =

x

Db
, ρ∗ =

ρ

ρl
, u∗ =

u

U
, p∗ =

p

Ps
, (2.15)

where a superscripted star denotes a dimensionless quantity. The purpose of the nondimension-

alization is to minimize the number of parameters governing the physics of each of the problems.

The physics of shock-induced bubble collapse in a free-field are governed by a single dimensionless

parameter, the shockwave to ambient pressure ratio, Ps/Po. The physics of the bubble collapse in a

vessel phantom, on the other hand, are governed by four additional parameters, including the vessel

to bubble diameter ratio, D∗v, the ratio of the x-coordinate of the bubble to its diameter, H∗x , the

tissue Reynolds number, Ret, and the shockwave angle, θ = tan−1(H∗y/H
∗
x).

A parametric study is carried out across each dimensionless parameter, as detailed in Table 2.2,

where the span of the parameter space is not only a product of the discussion of the bubble sizes,

vascular structure and physics of shock-induced collapse in microvessels of Section 2.1, but also
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constrained by resolution and, more generally, computational cost considerations. In the case of

free-field collapse, the shockwave to ambient pressure ratio spans the typical shockwave pressures

of clinical SWL, 30 to 110 MPa. The parametric studies of collapse in a vessel phantom, on the

other hand, are carried out at a single shockwave strength corresponding to 40 MPa, the output

of a widely utilized clinical and research lithotripter, the Dornier HM3 [28]. In the study of vessel

confinement, vessel to bubble diameter ratios below 1.1 are not considered in order that the bubble-

vessel interaction may properly be resolved, while ratios larger than 4.0 are neglected by merit of

negligible interaction. The range in the study of vessel proximity, on the other hand, is essentially

bound by the dimensionless vessel diameter. Finally, since the parametric study of shockwave angle

imposes a decreased degree of problem symmetry in simulations and that of tissue viscosity requires

simulations to take small time steps at large viscosities, only 0 ≤ θ ≤ π/2 and Ret ≥ 10, i.e. µt ≥ 0.4

Pa·s, are presently considered in order to reduce computational cost.
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Chapter 3

Numerical method

3.1 Numerical simulations of interfaces and shockwaves

Following the scaling analysis of Section 2.1.4, recall that both the shock-induced collapse of a bubble

in the free-field and inside a vessel phantom may be viewed as a multiphase flow and in particular,

a multicomponent flow, since the mass diffusion between the pure fluids is expected to be negligible.

A primordial feature of the multicomponent flows in this study is the interaction between material

interfaces and shockwaves, which presents unique challenges to the numerical method. Indeed,

the latter should satisfy three important criteria. It should maintain discrete conservation of the

total mass, momentum and energy to correctly identify the position of important flow features. It

should not generate spurious oscillations across either shockwaves or material interfaces to preserve

numerical stability. And finally, for efficiency, it should be high-order accurate in smooth regions

of the flow, away from discontinuities. Attempts at designing numerical schemes that meet these

criteria can be classified into two categories based on their treatment of material interfaces. They are

the interface-tracking and the interface-capturing methods. The advantages and disadvantages of

each method are discussed in Section 3.1.1, with the present numerical scheme introduced in Section

3.1.2.
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3.1.1 Interface-tracking versus interface-capturing methods

Interface-tracking methods have the distinct advantage of treating material interfaces in a natural

way, as sharp discontinuities. Arbitrary Lagrangian-Eulerian [81], free-Lagrange [7], front-tracking

[29, 46, 47, 107] and level set/ghost fluid [2, 39, 59, 60, 77–79, 86, 88] schemes all belong in this

category. Their sharp treatment of material interfaces enables two fluids sharing an interface to have

starkly different EOS and while at mechanical equilibrium, generally avoid the onset of spurious

oscillations at the interface. They also have the advantage of rendering the implementation of

any interfacial physics rather straightforward. Their primary drawback, however, is that they are

typically not discretely conservative at material interfaces, which may lead them to incorrectly

predict their position, as well as those of shockwaves, if the two flow features happen to interact

during the computation.

Achieving discrete conservation in interface-capturing methods, on the other hand, is relatively

simple. It is sufficient to solve the continuity, momentum and energy equations in conservative form,

while relaxing the sharp character of material interfaces and thus allowing them to numerically

diffuse over a small but finite region [1, 3, 64, 67, 82, 83, 90, 97, 101–103]. This numerical diffusion,

unfortunately, gives rise to unphysical mixtures of fluids during computations, which, if not treated

in a thermodynamically consistent manner and evolved in a fashion that is consistent with the

continuity, momentum and energy equations, can lead to spurious oscillations at material interfaces.

As a result, interface-capturing methods make the implementation of EOS that strongly differ from

one another across material interfaces challenging and further, make it nontrivial to simulate a

material interface that is simultaneously in mechanical equilibrium and void of spurious oscillations.

Attempts to achieve the latter have even led some authors to sacrifice discrete conservation [61, 68,

69, 93].

For both interface-tracking and interface-capturing methods, solutions to the aforementioned

problems do exist. Discretely conservative interface-tracking methods have been developed in the

past [7, 47, 60, 79, 81] and requirements to consistently treat mixtures of fluids while maintaining

oscillation-free material interfaces and discrete conservation in interface-capturing methods are well-
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understood [1, 64, 67]. In this study, we prefer to develop an interface-capturing framework because

achieving discrete conservation in it is straightforward and robust strategies for the treatment of

mixtures of fluids and suppression of spurious oscillations at interfaces separating them are readily

available. Moreover, we choose to develop an interface-capturing scheme because they generally are

more efficient than interface-tracking methods and their complexity does not increase with simulation

dimensionality or number of fluids.

3.1.2 A conservative, high-order and non-oscillatory, interface-capturing

scheme

In order to simultaneously achieve a discretely conservative, high-order and non-oscillatory interface-

capturing scheme, several requirements must be satisfied. As previously mentioned, discrete conser-

vation is the easiest to obtain and merely requires that the mass, momentum and energy equations be

solved in conservative form. An oscillation-free behavior, on the other hand, is the most challenging.

Foremost, it requires that material interfaces be evolved with an advection equation that is written

in non-conservative form and is consistent with the conservation equations for mass, momentum and

energy [1]. Mass fractions, volume fractions or specific functions of the EOS parameters are typically

evolved. An oscillation-free interface-capturing method also requires that these equations of motion

be closed by a thermodynamically consistent set of mixture rules, which are typically derived by

assuming that mixtures are in mechanical equilibrium [3]. Care must then be taken when solving

the resulting governing equations. They must be cast in a finite-volume framework and discretized

with a non-oscillatory spatial and temporal method, with the primitive state variables, rather than

the conservative ones, spatially reconstructed [64]. In order to achieve high-order accuracy while

maintaining nearly non-oscillatory behavior, weighted essentially non-oscillatory (WENO) spatial re-

constructions [8, 56, 62, 80] and total variation diminishing (TVD) Runge-Kutta (RK) time-steppers

[51] have been shown to perform well.

An interface-capturing scheme that meets nearly all of the above requirements was developed by

Johnsen and Colonius [64] and applied to a compressible multicomponent flow model first introduced
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by Shyue [101]. The model consists of the Euler system of equations coupled with two advection

equations, one for each function of the stiffened gas EOS parameters. To solve it, the numerical

scheme of Johnsen and Colonius utilizes a fifth-order finite-volume WENO spatial reconstruction

[62], the Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver [111] and a third-order

TVD RK time-stepper [51]. The numerical method is discretely conservative and non-oscillatory but

unfortunately, despite being advertised as such, is not formally high-order accurate. The authors

fail to identify the propagation of a second-order spatial error that arises from the procedure utilized

to obtain the cell average primitive variables from their conservative counterparts prior to recon-

struction. The problem goes unnoticed in the convergence analysis as a consequence of considering

a nearly linear test case. Presently, we propose a fix and extend their numerical framework to the

more general five-equation model introduced in Section 2.3, 3D and include viscous effects. The

five-equation model is more general than that of Shyue in that it conserves the mass of each fluid in

the flow, rather than just the total mass, and advects the volume fraction of each fluid, rather than

functions of the stiffened gas EOS parameters. We choose it because it has the distinct advantage

of explicitly tracking each fluid in the flow, which facilitates the treatment of mixtures composed

of more than two fluids. In order to extend the numerical scheme for this model to 3D, we follow

the work of Titarev and Toro [110] on finite-volume WENO schemes for 3D conservation laws. The

effects of viscosity are included based on the work of Perigaud and Saurel [90].

For the remainder of this chapter, we proceed as follows. In Section 3.2, we first introduce the

finite-volume spatial discretization of the five-equation model, followed by a discussion in Section 3.3

on the flow variables that must be reconstructed to achieve high-order accuracy and oscillation-free

behavior. The temporal discretization is then discussed in Section 3.4, with issues of numerical

stability addressed in Section 3.5. Several benchmark problems for the numerical scheme in 1D,

2D and 3D are then presented in Section 3.6. The benchmarks validate our numerical method and

corroborate its high-order accuracy, discrete conservation and oscillation-free behavior. Lastly, we

summarize in Section 3.7.
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3.2 Spatial discretization

The five-equation model is a hyperbolic and quasi-conservative system of equations [3] and is well

suited for numerical approximation by Godunov-type schemes. The latter are reconstruct-evolve-

average methods and rely on reconstructed values of the cell averages of the solution at the cell

faces for the determination of the average fluxes at the cell faces, which are subsequently utilized

to evolve the cell averages of the solution in time [76, 111]. We seek to design such a method for

the five-equation model and have it satisfy three important criteria: high-order accuracy, discrete

conservation, and non-oscillatory behavior. We begin by spatially discretizing the equations of

motion in their conservation-law form:

∂q

∂t
+
∂fa(q)

∂x
+
∂ga(q)

∂y
+
∂ha(q)

∂z
=
∂fd(q)

∂x
+
∂gd(q)

∂y
+
∂hd(q)

∂z
+ s(q), (3.1)

where q is the vector of state variables, f , g and h are vectors of fluxes, s is the vector of source terms

and the superscripts “a” and “d” denote advective and diffusive fluxes, respectively, see Appendix

A for details. The transport equation for the volume fraction takes a different but mathematically

equivalent form in Equation (3.1) compared to in Equation (2.5):

∂α1

∂t
+∇ · (α1u) = α1∇ · u. (3.2)

This form was introduced by Johnsen and Colonius [64] and is necessary to later adapt the HLLC

approximate Riemann solver to the advection equation. Equation (3.1) is discretized on a finite-

volume Cartesian grid by considering an arbitrary cell in the grid and integrating Equation (3.1)

over its control volume, Ii,j,k, denoted by

Ii,j,k =
[
xi−1/2, xi+1/2

]
×
[
yj−1/2, yj+1/2

]
×
[
zk−1/2, zk+1/2

]
, (3.3)

where i, j and k are the indices of the cell in the x-, y- and z-directions, respectively, and xi±1/2,

yj±1/2 and zk±1/2 are the positions of the cell faces. The result of the spatial integration, simplified
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by the application of the divergence theorem, yields the following semi-discrete form of Equation

(3.1):

dqi,j,k
dt

=
1

∆xi

[(
fai−1/2,j,k − fai+1/2,j,k

)
−
(
fdi−1/2,j,k − fdi+1/2,j,k

)]
+

1

∆yj

[(
ga
i,j−1/2,k − ga

i,j+1/2,k

)
−
(
gd
i,j−1/2,k − gd

i,j+1/2,k

)]
(3.4)

+
1

∆zk

[(
ha
i,j,k−1/2 − ha

i,j,k+1/2

)
−
(
hd
i,j,k−1/2 − hd

i,j,k+1/2

)]
+ si,j,k,

where the state variables and the source term are now averages over the cell volume, while the flux

vectors are averages over the cell faces. These spatial averages take the following form:

qi,j,k =
1

Vi,j,k

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

q (x, y, z, t) dx dy dz, (3.5)

fai+1/2,j,k =
1

∆yj∆zk

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

fa
(
q
(
xi+1/2, y, z, t

))
dy dz, (3.6)

si,j,k =
1

Vi,j,k

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

s (q (x, y, z, t)) dx dy dz, (3.7)

where ∆xi = xi+1/2−xi−1/2, ∆yj = yj+1/2−yj−1/2, ∆zk = zk+1/2−zk−1/2, and Vi,j,k = ∆xi∆yj∆zk.

Only the form of one flux vector is provided, as the forms of the remaining ones are analogous.

Equation (3.4) is the end result of the spatial discretization of Equation (3.1). It remains, however,

an exact relationship and must now be numerically approximated.

We proceed by first numerically approximating the right-hand side (RHS) of Equation (3.4).

To do so, the surface integrals of the fluxes, e.g. Equation (3.6), and the volume integral of the

source term, Equation (3.7), need to be estimated. Titarev and Toro [110] suggest utilizing a two-

point, fourth-order, Gaussian quadrature rule, as it offers a good balance between accuracy and

computational cost when paired with a high-order WENO spatial reconstruction scheme. Then,

applying the two-point Gaussian quadrature rule to Equation (3.6), we get

fai+1/2,j,k ≈
1

4

2∑
m=1

2∑
l=1

fa
(
q
(
xi+1/2, yjl , zkm , t

))
, (3.8)
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where yjl and zkm are the y- and z-coordinates of the Gaussian quadrature points and are given by

yjl = yj + (2l − 3)
∆yj

2
√

3
and zkm = zk + (2m− 3)

∆zk

2
√

3
, (3.9)

with the indices jl and km defined as

jl = j + (2l − 3)
1

2
√

3
and km = k + (2m− 3)

1

2
√

3
. (3.10)

The surface integrals of the remaining fluxes are treated analogously. Next, we seek to apply the

two-point Gaussian quadrature rule to the volume integral of the source term. In doing so, however,

we must ensure that the velocity utilized in the numerical integration of the source term is consistent

with that utilized in the numerical integration of the fluxes. To satisfy this requirement for the source

term of the advection equation, we follow the work of Johnsen and Colonius [64] in approximating

its volume integral with a midpoint rule and the divergence of the velocity therein with a centered

scheme. As a result, we get

(α1∇ · u)i,j,k ≈ α1i,j,k

[
1

∆xi

(
ui+1/2,j,k − ui−1/2,j,k

)
+

1

∆yj

(
vi,j+1/2,k − vi,j−1/2,k

)
(3.11)

+
1

∆zk

(
wi,j,k+1/2 − wi,j,k−1/2

) ]
,

which utilizes the same velocity as Equation (3.4) to evaluate the fluxes. Though Equation (3.11)

is formally only second-order accurate, the error is zero everywhere except near material interfaces,

which are not resolvable beyond first-order accuracy in any case. The above simplification now

requires us to numerically integrate the source term as a surface integral, rather than a volume one.

Specifically, we must now apply the two-point Gaussian quadrature rule to the surface integrals of



29

the velocity components in Equation (3.11). In doing so, we get

ui+1/2,j,k ≈
1

4

2∑
m=1

2∑
l=1

u
(
q
(
xi+1/2, yjl , zkm , t

))
, (3.12)

with the remaining velocity components treated analogously.

The last step to finalizing the numerical approximation of the RHS of Equation (3.4) is to

reconstruct the state variables at the Gaussian quadrature points on every cell face in order to

be able to evaluate the quadrature rule for all of the fluxes, e.g. Equation (3.8), and the velocity

components in the source term, e.g. Equation (3.12). To obtain high-order accuracy spatially and

avoid introducing spurious oscillations, we utilize a fifth-order WENO scheme to reconstruct the

state variables from both the left and the right side of each cell face. An appropriate monotone

function of the dual values of the state variables is then utilized to evaluate the fluxes, e.g.

fai+1/2,j,k ≈
1

4

2∑
m=1

2∑
l=1

f̂a
(
qL
i+1/2,jl,km

,qR
i+1/2,jl,km

)
, (3.13)

and the velocity components in the source term, e.g.

ui+1/2,j,k ≈
1

4

2∑
m=1

2∑
l=1

û
(
qL
i+1/2,jl,km

,qR
i+1/2,jl,km

)
, (3.14)

where “L” and “R” denote the state variables reconstructed from the left and the right side of a

cell face, respectively, and the hat superscript indicates the monotone function counterpart of the

superscripted variable. The choice of a monotone function enables us to compute a singular value

of the fluxes at each cell face and achieve the familiar telescoping property of the fluxes [76, 111],

which guarantees that the numerical method is discretely conservative. Further details on the WENO

reconstruction may be found in Appendix C, while those on the choice of a monotone function are

provided in the overview of the HLLC approximate Riemann solver, in Appendix D.
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3.3 Reconstructed variables

The choice of the reconstructed state variables is not unique and in practice, it is preferable not

to reconstruct the conservative variables as this will introduce spurious oscillations near material

interfaces, as well as in regions where discontinuities of different characteristic fields interact [54, 92].

In order to avoid introducing spurious oscillations near material interfaces, Johnsen and Colonius

[64] showed that the primitive variables should be reconstructed. They further demonstrated that

by projecting the primitive variables onto the characteristic fields prior to the reconstruction and

thus reconstructing the characteristic variables, the introduction of spurious oscillations in regions

where discontinuities of different characteristic fields interact could also be avoided.

Recall, however, that at the beginning of each time-step, only the cell average conservative

variables are available. To remedy this, Johnsen and Colonius [64] suggest obtaining a second-order

estimate of the cell average primitive variables by directly computing them from the conservative

ones. They argue that a WENO interpolation of this second-order approximation will nevertheless

result in a high-order reconstruction. But, as we illustrate in Section 3.6.4, this is in general not the

case and in fact, usually reduces the formal order of the spatial accuracy of the numerical method

to second-order. We recover a high-order scheme by discretizing the volume integral of the primitive

variables, v, i.e.

vi,j,k =
1

Vi,j,k

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

v (q (x, y, z, t)) dx dy dz, (3.15)

with the two-point Gaussian quadrature rule to get a fourth-order accurate estimate of the cell

average primitive variables:

vi,j,k ≈
1

8

2∑
n=1

2∑
m=1

2∑
l=1

v (q (xil , yjm , zkn , t)) , (3.16)

where v is defined in Appendix B. Then, at the beginning of each time-step, in order to obtain the cell

average primitive variables, the cell average conservative variables must first be reconstructed at the
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Gaussian quadrature points in the cell volume. The cell average primitive variables may subsequently

be projected onto the characteristic fields by following the procedure outlined in Appendix B.

In addition to the characteristic variables, the cell average of the gradient of the velocity must

also be reconstructed at the Gaussian quadrature points of both the left and right side of each cell

face. This is necessary in order to evaluate the viscous terms in the diffusive fluxes. We evaluate

the cell average of the gradient of the velocity by applying the divergence theorem to the volume

integral of each of its terms in order to obtain the following surface integral:

∇ui,j,k =
1

Vi,j,k

∫
Vi,j,k

∇u dV =
1

Vi,j,k

∫
∂Vi,j,k

nu dA, (3.17)

which may then be evaluated to obtain, for example, the first column vector of ∇ui,j,k:

∂ui,j,k
∂x

=
ui+1/2,j,k − ui−1/2,j,k

∆xi
, (3.18)

with the remaining column vectors, those for the spatial derivatives of the cell average velocity in

the y- and z-direction, taking a similar form. Note from Equation (3.18) that in order to obtain all

of the elements of ∇ui,j,k and reconstruct them at the cell faces, the average velocity at the cell faces

must first be computed. In Appendix E, we outline all of the variables that must be reconstructed

and the order in which their reconstruction must be carried out.

3.4 Temporal integration

To complete the design of the numerical method, the semi-discrete approximation of the equations

of motion must now be temporally integrated. Since the latter is a system of ordinary differential

equations, we choose a RK time-marching scheme to evolve the state variables in time. In particular,

to achieve high-order accuracy temporally and avoid introducing spurious oscillations, we follow

Johnsen and Colonius [64] and Titarev and Toro [110] in choosing the low-storage, third-order,
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TVD RK time-marching scheme of Gottlieb and Shu [51]:

q
(1)
i,j,k = qni,j,k + ∆tL

(
qni,j,k

)
,

q
(2)
i,j,k =

3

4
qni,j,k +

1

4
q
(1)
i,j,k +

1

4
∆tL

(
q
(1)
i,j,k

)
,

qn+1
i,j,k =

1

3
qni,j,k +

2

3
q
(2)
i,j,k +

2

3
∆tL

(
q
(2)
i,j,k

)
,


(3.19)

where ∆t is the time-step size, L is the operator evaluating the numerically approximated RHS

of Equation (3.4), the superscripts (1) and (2) denote the intermediate time-stages between two

consecutive time-steps, and the superscripts n and n + 1 denote the current and the subsequent

time-steps, respectively. With the choice of time-stepper made, the design of the numerical scheme

is now complete and satisfies the desired criteria previously outlined, i.e. it is high-order accurate,

discretely conservative and non-oscillatory.

3.5 Stability

The stability of the numerical scheme is dictated by the Courant-Friedrichs-Lewy (CFL) number,

C, and the diffusion number, D. Unfortunately, as a result of the nonlinear behavior of both the

equations of motion and the WENO reconstruction, the stability bounds of either criterion are

not readily obtainable by analytic methods. Though these bounds could be determined through

extensive numerical experimentation, in practice, it is more convenient to guide the choice of a

stable time-step by relying on the readily available stability results for a forward in time, centered

in space, numerical scheme applied to the linear advection-diffusion equation. Then, based on the

latter, a stable time-step for a given simulation is chosen by ensuring that throughout the duration

of the simulation the time-step satisfies

∆t = C ·min
i,j,k

(
∆xi

|ui,j,k|+ ci,j,k
,

∆yj
|vi,j,k|+ ci,j,k

,
∆zk

|wi,j,k|+ ci,j,k

)
, 0 < C ≤ 1

3
, (3.20)
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for the CFL number, as well as

∆t = D ·min
i,j,k

(
∆x2i
νi,j,k

,
∆y2j
νi,j,k

,
∆z2k
νi,j,k

)
, 0 < D ≤ 1

6
, (3.21)

for the diffusion number, where ν = µ/ρ is the kinematic viscosity [48, 110]. The strong time-step

restriction imposed by the diffusion number can be removed by an implicit treatment of the viscous

terms, by utilizing a semi-implicit RK method for example [70], as done in [43]. For simulations

in less than three dimensions, Equations (3.20) and (3.21) must be simplified accordingly, while

the stability bounds for both the CFL number and the diffusion number may be relaxed. In N

dimensions, the latter are given by

0 < C ≤ 1

N
, 0 < D ≤ 1

2N
, (3.22)

see [48] for details. Finally, since a linear stability is being utilized for a nonlinear problem, the

largest time-step allowed by Equations (3.20)–(3.22) is in all likelihood not a conservative upper

limit. In general, to achieve stability, the need for a smaller time-step than that predicted by the

above strategy should be expected.

Of course, since the numerical scheme is not TVD due to the WENO reconstruction, even for a

forbiddingly small choice of time-step, stability cannot be guaranteed in the long-term when evolving

a general initial condition. This issue is particularly relevant to the simulation of flows featuring the

interaction of shockwaves and material interfaces with high pressure and density ratios, respectively.

In such cases, WENO may not be able to find a smooth stencil during reconstruction and may

interpolate values for a variable that a) are outside its physical range, b) will be outside its physical

range once it is updated and/or c) will result in other variables, which are computed from the one

that is reconstructed, to lay outside their physical range. In the worst-case scenario, a simulation

may have to be abruptly terminated. In our experience, this is typically the case when an unphysical

sound speed is recovered.

Some authors have proposed partly alleviating this problem by either reducing the order of the
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reconstruction [110] or utilizing flux limiters [53, 100, 113] in the affected regions of the flow . This,

however, may lead to excessive smearing of material interfaces as they evolve or, in the case that an

interface-sharpening technique is employed as a remedy, a loss of discrete conservation [100]. While

it is true that discretely conservative interface-sharpening techniques do exist for diffuse interface

methods [106], their robustness remains to be rigorously documented when applied to material in-

terfaces with high density ratios and which are interacting with strong shockwaves.

To maintain the desired properties of our numerical scheme, we do not utilize any of the above

methods. Instead, when necessary, we primarily increase stability by initially smearing material

interfaces over a few cells, as well as reducing the number of WENO reconstructions per time-step

near them. The latter is achieved by omitting all of the reconstructions at the Gaussian quadra-

ture points. This neither affects the formal order of accuracy near material interfaces, nor, in our

experience, negatively impacts their smearing. We also utilize monotonicity-preserving bounds for

WENO near material interfaces to prevent the reconstruction of a variable outside its physical range

[8]. Finally, for viscous simulations, we limit the coefficient of shear viscosity in mixture regions

to the range established by the components composing the mixture in order to avoid the onset of

anti-diffusion.

Though the above-proposed strategies are sufficient to maintain numerical stability in the chal-

lenging test cases considered in this study, it is difficult to predict a priori whether they will be

adequate for an arbitrarily chosen initial condition since the numerical scheme remains non-TVD.

In the case that they are not, reducing the order of the reconstruction or using flux limiters, as

in [53, 100, 110, 113], may be inevitable to increase stability, in spite of the additional smearing of

material interfaces. If necessary, these strategies can be implemented at relatively low computational

cost and effort in the present numerical scheme.

3.6 Verification

In the sections that follow, we present 1D, 2D and 3D test cases to validate and verify our numerical

scheme. Specifically, we show that the present algorithm is high-order accurate in smooth regions
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of the flow, discretely conserves the mass of each component, along with the total momentum

and energy, and does not generate spurious oscillations. Also unless it is specified otherwise, the

properties of the fluids utilized in each test case may be found in Table 2.1.

3.6.1 Isolated interface advection

The onset of spurious oscillations at material interfaces can have a detrimental impact on both the

quality and reliability of computed solutions. It can result in the pollution of fine flow features [67],

the premature growth of physical instabilities [64], and the thickening of material interfaces [69].

Worse, it may even result in the computation of the wrong solution [2] or the fatal termination of

the computation [69]. Of course, the severity of these problems will depend on the initial condition

[1]. To illustrate some of these issues for a numerical scheme plagued by spurious oscillations and to

confirm that the proposed numerical scheme does not experience them, we consider an initial con-

dition relevant to many multicomponent flow computations – the advection of an isolated air/water

interface.

In particular, we consider an air/water interface under atmospheric pressure, advected in a peri-

odic domain and at a constant velocity. The initial condition for this problem, nondimensionalized

by the density and sound speed of water, is given by

(α1ρ1, α2ρ2, u, p, α1) =


(1.204× 10−3, 0, 0.01, 4.819× 10−5, 1) for −1 ≤ x < 0,

(0, 1, 0.01, 4.819× 10−5, 0) for 0 ≤ x < 1.

(3.23)

It is evolved with a constant time-step, ∆t = 5× 10−3, on a uniform grid composed of 200 cells, for

exactly one period, i.e. until the material interface has returned to its original position. Three differ-

ent methods are utilized to compute the numerical solution. In the first, the conservative variables,

instead of the primitive variables, are reconstructed at the cell boundaries in order to demonstrate

how the onset of spurious oscillations at the material interface corrupts the numerical solution. In

the second, following Johnsen and Colonius [64], the primitive variables are reconstructed from their

second-order accurate cell averages in order to recover an oscillation-free material interface. Finally,
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Figure 3.1: Plots of density, magnitude of the error in velocity and pressure, and volume fraction
for the isolated interface advection problem given by Equation (3.23). The exact solution (—),
along with three numerical solutions distinguished by the type and order of accuracy of the cell
average variables that are reconstructed at the cell boundaries, are compared at t = 200. The latter
include the conservative variables (#), the second-order accurate primitive variables (2), following
Johnsen and Colonius [64], and the fourth-order accurate primitive variables (M), following the
present numerical scheme.

the initial condition is also evolved with the present numerical scheme, where the primitive variables

are reconstructed from their fourth-order accurate cell averages, to confirm that the oscillation-free

character of the material interface, recovered by the previous method, is conserved.

In Figure 3.1, we compare the results obtained by all three methods, both to each other, as well

as to the exact solution. We include the plots for density, velocity, pressure, and volume fraction. In

order to be able to visualize the spurious oscillations in velocity and pressure for all three methods,

on the same plots, the absolute value of the difference between the approximate and exact solutions
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is plotted for these quantities, instead of the quantities themselves. The results in Figure 3.1 are

as expected. When the conservative variables are reconstructed, spurious oscillations are generated

at the material interface. For the chosen initial condition, these are unacceptably large, at times

matching, and even surpassing, the order of magnitude of the uniform velocity and pressure. As

a result, though not shown, the pressure computed by this method often becomes negative, which

is supported by the stiffened gas EOS, but is bound to mispredict a change in phase, if the latter

physics were to be included. Nevertheless, the plots of density and volume fraction indicate that

the position of the material interface, as well as the jump in these quantities across it, are correctly

computed.

When the primitive variables are reconstructed from their second-order accurate cell averages,

on the other hand, the spurious oscillations are reduced to the order of the round-off error. In the

current case, for both the velocity and pressure, this corresponds to O(10−12), which is well below

the order of magnitude of the corresponding uniform values. Reconstructing the primitive variables

from their fourth-order accurate cell averages only marginally compromises this result, suggesting

that the present numerical scheme conserves the oscillation-free character at material interfaces.

Though not shown, comparable results were also obtained for other initial conditions. Finally, in

both cases, the correct density and volume fraction profiles are also computed.

3.6.2 Shock-interface interaction

As previously indicated, the interaction between a shockwave and a material interface is a challeng-

ing problem for numerical schemes that have sacrificed discrete conservation at the material interface

to either sharpen it or to avoid spurious oscillations. Most commonly, such methods will miscal-

culate the position and speed of the waves resulting from the interaction, with the error becoming

increasingly worse with an increasing loss in conservation. To study the behavior of our numerical

scheme when applied to such problems, we consider here the interaction between a strong shockwave

in helium and an air/helium interface.

The original problem was studied by Liu et al. [77] and later, in modified form, by Johnsen [63].
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As given by the latter, the problem consists of a Mach 8.96 shockwave traveling in helium toward

a material interface with air, which is simultaneously moving toward the shockwave. Both the un-

processed helium and the air are at atmospheric pressure. The initial condition for this problem,

utilizing the fluid properties and nondimensionalization as in [63], is given by

(α1ρ1, α2ρ2, u, p, α1) =



(0.386, 0, 26.59, 100, 1) for −1 ≤ x < −0.8,

(0.1, 0,−0.5, 1, 1) for −0.8 ≤ x < −0.2,

(0, 1,−0.5, 1, 0) for −0.2 ≤ x ≤ 1.

(3.24)

The solution is evolved with a constant time-step, ∆t = 10−4, on a uniform grid composed of 200

cells, and consists of the original shockwave partly transmitted into the air and partly reflected back

into the helium.

In Figure 3.2, the exact and numerical solutions for the density, velocity, pressure, and volume

fraction are given at t = 0.07. The numerical solution compares well to the exact one, correctly

identifying the position and speed of all of the waves in the problem. Once again, no spurious

oscillations at the material interface are observed. However, some oscillations in the wake of the

reflected shockwave are present. These are a consequence of the high-order accuracy of the spatial

reconstruction and, though not shown, disappear as the latter is reduced.

3.6.3 Gas-liquid Riemann problem

The last 1D test case that we consider is a gas-liquid Riemann problem originally studied by Cocchi

et al. [30], and subsequently by Shyue [101], as a model for underwater explosions. It is a challenging

shock tube problem and provides an excellent test of the stiffened gas EOS. The left state of the

problem consists of compressed air, while the right state is water at atmospheric pressure. The

initial condition for this problem, utilizing the fluid properties and nondimensionalization as in [30],
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Figure 3.2: Plots of density, velocity, pressure, and volume fraction for the shock-interface interaction
problem given by Equation (3.24). The exact (—) and numerical (#) solutions are compared at
t = 0.07.

is given by

(α1ρ1, α2ρ2, u, p, α1) =


(1.241, 0, 0, 2.753, 1) for −1 ≤ x < 0,

(0, 0.991, 0, 3.059× 10−4, 0) for 0 ≤ x ≤ 1.

(3.25)

It is evolved with a constant time-step, ∆t = 10−3, on a uniform grid composed of 200 cells, and

consists of a left-moving rarefaction wave and a right-moving shockwave and material interface.

In Figure 3.3, the exact and numerical solutions for the density, velocity, pressure, and volume

fraction are given at t = 0.2. As in the previous test cases, the numerical solution compares well

to the exact one and correctly identifies the position and speed of all of the waves in the problem.
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Figure 3.3: Plots of density, velocity, pressure, and volume fraction for the gas-liquid Riemann
problem given by Equation (3.25). The exact (—) and numerical (#) solutions are compared at
t = 0.2.

Moreover, there are no visible oscillations at the material interface or elsewhere in the solution.

3.6.4 Isentropic vortex

We consider next a 2D problem governed by the Euler equations for which an analytical solution is

readily available – the evolution of an isentropic vortex. The problem was studied by Balsara and

Shu [8] and subsequently by Titarev and Toro [110] in order to assess the convergence properties

of increasingly higher-order accurate WENO schemes for smooth solutions to the Euler equations.

Similarly, we study this problem here to verify that the present numerical scheme achieves high-order

accuracy away from shockwaves and material interfaces and also to demonstrate that the original
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method of Johnsen and Colonius [64] fails to do the same.

The isentropic vortex is a perturbation superimposed on the mean flow of an ideal gas and its

initial condition may compactly be written in terms of the perturbed velocities, u′ and v′, and

temperature, T ′:

u′ =
ε

2π
exp

[
α
(
1− r2

)]
y,

v′ = − ε

2π
exp

[
α
(
1− r2

)]
x,

T ′ = − (γ − 1)

16αγπ2
exp

[
2α
(
1− r2

)]
,


(3.26)

where ε is the strength of the vortex, α is its decay rate, r2 = x2+y2 and the usual primitive variables

may be obtained from the ideal gas law, p = ρT , and the isentropic relationship p = ργ . It is typical

to superimpose the vortex on a nonzero, but uniform, velocity field of air and to evolve the resulting

initial condition on a domain with periodic boundary conditions. However, without any loss in the

generality of the convergence study, we choose here quiescent air instead, (u, v, T ) = (0, 0, 1), as well

as extrapolation boundary conditions, in order to facilitate the extension of the study to nonuniform

grids. We evolve the initial condition on a square domain, x, y ∈ [−5, 5], and choose the strength,

ε = 5, and decay rate, α = 1, of the vortex such that it has compact support in this region. A fixed

CFL number, C = 0.3, is selected for the convergence study and a fifth-order RK time-stepping

scheme, with the coefficients of Cash and Karp [16], is provisionally utilized instead of the third-

order TVD RK method to ensure that the order of accuracy of the temporal discretization does

not mask that of the spatial discretization. The nonuniform grids are generated by a continuously

differentiable hyperbolic tangent function and are stretched at the domain boundaries. In Figure

3.4, the cell size distribution for the coarsest grid, 25× 25 cells, is shown in the plot on the left. The

numerical solution is computed on grid sizes up to 400 × 400 cells with an output time of t = 1.

Since the isentropic vortex is stationary, the exact solution at the given output time is simply the

initial condition to the problem and any discrepancy between the exact and numerical solutions is

due to numerical diffusion.

The convergence study is performed on the density, for which the initial condition is shown in

the left plot of Figure 3.4. In the right plot of the same figure, the results of the study are pre-
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Figure 3.4: Plots of the density at t = 0, ρo, on the coarsest nonuniform grid, 25 × 25 cells (left),
and p-norm of the error between the density at t = 0 and t = 1, ρf, as a function of the grid
size, N ×N (right), for the stationary isentropic vortex problem given by Equation (3.26). The grid
convergence of the L1- and L∞-norm is shown for both when the primitive variables are reconstructed
at the cell boundaries from their second-order accurate cell averages (–#– and –2–, respectively),
following Johnsen and Colonius [64], and their fourth-order accurate cell averages (–#– and –2–,
respectively), following the present scheme. Reference slopes for the second-order (—) and fifth-order
(—) convergence rates are also included.

sented. These include the L1- and L∞-norms of the error in density as a function of the grid size

for both the present numerical scheme and that of Johnsen and Colonius [64]. The reference slopes

for both the second- and fifth-order convergence rates are also included. The results indicate that

reconstructing the primitive variables at the cell boundaries from their second-order accurate cell

averages, contrary to the conclusions of Johnsen and Colonius, does not lead to a high-order accurate

numerical scheme. Instead, the resulting method is second-order accurate at best, as indicated by

the second-order convergence rate of the corresponding L1- and L∞-norms. On the other hand, the

results show that the present numerical scheme, by reconstructing the primitive variables at the cell

boundaries from their fourth-order accurate cell averages, recovers high-order accuracy. In this case,

the corresponding L1- and L∞-norms achieve a fifth-order convergence rate. This is higher than the

optimal fourth-order convergence rate that is expected as a result of utilizing a two-point Gaussian

quadrature rule. It agrees, however, with the results of the analogous convergence study by Titarev
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Figure 3.5: Schematic of the initial condition and the computational grid (only one of every 40
cells shown) for the shock-bubble interaction problem. As a result of the symmetry of the initial
condition, only the top half of the displayed computational grid is utilized in the simulation.

and Toro [110], who also observed superconvergence.

Finally, though its parameters and results are not detailed here, we have also performed a con-

vergence study on the typical isentropic vortex problem, i.e. where the vortex is superimposed

on a nonzero, but uniform, air flow, (u, v, T ) = (1, 1, 1), and evolved on a domain with periodic

boundary conditions. Uniform grids, with a range of sizes comparable to those used before, were

utilized to study the convergence properties of only the present numerical scheme, with the third-

order TVD RK time-stepping method. A little better than fourth-order convergence was achieved in

both the L1- and L∞-norms, despite the third-order accuracy of the temporal discretization. This

superconvergence is consistent with the results of Titarev and Toro [110].

3.6.5 Shock-bubble interaction

We consider next the 2D interaction between a helium bubble and a weak shockwave in air. The

problem was experimentally studied by Haas and Sturtevant [52] and subsequently often utilized as

a validation case for multicomponent flow algorithms, see [39, 55, 59, 64, 79, 82, 93, 100, 106, 107] to

name a few. It consists of a 5 cm in diameter bubble, which is vertically centered inside a shock tube

and filled with helium. The helium in the bubble is not pure, but contaminated by the surrounding

air, 28% by mass concentration. The bubble is impacted by a Mach 1.22 shockwave traveling in air

at atmospheric pressure. A schematic of the initial condition for this problem is shown in Figure 3.5

and the corresponding state variables are given by
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(α1ρ1, α2ρ2, u, v, p, α1) =



(0, 1.204, 0, 0, 101325, 0) for Pre-shock,

(0, 1.658,−114.49, 0, 159060, 0) for Post-shock,

(0.158, 0.061, 0, 0, 101325, 0.95) for Bubble,

(3.27)

where the densities, velocities and pressures are in kg/m3, m/s and Pa, respectively.

As illustrated in Figure 3.5, we utilize a 6000× 890 nonuniform computational grid to evolve the

initial condition. A RBC is used along both the top of the grid, to model the shock tube wall, and

along its lengthwise centerline, to model the symmetry of the problem for computational efficiency.

Inflow and outflow boundary conditions are implemented on the right and left of the grid, respec-

tively, and are smoothly stretched away from the shock-bubble interaction region to prevent any

reflections off of these boundaries from polluting the solution. The grid in the shock-bubble interac-

tion region, x ∈ [−10, 10] cm, on the other hand, is uniform with ∆x = ∆y = 50 µm. The solution

is evolved at a fixed CFL number, C = 0.4, and until t = 983 µs. The latter is measured from the

moment the shockwave impacts the bubble and is the last time at which Haas and Sturtevant [52]

report shadowgraph images from the experiment.

In Figure 3.6, as a qualitative form of validation of our numerical scheme, we compare the numer-

ical Schlieren images of the shock-bubble interaction to the shadowgraphs of Haas and Sturtevant

[52] at approximately the same times. The images depict the configuration of the waves resulting

from the shock-bubble interaction, as well as the eventual involution of the bubble to form a jet and

subsequently a vortex ring. The results of the simulation compare well to those of the experiment.

There are no visible spurious oscillations in the numerical Schlieren images, despite the fact that

they accentuate small fluctuations in density. A common startup error, however, is generated by

the shockwave and appears as a weak vertical line near the upstream interface of the bubble in

nearly every Schlieren [4]. Fortunately, since it is nearly stationary and outside the region where the

shockwave and bubble interact, it has no adverse dynamic effect on the numerical solution.

We validate our numerical scheme quantitatively by comparing the experimental velocity mea-

surements of key flow features, as obtained by Haas and Sturtevant [52], to those obtained in the
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Figure 3.6: Comparison between the experimental shadowgraphs of Haas and Sturtevant [52] (left)
and numerical Schlieren images from simulation (right) for the shock-bubble interaction problem.
The numerical Schlieren imaging technique is adapted from [93]. Temporal snapshots are included at
a) 26 (32), b) 37 (52), c) 52 (62), d) 62 (72) and e) 80 (82) µs, where the shadowgraph time stamps
are given in parentheses when different from those of numerical Schlieren images. Experimental
images c©Cambridge University Press 1987. Reprinted with permission.
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Figure 3.6: (Cont.) Comparison between the experimental shadowgraphs of Haas and Sturtevant
[52] (left) and numerical Schlieren images from simulation (right) for the shock-bubble interaction
problem. The numerical Schlieren imaging technique is adapted from [93]. Temporal snapshots are
included at f) 102, g) 245, h) 427, i) 674 and j) 983 µs. Experimental images c©Cambridge University
Press 1987. Reprinted with permission.
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Table 3.1: Comparison between the present simulation and the experiment of Haas and Sturtevant
[52] of the velocities of various flow features for the shock-bubble interaction problem. These include,
along with the time interval in the simulation over which they were averaged, the velocities of the
incident shock, us [−60, 0], refracted shock, ur [0, 52], transmitted shock, ut [52, 240], upstream
interface, uui [10, 52], downstream interface, udi [140, 240], and jet, uj [140, 240]. The velocities and
time intervals are given in m/s and µs, respectively, and the corresponding flow features are identified
in Figure 3.6. All measurements are taken along the x-axis.

Data us ur ut uui udi uj
Simulation 420 945 379 173 145 230
Experiment 410± 41 900± 90 393± 39 170± 17 145± 15 230± 23

simulation. The flow features include the incident shock, refracted shock, transmitted shock, up-

stream interface, downstream interface and jet, and are annotated in the numerical Schlieren images

a) and d) of Figure 3.6. In Table 3.1, a side-by-side comparison of the experimental and simulation

results is made. The velocity measurements from the simulation are all within the 10% experimental

error associated with the measurements of Haas and Sturtevant and, in general, fall within 5% of the

experimental mean values. Though we do not report the uncertainty in the velocity measurements

from the simulation, we expect it to be small and solely a function of the grid resolution. Indeed,

since all conserved variables are conserved within round-off error, O(10−12) in this case, we expect

that all flow features move with the correct velocities.

Lastly, we compare the present results to those of recent numerical simulations performed at a

higher or comparable resolution. These include the work of Hejazialhosseini et al. [55], who utilized

a level set method on wavelet-adapted grids with an effective resolution of ∆x = ∆y = 6 µm, and

the work of So et al. [106], who utilized a diffuse interface method with interface sharpening on

a uniform grid with ∆x = ∆y = 63 µm. Their results are consistent with ours, as we recover

qualitatively similar large- and small-scale flow features. In particular, the Kelvin-Helmholtz in-

stability that develops along the interface of the bubble, and is clearly visible in images g)–j) of

Figure 3.6, is in good agreement. The instability is triggered at an earlier time in the simulations of

Hejazialhosseini et al. and So et al., however, primarily because the ongoing diffusion of the material

interface in the present simulation acts to regularize the material interface and delays the growth of

the instability.
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3.6.6 Taylor-Green vortex

We verify our numerical scheme for the Navier-Stokes equations by studying the evolution of a

3D Taylor-Green vortex. The latter is a typical test problem for high-order methods and one of

the simplest in which the production of small scales can be studied. The initial condition for the

Taylor-Green vortex is given by

u = uo sin
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( y
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)
cos
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(3.28)

where L, ρo, uo and po are the reference length scale, density, velocity, and pressure in the prob-

lem, respectively. The fluid in which the vortex propagates is air, initially at uniform reference

temperature, To, such that the initial condition for the density field is obtained from that for the

pressure field using the ideal gas law. We evolve the vortex at a relatively low Reynolds number,

Re = ρouoL/µ = 100; an effectively incompressible Mach number, Mo = uo/co = 0.1; and in a peri-

odic domain, x, y, z ∈ [−πL, πL]. The domain is discretized by a uniform grid with 200× 200× 200

cells and we enforce fixed CFL and diffusion numbers, C = 0.15 and D = 0.10, to maintain stability

throughout the simulation.

We evolve the Taylor-Green vortex until nondimensional time tuo/L = 10 in order to capture

both the generation of the small scales, which result from 3D vortex stretching, and their subsequent

dissipation, which is due to viscous damping. In Figure 3.7, we depict the former process with a

plot of the isosurfaces of the z-component of the nondimensional vorticity, ωzL/uo, at the initial

and final moments of the simulation, where the vorticity is given by ω = ∇×u. In Figure 3.8, both

processes are illustrated with a plot of the rate of dissipation of the nondimensional kinetic energy,

εL/u3o, as a function of the nondimensional time. The rate of dissipation of the kinetic energy is



49

Figure 3.7: Plot of the isosurfaces of the z-component of the nondimensional vorticity, ωzL/uo, for
the Taylor-Green vortex problem at nondimensional times tuo/L = 0 (ωzL/uo = ±0.33, left) and
tuo/L = 10 (ωzL/uo = ±0.67, right). The negative and positive isosurfaces of ωzL/uo are colored
in black and gray, respectively.
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Figure 3.8: The rate of dissipation of the nondimensional kinetic energy as a function of the nondi-
mensional time for the Taylor-Green vortex problem. The solution from the present numerical
scheme (#) is compared to the direct spectral numerical solution of Brachet et al. [11] (—).
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computed over the entire volume of the computational domain, V , by

ε = − 1

ρoV

d

dt

∫
V

1

2
ρuu dV. (3.29)

From Figure 3.8, we can see that the strength of the vortex stretching initially grows, until tuo/L ≈ 5,

when the effects of viscous dissipation begin to dominate. The present numerical solution compares

well to the direct spectral numerical solution of Brachet et al. [11], which is also included in the

figure. Though not shown, the Taylor-Green vortex eventually decays away, due to the absence of

forcing.

3.7 Summary

In this chapter, a shock- and interface-capturing numerical scheme was developed for the simula-

tion of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical

framework is general, derived in 3D and on nonuniform grids. The resulting method is high-order ac-

curate, discretely conserves the mass of each component in the flow, along with the total momentum

and energy, and does not generate spurious oscillations. Moreover, it is capable of handling flows

that feature large density, pressure, and viscosity ratios, as well as components with significantly

different stiffened gas EOS parameters. In Chapter 4, the method is adapted for the simulation of

the shock-induced collapse of a bubble in the free-field and a vessel phantom.
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Chapter 4

Results

4.1 Simulation parameters

In this chapter, results of numerical simulations across the parameter space defined in Section 2.3.4

are presented. The simulations are carried out utilizing the numerical scheme of Chapter 3, with

two notable exceptions: 1) A one-point Gaussian quadrature rule, rather than the two-point one

that is described in Section 3.2, is employed to compute cell face averages and 2) the cell average

primitive variables are computed directly from the cell average conservative variables, as in the orig-

inal numerical method of Johnsen and Colonius [64], rather than from the point-wise reconstructed

conservative variables, as proposed in Section 3.3. The latter choices are motivated by the significant

reduction in computational cost that they provide, alongside the negligible impact that they have

on key metrics extracted from the simulations, in spite of the fact that the simulations now only

achieve second-order spatial accuracy in smooth flow regions. A detailed cost-benefit analysis of

recovering high-order spatial accuracy in smooth regions of the flow is presently omitted. However,

performance benchmarks of the modified numerical scheme are included and discussed in detail in

Appendix F.

Each numerical simulation in the parameter space is carried out at a spatial resolution of

∆x∗ = ∆y∗ = ∆z∗ = 6.26 × 10−3, following the results of the convergence analyses of Johnsen

and Colonius [66] and Freund et al. [43], who studied axisymmetric shock-induced collapse in the

free-field and near a viscous fluid layer, respectively, at comparable pressures and viscosities inves-
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tigated in the present work. Based on their findings, the chosen spatial resolution is expected to

ensure that the minimum bubble volume and the extrema in the vessel wall displacements are suf-

ficiently resolved, so that inherently, the remaining metrics describing the shock-induced collapse of

the bubble and the resulting flow field deformations can also be expected to be correctly captured. A

computational domain with x∗ ∈ [−2.5, 2.5] and y∗, z∗ ∈ [0.0, 2.5] is utilized in all free-field simula-

tions, as well as in those of the vessel phantom, when the bubble is located on the x-axis, i.e. θ = 0.

For θ > 0, a computational domain with x∗, y∗ ∈ [−2.5, 2.5] and z∗ ∈ [0.0, 2.5] is used instead.

The mesh is uniform in all simulations, with non-reflective Thompson boundary conditions used to

emulate the free-field [108, 109]. Following the discussion of Section 3.5, the material interfaces of

the bubble and vessel are initially smeared in order to increase numerical stability. The smearing is

performed over only five cells, based on the findings of Johnsen [63], which suggest that the present

smearing will result in only negligible differences in the computed solutions. Finally, a fixed CFL

number, C = 0.1, and diffusion number, D = 0.1, are utilized to maintain a stable time-step during

the simulations.

4.2 Shocked-bubble dynamics in a free-field

The shock-induced collapse of a bubble in a free-field was simulated across several shockwave pressure

ratios, Ps/Po, spanning typical clinical SWL conditions, i.e. Ps/Po = 296, 353, 493, 691, 888 and

1086. The resulting bubble dynamics, however, are generally well-understood and thus presently

only broadly discussed in the context of a comparison between the results of this work and that

of Johnsen and Colonius [66]. Such a comparison is necessary in order to verify that the chosen

simulation parameters, discussed in Section 4.1, lead to adequately resolved solutions. For a more

detailed analysis of free-field, shocked-bubble dynamics, the reader is referred to recent experimental

[89, 94] and numerical [63, 112] studies which have particular relevance to SWL. The results of the

present free-field simulations are also further explored in Section 5.4, but from the perspective of

the flow field deformations induced by the shocked bubble.

In Figure 4.1, the simulation results of the present work are compared to those of Johnsen and
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Figure 4.1: Time history of the bubble volume (V ∗ = V/Vo, top left), x-coordinate of the centroid
(x̄∗, bottom left) and distal and proximal interface velocities (u∗d and u∗p, right) for a free-field shock-
induced collapse with Ps/Po = 353. The present simulation results, which are plotted at discrete
times, are compared to those of Johnsen and Colonius [66] up to the end of the collapse phase. A
schematic of the measurement locations of u∗d and u∗p may be found in Figure 4.2.

Figure 4.2: Schematic of the bubble in the x-y cross section of the 3D domain and at an arbitrary
instant of its life cycle. It denotes the measurement locations of the distal and proximal bubble
interface velocities (u∗d and u∗p).

Colonius [66] for the case of a shock-induced, free-field, bubble collapse with a pressure ratio of

Ps/Po = 353. The time history of the bubble volume, V ∗, x-coordinate of the bubble centroid, x̄∗,

and the distal and proximal bubble interface velocities, u∗d and u∗p, are plotted up until the end

of the collapse phase, when the minimum bubble volume is achieved. The measurement locations

of the distal and proximal bubble interface velocities are indicated in Figure 4.2. Overall, the

comparison with the simulation results of Johnsen and Colonius is favorable, demonstrating that

the present simulation parameters are adequate to capture the dynamics of the bubble. Specifically,

the minimum volume of the bubble, the motion of its centroid as it jets in the direction of the
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shockwave, as well as the extrema in the bubble interface velocities during jetting, are all in good

agreement with the results of Johnsen and Colonius, indicating that sufficient grid resolution is used

to resolve relevant flow features. Only a small discrepancy in the motion of the bubble centroid may

be noted toward the end of the collapse phase, where the present simulation predicts the unhindered

displacement of the bubble in the direction of travel of the shockwave, while the results of Johnsen

and Colonius suggest that the displacement of the bubble is slowed. The latter behavior, however,

is inconsistent with the results of previous studies [33, 72], which support the present findings.

This inconsistency is unlikely to be symptomatic of a larger problem with the work of Johnsen

and Colonius, based on the excellent agreement obtained with the remaining flow quantities, and

perhaps only suggests a small issue with the post-processing methodology of the bubble centroid,

which is exacerbated when the bubble volume becomes exceedingly small. The present simulation

parameters thus adequately resolve the shocked-bubble dynamics in a free-field and moreover, are

also expected to adequately resolve the bubble dynamics in a vessel phantom, as the latter occur on

comparable spatial and temporal scales.

4.3 Shocked-bubble dynamics in a vessel phantom

4.3.1 Characterization of the time-dependent behavior

The shock-bubble interaction is now examined in the presence of a vessel phantom for a shockwave

pressure ratio of Ps/Po = 395. The strictest volumetric bubble confinement of the parametric study,

i.e. D∗v = 1.1, see Table 2.2, is analyzed first to facilitate observations of the coupled shock-vessel-

bubble dynamics. The bubble is centered inside the vessel, which is inviscid, and the travel direction

of the shockwave is perpendicular to the vessel’s axis, i.e. (H∗x , θ) = (0, 0) and Ret → ∞. Figures

4.3 and 4.4 document the shock-vessel-bubble interaction for this geometric configuration with time

snapshots of notable instants of the shock-induced collapse. In Figure 4.3, the deformations of the

bubble and vessel wall are rendered by isosurfaces of air and 10% gelatin, respectively, while in Figure

4.4, the interactions between different waves and material interfaces in the x-z plane are illustrated
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Figure 4.3: Time snapshots of the deformation of the bubble and the vessel wall for (D∗v, H
∗
x , θ) =

(1.1, 0, 0). The bubble is depicted by the 0.5 isosurface of the volume fraction of air and the vessel
wall by the one of 10% gelatin.

by the pressure and velocity fields. The dynamics of the shock-vessel-bubble system are initiated as

the left-moving shockwave, originally traveling in 10% gelatin, or tissue, for t∗ < 0, is transmitted

through the cylindrical water column, or vessel, and impacts the air bubble at t∗ = 0. Since the

acoustic impedance mismatch, i.e. ρc, between 10% gelatin and water is small, but that between

water and air is large, the shockwave is predominantly transmitted through the vessel but only

partly so through the bubble, against which it also reflects and diffracts in the form of an expansion

wave. At t∗ = 0.12, the shockwave has almost fully traversed the vessel but, due to the significantly

lower sound speed in air compared to water, has only began to transmit through the bubble. This

difference in sound speeds induces the proximal interface of the bubble, i.e. the side originally closest

to the shockwave, to collapse first, invaginating the proximal wall of the vessel along the way. By

t∗ = 0.44, the shockwave has long left the domain and as a result, the distal interface of the bubble

has also begun to collapse, invaginating the distal wall of the vessel. As the collapse progresses,
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Figure 4.4: Time snapshots of the filled pressure contours (p∗, upper panel half), the filled velocity
magnitude contours (||u∗||, lower panel half) and the velocity vector field (u∗, lower panel half) in
the x-z cross section of the 3D domain for (D∗v, H

∗
x , θ) = (1.1, 0, 0). For clarity, isopleths of the

volume fractions of air and 10% gelatin are included as in Figure 4.3
.
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the bubble continues to shrink and, in addition, translates in the direction of the propagation of

the shockwave. The latter effect enhances the invagination of the proximal wall of the vessel, while

discouraging that of the distal, which at t∗ = 0.49 has reached its maximum. From here on, the

bubble begins to directly interact with the proximal vessel wall, pushing it outward as it translates.

The translation of the bubble is accelerated by the formation of the liquid jet, the presence of which

is already evident in this snapshot, but far more pronounced at t∗ = 0.52, when the minimum bubble

volume is achieved. As the liquid jet forms, it impacts the distal bubble interface and vessel wall

producing a strong water-hammer shockwave in the process. The latter propagates spherically from

the point of origin, generating large pressures on both the proximal and distal vessel walls. Shortly

after the water-hammer shockwave is emitted, the maximum invagination of the proximal vessel

wall is achieved, while the distal vessel wall begins to distend, pushed outward by the force of the

liquid jet. The final moments of the shock-vessel-bubble interaction, as simulated in this study, are

captured at t∗ = 0.66 and characterized by the continued distention of the distal vessel wall by a

bubble that is now shaped like a vortex ring. At this instant in time, the water-hammer shockwave

is also still visible, propagating outward, near the outskirts of the domain.

4.3.2 Influence of the vessel on the dynamics of the bubble

To better understand how the bubble dynamics are influenced by the presence of the vessel, the

time history of various bubble metrics is charted in Figure 4.5. The metrics include the bubble

volume, V ∗, x-coordinate of the centroid, x̄∗, and distal and proximal interface velocities, u∗d and

u∗p, respectively; the measurement locations for the latter are annotated on the contour of the bubble

in the x-z plane, in the schematic of Figure 4.2. The dynamics of the bubble are initially excited

by the impact of the shockwave on its proximal interface, an event that is denoted by the sudden

jump in the corresponding velocity. As this velocity grows in time, the proximal interface involutes,

inducing the volume occupied by the bubble to slowly shrink and its centroid to begin traveling

in the direction of the propagation of the shockwave. At t∗ = 0.16, the passing shockwave has

completed processing the bubble such that its distal interface has also begun to involute. As the
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Figure 4.5: Time history of the bubble volume (V ∗ = V/Vo, top left), x-coordinate of the centroid
(x̄∗, bottom left) and distal and proximal interface velocities (u∗d and u∗p, right) for (D∗v, H

∗
x , θ) =

(1.1, 0, 0). A schematic of the measurement locations of u∗d and u∗p may be found in Figure 4.2.

collapse of the bubble progresses, the pace accelerates, peaking shortly before the minimum bubble

volume is reached. The minimum volume, V ∗ = 2.19 × 10−2, occurs at t∗ = 0.52 and marks the

end of the collapse phase. The liquid jet reaches its largest velocity, u∗p = −5.43, at t∗ = 0.50. As

the liquid jet nears the distal bubble interface, it begins to noticeably slow down, with the ensuing

collision preceding the occurrence of the minimum volume. The formation and impact of the liquid

jet leads both the distal and proximal bubble interfaces to travel in the direction of the propagation

of the shockwave. Since the velocity of the proximal interface is larger, it eventually coalesces with

the distal interface and the bubble forms a vortex ring at t∗ = 0.64. In the final moments of the

simulation, the bubble is in its rebound phase and so as its centroid continues to travel in the

direction of the propagation of the shockwave, its volume slowly increases.

The extrema of the bubble metrics plotted in Figure 4.5 for D∗v = 1.1 are contrasted in Table 4.1

with those for D∗v = 4.0, a nearly fourfold difference in the diameter of the vessel that ensures that

in the latter case the bubble negligibly interacts with the vessel walls. In Table 4.1, the minimum

bubble volume, x-coordinate of the centroid and proximal interface velocity are listed. For both

diameters, the values of these bubble metrics at t∗ = 0 are V ∗ = 1, x̄∗ = 0 and u∗p = 0, so that the

minima represent a significant deviation from the initial values. Table 4.1 indicates that the impact
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Table 4.1: The minimum bubble volume, V ∗min, x-coordinate of the centroid, x̄∗min, and proximal
interface velocity, u∗p,min and up,min, for (D∗v, H

∗
x , θ) = (1.1, 0, 0) and (D∗v, H

∗
x , θ) = (4.0, 0, 0).

D∗v V ∗min x̄∗min u∗p,min |up,min| [m/s]

1.1 2.19× 10−2 −5.98× 10−1 −5.43 1061
4.0 2.30× 10−2 −6.02× 10−1 −5.04 985

of the vessel walls on the dynamics of the bubble are marginal. In fact, for the almost fourfold

increase in the diameter of the vessel, between the largest and the smallest vessel confinement, the

percent change in any one of the minima does not exceed 7%. Nevertheless, the collapse is somewhat

stronger when the vessel walls are closer to the bubble, as suggested by the smaller bubble volume

and larger liquid jet velocity that are achieved in this case. It is likely that this is primarily due to

the internal reflections of the primary shockwave inside the vessel, which additionally process the

bubble and induce a stronger collapse. This mechanism would play a smaller role in the case of

a less restrictive vessel confinement since the shockwaves reflected inside the vessel would have to

travel farther to once again process the bubble. The analogous mechanism is reported by Johnsen

[63] for the shock-induced collapse of a bubble near a rigid wall. The data in Table 4.1 is consistent

with previous findings and indicates that overall the vessel has a limited influence on the behavior

of the bubble [41]. Since the properties of 10% gelatin are similar to those of water, see Table 2.1,

this is not all that surprising and ultimately suggests that from the point of view of the bubble,

the shock-induced collapse inside a vessel can adequately be approximated to that in a free-field.

The maximum liquid jet speeds for D∗b = 1.1 and 4.0 are listed in Table 4.1 and agree well with

expected free-field values, around 1000 m/s [63, 71]. This finding is especially valuable from a

computational cost perspective, since free-field simulations must evolve less flow variables and have

potentially a higher degree of symmetry than simulations with a vessel phantom. Based on the

performance benchmarks of the numerical scheme, see Appendix F, this suggests a 22% reduction

in computational cost if only the number of flow variables in the problem is reduced and up to an

81% reduction in computational cost if the symmetry of the problem is also increased.
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4.3.3 Vessel wall pressures and deformations

Seeing that the collapse of the bubble is insensitive to the presence of the vessel, from this point

forward this study focuses on the reverse coupling. In Figure 4.6, the latter is explored through the

time history of the distal and proximal vessel wall pressures, p∗d and p∗p, and deformations, d∗d and d∗p.

The measurement locations of these metrics are annotated on the contour of the vessel wall in the x-z

plane, in the schematic of Figure 4.7, and are selected based on the expected locations of the vessel

wall pressure and deformation extrema. In Figure 4.6, the influence of the dynamics of the bubble

onto those of the vessel is evident almost immediately after the impact of the primary shockwave

on the proximal bubble interface. The latter, at t∗ = 0, marks the beginning of the involution of

that side of the bubble, which nearly simultaneously drives the invagination of the proximal vessel

wall. The invagination of the distal vessel wall follows soon thereafter, around t∗ = 0.16, when

the shockwave has completed processing the entire bubble and the distal bubble interface involutes.

In both cases, the invagination is due to the sink flow produced by the volumetric contraction of

the bubble, which persists until the end of the collapse phase, at t∗ = 0.52. However, the largest

invagination of the distal vessel wall, d∗d = −0.13, is achieved before the end of the collapse phase,

at t∗ = 0.49, while that of the proximal vessel wall, d∗p = −0.28, is achieved afterward, at t∗ = 0.54.

This is attributable to the translation of the bubble, which, as the collapse progresses, moves away

from the proximal vessel wall and closer to the distal wall. This is also the primary reason why the

proximal vessel wall invaginates more than the distal one and ultimately, why the invagination of

the latter is arrested shortly before the end of the collapse phase. Once the invagination of the vessel

is complete, the remaining deformations are primarily due to the jetting of the bubble. The liquid

jet impacts the distal bubble interface and vessel wall, almost simultaneously, at t∗ = 0.51, and

generates a water-hammer shockwave. This impact is immediately followed by a sustained decrease

in the invagination of the distal vessel wall and a tremendous spike in its pressure, which peaks at

t∗ = 0.53 with p∗d = 11.04 and is due to the passage of the water-hammer shockwave. The proximal

vessel wall remains largely unaffected by these events, only experiencing a slight reduction in its

invagination when the water-hammer shockwave finally reaches it. This occurs at t∗ = 0.56 and
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Figure 4.6: Time history of the distal and proximal vessel wall pressures (p∗d and p∗p, left) and
deformations (d∗d and d∗p, right) for (D∗v, H

∗
x , θ) = (1.1, 0, 0). The pressure associated with the initial

shockwave, P ∗s , is plotted against p∗d and p∗p to illustrate the ability of the shock-induced collapse
to amplify the strength of the primary shockwave. For a schematic of the measurement locations of
p∗d, p∗p, d∗d and d∗p please refer to Figure 4.7.

Figure 4.7: Schematic of the bubble and vessel in the x-z cross section of the 3D domain and at an
arbitrary instant of their interaction for θ = 0. It denotes the measurement locations of the distal
and proximal vessel wall pressures (p∗d and p∗p) and deformations (d∗d and d∗p).

corresponds to the brief increase in the proximal vessel wall pressure, which peaks at p∗p = 4.46.

From here on, since dissipative and elastic effects are neglected, the distal vessel wall continues to

deform under the forcing of the liquid jet, while the proximal one remains invaginated. As such, the

last moments of the simulation are characterized by the distention of the distal vessel wall, which is

first achieved at t∗ = 0.57 and further simulated until t∗ = 0.72, when d∗d = 0.26.
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Figure 4.8: Effects of vessel confinement, D∗v, on the extrema of the distal and proximal vessel wall
pressures (p∗d and p∗p, left) and deformations (d∗d and d∗p, right) for (H∗x , θ) = (0, 0). The pressure
associated with the initial shockwave, P ∗s , is plotted against p∗d and p∗p to illustrate the ability of the
shock-induced collapse to amplify the strength of the primary shockwave. For a schematic of the
measurement locations of p∗d, p∗p, d∗d and d∗p please refer to Figure 4.7.

4.3.4 Effects of vessel confinement

Recall that in SWL, the onset of vascular injury is predominantly limited to small blood vessels,

such as capillaries, arterioles and venules [26, 114, 118]. This suggests that the level of volumetric

confinement of the bubble dynamics within a particular vessel may play a significant role in deter-

mining whether the latter is damaged or not during treatment. Then, to characterize the potential

for vascular injury as a function of the vessel confinement, the vessel diameter is parametrically

varied, 1.1 ≤ D∗v ≤ 4.0, with the remaining aspects of the geometry of the problem held fixed,

(H∗x , θ) = (0, 0). The resulting extrema of the distal and proximal vessel wall pressures and defor-

mations are plotted in Figure 4.8 and show a strong direct relationship between the strength of the

volumetric confinement of the bubble and the potential for injury of the vessel. In other words,

for the shock-induced collapse of a fixed-size bubble, centered inside a vessel, an increase in the

diameter of the vessel brings about a decrease in the extrema of the distal and proximal vessel wall

pressures and deformations and thus inherently, a decrease in the potential for vascular injury. The

relationship between the vessel diameter and its wall pressure is readily fitted by a power law, Equa-

tion (4.1), while the analogous relationship for the wall invagination closely adheres to the potential
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theory of a sink flow, Equation (4.2)∗:

p∗max (D∗v) =
A

D∗v + 2x̄∗c
+B, (4.1)

d∗min (D∗v) =
1

2

[(
D∗v

3 + C
) 1

3 −D∗v
]
. (4.2)

In Equations (4.1) and (4.2), A, B and C are the fitting parameters and x̄∗c is the x-coordinate of

the centroid of the bubble at the end of the collapse phase, which is approximately equal to 0.33

for all vessel diameters, since the dynamics of the bubble are largely uninfluenced by the presence

of the vessel, as discussed in Section 4.3.2. For the distal vessel wall, the fitting parameters are

given by A = 2.25, B = 1.05, and C = −0.80, while those for the proximal vessel wall are given

by A = 0.66, B = 1.36 and C = −1.17. The power law is typically used to correctly model the

relationship between the maximum pressure experienced at a rigid planar wall and the distance of

the latter away from a bubble at collapse [63, 65, 66, 72]. It fits the pressure data well, however,

despite the compliance and displacement of the distal and proximal vessel walls. The sink flow model

also constitutes a good fit to the invagination data, regardless of the displacement of the bubble and

the asymmetry of its collapse.

4.3.5 Effects of bubble proximity

The effects of the proximity of the bubble to the distal and proximal vessel walls are parametrically

investigated by varying the initial location of the bubble inside the vessel, along the x-axis, −0.75 ≤

H∗x ≤ 0.75, while maintaining the remaining aspects of the geometry of the problem fixed, (D∗v, θ) =

(3, 0). The results are plotted in Figure 4.9 and illustrate the relationships between the proximity

of the bubble to the distal and proximal vessel walls and the extrema of the measured vessel wall

pressures and deformations. These relationships confirm, as one would already anticipate, that

the extrema of the pressures and deformations at a particular vessel wall increase in magnitude

with a decreasing stand-off distance of the initial position of the bubble, while the opposite is true

∗This equation may be derived by assuming a 3D sink flow at the initial position of the bubble, described by
the velocity potential φ(r) = − m

4πr
, where m is the sink strength and r is the radial distance from its origin, and

evaluating the induced displacements at the position of the vessel walls along the x-axis.
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Figure 4.9: Effects of bubble proximity, H∗x , on the extrema of the distal and proximal vessel wall
pressures (p∗d and p∗p, left) and deformations (d∗d and d∗p, right) for (D∗v, θ) = (3, 0). The pressure
associated with the initial shockwave, P ∗s , is plotted against p∗d and p∗p to illustrate the ability of the
shock-induced collapse to amplify the strength of the primary shockwave. For a schematic of the
measurement locations of p∗d, p∗p, d∗d and d∗p please refer to Figure 4.7.

when the stand-off distance increases. Naturally, the associated potential for vessel wall injury is

expected to obey the exact same trend so that, as a result, an optimization problem regarding the

minimization of the cumulative damage to the distal and proximal vessel walls arises with respect

to the initial stand-off distance of the bubble from each side of the vessel. From Figure 4.9, the

solution to the problem is evident and may be read off of the plot of the deformation data which

indicates that when the bubble is approximately centered, the extrema of the distal and proximal

vessel wall deformations are collectively lowest. This result is expected to be sensitive to the vessel

to bubble diameter ratio and so, as part of future work, it may be instructive to perform a bubble

proximity parametric study with respect to several of its values. This study would also address

the complementary maximization problem, the solution to which identifies the position of a bubble

within a vessel that leads to the largest cumulative damage. Ultimately, however, it would allow us

to pinpoint the position and size of the smallest bubble, within a particular vessel, for which the

shock-induced collapse induces sufficient vascular deformations to cause injury.
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4.3.6 Effects of shockwave angle

The angle at which the shockwave impacts the blood vessel, as well as the bubble inside it, is

likely to play a significant role in the assessment of the potential for vascular injury due to shock-

induced collapse in SWL. Thus, as a first step, this study examines the range of incident shockwave

angles defined by 0 ≤ θ ≤ π/2, in an otherwise fixed geometric configuration, where D∗v = 3.0 and

H∗x
2 +H∗y

2 = 0.752. More precisely, four discrete shockwave angle values are considered; θ = 0, π/6,

π/3, and π/2, and their effect on the potential for vascular injury is evaluated by measuring the

resulting extrema of the pressures and deformations at the vessel wall. At this time, the convention

regarding the distal and proximal vessel walls is no longer practical, so that the extrema of the

measured wall pressures and deformations are simply denoted by p∗max, d∗min and d∗max, and are

reported where they are the highest, which is usually in the vicinity of the location at which the

bubble collapses. The results of this parametric study confirm that the shockwave angle plays a

substantial role in determining whether a vessel wall near a collapsing bubble sustains any damage.

This is supported by the sharp decrease in the maximum pressure and distention, associated with the

impact of the liquid jet, that results from an increase of the angle of incidence of the shockwave from

θ = 0 to π/2. Recall that at θ = 0 the liquid jet is directly aimed at the vessel wall and is therefore

optimally oriented to induce injury, generating both a large vessel wall pressure, p∗max = 6.57, and

distention, d∗max = 9.27×10−2. However, at θ = π/2, the angle of incidence of the shockwave is such

that the generated liquid jet predominantly travels alongside the curvature of the vessel, with the tip

of the jet further away from the closest vessel surface, which results in a significantly reduced vessel

wall pressure from the water hammer shockwave, p∗max = 3.85, and no distention. The maximum

invagination of the vessel wall, on the other hand, associated with the decrease in the bubble volume,

is far better sustained as a function of the shockwave angle, with d∗min = −7.45× 10−2 at θ = 0 and

d∗min = −8.97 × 10−2 at θ = π/2. This is not wholly unexpected since the sink flow which causes

the invagination, though asymmetric, does act in all directions and is bound to be more insensitive

to the angle of the shockwave than the liquid jet.
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4.3.7 Effects of tissue viscosity

The parametric study of tissue viscosity is motivated by the magnitude of some of its larger estimates,

see Section 2.1.2, which suggest that viscous effects may be able to significantly suppress vascular

deformations induced by a collapsing bubble and thus prevent injury. Indeed, in a numerical study of

shock-induced collapse near a planar viscous tissue simulant layer, Freund et al. [43] demonstrated

that the collapse of a Db = 20 µm bubble by a Ps = 40 MPa shockwave, i.e. Ps/Po = 395,

produced negligible deformations of a layer with a shear viscosity of µt = 10 Pa·s, i.e. Ret = 0.4,

even if the bubble was initially in direct contact with the layer. A similar study is warranted

in the case of a cylindrical vessel phantom, based on the added confinement that the geometry

introduces. Presently, tissue Reynolds numbers as small as Ret = 10 are considered, based on the

limitations of the numerical scheme, which due to the explicit treatment of viscous terms requires

forbiddingly small time-steps at smaller Reynolds numbers. The smallest Reynolds number expected

in tissue, O(10−2), see Section 2.1.4, is therefore not simulated. However, the latter also corresponds

to estimated values of tissue viscosity measured at slow strain rates, O(10) Hz, and that at the

megahertz deformation rates expected in SWL, the estimates of tissue viscosity are typically in

excess of two orders of magnitude smaller, with the Reynolds number correspondingly larger. The

Ret = 10 case is therefore arguably more relevant in application than studies at considerably smaller

Reynolds numbers. Finally, though simulations at Ret = 50, 100 and 200 were also carried out, the

differences with respect to the inviscid case were found to be negligible. As a result, only the

Ret = 10 case is presently discussed and contrasted with the case without viscosity.

For comparison, the interaction between the bubble and vessel for both the inviscid and viscous

case is illustrated in Figure 4.10 for (D∗v, H
∗
x , θ) = (1.3, 0, 0) with snapshots of the solution along the

x-z plane at important times during the life cycle of the bubble. These include a) the instant the

proximal side of the bubble first involutes, b) when the minimum bubble volume is reached, c) when

the vortex ring first forms and d) the last time at which the solution is computed. As anticipated, the

effect of tissue viscosity is to inhibit the deformation of the vessel walls. This suppression, however,

is less pronounced during the invagination of the proximal wall, where d∗p,max = −0.15 for Ret →∞
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Figure 4.10: Temporal snapshots of the filled contours of the volume fractions of air (black), water
(white) and 10% gelatin (gray) in the x-z plane of the 3D domain for the shock-induced collapse of
a bubble in a viscous vessel phantom. The contour colors are saturated for volume fractions greater
than 0.5. Results are shown for Ret = 10 (right panels) and t∗ values of a) 0.51, b) 0.55, c) 0.71
and 0.79, as well as Ret →∞ (left panels) and t∗ values of a) 0.45, b) 0.53, c) 0.70 and d) 0.79, for
comparison.
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and d∗p,max = −0.12 for Ret = 10, than the distention of the distal wall, where d∗d,max = 0.22 for

Ret →∞ and d∗d,max = 0.11 for Ret = 10, most likely as a result of the finer spatial scales exhibited

by the liquid jet, which are expected to enhance viscous effects. The difference in the distal wall

deformation between the inviscid and viscous case will further increase as the jet propagates, since

there is essentially no mechanism to suppress the penetration of the jet in the absence of viscosity.

The difference in the vessel wall pressures, on the other hand, is nearly negligible between the two

cases on both the distal side, where p∗d,max = 8.31 for Ret →∞ and p∗d,max = 8.30 for Ret = 10, and

proximal side, where p∗p,max = 3.23 for Ret →∞ and p∗p,max = 3.04 for Ret = 10, suggesting not only

that the strength of the collapse is not affected for this tissue viscosity and geometric configuration,

but also that vessel wall pressure measurements are not robust indicators of the potential for vascular

injury. Indeed, while small vessel wall pressures are typically measured alongside small vessel wall

deformations, see Sections 4.3.4–4.3.6, and are thus suggestive of a low potential for vascular injury,

the same direct relationship does not necessarily hold for large vessel wall pressures and a high

potential for vascular injury, since the vessel wall deformations need not also be large. Brujan et

al. [14] made comparable observations in an experimental study of the collapse of laser-induced

cavitation bubbles near elastic boundaries.

While the strength of the bubble collapse is not affected, however, the shape of the bubble

is significantly altered by tissue viscosity and the important moments in its life cycle are delayed

compared to those of the inviscid case. The reason is that as the bubble collapses it seeks to draw

fluid in, predominantly along the paths of least resistance. These lie along the primary axis of the

vessel, while the paths of highest resistance are perpendicular to this axis and require the deformation

of the vessel walls, which is resisted by the tissue viscosity. In particular, it is most difficult for the

bubble to draw fluid in along its centerline, on its proximal side, as the wall of the bubble at that

location is closest to the wall of the vessel, as measured in the direction of the propagation of the

shockwave. This leads to a lag in the involution of the proximal bubble wall along the centerline

and therefore the onset of a protrusion at this location in the early stages of the collapse, which

is visible in Figure 4.10 snapshots a) and b) of Ret = 10, but not in the analogous snapshots of
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Ret = 10

Ret → ∞

Figure 4.11: The a) front, b) back, c) side and d) top views of the shape of the bubble at t∗ = 0.79
for the shock-induced bubble collapse in a viscous vessel phantom. The shape is given by the 0.5
isosurface of the volume fraction of air. Results are shown for Ret = 10 (bottom) and Ret → ∞
(top).

Ret → ∞. The protrusion eventually vanishes as the liquid jet forms and impacts the distal vessel

wall, at which point the distal side of the bubble not only begins to deform the wall of the vessel but

must also conform to its geometry due to the large tissue viscosity. The latter results in an oblong

shape of the distal bubble wall, elongated in the direction of the primary axis of the vessel, which

may more closely be observed in Figure 4.11, in the snapshots of Ret = 10. The same snapshots

show the proximal side of the bubble to be elongated in an exactly perpendicular direction. This

is not all that surprising and is simply a consequence of the retarded involution of the bubble walls

along that direction during collapse, which is due to the increased resistance in the fluid flow along

paths perpendicular to the primary axis of the vessel. On the other hand, the analogous snapshots

of Ret →∞ show the final shape of the bubble to be nearly axisymmetric, despite the difference in

the acoustic impedance between water and 10% gelatin.

4.4 Summary

In this chapter, the shock-induced collapse of a bubble in a free-field and inside a vessel phantom

were simulated. The free-field simulations were carried out across typical clinical SWL pressure
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ratios, 296 ≤ Ps/Po ≤ 1086 [26]. For Ps/Po = 353, the simulation results compared well with those

of a previous convergence study [66], suggesting that the utilized simulation parameters adequately

resolved the relevant spatial and temporal scales of the dynamics of the bubble. Identical parameters

were subsequently employed in vessel phantom simulations, which are characterized by comparable

spatial and temporal scales. The vessel phantom simulations were performed at the pressure ratio

of a widely utilized clinical and research lithotripter, the Dornier HM3 [28], Ps/Po = 395, and across

a large parameter space that included the vessel to bubble diameter ratio, 1.1 ≤ D∗v ≤ 4.0, the

x-coordinate of the bubble within the vessel, −0.75 ≤ H∗x ≤ 0.75, the angle at which the shockwave

impacts the bubble and vessel, 0 ≤ θ ≤ π/2, and the tissue Reynolds number, Ret ≥ 10. Vessel wall

pressures and deformations were utilized to characterize the potential for vascular rupture and to

identify potential injury mechanisms. The present results suggest that the invagination of the vessel,

due to the volumetric compression of the bubble, and its subsequent distention, instigated by the

impact of the liquid jet, are the primary mechanisms by which a vessel might be damaged. Moreover,

the potential for injury is highest when the volumetric confinement of the bubble is strongest, the

bubble is nearest the vessel wall, the angle of incidence of the shockwave is such that the distance

between the jet tip and the nearest vessel surface is minimized and/or the tissue viscosity is low. In

the next chapter, these results are expanded upon with estimates of the smallest bubble sizes needed

to induce vascular rupture in the collapse and jetting phases, respectively.
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Chapter 5

Estimates of the smallest injurious
bubbles in shock-induced collapse

5.1 Overview

In Chapter 4, the potential for vascular rupture due to shocked bubbles was primarily characterized

with vessel wall pressures and displacements. The use of these metrics, however, led to predominantly

qualitative results, as vessel wall pressures were shown to not correlate directly with injury, see

Section 4.3.7, and the sparseness of experimental work with shocked bubbles in vasculature inhibited

comparisons with the measured vessel wall displacements. As a result, while trends in the potential

for vascular rupture as a function of problem geometry, as well as tissue viscosity, were established,

little could be said as to whether in any given case vascular injury could be expected to occur and

if so, what size bubbles would be needed to cause it.

In the present chapter, these shortcomings are addressed by considering the finite strain fluid

deformations induced by the shocked bubble. Unlike vessel wall pressures and displacements, strains

provide a complete description of material deformations and failure, with experimental measurements

of ultimate strains in tissue available for comparison, see Section 2.1.2. A method is thus developed to

post-process from simulations the 3D, time-dependent, finite strains in proximity of a shocked bubble

in order to estimate the smallest injurious bubbles in the collapse and jetting phases. The free-field

simulations of Section 4.2, in particular, are considered in order to compute minima independent

of problem geometry. The approach is expected to be valid for early times in the life cycle of the
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bubble and low estimates of tissue viscoelasticity, see Sections 2.1.4, 4.3.2 and 4.3.7. For the larger

measurements of the tissue’s properties, a model for spherical bubble dynamics in a viscoelastic

material is utilized to adjust the free-field, collapse phase results [25]. A model for jet penetration

into a viscous fluid is similarly adapted in order to estimate the smallest injurious bubbles in the

jetting phase, for later times in the bubble’s life cycle [43].

The remainder of this chapter proceeds as follows. In Section 5.2, a vascular rupture criterion

based on the finite strain deformations of the fluid surrounding a shocked bubble is first proposed.

A numerical method is then introduced in Section 5.3 to directly measure the finite strain field in

free-field simulations. The typical time-dependent behavior of the strain field is discussed in Section

5.4, followed by estimates of the smallest injurious bubbles in the collapse and jetting phases in

Sections 5.5 and 5.6, respectively. Finally, a summary of the results is presented in Section 5.7.

5.2 Criterion for vascular rupture

In order to define a criterion for vascular rupture due to the shock-induced collapse of a bubble, a

fundamental understanding of the response of tissue on the microscale and under multiaxial loading

is necessary. Recall from Section 2.1.2, however, that the tissue response under those conditions

remains largely uncharacterized and only experimental results from the macroscale material response

under uniaxial loading are readily available. The design of a vascular rupture criterion must thus

utilize uniaxial loading results to predict rupture under multiaxial loading conditions. Presently, the

von Mises strain is employed to consistently relate the states of strain resulting from the different

loading modalities.

The von Mises strain is a measure of the deviatoric or shear strain energy in a material and

is typically utilized as a yield criterion for isotropic ductile metals [85]. It is arguably also an

appropriate injury criterion for tissue which though anisotropic is largely incompressible and can be

expected to yield, or more precisely rupture, under shear rather than hydrostatic stress [42], akin

to isotropic ductile metals. The underlying assumption of the von Mises criterion, however, is that

regardless of the state of strain the failure of the material should occur when the stored shear strain
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energy exceeds a certain threshold. Unfortunately, it remains unclear from experiments whether

this is the case in tissue. In the absence of experimental evidence, the use of the von Mises strain

represents a best effort to establish a vascular rupture criterion for multiaxial loading conditions

based on uniaxial results.

The design of the vascular rupture criterion is completed by determining the ultimate von Mises

strains in tissue from the corresponding ultimate strains from uniaxial loading experiments which

are given in Section 2.1.2. To do so, we begin with the expression for the Green-Lagrange finite

strain tensor, E:

E =
1

2

(
FTF− I

)
, (5.1)

where F is the deformation gradient tensor. Under uniaxial loading and under the assumption that

tissue can be approximated as isotropic, the deformation gradient tensor is diagonal in principal

coordinates with F = diag(λ1, λ2, λ3), where λ1, λ2 and λ3 are the stretch ratios in the principal

directions. If tissue is further approximated as incompressible, i.e. det(F) = 1, and the loading takes

place in the first principal direction, the stretch ratios along the directions orthogonal to the load

are equal and can be expressed in terms of the first principal stretch: λ2 = λ3 = λ
−1/2
1 . Utilizing the

resulting deformation gradient tensor in Equation (5.1) yields a Green-Langrage finite strain tensor

that is also diagonal and can be expressed solely as a function of the first principal stretch:

E =


1

2

(
λ21 − 1

)
0 0

0
1

2

(
λ−11 − 1

)
0

0 0
1

2

(
λ−11 − 1

)

 . (5.2)

In the uniaxial loading experiments in tissue, the first principal stretch may be obtained from the

reported strain, since the latter is measured in the direction of the loading which is presently assumed

to coincide with a principal direction in the material. Thus, using Equation (5.2), we see that the
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two quantities are related by

E1 =
1

2

(
λ21 − 1

)
(5.3)

so that the full state of strain is known for tissue under uniaxial loading conditions. The von Mises

strain is then computed from

Evm =

√
2

3
Ed : Ed, (5.4)

where Ed is the deviatoric component of the volumetric-deviatoric additive split of the Green-

Lagrange finite strain tensor: E = Ev + Ed, which reduces to E = Ed under the assumption that

tissue is incompressible. The ultimate von Mises strains in tissue, Evm,u, may now be computed

from the corresponding ultimate strains measured in uniaxial loading experiments by setting E1 to

Eu and utilizing Equations (5.2)–(5.4). The result of the procedure is an approximate range for

Evm,u, given by 0.20 ≤ Evm,u ≤ 0.55, which completes the design of the vascular rupture criterion.

The criterion is then readily applied to free-field simulations where vascular rupture will be said to

occur for a particular value of the ultimate von Mises strain if it is exceeded across a layer adjacent

to the bubble that is thicker than the vessel wall.

5.3 Direct measurement of finite strain fluid deformations

To compute the time-dependent finite strains in the flow field surrounding the shocked bubble, a

method developed by Senatore et al. [98] and utilized to extract strain information from 2D particle

image velocimetry data of soil under a running gear is adapted and extended to 3D. In the present

framework, the method relies on the advection of massless particles corresponding to the nodes of a

finite element mesh to determine the strain in the flow field following standard finite element analysis

procedures. The same finite element mesh is utilized in all free-field simulations, see Figure 5.1. It is

generated with the Gmsh tool [45] and consists of approximately 17 million eight-node hexahedral
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Figure 5.1: Finite element mesh at 1:1000 of the resolution utilized in the simulations. The mesh
corresponds to a quarter of a hollowed out sphere and is shown in the computational box of the fluid
solver where the bubble is depicted in blue. To reduce computational cost, exponential stretching is
utilized to refine the mesh near the bubble and coarsen it away.

elements with about the same number of total nodes or particles. In each free-field simulation, the

flow solver is provided with the node positions, which are then updated by integrating

dxi
dt

= u (xi, t) , i = 1, 2, ..., N (5.5)

alongside Equations (2.1)–(2.5), where xi is the node or particle position and N is the total number

of particles. The particle velocity is determined through a linear interpolation of the average cell

face velocities of the cell in which the particle is located, i.e. by utilizing Equation (3.14). Once

the finite element mesh has been deformed by the flow field, trilinear shape functions are utilized

to determine the deformation gradient tensor, F, in each element, by taking the derivative of the

position of an arbitrary point in an element’s deformed body configuration, Bf, as given by x′, with

respect to the position of this point in the element’s undeformed body configuration, Bo, as given

by x:

F =
∂x′

∂x
. (5.6)
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The Green-Lagrange finite strain tensor, E, is easily computed therefrom using Equation (5.1), with

the average value in each element directly approximated from that at the element center. Additional

details on how the finite strain fluid deformations are post-processed may be found in Appendix G.

Despite the simplicity of this method, the analysis of fluid flow deformations with finite elements

poses several difficulties, the most critical of which is the potential for mesh entanglement to occur.

Such a scenario is unlikely to happen in the finite element analysis of a solid mechanics problem

because the deformations are usually small, but may be challenging to avoid in the analysis of a

flowing fluid, as large deformations are possible. The issue is addressed here by ensuring that the

finite element mesh is sufficiently refined and not too close to the interface of the bubble, where

the largest deformations are expected to occur. A stand-off distance of 10% of the bubble diameter

of the mesh from the interface, as well as the present level of refinement, are sufficient to stave off

mesh entanglement across the simulated shockwave amplitudes and times. Moreover, the utilized

mesh resolution is also adequate to qualitatively study how the shock-induced collapse of the bubble

deforms the surrounding liquid and to quantify the spatial extents of the region surrounding the

bubble for which the strain is larger than the ultimate strain anticipated in tissue. In both cases,

only negligible differences are noted upon doubling the resolution.

5.4 Characterization of the time-dependent strain field

To understand the mechanisms by which the flow field surrounding the bubble is deformed by its

collapse, the time-dependent strain field induced by the interaction between a 30 MPa shockwave

and a bubble is illustrated with snapshots of the filled contours of the von Mises strain (top panels)

and pressure (bottom panels) in Figure 5.2. To facilitate the visualization of potential regions of

injury, the strain contours are saturated at 0.55, the largest estimate of ultimate strain in tissue

considered, while the color bar is adjusted such that the threshold between the colors green and

yellow corresponds to the smallest estimate. In other words, strain thresholds of tissue are exceeded

in the yellow and red regions, while there is negligible damage potential in the green regions. It is

straightforward to observe then, at t∗ = 0.06, that the passage of the shockwave produces negligible
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Figure 5.2: Temporal snapshots of the filled contours of the von Mises strain (Evm, upper panel
half) and pressure (p∗, lower panel half) in the x-y cross section of the 3D domain, where the bubble
is depicted by the 0.5 isopleth of the volume fraction of air. The von Mises strain contours are
saturated at 0.55, i.e. the largest ultimate strain of tissue considered, to facilitate visualization,
since in a narrow layer adjacent to the bubble contour values can be several orders of magnitude
larger.
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deformations in the flow field and that the first potentially injurious strains are detected at the

proximal side of the bubble, with the motion of the interface, as the bubble begins to visibly collapse

around t∗ = 0.24. At that time, however, the strains are still negligible on the distal bubble side,

since the bubble translates as it collapses, offsetting the motion of its distal interface. This effect

is overtaken in the snapshot of t∗ = 0.43, where the bubble volume has significantly decreased

and the resulting sink flow has induced injurious strains all around the bubble. The strain field

remains asymmetric, however, as the bubble continues to translate during its collapse. The collapse

phase terminates around t∗ = 0.51, when the minimum bubble volume is achieved, which also

marks the end of the sink flow mechanism and, resultantly, a slowdown in the growth of the injury

region surrounding the bubble. The jetting phase then begins, as illustrated for t∗= 0.54, which

initially reduces the deformation region induced by the sink flow on the distal side of the bubble, but

subsequently results in its growth as the vortex ring propagates in the direction of the shockwave,

see t∗ = 0.66. Lastly, it is interesting to note that the emission of the water hammer shockwave,

visible at t∗ = 0.54, does not appear to correlate with an appreciable increase in damage potential,

which is consistent with observations made in Section 4.3.7 for the viscous vessel phantom.

Though it may not be obvious from the snapshots of the filled von Mises strain contours in

Figure 5.2 – as they are shown in the deformed body configuration, Bf – the largest injury layer

thicknesses induced by the collapse and jetting mechanisms are actually along the x-axis, on the

proximal and distal sides of the bubble, respectively. Measurements of the injury region at those

locations will therefore be useful in estimating for each mechanism the smallest bubble sizes that

can potentially rupture a blood vessel. In Figure 5.3, the time history of the distal and proximal

injury layer thicknesses, h∗d and h∗p, as measured in the undeformed body configuration, Bo, are

shown across several estimates of the ultimate von Mises strain in tissue. While it is safe to assume

that the thin region immediately adjacent to the bubble, where the strains are not available, is also

eventually damaged, it is presently not included in the measurements. Though a lot of the same

time-dependent features of the injury layer thickness that were observed in Figure 5.2 may also be

observed here, notable exceptions include the approximately linear growth of the distal injury layer
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Figure 5.3: Time history of the distal injury layer thickness (h∗d, left) and proximal injury layer
thickness (h∗p, right) for ultimate von Mises strains, Evm,u, of 0.20, 0.25, ..., and 0.55. Both mea-
surements are taken in the undeformed body configuration, Bo, as shown the schematic in the top
left corner, which depicts the filled contours of the von Mises strain at an arbitrary time and in the
x-y cross section of the 3D domain.

thickness in the jetting phase and an initial drop in the thickness of the proximal injury layer at

the end of the collapse phase. The latter event corresponds to the release of the water hammer

shockwave which acts to slow the motion of the fluid on the proximal side of the bubble and thus

contributes to the observed decrease in the injury region. Lastly, as might be expected, the thickness

of the injury region on both the distal and proximal side of the bubble is observed to strongly depend

on the estimated value of the ultimate strain in tissue. Specifically, both the distal and proximal

thicknesses grow faster and achieve higher values as the ultimate strain decreases.

5.5 Estimates of the smallest injurious bubbles in the col-

lapse phase

5.5.1 Spherical bubble dynamics in a viscoelastic material

Recall that in Section 2.1.4, the neglect of capillary, viscous and elastic effects in the study of shock-

induced bubble collapse in a vessel was motivated by a nondimensional analysis of the spherical
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bubble dynamics model of Church and Yang [25], which describes the motion of a bubble in a fluid

that is surrounded by a viscoelastic material. The model is now introduced as a means to quantify the

error in the minimum bubble sizes, as a function of tissue viscosity and elasticity, that are predicted

to result in vascular injury during the collapse phase by the free-field, shock-induced bubble collapse

simulations. The error is estimated by comparing spherical collapses with and without viscoelastic

effects, with the expectation that the estimated error will be comparable in the case of asymmetric

collapses as the latter occur on the same temporal and spatial scales [63] and only strongly break

symmetry upon the formation of the liquid jet, which nearly coincides with the end of the collapse

phase, when the minimum bubble volume is achieved [63].

The model of Church and Yang [25] couples the Keller-Miksis equation for spherical bubble

dynamics to the Kelvin-Voigt constitutive relationship for a viscoelastic material. The Keller-Miksis

model is a second-order, nonlinear, ordinary differential equation that accounts for the effects of

surface tension, liquid viscosity and to first-order in Mach number, liquid compressibility, on the

motion of the bubble. It is given by

RbR̈b

(
1− Ṙb

cl

)
+

3

2
Ṙ2

b

(
1− Ṙb

3cl

)
=

1

ρl

[(
1 +

Ṙb

cl

)
(pb − P∞) +

Rb

cl

(
ṗb − Ṗ∞

)]
, (5.7)

where Rb is the radius of the bubble, cl is the sound speed in the liquid, pb is the pressure on

the outer surface of the bubble, P∞ is the pressure of the far-field, and the overset dot indicates a

time derivative. Assuming that the contents of the bubble behave adiabatically and consist of only

non-condensable gas, the pressure on the outer surface of the bubble is simply given by

pb =

(
Po +

2σ

Rb,0

)(
Rb,0

Rb

)3γg

− 2σ

Rb
, (5.8)

where Rb,0 is the initial radius of the bubble. The expression for the far-field pressure, on the

other hand, is more complicated and is utilized to couple the viscoelastic effects of the Kelvin-Voigt
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material to the Keller-Miksis equation through the linear stress-strain relationship

τrr = 2 (Gγrr + µtγ̇rr) , (5.9)

where τrr and γrr are the normal components in the radial direction of the deviatoric stress and

strain tensors, respectively. The expression for the far-field pressure, accounting for viscoelastic

effects, is then given by

P∞ = Po + PsH(t) +
4G

3

1−
(
Rv,0

Rv

)3
+

4Ṙb

Rb

µl

(
R3

v,0 −R3
b,0

R3
v

)
+ µt

(
Rb

Rv

)3
 , (5.10)

where H is a Heaviside function and Rv is the radius of the vessel, or more precisely, the radius of the

spherical cavity in the Kelvin-Voigt material which confines the liquid and bubble. Equations (5.7),

(5.8) and (5.10) constitute the bubble-liquid-tissue model of Church and Yang, albeit a simplified

form, based on the assumption that the density of tissue is equivalent to that of the liquid, which

is justified following the discussion of Section 2.1.4. The model will furthermore only be considered

in the case of an infinitesimal liquid layer, i.e. Rb = Rv, in order to maximize the influence of the

presence of tissue on the dynamics of the bubble, in an effort to establish conservative estimates of

the error in the minimum bubble sizes predicted to result in vascular injury.

The model of Church and Yang [25] is solved by rewriting the expressions in Equations (5.7), (5.8)

and (5.10) as a system of first-order linear ordinary differential equations, which are subsequently

numerically approximated with the MATLAB ode45 algorithm. The computations are carried out

across the parameter space spanned by the range of bubble sizes and tissue viscoelastic properties

established in Sections 2.1.1 and 2.1.2, respectively, with the remaining model parameters chosen so

to as closely as possible match those used in the free-field, shock-induced bubble collapse simula-

tions. However, capillary effects between the bubble and liquid are included in the spherical bubble

dynamics model. The computational parameter space is discretized uniformly across the range of

bubble diameters and logarithmically across the range of tissue viscosities and elasticities, in each

case with 100 points. For comparison, solutions are also obtained in the absence of surface tension,
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viscosity and elasticity. The error in the minimum bubble sizes predicted to result in vascular injury

is estimated by determining the maximum injury layer thickness produced by latter bubbles sizes in

the spherical bubble dynamics model, in the absence of surface tension, viscosity and elasticity, and

comparing them to the bubble sizes that are necessary to obtain the same maximum injury layer

thickness when the latter effects are included. As before, the injury layer thickness is defined as the

region immediately adjacent to the bubble across which the von Mises strain exceeds its ultimate

value for tissue.

For the sake of consistency, the von Mises strain is once again computed from the finite strain

tensor, despite the use of a linear constitutive relationship for tissue. This choice is sensible based

on the large strains that are expected during the collapse phase [33], but calls into question the

merit of utilizing a constitutive relationship based on small strains. The latter is justified here by

the uncertainty in the mechanical properties of tissue and the resulting difficulty in fitting a more

complex constitutive model. The finite von Mises strain in the Kelvin-Voigt material is computed

from the spherically symmetric Green-Lagrange strain tensor,

E =


Err 0 0

0 Eθθ 0

0 0 Eφφ

 , (5.11)

which is equivalent to its deviatoric component, E = Ed, since first-order compressibility effects only

account for dissipation through acoustic radiation and not volumetric changes. Spherical symmetry

with no volume changes also implies that Eθθ = Eφφ and that F is a diagonal matrix with det(F) = 1,

so that by utilizing Equation (5.1) the Green-Lagrange strain tensor can fully be expressed in terms

of Err, i.e.

Eθθ =
1

2

(
1√

2Err + 1
− 1

)
, (5.12)
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which, following a simplification of the Green-Lagrange strain-displacement relations in spherical

coordinates, is given by

Err =
∂dr
∂r

+
1

2

(
∂dr
∂r

)2

, (5.13)

where dr is the displacement in the radial direction. The partial derivative of the radial displacement

is obtained by integrating the radial velocity in the Keller-Miksis model in time, i.e.

ur =
R2

bṘb

r2
, (5.14)

and subsequently taking the partial derivative of the result in the radial direction to get

∂dr
∂r

= −
2
(
R3

b −R3
b,0

)
3r3

, (5.15)

which incidentally corresponds to the small strain approximation, γrr. Finally, the finite von Mises

strain is computed by using Equations (5.11)–(5.13) and (5.15) in Equation (5.4). This procedure

is a simple matter of post-processing the bubble radius history obtained as part of the solution to

Equations (5.7), (5.8) and (5.10).

5.5.2 Smallest injurious bubbles in absence of tissue viscoelasticity

To estimate the smallest bubbles able to rupture a blood vessel in the absence of the viscoelastic

effects of tissue, the largest injury layer produced during the collapse phase in free-field simulations

is considered. The latter is located at the proximal side of the bubble, along its centerline, see

Section 5.4, with its thickness measured by hp,max, which includes the extent of the small region

adjacent to the bubble for which the strain is unavailable but that can also be assumed injured. In

Figure 5.4, hp,max is plotted as a function of the initial bubble diameter, Db, for several ultimate

von Mises strains of tissue. A gray region is plotted for each ultimate strain, as spanned by the

smallest and largest shockwave pressures considered, Ps = 30 and 110 MPa, respectively. Regions
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Figure 5.4: Maximum proximal injury layer thickness, hp,max, as a function of the initial bubble
diameter, Db, as predicted by the shock-induced, free-field, bubble collapse model. The gray regions
correspond to ultimate von Mises strains, Evm,u, of 0.20, 0.25, 0.30, 0.40, and 0.55, and are spanned
by the smallest (—) and largest (−−) shockwave pressures considered, 30 and 110 MPa. The
injury regions for capillaries (C, −·−), venules (V,−·−) and arterioles (A, −·−) are also shown,
with the right and bottom bounds of each region defined by the average vessel diameter and wall
thickness, respectively. The inside of each injury region is denoted by the position of the label of
the corresponding vessel.

bound by the average thicknesses and lumen diameters of capillaries, venules and arterioles are also

included and serve to encompass those bubbles which not only can cause injury to the vessel but can

also fit inside it. Thus for capillaries and venules, injurious bubbles sizes seem available across all of

the estimated ultimate strains in tissue and clinical SWL pressure amplitudes, while for arterioles,

rupture does not seem likely at the largest ultimate strain considered, Evm,u = 0.55, for almost any

clinical shockwave strength. Moreover, bubbles smaller than approximately 1 µm appear harmless

to the entire microvasculature, which is consistent with how injury is expected to be initiated in

SWL, see Section 2.1.1.

5.5.3 Error in the estimates as a function of tissue viscoelasticity

The errors in the predicted bubble sizes resulting from neglecting tissue viscoelasticity are now

estimated with the spherical bubble dynamics model of the previous section, by computing the
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Figure 5.5: Stacked area plot of the regions in the space spanned by the tissue viscosity, µt, and
elasticity, G, in which the maximum proximal injury layer thickness, hp,max, predicted by the shock-
induced, free-field, bubble collapse model, is not expected to exceed 5% error relative to the case in
which tissue viscoelasticity is not neglected. Regions are shown for initial bubble diameters, Db, of
5, 10, 20 and 30 µm, and at shockwave pressures, Ps, and ultimate von Mises strains, Evm,u, of 30
MPa and 0.20 (−·−, �), 30 MPa and 0.55 (·····, �), 110 MPa and 0.20 (—, �), and 110 MPa and
0.55 (−−, �).

relative error in the maximum thickness of the injury layer obtained in the spherical collapse between

solutions with and without tissue confinement, which are compared at the collapse time of the latter.

These results are shown in Figure 5.5, where error plots have been produced for initial bubble

diameters, Db, of 5, 10, 20, and 30 µm. In each case, regions with 5% or less relative error have

been drawn for shockwave pressures, Ps, of 30 and 110 MPa, and ultimate von Mises strains, Evm,u,

of 0.20 and 0.55. The results for a 1 µm bubble are omitted, however, since the relative error in

this case exceeds 10% even for the smallest estimates of tissue viscosity and elasticity. The latter
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further supports the conclusion of Section 5.5.2 which found such small bubbles to be harmless in the

free-field case, since any added viscosity or elasticity will further suppress the potential for injury.

For the bubble diameters that are plotted, the relative errors are typically less than 5% for tissue

viscosities, µt, in the range of ultrasound measurements, O(10−2), and nearly the entire range of

estimated tissue elasticities, G, up to O(1). The large role that viscosity plays in suppressing injury

is consistent with the scaling analysis of Section 2.1.4, as well all as the findings of Freund [41] from

the study of bubble expansion in tissue. Finally, the range of viscosities and elasticities across which

the error is less than 5% increases as a function of increasing bubble diameter and pressure, but

decreases with increasing ultimate strain. The former trend is the result of the increased role that

inertia plays for larger bubbles and stronger shockwaves, while the latter occurs because the von

Mises strain in the spherical bubble dynamics model has a power-law-like distribution and the larger

strains near the surface of the bubble experience greater suppression for the same value of viscosity

and elasticity than deformations further away from the bubble do.

5.5.4 Smallest injurious bubbles as a function of tissue viscosity

The spherical bubble dynamics model is now utilized to adjust as a function of tissue viscosity

the estimates of the smallest injurious bubbles obtained in Section 5.5.2 from free-field simulations.

Tissue elasticity, on the other hand, is neglected based on the findings in Section 5.5.3 which indicate

that it is largely unsuccessful at suppressing the growth of the injury layer. The procedure to adjust

the free-field simulation results is iterative and requires that for a given tissue viscosity the spherical

bubble dynamics model be solved for increasingly larger bubbles, starting from an estimate of the

smallest injurious bubble in the free-field case, until such a bubble size is found that the added tissue

viscosity is no longer able to suppress injury. More precisely, the procedure is said to have converged

on the adjusted estimate of the smallest injurious bubble if the latter is also found to be injurious in

free-field simulations, in Section 5.5.2, and the relative error in its maximum injury layer thickness,

computed as in Section 5.5.3, is not sufficiently large to alter that conclusion. The former condition

is trivially satisfied, of course, since in free-field simulations a bubble that is larger than the smallest
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Figure 5.6: Minimum initial bubble diameters, Db,min, needed for the rupture of capillaries (C),
venules (V) and arterioles (A) during the collapse phase, as predicted by the shock-induced, free-field,
bubble collapse model and subsequently adjusted for the estimated error resulting from neglecting
tissue viscosity, µt. The gray regions correspond to ultimate von Mises strains, Evm,u, of 0.20 and
0.55 in the left and center panels, and 0.20, 0.35 and 0.55 in the right panel. Each region is spanned
by shockwave pressure, Ps, of 30 (—), 70 (·····) and 110 MPa (−−). The average lumen diameter of
each vessel is indicated by a dash-dotted line.

one required for vascular rupture is inherently also injurious.

The adjusted estimates of the smallest injurious bubbles are now presented in Figure 5.6, where

the minimum bubble diameter, Db,min, that is needed to rupture capillaries, venules and arterioles is

plotted against the tissue viscosity, µt. In each case, gray regions are drawn for ultimate von Mises

strains in tissue, Evm,u, of 0.20 and 0.55, with the exception of arterioles where the result for Evm,u

= 0.35 is also included. As in Figure 5.4, each of the regions is spanned by the smallest and largest

shockwave pressure considered, Ps = 30 and 110 MPa. Moreover, a line denoting the average lumen

diameter of each vessel is also shown. An interesting observation from Figure 5.6 is the existence
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of a threshold viscosity, within the range of those expected in tissue, beyond which the minimum

bubble diameter required for vascular rupture can no longer fit inside the average lumen diameter of

the vessel. Resultantly, in the most rupture-prone case, i.e. Ps = 110 MPa and Evm,u = 0.20, injury

seems improbable above µt = 3.24 Pa·s, while for venules and arterioles, the same is true beyond

µt = 9.89 and 2.52 Pa·s, respectively. For much smaller estimates of tissue viscosity, on the other

hand, O(10−2) Pa·s, the minimum injurious bubble diameters readily fit inside the vessels and in

fact, are not significantly larger than those estimated in free-field simulations, in Section 5.5.2. The

latter is not unexpected, however, based on the results of Section 5.5.3, which show the maximum

injury layer thickness in spherical collapse to be relatively unaffected by tissue viscosities of O(10−2)

Pa·s when compared to the inviscid case. Lastly, the trends in the minimum bubble diameter as a

function of shockwave pressure and ultimate strain are the same here as observed in Figure 5.5, and

thus no further discussed.

5.6 Estimates of the smallest injurious bubbles in the jetting

phase

5.6.1 Propagation of an inviscid fluid sphere in a viscous fluid

In Section 2.1.4, the omission of a viscous and elastic tissue model was motivated by a scaling

analysis which suggests that during the early times of shock-induced collapse inertia is expected to

play the dominant role across a large range of estimated values of tissue viscoelasticity. At later

times, however, the propagation of the bubble jet is expected to be suppressed by tissue, which

cannot be predicted by a free-field collapse model. Then, to estimate injurious bubble sizes in the

jetting phase, the jet propagation model of Freund et al. [43] is utilized. The model is a time-

dependent solution of the propagation of an inviscid fluid sphere in a quiescent viscous flow, in the

Stokes’ limit, and is shown to provide conservative estimates of the propagation distance of the jet

when compared to results of axisymmetric simulations of jetting into a planar viscous fluid layer

[43]. Once more, tissue elasticity is neglected, since viscosity can be expected to play a much larger
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Figure 5.7: Schematic of the model of Freund et al. [43] in Equation (5.16) for the propagation
of an inviscid fluid sphere in a quiescent viscous fluid, shown here in the x-y cross section of a 3D
domain. The schematic depicts how the model is adapted to describe the propagation of a bubble
jetting into tissue.

role in suppressing the dynamics of the bubble, see Sections 2.1.4 and 5.5.3. The model of Freund

et al. is given by

d(t) = U
ρD2

12µ

[
1− exp

(
− 12µ

ρD2
t

)]
(5.16)

and illustrated in the schematic of Figure 5.7. In Equation (5.16), d is the propagation distance,

U and D are the initial velocity and fixed diameter of the inviscid sphere, respectively, and ρ and

µ are the density and viscosity of the surrounding fluid. To predict the propagation of the jet,

the model is typically fitted with the size of the bubble and material interface velocity at the time

the jet first interacts with it. However, in the present case, it is fitted with the minimum bubble

size achieved during collapse and the growth velocity of the distal injury layer at early times of the

jetting phase in order to predict the distal injury layer thickness. This choice of bubble size will

lead to estimates that are more conservative than those of Freund et al., while the choice of utilizing

the growth velocity of the distal injury layer is justified by the fact that the latter is approximately

proportional to that of the material interface velocity, as evidenced by Figures 5.3 and 4.6.

5.6.2 Smallest injurious bubbles as a function of tissue viscosity

In Figure 5.8, the smallest injurious bubble diameters estimated from fitting the jet penetration
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Figure 5.8: Minimum initial bubble diameter, Db,min, needed for the rupture of capillaries (C),
venules (V) and arterioles (A) during the jetting phase as a function of tissue viscosity, µt, and
as predicted by fitting the jetting model of Freund et al. [43]. The gray regions correspond to
shockwave pressures, Ps, of 30, 70 and 110 MPa. Each region is spanned by ultimate von Mises
strains, Evm,u, of 0.20 (—) and 0.55 (−−). The average lumen diameter of each vessel is indicated
by a dash-dotted line.

model of Freund et al. [43], Equation (5.16), with the free-field simulations are shown for capillaries,

venules and arterioles. In each case, gray regions spanned by ultimate von Mises strains in tissue,

Evm,u, of 0.20 and 0.55 are plotted for shockwave pressures, Ps, of 30, 70 and 110 MPa. For

reference, a line denoting the average lumen diameter of each vessel is also shown. The results

for jetting are similar to those obtained for the collapse phase, Section 5.5.2. Notably, it can

once again be concluded that bubbles smaller than approximately 1 µm are unlikely to rupture

the microvasculature. This result is significant because it suggests that the shock-induced collapse

of bubbles present under normal physiological conditions cannot result in vascular rupture – in
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agreement with how injury is thought to develop in SWL, see Section 2.1.1. Furthermore, just as

in the collapse phase, a threshold viscosity within the range of those expected in tissue also exists

in the jetting phase, such that for values beyond it, the minimum bubble diameter required for

vascular rupture can no longer fit inside the average lumen size of the vessel. It is interesting to

note, however, that the threshold values in the jetting phase are typically lower than those in the

collapse phase. For comparison, for the most rupture-prone configuration, i.e. Ps = 110 MPa and

Evm,u = 0.20, these are given here by µt = 0.86, 2.68 and 1.00 Pa·s, for capillaries, venules and

arterioles, respectively. In all likelihood, these lower values are the product of the finer spatial scales

introduced during the jetting phase, which enhance viscous effects.

5.7 Summary

In this chapter, a method to extract finite strain fluid deformations from simulations of shock-

induced bubble collapse in the free-field was introduced and a criterion was developed to consistently

correlate the resulting strains to ultimate strains of tissue from uniaxial loading experiments in order

to predict vascular rupture. The vascular rupture criterion was subsequently utilized to estimate

the smallest injurious bubbles for the collapse and jetting mechanisms. For both mechanisms, the

free-field simulation results indicated that the smallest injurious bubbles would lie in the range

expected in the microvasculature, 1 ≤ Db ≤ 30 µm. The finding was nearly independent of the type

of microvessel, clinical SWL pressure amplitude or ultimate strain considered. Large estimates of

tissue viscosity, on the other hand, which were accounted for ex posto facto using a spherical bubble

dynamics model and a jet propagation model in the collapse and jetting phases, respectively, were

shown to be able to suppress vascular injury for any bubble size. In particular, for the collapse

mechanism, vascular injury in capillaries, venules and arterioles could be suppressed entirely for

estimates of tissue viscosity larger than µt = 3.24, 9.89 and 2.52 Pa·s, respectively, while for the

jetting mechanism, the latter was the case for µt = 0.86, 2.68 and 1.00 Pa·s.
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Chapter 6

Concluding remarks

6.1 Summary and conclusions

In the present work, idealized problems consisting of the shock-induced collapse of a bubble in the

free-field and inside a vessel phantom were studied in order to characterize the coupled dynamics

between the bubble, vessel and shockwave, and to correlate these dynamics to vascular damage

potential in SWL. Both problems were modeled in the scope of viscous and compressible multicom-

ponent flows and a quasi-conservative, high-order accurate, shock- and interface-capturing numerical

method was developed to evolve the governing equations. In the case of the shock-induced collapse

in a free-field, numerical simulations were carried out across a parameter space spanned by the range

of shockwave pressure amplitudes characteristic of clinical SWL applications. A single pressure from

that range, on the other hand, was chosen for the numerical simulations of bubble collapse in a vessel

phantom, where additional parameters, including vessel confinement, vessel proximity, shockwave

angle and tissue viscosity, were considered. Correlations to vascular damage potential were subse-

quently carried out by comparing the measured finite strain fluid deformations in the free-field, and

the vessel wall pressures and displacement in the phantom, to available measurements in tissue.

In the vessel phantom, the largest pressures and displacements were measured in the case of the

most restrictive vascular confinement considered. In particular, the pressures were nearly an order

of magnitude larger than the amplitude of the initial shockwave during the jetting phase, on the

distal vessel wall, while the magnitude of the displacements was nearly half of the initial vessel radius
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during both the collapse and jetting phases, on the proximal and distal vessel walls, respectively.

Both the pressures and displacements dropped off quickly, however, as the vascular confinement

was released, with the decrease of the maximum distal and proximal vessel wall pressures during

the jetting phase obeying a power law model and the analogous displacements during the collapse

phase obeying a sink flow model. For a fixed vessel confinement, on the other hand, nearly the same

behavior could also be observed in the study of the effects of bubble proximity, when the bubble

was moved farther away from the vessel walls, whereas the effects of shockwave angle had a nearly

negligible impact on the maximum vessel wall displacement during the collapse phase, but signifi-

cantly reduced both the maximum vessel wall pressure and displacement during the jetting phase,

when the jet was made to propagate perpendicularly to the nearest vessel wall rather than toward it.

Finally, in the study of the effects of tissue viscosity, the estimates from ultrasound measurements

were shown to be able to reduce the vessel wall displacements, but had a negligible impact on the

vessel wall pressures, ultimately suggesting that the latter may not be a reliable metric for estimating

vascular damage potential.

A more detailed analysis of the deformations induced by the collapse of the bubble was subse-

quently carried out in the free-field by developing a method to post-process the time-dependent,

3D, finite strain fluid deformations in the neighborhood of the bubble. Moreover, a vascular rupture

criterion based on the von Mises strain was proposed to determine the size of injurious bubbles in

capillaries, venules and arterioles. Bubble sizes present under normal physiological conditions, i.e.

prior to treatment, were shown to be unlikely to result in the rupture of any microvessel, even at

the largest clinical SWL pressure tested. In the range of sizes available during treatment, however,

bubbles capable of vascular rupture were expected to exist for the entire microvasculature, with both

the collapse and jetting mechanisms involved. In the collapse phase, the errors in the predicted in-

jurious bubble sizes were quantified as a function of tissue viscoelasticity utilizing a spherical bubble

dynamics model. The adjusted bubble sizes showed that beyond a certain threshold tissue viscosity,

specific to each vessel, rupture could be prevented. The same was the case in the jetting phase,

where a jet penetration model was utilized to predict the size of the injurious bubbles as a function
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of tissue viscosity.

In conclusion, the present work constitutes a significant advance in the state of practice for the

study of shocked-bubble dynamics in tissue. Indeed, asymmetric simulations of the shock-induced

collapse of a bubble in a vessel phantom have previously never been reported in literature. The

simulated parameter space is thus inherently the most exhaustive to date and the resulting trends in

vessel wall pressures and displacements as a function of the problem geometry and vessel phantom

viscosity are the first of their kind. The state of practice of this problem was also furthered by the

development of a numerical method for extracting finite strain fluid deformations, which enabled

a previously difficult to establish link between the flow quantities in fluid simulations and the me-

chanical failure of tissue. This method, which was applied to simulations of shock-induced bubble

collapse in the free-field, resulted in the first reported estimates of the smallest injurious bubbles in

the microvasculature. These estimates are potentially significant, as they may prove to be a useful

metric in testing predictions from simulations with corresponding experiments where small spatial

and fast temporal scales of shock-induced collapse make it challenging to measure other quantities,

such as pressures and deformations.

6.2 Suggestions for future work

The focus of the present study has been the dynamics of shock-induced collapse. However, the

latter only represent a small part of the rich spectrum of bubble dynamics that can be expected

in SWL. Shocked-bubble expansion, bubble splitting and cloud cavitation will undoubtedly all play

nontrivial roles in vascular injury and should be investigated. In particular, understanding how these

dynamics might evolve from a single preexisting nucleus, as a function of the repeated passage of a

lithotripter pulse, would be essential to understanding how injury develops in microvessels. To that

end, a numerical scheme that can handle both slow and fast time scales, as well as small and large

spatial scales, needs to be developed, with additional physics, such as phase change, mass transfer

and heat transfer, modeled in the governing equations.

Lastly, beyond estimating the effects of tissue viscoelasticity through the spherical bubble dy-
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namics and jet penetration models, free-field simulations of shock-induced collapse in a viscoelastic

fluid should be considered. Such simulations, when carried out across the parameter space spanned

by the measurements of tissue viscosity and elasticity, could help establish lower bounds for the esti-

mates of the smallest injurious bubble sizes in the microvasculature. To begin, a simple constitutive

model, such as the Oldroyd-B model, for example, which describes a fluid consisting of elastic beads

and spring dumbbells, could be coupled to the present governing equations.
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Appendix A

State variables, fluxes and source
terms

The vectors of state variables, q:

q = (α1ρ1, α2ρ2, ρu, ρv, ρw,E, α1)
T
, (A.1)

advective fluxes, fa, ga and ha:

fa =
(
α1ρ1u, α2ρ2u, ρu

2 + p, ρvu, ρwu, (E + p)u, α1u
)T
,

ga =
(
α1ρ1v, α2ρ2v, ρuv, ρv

2 + p, ρwv, (E + p)v, α1v
)T
,

ha =
(
α1ρ1w,α2ρ2w, ρuw, ρvw, ρw

2 + p, (E + p)w,α1w
)T
,


(A.2)

diffusive fluxes, fd, gd and hd:

fd = (0, 0, τxx, τxy, τxz, τxxu+ τxyv + τxzw, 0)
T
,

gd = (0, 0, τyx, τyy, τyzτyxu+ τyyv + τyzw, 0)
T
,

hd = (0, 0, τzx, τzy, τzz, τzxu+ τzyv + τzzw, 0)
T
,


(A.3)

and source terms, s:

s = (0, 0, 0, 0, 0, 0, α1∇ · u)
T
, (A.4)
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of the conservation-law form of the five-equation model, Equation (3.1), where τ is an element of

the viscous stress tensor, Equation (2.6).



98

Appendix B

Characteristic decomposition

To illustrate the projection of the primitive variables onto the characteristic fields, we begin by

rewriting the conservation-law form of the equations of motion, Equation (3.1), in its equivalent

quasi-linear form and as a function of the primitive variables. In the process, we neglect the viscous

terms, as they will not impact the sought-after result, and once again consider the advection equation

for the volume fraction in its original form, see Equation (2.5). Equation (3.1) then becomes

∂v

∂t
+ A(v)

∂v

∂x
+ B(v)

∂v

∂y
+ C(v)

∂v

∂z
= 0, (B.1)

where v is the vector of primitive variables and A = ∂vfa, B = ∂vga and C = ∂vha are Jacobian

matrices. The individual components of these vector and matrix variables are given by

v =



α1ρ1

α2ρ2

u

v

w

p

α1



,A =



u 0 α1ρ1 0 0 0 0

0 u α2ρ2 0 0 0 0

0 0 u 0 0 ρ−1 0

0 0 0 u 0 0 0

0 0 0 0 u 0 0

0 0 ρc2 0 0 u 0

0 0 0 0 0 0 u



, (B.2a)
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B =



v 0 0 α1ρ1 0 0 0

0 v 0 α2ρ2 0 0 0

0 0 v 0 0 0 0

0 0 0 v 0 ρ−1 0

0 0 0 0 v 0 0

0 0 0 ρc2 0 v 0

0 0 0 0 0 0 v



,C =



w 0 0 0 α1ρ1 0 0

0 w 0 0 α2ρ2 0 0

0 0 w 0 0 0 0

0 0 0 w 0 0 0

0 0 0 0 w ρ−1 0

0 0 0 0 ρc2 w 0

0 0 0 0 0 0 w



. (B.2b)

Now in order to obtain the characteristic variables from the primitive ones, Equation (B.1) must

be decomposed along its characteristics. However, since the characteristic decomposition is only

applied in one coordinate direction at a time, we illustrate the procedure for the x-direction with

the understanding that the procedure for the remaining coordinate directions is entirely analogous.

We begin by solving the eigenvalue decomposition problem for A:

A = QAΛAQ−1A , (B.3)

where QA is a matrix whose columns are the right eigenvectors of A and ΛA is a matrix whose

diagonal elements are the corresponding eigenvalues:

QA =



−α1ρ1
2c 1 0 0 0 0 α1ρ1

2c

−α2ρ2
2c 0 1 0 0 0 α2ρ2

2c

1
2 0 0 0 0 0 1

2

0 0 0 1 0 0 0

0 0 0 0 1 0 0

−ρc2 0 0 0 0 0 ρc
2

0 0 0 0 0 1 0



,ΛA =



u− c 0 0 0 0 0 0

0 u 0 0 0 0 0

0 0 u 0 0 0 0

0 0 0 u 0 0 0

0 0 0 0 u 0 0

0 0 0 0 0 u 0

0 0 0 0 0 0 u+ c



. (B.4)
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Then, by assuming that QA is spatially and temporally frozen, the variable transformation v =

QAwA, along with Equation (B.3), can be substituted into Equation (B.1) to yield the dimensionally

split characteristic equation for the x-direction:

∂wA

∂t
+ ΛA

∂wA

∂x
= 0, (B.5)

where wA is the vector of characteristic variables obtained from the projection of the primitive

variables onto the characteristic fields in the x-direction:

wA = Q−1A v. (B.6)

The variable transformation in Equation (B.6) may now be utilized to convert the cell average

primitive variables into the cell average characteristic variables so that the latter may be recon-

structed. However, since Equation (B.6) was obtained based on a characteristic decomposition in

the x-direction, the reconstruction of the resulting characteristic variables must be carried out on

cell faces normal to that direction. Then, applying Equation (B.6) to the cell average primitive

variables in a given cell, we get

wAi,j,k
= Q−1Ai+1/2,j,k

vi,j,k, (B.7)

where the frozen projection matrix, Q−1A , is to be evaluated at state vi+1/2,j,k. However, the latter

is not known prior to reconstruction, so that typically a Roe or arithmetic average of vi,j,k and

vi+1,j,k is utilized instead. We prefer computing the arithmetic average, as it is less computationally

expensive than, and performs equally well in our tests as, the Roe average. Once the characteristic

variables have been reconstructed at the Gaussian quadrature points of both the left and right side

of the cell faces normal to the x-direction, the primitive variables may be recovered by projecting
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the characteristic variables back onto the physical fields:

vL
i+1/2,jl,km

= QAi+1/2,j,k
wL

Ai+1/2,jl,km
,

vR
i+1/2,jl,km

= QAi+1/2,j,k
wR

Ai+1/2,jl,km
.

 (B.8)

The procedure described by Equations (B.7) and (B.8) does not affect the formal order of the spatial

accuracy of the numerical method and has readily been utilized in the past with high-order methods

for conservation laws, see [54, 64, 92, 110] to name but a few.
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Appendix C

WENO reconstruction

Our WENO scheme is primarily a generalization of the original fifth-order method of Liu et al. [80]

to nonuniform grids. To our knowledge, the building blocks of such a scheme, i.e. the polynomials,

weights, and smoothness indicators, have only been reported in literature once before and in a limited

capacity. Specifically, Johnsen [63] provided them for a reconstruction at the cell boundaries, but

not at the quadrature points. In this section, we thus briefly overview the procedure by which the

generalized WENO building blocks of an arbitrarily high-order reconstruction at a given point may

be obtained and document those for a fifth-order reconstruction, at both the cell boundaries and

quadrature points.

Following the notes of Shu [99], a (2k−1)th-order WENO reconstruction in cell Ii consists of the

convex combination of k polynomials of kth-order, which are defined on candidate stencils

Sr(i) = {xi−r, ..., xi−r+k−1} , r = 0, ..., k − 1. (C.1)

The Lagrange form of each polynomial is given by

f (r)(x) =

k∑
m=0

m−1∑
j=0

fi−r+j∆xi−r+j


k∑
l=0
l 6=m

k∏
q=0
q 6=m,l

(
x− xi−r+q−1/2

)
k∏
l=0
l 6=m

(
xi−r+m−1/2 − xi−r+l−1/2

)
 , (C.2)
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where f is an arbitrary function whose pointwise approximation is to be obtained in cell Ii from

its cell averages in the candidate stencils. Without any loss in the generality of the methodology,

we can then write the convex combination of the candidate polynomials for a reconstruction at the

right cell boundary of cell Ii, xi+1/2, as follows:

fi+1/2 =

k−1∑
r=0

ω
(r)
i+1/2f

(r)
i+1/2 = f

(
xi+1/2

)
+O

(
∆x2k−1i

)
, (C.3)

where the nonlinear weights, ω, satisfy

ω
(r)
i+1/2 ≥ 0,

k−1∑
r=0

ω
(r)
i+1/2 = 1, (C.4)

for stability and consistency, and are specially designed to achieve a (2k− 1)th-order reconstruction

in smooth regions of f and an essentially non-oscillatory one in regions containing discontinuities.

The nonlinear weights depend on both the cell size distribution and the smoothness of the

interpolated function. They are derived from the so-called ideal weights, d, which are only a function

of the former and for which the relationships in Equations (C.3) and (C.4) also hold, i.e.

fi+1/2 =

k−1∑
r=0

d
(r)
i+1/2f

(r)
i+1/2 = f

(
xi+1/2

)
+O

(
∆x2k−1i

)
(C.5)

and

d
(r)
i+1/2 ≥ 0,

k−1∑
r=0

d
(r)
i+1/2 = 1. (C.6)

The ideal weights are obtained by matching the coefficients of the convex combination of the kth-

order polynomials with those of a (2k − 1)th-order polynomial generated by Equation (C.2) and

centered about cell Ii. Though the ideal weights also achieve a (2k − 1)th-order reconstruction in

smooth regions of f , they produce oscillatory behavior for reconstructions in regions containing

discontinuities.
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The nonlinear weights are derived from the ideal weights by taking into account the smoothness

of f . The latter is characterized by the smoothness indicators of Jiang and Shu [62], β:

β(r) =

k−1∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1i

(
dlf (r)(x)

dlx

)2

dx, (C.7)

which are utilized to first rescale the ideal weights:

α
(r)
i+1/2 =

d
(r)
i+1/2(

β(r) + ε
)2 , (C.8)

and subsequently normalize them so to obtain the nonlinear ones:

ω
(r)
i+1/2 =

α
(r)
i+1/2

k−1∑
s=0

α
(s)
i+1/2

, (C.9)

with ε a small parameter that is utilized to avoid division by zero. Typically, it is set to 10−6 to avoid

deteriorating the formal order of accuracy of the reconstruction near critical points of f . In practice,

we remove this restriction and set ε to machine precision by means of an additional mapping of the

nonlinear weights, see Henrick et al. [56] for details.

The above-described methodology is analogous for the reconstruction at any other point within

cell Ii. In addition, the resulting WENO scheme is no more expensive than one developed on a

uniform grid, as all grid-dependent coefficients that appear in the polynomials, weights and smooth-

ness indicators can be computed prior to simulation. Next, we document the building blocks of a

fifth-order WENO reconstruction. For conciseness, we utilize the square bracket notation to denote

the usual jump in a quantity, e.g. [x]
i+1/2
i−1/2 = xi+1/2 − xi−1/2.
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A.1. Polynomials

x = xi+1/2

f
(0)
i+1/2 = fi +

[x]
i+1/2
i−1/2

(
[x]

i+3/2
i−1/2 + [x]

i+5/2
i+1/2

)
[x]

i+3/2
i−1/2[x]

i+5/2
i−1/2

[f ]i+1
i −

[x]
i+1/2
i−1/2[x]

i+3/2
i+1/2

[x]
i+5/2
i−1/2[x]

i+5/2
i+1/2

[f ]i+2
i+1

f
(1)
i+1/2 = fi +

[x]
i+1/2
i−1/2[x]

i+3/2
i+1/2

[x]
i+1/2
i−3/2[x]

i+3/2
i−3/2

[f ]ii−1 +
[x]

i+1/2
i−3/2[x]

i+1/2
i−1/2

[x]
i+3/2
i−3/2[x]

i+3/2
i−1/2

[f ]i+1
i

f
(2)
i+1/2 = fi −

[x]
i+1/2
i−3/2[x]

i+1/2
i−1/2

[x]
i−1/2
i−5/2[x]

i+1/2
i−5/2

[f ]i−1i−2 +
[x]

i+1/2
i−1/2

(
[x]

i+1/2
i−5/2 + [x]

i+1/2
i−3/2

)
[x]

i+1/2
i−5/2[x]

i+1/2
i−3/2

[f ]ii−1


(C.10)

x = xi−1/2

f
(0)
i−1/2 = fi −

[x]
i+1/2
i−1/2

(
[x]

i+3/2
i−1/2 + [x]

i+5/2
i−1/2

)
[x]

i+3/2
i−1/2[x]

i+5/2
i−1/2

[f ]i+1
i +

[x]
i+1/2
i−1/2[x]

i+3/2
i−1/2

[x]
i+5/2
i−1/2[x]

i+5/2
i+1/2

[f ]i+2
i+1

f
(1)
i−1/2 = fi −

[x]
i+1/2
i−1/2[x]

i+3/2
i−1/2

[x]
i+1/2
i−3/2[x]

i+3/2
i−3/2

[f ]ii−1 −
[x]

i−1/2
i−3/2[x]

i+1/2
i−1/2

[x]
i+3/2
i−3/2[x]

i+3/2
i−1/2

[f ]i+1
i

f
(2)
i−1/2 = fi +

[x]
i−1/2
i−3/2[x]

i+1/2
i−1/2

[x]
i−1/2
i−5/2[x]

i+1/2
i−5/2

[f ]i−1i−2 −
[x]

i+1/2
i−1/2

(
[x]

i−1/2
i−5/2 + [x]

i+1/2
i−3/2

)
[x]

i+1/2
i−5/2[x]

i+1/2
i−3/2

[f ]ii−1


(C.11)

x = xi+1/(2
√
3)

f
(0)

i+1/(2
√
3)

= fi +
[x]

i+1/2
i−1/2

(
2[x]

i+3/2
i−1/2 + [x]

i+5/2
i−1/2 + [x]

i+5/2
i+1/2

)
2
√

3[x]
i+3/2
i−1/2[x]

i+5/2
i−1/2

[f ]i+1
i

−
[x]

i+1/2
i−1/2

(
[x]

i+3/2
i−1/2 + [x]

i+3/2
i+1/2

)
2
√

3[x]
i+5/2
i−1/2[x]

i+5/2
i+1/2

[f ]i+2
i+1

f
(1)

i+1/(2
√
3)

= fi +
[x]

i+1/2
i−1/2

(
[x]

i+3/2
i−1/2 + [x]

i+3/2
i+1/2

)
2
√

3[x]
i+1/2
i−3/2[x]

i+3/2
i−3/2

[f ]ii−1

+
[x]

i+1/2
i−1/2

(
[x]

i−1/2
i−3/2 + [x]

i+1/2
i−3/2

)
2
√

3[x]
i+3/2
i−3/2[x]

i+3/2
i−1/2

[f ]i+1
i

f
(2)

i+1/(2
√
3)

= fi +
[x]

i+1/2
i−1/2

(
[x]

i−1/2
i−5/2 + [x]

i+1/2
i−5/2 + 2[x]

i+1/2
i−3/2

)
2
√

3[x]
i+1/2
i−5/2[x]

i+1/2
i−3/2

[f ]ii−1

−
[x]

i+1/2
i−1/2

(
[x]

i−1/2
i−3/2 + [x]

i+1/2
i−3/2

)
2
√

3[x]
i−1/2
i−5/2[x]

i+1/2
i−5/2

[f ]i−1i−2



(C.12)



106

x = xi−1/(2
√
3)

f
(0)

i−1/(2
√
3)

= 2fi − f (0)i+1/(2
√
3)

f
(1)

i−1/(2
√
3)

= 2fi − f (1)i+1/(2
√
3)

f
(2)

i−1/(2
√
3)

= 2fi − f (2)i+1/(2
√
3)


(C.13)

A.2. Ideal weights
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A.3. Smoothness indicators
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Appendix D

Numerical flux

The methodology for obtaining the solution to a Riemann problem with the HLLC solver is identical

for quadrature points on cell faces normal to the same direction and is analogous between quadrature

points on orthogonal cell faces. As a result, to illustrate the solution procedure, we temporarily

drop the indicial notation used in the previous sections and consider a Riemann problem in the

x-coordinate direction comprised of left and right states, qL and qR, respectively. The advective

numerical flux is then given by the HLLC solver as

f̂a =
1 + sgn(s∗)

2
[faL + s− (q∗L − qL)] +

1− sgn(s∗)
2

[faR + s+ (q∗R − qR)] , (D.1)

where the state in the intermediate star region, with K = L or R, is given by

q∗K =

(
sK − uK
sK − s∗

)



(α1ρ1)K

(α2ρ2)K

ρKs∗

ρKvK

ρKwK

EK + (s∗ − uK)

(
ρKs∗ +

pK
sK − uK

)
α1K



. (D.2)
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The advective numerical flux is fully determined once the wave speeds, s, have been estimated.

Following Einfeldt et al. [37], we choose

s− = min(0, sL),

s+ = max(0, sR),

 (D.3)

and

sL = min(ū− c̄, uL − cL),

sR = max(ū+ c̄, uR + cR),

 (D.4)

where ū and c̄ are averages computed from the left and right states of the Riemann problem and may

be obtained from either a Roe or an arithmetic averaging procedure. In practice, however, we once

again find that the two averaging methods yield nearly identical numerical results and so choose to

compute arithmetic averages since they are more computationally efficient. Finally, to estimate the

wave speed in the star region, we follow Batten et al. [9] in choosing

s∗ =
pR − pL + ρLuL(sL − uL)− ρRuR(sR − uR)

ρL(sL − uL)− ρR(sR − uR)
. (D.5)

The above choice of wave speeds will result in the exact resolution of isolated shockwaves and contact

waves by the HLLC solver [9].

With the advective numerical flux computed, we may now evaluate the numerical source term

velocity and diffusive flux. In both cases, for consistency, the same velocity as that in the advective

numerical flux must be utilized [64, 90]. The component of the numerical velocity in the x-direction

is given by

û =
1 + sgn(s∗)

2

[
uL + s−

(
sL − uL
sL − s∗

− 1

)]
+

1− sgn(s∗)
2

[
uR + s+

(
sR − uR
sR − s∗

− 1

)]
, (D.6)
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and is derived from the advective numerical flux of the advection equation. The remaining velocity

components, on the other hand, may simply be written as

v̂ =
1 + sgn(s∗)

2
vL +

1− sgn(s∗)
2

vR, (D.7)

ŵ =
1 + sgn(s∗)

2
wL +

1− sgn(s∗)
2

wR. (D.8)

In the solution procedure of a Riemann problem in the x-direction, only û is necessary in order

to evaluate the numerical source term velocity, while all of the velocity components are needed to

compute the numerical diffusive flux. In addition, the latter also requires that a value of the velocity

gradient be available at the interface of the Riemann problem. Following Perigaud and Saurel [90],

we choose

∇u =
1

2
[(∇u)L + (∇u)R] . (D.9)
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Appendix E

Algorithm

To facilitate the implementation of the proposed numerical scheme, we proceed next by illustrating

how its building blocks are assembled to evolve the cell average conservative variables in time. We

omit, however, discussing the time-marching scheme itself, since it is explicit and straightforward

to implement. Instead, we provide the steps necessary to evaluate the RHS of the semi-discrete

form of the equations of motion in Equation (3.4), which is represented by the L operator in the

time-stepper in Equation (3.19), and must be evaluated at least once at each time-stage. We begin

with the cell average conservative variables, qi,j,k:

1. From qi,j,k, build the primitive variables, vi,j,k:

(a) Reconstruct qi,j,k in the x-direction to get qil,j,k.

(b) Reconstruct qil,j,k in the y-direction to get qil,jm,k.

(c) Reconstruct qil,jm,k in the z-direction to get qil,jm,kn .

(d) Convert qil,jm,kn into vil,jm,kn .

(e) Average vil,jm,kn to get vi,j,k.

2. To evaluate the RHS contribution of the advective fluxes and source term in the x-direction,

from vi,j,k, build fai+1/2,j,k and ui+1/2,j,k, respectively:

(a) Project vi,j,k onto the characteristic fields to get wi,j,k.

(b) Reconstruct wi,j,k in the x-direction to get wK
i+1/2,j,k.
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(c) Reconstruct wK
i+1/2,j,k in the y-direction to get wK

i+1/2,jl,k
.

(d) Reconstruct wK
i+1/2,jl,k

in the z-direction to get wK
i+1/2,jl,km

.

(e) Project wK
i+1/2,jl,km

onto the physical fields to get vK
i+1/2,jl,km

.

(f) Convert vK
i+1/2,jl,km

into qK
i+1/2,jl,km

.

(g) Compute f̂ai+1/2,jl,km
and ûi+1/2,jl,km from qK

i+1/2,jl,km
with the Riemann solver.

(h) Average f̂ai+1/2,jl,km
and ûi+1/2,jl,km to get fai+1/2,j,k and ui+1/2,j,k.

3. To evaluate the RHS contribution of the advective fluxes and source term in the y- and z-

directions, build ha
i,j+1/2,k and vi,j+1/2,k, and ga

i,j,k+1/2 and wi,j,k+1/2, respectively, by follow-

ing a procedure similar to that in Step 2.

4. From the velocities uK
i+1/2,jl,km

, build the spatial derivative of the velocity in the x-direction,

∂xui,j,k:

(a) Average uK
i+1/2,jl,km

to get ui+1/2,jl,km .

(b) Average ui+1/2,jl,km to get ui+1/2,j,k.

(c) Compute ∂xui,j,k from ui+1/2,j,k with the divergence theorem.

5. Build ∂yui,j,k and ∂zui,j,k by following a procedure similar to that in Step 4.

6. To evaluate the RHS contribution of diffusive fluxes in the x-direction, from ûi+1/2,jl,km and

∇ui,j,k, build fdi+1/2,j,k:

(a) Reconstruct ∇ui,j,k to get ∇uK
i+1/2,jl,km

by following a procedure similar to that in Step

2, (b)–(d).

(b) Average ∇uK
i+1/2,jl,km

to get ∇ui+1/2,jl,km .

(c) Compute f̂di+1/2,jl,km
from ûi+1/2,jl,km and ∇ui+1/2,jl,km directly.

(d) Average f̂di+1/2,jl,km
to get fdi+1/2,j,k.
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7. To evaluate the RHS contribution of diffusive fluxes in the y- and z-directions, thus completing

the evaluation of the RHS, build gd
i,j+1/2,k and hd

i,j,k+1/2, respectively, by following a procedure

similar to that in Step 6.
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Appendix F

Performance benchmarks

In order to simulate shock-induced bubble collapse across the parameter space defined in Section

2.3.4, the numerical method of Chapter 3 was implemented in 3D and subsequently extended to

parallel, due to the significant computational cost of performing direct, multidimensional, numerical

simulations. The simulations were then carried out on Kraken – a large computing system com-

promised of 9408 nodes, each containing 12 cores or, more precisely, two 2.6 GHz six-core AMD

Opteron processors. For each simulation, 288 nodes, or 3456 cores, were utilized. In this section,

we document the Kraken grind time and scalability of the multicomponent flow solver for typical

algorithm parameters utilized in the inviscid simulations, see Section 4.1 for details.

We measure the parallel scaling performance of the multicomponent flow solver with the strong

scaling, weak scaling and speedup tests, the results of which are shown in Figure F.1. The strong

scaling test is a measure of how the time to solution, or wall clock time per time step, varies for

a fixed problem size, i.e. a fixed grid, as a function of the number of cores utilized in the compu-

tation. The weak scaling test, on the other hand, benchmarks how well the computational load is

balanced across these cores by measuring the time to solution while maintaining a fixed core grid

size. Finally, the speedup test measures the factor increase in the time to solution as a function

of the total number of cores, with respect to a serial computation. Note from Figure F.1 that the

multicomponent flow solver achieves almost ideal behavior in each benchmark, with a near unity

slope in the strong scaling and speedup tests, i.e. a nearly 100% parallel scaling efficiency, and an

approximately constant computational load maintained in the weak scaling test. The results are
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Figure F.1: Parallel performance benchmarks of the numerical implementation of the multicompo-
nent flow algorithm. These include (a) the strong scaling, (b) weak scaling and (c) speedup tests.
The ideal performance is given by (−−) and (#) denotes the measured performance. The strong
scaling and speedup tests are carried out on a 5003 grid, while a constant load of 503 cells per core
is maintained during the weak scaling test.

reported for up to 4096 cores at which point the strong scaling and speedup behaviors begin to

deviate from ideal. The latter motivates to use of 3456 cores in simulations, since it strikes a good

balance between reducing the time to solution and computational efficiency.

Finally, the parallel scaling performance results are also utilized to compute the average grind

time for the multicomponent flow solver, where the grind time is a measure of the wall clock time

required to advance one flow variable in a single cell by one time-step. For the inviscid simulations

performed in the scaling benchmarks, the average grind time is 20 µs, with nearly 80% of that time

spent in the WENO reconstruction procedure and the remainder largely in the HLLC approximate

Riemann solver. Therefrom, we can also approximate the grind time for viscous simulations, which
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require twice the number of WENO reconstructions for the velocity components in order to recover

their first-order spatial derivatives, but no additional time expenditure in the HLLC solver. Then,

conservatively, since the velocity components represent less than 50% of the total flow variables in

simulations with two or more fluids, the grind time can be expected to be at most 28 µs in the

viscous case.
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Appendix G

Post-processing of finite strain
fluid deformations

The strain field in each element of the finite element mesh is approximated from its nodal displace-

ments, by utilizing a standard isoparametric mapping between the natural or virtual coordinates of

an element, see Figure G.1(a), and its physical coordinates, see Figure G.1(b) [75]. For a hexahe-

dral element, the isoparametric mapping consists of trilinear shape functions, Ni – one associated

with each node of the element, i = 1, 2, ..., 8 – which are given here as a function of the natural

coordinates, along with the position vectors of the corresponding nodes, ξi:

ξ1 = (−1,−1,−1)T, N1(ξ) =
1

8
(1− ξ1)(1− ξ2)(1− ξ3),

ξ2 = (+1,−1,−1)T, N2(ξ) =
1

8
(1 + ξ1)(1− ξ2)(1− ξ3),

ξ3 = (+1,+1,−1)T, N3(ξ) =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3),

ξ4 = (−1,+1,−1)T, N4(ξ) =
1

8
(1− ξ1)(1 + ξ2)(1− ξ3),

ξ5 = (−1,−1,+1)T, N5(ξ) =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3),

ξ6 = (+1,−1,+1)T, N6(ξ) =
1

8
(1 + ξ1)(1− ξ2)(1 + ξ3),

ξ7 = (+1,+1,+1)T, N7(ξ) =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3),

ξ8 = (−1,+1,+1)T, N8(ξ) =
1

8
(1− ξ1)(1 + ξ2)(1 + ξ3),



(G.1)



118

x
y

z

ξ1

ξ2

ξ3
z
�

y
�

x
�1 2

34

5 6

78

1
2

3

4

5 6

7
8ba

Figure G.1: Hexahedral finite element in (a) its natural or virtual coordinates and (b) its physical
(Eulerian and Lagrangian) coordinates.

where

Ni(ξj) = δij ,

8∑
i=1

Ni(ξ) = 1. (G.2)

The isoparametric mapping between the natural and physical coordinates of the element is then

simply given by

x(ξ, t) =

8∑
i=1

Ni(ξ)xi(t),

x′(ξ, t) =

8∑
i=1

Ni(ξ)x′i(t),


(G.3)

from which an analogous expression for the displacements, d(ξ, t) = x′(ξ, t)−x(ξ, 0), may be written:

d(ξ, t) =

8∑
i=1

Ni(ξ)di(t). (G.4)

The deformation gradient tensor, F, is computed therefrom by taking the partial spatial derivative
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of the expressions in Equations (G.3) and (G.4) with respect to the natural coordinates:

∂x

∂ξ
=

8∑
i=1

xi
∂Ni
∂ξ

,

∂x′

∂ξ
=

8∑
i=1

x′i
∂Ni
∂ξ

,

∂d

∂ξ
=

8∑
i=1

di
∂Ni
∂ξ

,


(G.5)

and substituting them in the expression for F, Equation (5.6):

F =
∂x′

∂x
=
∂ξ

∂x

∂x′

∂ξ
=
∂ξ

∂x

∂d

∂ξ
+ I, (G.6)

to get

F =

(
8∑
i=1

xi
∂Ni
∂ξ

)−1 8∑
i=1

di
∂Ni
∂ξ

+ I, (G.7)

where the function notation has been omitted for the sake of conciseness. Equation (G.7) can

subsequently be utilized in Equation (5.1) to compute the Green-Lagrange strain anywhere in the

element.
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Mie-Grüneisen equation of state. J. Comput. Phys., 171(2):678–707, 2001.

[104] L. H. Smaje, P. A. Fraser, and G. Clough. The distensibility of single capillaries and venules

in the cat mesentery. Microvasc. Res., 20(3):358–370, 1980.

[105] J. G. Snedeker, P. Niederer, F. R. Schmidlin, M. Farshad, C. K. Demetropoulos, J. B. Lee,

and K. H. Yang. Strain-rate dependent material properties of the porcine and human kidney

capsule. J. Biomech., 38(5):1011–1021, 2005.



130

[106] K. K. So, X. Y. Hu, and N. A. Adams. Anti-diffusion interface sharpening technique for

two-phase compressible flow simulations. J. Comput. Phys., 231(11):4304–4323, 2012.

[107] H. Terashima and G. Tryggvason. A front-tracking/ghost-fluid method for fluid interfaces in

compressible flows. J. Comput. Phys., 228(11):4012–4037, 2009.

[108] K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. J. Comput.

Phys., 68(1):1–24, 1987.

[109] K. W. Thompson. Time-dependent boundary conditions for hyperbolic systems, II. J. Comput.

Phys., 89(2):439–461, 1990.

[110] V. A. Titarev and E. F. Toro. Finite-volume WENO schemes for three-dimensional conserva-

tion laws. J. Comput. Phys., 201(1):238–260, 2004.

[111] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: A practical introduc-

tion. Springer, Dordrecht; New York, 3rd edition, 2009.

[112] C. K. Turangan, A. R. Jamaluddin, G. J. Ball, and T. G. Leighton. Free-Lagrange simulations

of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech., 598:1–25, 2008.

[113] G. M. Ward and D. I. Pullin. A hybrid, center-difference, limiter method for simulations of

compressible multicomponent flows with Mie-Grüneisen equation of state. J. Comput. Phys.,
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