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ABSTRACT 

Heparin has been used as an anticoagulant drug for more than 70 years. The global 

distribution of contaminated heparin in 2007, which resulted in adverse clinical effects and 

over 100 deaths, emphasizes the necessity for safer alternatives to animal-sourced heparin. 

The structural complexity and heterogeneity of animal-sourced heparin not only impedes 

safe access to these biologically active molecules, but also hinders investigations on the 

significance of structural constituents at a molecular level. Efficient methods for preparing 

new synthetic heparins with targeted biological activity are necessary not only to ensure 

clinical safety, but to optimize derivative design to minimize potential side effects. Low 

molecular weight heparins have become a reliable alternative to heparin, due to their 

predictable dosages, long half-lives, and reduced side effects. However, heparin 

oligosaccharide synthesis is a challenging endeavor due to the necessity for complex 

protecting group manipulation and stereoselective glycosidic linkage chemistry, which 

often result in lengthy synthetic routes and low yields. Recently, chemoenzymatic 

syntheses have produced targeted ultralow molecular weight heparins with high-efficiency, 

but continue to be restricted by the substrate specificities of enzymes. 

To address the need for access to homogeneous, complex glycosaminoglycan 

structures, we have synthesized novel heparan sulfate glycopolymers with well-defined 

carbohydrate structures and tunable chain length through ring-opening metathesis 

polymerization chemistry. These polymers recapitulate the key features of anticoagulant 

heparan sulfate by displaying the sulfation pattern responsible for heparin’s anticoagulant 

activity. The use of polymerization chemistry greatly simplifies the synthesis of complex 



 

 

vi 
glycosaminoglycan structures, providing a facile method to generate homogeneous 

macromolecules with tunable biological and chemical properties. Through the use of in 

vitro chromogenic substrate assays and ex vivo clotting assays, we found that the HS 

glycopolymers exhibited anticoagulant activity in a sulfation pattern and length-dependent 

manner. Compared to heparin standards, our short polymers did not display any activity. 

However, our longer polymers were able to incorporate in vitro and ex vivo characteristics 

of both low-molecular-weight heparin derivatives and heparin, displaying hybrid 

anticoagulant properties. These studies emphasize the significance of sulfation pattern 

specificity in specific carbohydrate-protein interactions, and demonstrate the effectiveness 

of multivalent molecules in recapitulating the activity of natural polysaccharides.  
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1 
C h a p t e r  1  

HEPARAN SULFATE GLYCOSAMINOGLYCANS 

 

The glycosaminoglycan family 

Glycosaminoglycans (GAGs) are linear, sulfated polysaccharides, which consist of 

repeating disaccharide building blocks with an amino sugar (N-substituted glucosamine, or 

N-acetylgalactosamine), and a uronic acid (glucuronic or iduronic acid) or galactose.2 

These disaccharides can display differences in monosaccharide composition and more 

subtle variations in stereochemistry of glycosidic linkages and polysaccharide lengths. 

Adding to the complexity of these polysaccharide structures, each of the monosaccharide 

moieties can be sulfated at various positions. As a result, GAGs have high degrees of 

heterogeneity with regards to disaccharide composition, molecular weight, and sulfation 

due to the fact that GAG biosynthesis is dynamically modulated by enzymes, unlike 

proteins or nucleic acids, which are template driven.4   

Carbohydrates are nature’s most informationally rich macromolecules. When 

considering factors such as sequence, glycosidic linkages, ring-size permutations, and 

branching of glycans, the structural diversity of glycans far exceed that of nucleic acids and 

proteins. While only 4096 hexanucleotide combinations are possible with the four base 

pairs of DNA and 6.4 x 107 hexapeptide combinations from the 20 amino acids, a 

staggering 1.44 x 1015 hexasaccharide combinations can be formed from 20 unique 

monosaccharides.5 In addition to this large number of structural permutations based on 



 

 

2 
saccharide linkages, glycan epitopes are also subjected to posttranslational modifications 

(i.e., sulfation) to convey particular properties to specific sites,6,7 which adds an additional 

level of structural diversity to carbohydrates. As a result, carbohydrates are ideal for 

generating units with a vast array of informational properties. 

GAGs can be classified into two broad categories based on their carbohydrate 

structures: Sugars with D-glucosamine (hyaluronan, keratan sulfate, heparin, and heparan 

sulfate) are classified as glucosaminoglycans, while sugars with D-galactosamine 

(chondroitin sulfate and dermatan sulfate) are classified as galactosaminoglycans. GAGs 

can be further categorized into four additional groups, depending on their uronic acid 

composition (Figure 1.1): heparin and heparan sulfate (HS), chondroitin sulfate (CS), 

keratan sulfate (KS), and hyaluronan (HA).8 While heparin, HS and DS contain both 

iduronic acid (IdoA) and glucuronic acid (GlcA) moieties, CS contains only GlcA units.  

Figure 1.1: Structures of glycosaminoglycans. R = H or SO3
-; R’ = Ac or SO3
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3 
GAGs exist as free polysaccharide chains, or as proteoglycans (PGs), when the 

GAG chains are covalently linked to a protein core (Figure 1.2). PGs are major constituents 

of the extracellular matrix and cell membranes, and are important for biological processes 

such as axonal guidance,9 cancer metastasis,10,11 embryonic development,12 as well as viral 

entry and attachment.13,14 For each PG, there can be a different number of GAG chains 

attached to  the protein core, and the GAG chains can have different lengths, sugar 

compositions, and sulfation patterns.11 The biological activities of GAGs are determined by 

Figure 1.2: Proteoglycans consist of a protein core (brown) and covalently linked GAG chains (HS in blue; 
CS/DS in yellow). Membrane proteoglycans either span the plasma membrane or are linked by a GPI anchor. 
ECM proteoglycans are usually secreted, but some can be proteolytically cleaved and shed from the cell 
surface.2 
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the chemical composition and properties of these PGs, where the N- or O-linked glycans 

contribute towards distinct biological properties. The number and positions of sulfate 

groups on GAG chains are tightly controlled, and are thought to act as “patterns” for 

specific protein recognition.15,16 Unfortunately, the structural heterogeneity of PGs and 

individual GAG chains has made it difficult to isolate polysaccharide chains with defined 

sulfation sequences, hindering our understanding of the roles of GAG sulfation patterns at a 

molecular level.   

 

Heparin and heparan sulfate glycosaminoglycans 

Of the different classes of GAGs, HS GAGs have been the most-closely studied. 

The structural complexity and diversity of HS has resulted in a vast array of functions; 

hundreds of heparin-binding proteins have been identified, and many of these interactions 

have profound consequences in vertebrate and invertebrate physiology. HS is near-

ubiquitous in animal tissues, and is expressed both on plasma membranes and in the 

extracellular matrix. The large polyanionic and hydrated domains of HS are thought to 

influence the general chemical and physical properties of pericellular regions. Thus, HS 

GAGs are strategically positioned to regulate interactions between cells and their 

microenvironments,17,18 and such interactions have been shown to be critical for normal 

cell growth and development, and for the maintenance of differentiated cellular 

functions.19,20 Additionally, they can inhibit the diffusion of macromolecules across 

basement membranes21 and control the access to the cell surfaces of important regulatory 

molecules.22 
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The biosynthetic pathways for glycan assembly, processing, remodeling, and site-

specific modification are elaborate and well-developed. Heparin/HS biosynthesis begins in 

the golgi apparatus,23 beginning with the generation of a core protein linkage region 

tetrasaccharide, GlcA β(1,3)-Gal β(1,3)-Gal β(1,4)-xylose β-1-O-Ser (Figure 1.3). The 

biosynthetic pathway diverges from this tetrasaccharide linkage point to synthesize both CS 

Figure 1.3: The biosynthesis of HS, heparin, and CS is initiated by the formation of a core protein linkage 
region tetrasaccharide.2 



 

 

6 
and HS GAGs; the addition of β (1,4) GalNAc initiates the biosynthesis of CS GAGs, and 

the addition of α (1,4) N-acetylglucosamine (GlcNAc) initiates the biosynthesis of heparin 

and HS GAGs. The addition of this first GlcNAc in heparin/HS biosynthesis is catalyzed 

by the enzyme EXTL3, and is followed by the alternating addition of GlcA and GlcNAc by 

the polymerase enzymes EXT1 and EXT2.9 

Figure 1.4: Scheme of HS chain biosynthesis. Structural domains (NA, NA/NS, NS) are defined with 
regards to the distribution of GlcN N-substituents as indicated. Regions that have been implicated in the 
binding of specific ligands, such as FGF-1/FGF-2 and antithrombin, are also shown.3 



 

 

7 
The resulting polysaccharide chains, consisting of repeating GlcNAc α(1,4) GlcA 

β(1,4) units, undergo a series of modification reactions catalyzed by sulfotransferases and 

an epimerase (Figure 1.4).24 GlcNAc N-deacetylase/N-sulfotransferase (NDST)  

deacetylates and sulfonates a subset of GlcNAc residues, some of which occur in clusters 

along the polysaccharide backbone. A C-5 epimerase (C5-epi) then acts on GlcA residues 

immediately adjacent to and toward the reducing end of GlcNSO3
- to convert some GlcA 

moieties to IdoA; the resulting heparin and HS chains consist of alternating uronic acid 

(GlcA or IdoA) and GlcN units.25 Epimerization is then followed by O-sulfation of some of 

the C-2 positions of IdoA and GlcA by 2-O-sulfotransferase (2-OST),26,27 C-6 position of  

GlcN by 6-O-sulfotransferase (6-OST),28,29 and C-3 position of GlcN by 3-O-

sulfotransferase (3-OST)30-32 to afford variably sulfated HS GAG chains. Sulfation patterns 

of HS GAGs are not template derived and are dynamically adjusted by the availability of 

enzymes, substrates, and acceptors in space and time.33 This ability of GAG backbones to 

be sulfated at various positions allows for a facile method of adding extraordinary 

structural complexity to a simple repetition of disaccharide units. 

Understanding the biosynthesis of heparin and HS has clarified the rules governing 

Table 1.1: Major differences between heparin and heparan sulfate1. 

Characteristic Heparan Sulfate Heparin 
Solubility in 2 M KCO2Me Yes no 
Size 10-70 kDa 10-12 kDa 
Sulfate/hexosamine ratio 0.8-1.8 1.8-2.4 
GlcN N-sulfates 40-60 % >85 % 
IdoA content 30-50 % >70 % 
Binding to antithrombin 0-0.3 % ~30 % 
Site of synthesis Virtually all cells Mast cells 
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their complex structures, leading to an understanding of the differences between heparin 

and HS (Table 1.1). Virtually all cells, from simple invertebrates to humans, have the 

capacity to produce HS.3 Whereas HS is found in virtually all cells, heparin expression is 

restricted to mast cells, where it mainly acts to store granular components such as histamine 

and mast cell proteases.34 Heparin and HS are most easily differentiated by their 

disaccharide composition (i.e., the presence of variably sulfated or nonsulfated GlcA/IdoA 

and GlcN moieties), and the distribution of GlcN residue N-substituents. Generally, the 

same sets of disaccharides exist in most tissues, but their relative contents vary.  

Selectivity for HS and heparin by protein binding-partners stems from a number of 

different structural variables that affect the overall charge and conformation these GAGs. 

In addition to the diversity in sulfation patterns, the three-dimensional layout of these 

sulfate groups is affected by rotation at the glycosidic linkages and through changes in ring 

conformations. In particular, the epimerization of D-GlcA to L-IdoA adds to the structural 

complexity of heparin and HS GAGs, due to the ability of IdoA to undergo structural 

rearrangements (Figure 1.5).35 Theoretical and experimental studies indicate that IdoA 

residues exist in an equilibrium of different conformations (4C1, 2S0, 1C4), where the 

relative proportion of conformers depends on the sulfation pattern and sequence of the 

GAG chain.36,37 This unique conformational flexibility adds an additional level of chemical 

Figure 1.5: The three energetically stable conformers of sulfated L-iduronic acid. In the 4C1 and 2S0 
conformers, substituents at C-2 and C-3 are in a diequatorial orientation, where as in the 1C4 conformer, 
they are diaxially oriented. 
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diversity and binding capacity. This is reflected in the higher binding capacity of HS or 

DS compared to CS, which all have similar charge densities but differ in the rigidity of 

GluA moieties. 38  

With regards to the distribution of variably substituted GlcN moieties along the 

GAG backbones, there can be areas of N-acetylated disaccharide units (NA domains), areas 

of N-sulfated sequences of variable lengths (NS domains), and areas of alternating N-

acetylated and N-sulfated units (NA/NS domains). Simply put, heparin can be considered 

an unusually extended single NS domain. As subsequent O-glycosylation and 

epimerization modifications of GlcA depend on prior N-sulfation of GlcN, heparin has a 

more highly sulfated (Figure 1.6) and more homogeneous structure compared to HS. 

Additionally, variably sulfated HS disaccharides cluster in the NS or NA/NS domains,39 

resulting in HS chains with areas of high and low sulfation; the N-substitution patterns have 

been shown to be characteristic of the cells/tissues from which the heparin or HS is 

obtained.3  

 

To a large extent, the biological functions of GAGs and PGs depend on the 

interactions between the GAG chains and relevant proteins. However, the disaccharide 

composition and the arrangement of NA and NS domains do not by themselves define 

Figure 1.6: Differences in charge between heparin and heparan sulfate. 
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binding sites for specific ligands; binding occurs at specific sets of sulfated disaccharides 

within these domains.40,41 Examples of such interactions include the interactions of 

glycoprotein gD from Herpes simplex virus with an oligosaccharide containing IdoA2S-  

GlcN3S,42 and the interaction between FGF-1/FGF-2 with N-sulfated pentasaccharide 

sequences containing IdoA2S and GlcN6S.43,44 More recent studies have focused on HS 

sequences that mediate the binding and/or activation of PDGF,45 hepatocyte growth 

factor,46 dengue virus,47 the angiogenesis inhibitor endostatin,48 and chemokines.49 To date, 

the best-studied example of the significant sulfation pattern specificity for biological 

activity is the interaction between HS/heparin and antithrombin,50 and the role it plays as 

the most commonly used anticoagulant worldwide. 

 

Use of heparin and heparan sulfate as an anticoagulant 

Over 100 years after its discovery by Howell,51 heparin and heparin-derivatives 

remain one of the most important drugs in clinical practice and are used worldwide to 

prevent blood coagulation. The development of chemical degradation and enzymatic 

depolymerization methods has played a crucial role in the elucidation of the structure of 

heparin. These developments led to a detailed understanding of the structural basis of 

heparin’s anticoagulant activity in the early 1980s. Today, approximately 33 metric tons of 

heparin, which represents 500 million doses, are used worldwide each year. Heparin-based 

products are the first choice when blood clotting needs to be prevented or controlled, and is 

commonly used for the prevention of postoperative thrombosis, the treatment of deep vein 

thrombosis (DVT),52 and extracorporeal therapies such as kidney dialysis. 
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When the first clinical trials evaluating the use of heparin began in the mid-

1930s, very little was known about the chemistry and structure of heparin. Initially, it was 

discovered that thrombin was gradually inhibited when added to defibrinated plasma, due 

to the presence of a specific inhibitor of the enzyme, named antithrombin (AT; also known 

as antithrombin III, or ATIII).53 It was not until 1939 that a specific compound was shown 

to be the active anticoagulant, and was identified as a plasma component initially called 

heparin-cofactor.54 The link between heparin cofactor and AT was made in the 1950s, and 

it was suggested that the activity of AT was accelerated by heparin.55,56 This was confirmed 

through the isolation of pure AT by Abildgaard and coworkers in 1968,57 and the 

mechanism of action was clarified in 1973 by Rosenberg and coworkers.58,59 

The identification of the precise structural components of heparin responsible for its 

anticoagulant activity began with efforts towards identifying its AT binding site.60 Upon 

investigating the anticoagulant activity of samples obtained from the fractionation and 

enzymatic degradation of heparin, it was identified that short hexa- to decasaccharide 

fragments of heparin could bind to AT.61-64 Upon further partial degradation of these 

sequences, a critical pentasaccharide sequence (Figure 1.7) was identified as the required 

moiety for binding AT: GlcNS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S.  

Figure 1.7: Anticoagulant HS pentasaccharide, and its interactions with AT.  
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The structural requirements for the HS pentasaccharide binding to AT were 

confirmed by chemically synthesizing a series of pentasaccharides with various 

combinations of sulfate and carboxyl groups.65 The removal of certain sulfate or carboxylic 

groups has been shown to significantly compromise the binding affinity to AT, rendering 

particular functionalities more necessary than others. In particular, the 3-O-sulfate group 

from the third monosaccharide (Figure 1.7, monosaccharide F) decreases binding affinity to 

AT by nearly 20,000-fold.66 Other sulfate, hydroxyl, and carboxylic groups have been 

shown to participate in AT binding, and have provided the basis for synthetic low 

molecular weight heparin (LMWH) derivatives.  

With the discovery of the anticoagulant pentasaccharide and development of 

Figure 1.8: Synthetic anticoagulants fondaparinux and idraparinux.         
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structurally identical LMWHs, there are now three different forms of heparins used in 

clinical practice: unfractionated (UF) heparin, with an average molecular weight of ~14000; 

LMWH, with an average molecular weight of ~6000; and the synthetic ultralow molecular 

weight heparin (ULMWH) pentasaccharide Arixtra, with a molecular weight of 1728. UF 

heparin is most commonly used for surgery due to its relatively short half-life and its safety 

for renal-impaired patients.67 However, standard heparin has some considerable 

shortcomings, such as poor bioavailability after subcutaneous administration, a poor 

pharmacokinetic profile, and the potential to induce antibody-associated thrombocytopenia 

due to its interaction with platelet factor 4 (PF4). In contrast, the newer synthetic LMWHs 

have improved the specificity of anticoagulant action and pharmacokinetics.68 

Fondaparinux sodium (Arixtra®) is a synthetic pentasaccharide (Figure 1.8) 

structurally analogous to the anticoagulant pentasaccharide (Figure 1.8), and was the first 

synthetic agent to be a selective antithrombin-mediated inhibitor of factor Xa (fXa).69 It has 

complete bioavailability after subcutaneous injection and the peak plasma level is obtained 

after approximately 2 h. In contrast to other synthetic LMWHs such as enoxaparin 

(Lovenox®), fondaparinux is significantly more effective than the enoxaparin in preventing 

venous thromboembolism after major orthopedic surgery and has recently been approved 

for use in thromboprophylaxis post-surgery. While clinically effective, the chemical 

synthesis of Arixtra65 entails over 50 steps with an overall yield of ~0.1%,70 making it the 

most expensive drug among heparins. Efforts to improve the synthesis of Arixtra through 

optimization its synthetic steps have achieved only limited success.71    

In addition to the purely synthetic method of obtaining fondaparinux, a series of 

LMWHs have been produced using enzymatic or chemical depolymerization methods to 
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afford heparin with structures of defined chain lengths between 13 and 22 saccharides.72,73 

Table 1.2 portrays LMWH-based drugs that have been approved for the treatment of 

thrombosis. Different methods of production give rise to different preparations of LMWH 

with altered MW ranges and number of sulfation sites, but these heparins generally have 

average MWs of less than 8000 Da. Each commercially produced LMWH has a different 

recommended dose and reacts differently based on its structure and MW, and is commonly 

used worldwide.  

As an alternative to obtaining the anticoagulant pentasaccharide and its analogues 

through purely synthetic methods, several labs have successfully prepared heparin 

oligosaccharides,74-76 as well as structurally well-defined HS oligosaccharides,77,78 using 

chemoenzymatic methods. By mimicking the biosynthetic pathway of heparin and HS, 

these methods are able to control the size of oligosaccharides, positions of the N-sulfate 

GluAs, 2-O-sulfate IdoAs, or 6-O- and N-disulfo GluA residues. Compared to lengthy 

chemical syntheses, chemoenzymatic syntheses are able to produce homogeneous 

ULMWH from 10- to 12- step chemoenzymatic syntheses.79 These ULWMHs have 

displayed excellent in vitro anticoagulant activity and show comparable pharmacokinetic 

properties to Arixtra. However, these chemoenzymatic methods frequently face low 

Table 1.2: Synthetic anticoagulant drugs  

Name Target Company 
Dalteparin sodium (Fragmin®) Thrombosis, anticoagulant Pfeizer 
Nadroparin calcium (Fraxiparin®) Thrombosis, anticoagulant GlaxoSmithKline 
Enoxaparin sodium (Lovenox®) Thrombosis, anticoagulant Sanofi 
Ardeparin (Normiflo®) Thrombosis, anticoagulant Wyeth 
Danaparoid (Orgaran®) Thrombosis, anticoagulant Organon 
Fondaparinux (Arixtra®) Thrombosis, anticoagulant GlaxoSmithKline 
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recovery yields in each purification step, which serves as the major limitation to 

scalability of chemoenzymatic syntheses. 

Recently, there has been considerable success in scalable ULMWH synthesis using 

chemoenzymatic processes. The Liu lab has successfully synthesized two constructs79 

containing the antithrombin-binding domains of the porcine and bovine heparin, which 

constitute the major pharmacophores of anticoagulant heparin.80 This chemoenzymatic 

synthesis includes backbone elongation and subsequent saccharide modification (Scheme 

1.1). The main disaccharide is prepared from heparosan, which is readily obtained through 

Scheme 1.1: Chemoenzymatic synthesis of ULMWHs. 
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fermentation.81 Elongation of the disaccharides is accomplished using two bacterial 

glycosyl transferases, N-acetyl glucosaminyl transferase of Escherichia coli K5 (KfiA) and  

heparosan synthase-2 (pmHS2) from Pasteurella multocida. While this chemoenzymatic 

synthesis provides a general method for preparing heparins, target selection is still 

restricted by the substrate specificities of the enzymes; most importantly, smaller targets 

such as fondaparinux are still difficult to prepare using these methods. 

Despite advances in the development of effective LMWHs, UF heparin remains the 

anticoagulant of choice because of its ease of use and low cost.82 Heparin is obtained by 

extraction from tissues of animals suitable for food (i.e., porcine intestine, bovine lung), 

and is processed to furnish pharmaceutical heparin as a purified heterogeneous mixture of 

chains83 with different molecular weights and sulfation patterns. Only one-third of the 

chains comprising pharmaceutical grade heparin contain a binding site for AT. Current 

extraction methods that focus on recovery of anticoagulant heparin are required to meet US 

Pharmacopeal (USP) specifications, but are not able to eliminate other HS moieties from 

pharmaceutical heparin.  

In 2007, multiple lots of animal-sourced heparin were associated with an acute, 

rapid onset of serious side effects indicative of an allergic-type reaction, which affected 

hundreds of individuals.84,85 This worldwide distribution of contaminated heparin resulted 

in an international public health crisis, raising concerns over the reliability and safety of 

animal-sourced heparins for clinical use.86-88 The main contaminant found in the 

problematic heparin samples was identified to be an oversulfated CS containing a 

tetrasulfated disaccharide unit. Interestingly, this oversulfated CS was structurally identical 

to the drug Arteparon®,89 which is used for the treatment of degenerative joint disease in 
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Europe and has been demonstrated to produce an allergic-type response.90 Given the 

nature of the contaminant and its structural similarity to heparin, traditional screening and 

separation methods cannot differentiate between affected and unaffected lots. As a result, 

cost-effective, reliable methods for preparing synthetic heparins are in high demand.   
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C h a p t e r  2  

CHEMICAL SYNTHESIS OF HEPARAN SULFATE GLYCOPOLYMER 
BUILDING BLOCKS 

 

Background and motivation 

Heparin has been the anticoagulant drug of choice for the treatment of arterial and 

venous thrombotic disorders for over a decade.6 This is largely due to heparin’s rapid 

anticoagulant response, and because the excessive anticoagulant activity can be reversed by 

protamine.8 While heparin is the only drug that inhibits the activities of both factor Xa 

(fXa) and thrombin (fIIa), it is known to cause one of the most important and most 

frequently drug-induced, immune-mediated types of thrombocytopenia: heparin-induced 

thrombocytopenia (HIT). The condition is caused by the induction of antibodies against the 

complex of platelet factor 4 (PF4) and heparin.10 With such widespread use of heparin in 

clinics, the development of a new generation of improved heparin-based anticoagulant 

drugs with reduced side effects remains a high priority for the scientific community. 

Low molecular weight heparins (LMWHs), such as Arixtra®, have been playing an 

increasingly important role in preventing venous thrombosis among high-risk patients11,12 

due to more predictable anticoagulant doses, longer half-lives, and reduced risks of 

osteoporosis.13 The elucidation of the structure of the antithrombin-binding pentasaccharide 

sequence in heparin, and its mechanism of action, has accelerated the development of 

rationally designed synthetic heparins. Utilizing current knowledge of the anticoagulant 

activity of heparan sulfate (HS), its mechanism of action, and the effects of multivalency of 

biologically active polymers, we designed a HS glycopolymer through an efficient, 
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multistep converging synthesis. We envisioned the synthesis of a biologically active 

polymer by including the bioactive components of anticoagulant heparin, which would be 

easier to obtain than purely synthetic polysaccharides, while simultaneously eliminating the 

unwanted side effects of animal-sourced heparin caused by structural heterogeneity and 

contamination by other GAG-like compounds. 

 

Synthetic design of HS glycopolymers 

Mechanism of action 

Blood coagulation is a tightly regulated process requiring rapid and localized 

activation of coagulation proteases at sites of vascular damage.14 If the hemostatic response 

is insufficient, the result is life-threatening bleeding; in contrast, if the response is not 

contained, the result is life-threatening thrombosis. Heparin, while most commonly used in 

clinics, is produced and secreted exclusively by mast cells and is not a physiological 

activator of AT; rather, the closely-related cousin HS, which lines the vascular wall, 

interacts with a fraction of the circulating AT to ensure the fluidity of the 

microvasculature.15 The chemical synthesis of biologically active heparin, HS 

oligosaccharides, and the anticoagulant pentasaccharide motif has led to a detailed 

understanding of heparin’s mechanism of action within the coagulation cascade.  

Antithrombin (AT) is the principal inhibitor of proteases in the coagulation cascade, 

and is the effector molecule for anticoagulant heparin. AT circulates in plasma at a high 

concentration of 2.3 µM; thus, its activity must be strictly controlled to allow for proper and 

precise clot formation while preventing thrombosis. AT is activated by exploiting the 

inherent conformational plasticity of serine protease inhibitors (serpins). Serpins are best 
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described as having a ‘spring-loaded mousetrap’ mechanism,16 where disturbing the 

peptide loop activates the enzyme trap and catches the target protease in stoichiometric and 

irreversible inhibition. The active state of a serpin is metastable, and the energy released 

upon conversion to its most stable form is used to trap the protease. Based on rates of 

inhibition, AT’s primary protease targets are factors IXa, Xa, and thrombin. The 

anticoagulant effect of heparin and the new synthetic LMWHs is mediated through the 

activation of AT as an inhibitor of these coagulation proteases.17,18 

AT normally circulates in an inactive form, and only becomes an effective inhibitor 

upon interacting with anticoagulant HS, which is expressed on the blood vessel walls or in 

therapeutic heparin.19 It has been established through biochemical studies that heparin 

binding induces a large-scale conformational change in AT (Figure 2.1, A; Figure 2.2).20-23 

AT first binds the pentasaccharide by an induced-fit mechanism involving an initial weak 

Figure 2.1: Inhibition of factor Xa and thrombin by antithrombin and heparin. 4 Heparin is shown as a 
repetition of squares (glucosamine) and triangles (uronic acid). A, Antithrombin binds to the heparin 
pentasaccharide-binding site (A domain, black squares and triangles), and goes through a conformational 
change (hatched triangle). B, The conformational change alone is sufficient to inhibit fXa. C, Thrombin 
requires attraction by the negative charges of the thrombin-binding domain (T-domain). Thrombin ‘slides’ 
along the heparin chain until it hooks itself onto the exposed loop of activated antithrombin. D, The well-
defined structure of the heparin-antithrombin complex requires thrombin to approach from the correct side to 
be irreversibly inhibited.  
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interaction; the resulting conformational change transforms AT to a high-affinity state, with 

an overall dissociation constant of ~50 nM.21 The structures of AT reveal conformational 

changes in the vicinity of the pentasaccharide and in the reactive center loop (RCL; Figure 

2.2), indicating a global conformational change in response to heparin binding (allosteric 

mechanism). 

 Heparin accelerates the inhibitory activity of AT through two distinct mechanisms; 

this is reflected in the way certain heparin fragments are able to accelerate fXa inhibition by 

500 fold, while not appreciably accelerating thrombin inhibition.24 The allosteric activation 

of AT upon binding to the anticoagulant pentasaccharide results in the recognition and 

inhibition of fXa (Figure 2.1, B). In contrast, thrombin inhibition requires both AT and 

thrombin to bind to a single heparin chain, where heparin serves to bridge the two 

proteases. Upon AT activation, thrombin is electrostatically attracted by heparin’s 

negatively charged template and collides with heparin-bound AT to form a ternary complex 

(Figure 2.1, C). Although the interaction between thrombin and a negatively charged 

Figure 2.2: The structural features of native and pentasaccharide-activated AT.3 Binding of the heparin 
pentasaccharide (rods with gray C, red O, yellow S) induces local and global conformational changes, 
resulting in the expulsion of the hinge region (circle) and the reorientation of the RCL.  
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heparin chain is less specific than a pentasaccharide-AT interaction, thrombin inhibition 

requires a longer heparin chain,25 which is more prone to react with other biological 

molecules such as platelet factor 4 (PF4).26 

The interaction between the anticoagulant pentasaccharide and AT is incredibly 

specific, where small alterations in either the sulfation pattern or carbohydrate sequence 

can significantly reduce binding affinity.27 Of the eight-to-ten negatively charged groups on 

the pentasaccharide available for interaction with AT, six interact with AT (Figure 2.3). 

While these charged interactions of the HS pentasaccharide are sufficient for fXa 

inhibition, the necessary size or an oligosaccharide for thrombin inhibitory activity is much 

longer (14-20 saccharides).28 Studies using a synthetic HS mimetic consisting of an AT-

binding domain, a nonsulfated linker region, and a thrombin-binding domain suggest that 

the structural requirements for heparin binding to thrombin is less selective than for AT, 

and requires only sulfated saccharide units.29 

 The roles of each of the charged groups of the biologically active pentasaccharide 

have been determined by chemically synthesizing a series of pentasaccharides with various 

combinations of sulfate groups and carboxyl groups.30 Removal of specific sulfate and 

carboxyl groups (Figure 2.3, green boxes) significantly compromises the binding affinity to 

AT, suggesting these particular groups are critical for AT activation, and subsequent fXa 

Figure 2.3: The antithrombin-pentasaccharide interactions.3 Charged groups required for AT binding are 
notated with green boxes; groups with blue circles are not required, but have been shown to contribute to AT 
binding.  
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inhibition.31 Of these sulfate groups, the most critical motif involved in HS binding to AT 

is the rare 3-O-sulfate group; a pentasaccharide lacking this 3-O-sulfate group has been 

shown to decrease binding affinity by nearly 20,000 fold. Interestingly, the introduction of 

an additional 3-O-sulfate group on a pentasaccharide analogue has been shown to increase 

AT binding affinities.32 In addition to the position and number of charges, the type of 

charge is also critical for biological activity; exchanging the sulfate groups for phosphate or 

carboxylate groups affect binding affinity to AT.33 

Although structure-function studies have revealed that a sulfated pentasaccharide 

represents the minimum active motif, we hypothesized that an HS disaccharide may be 

sufficient for biological activity, provided that its binding affinity could be enhanced 

through avidity. By repeatedly displaying a sulfated disaccharide along a polymer 

backbone in a pendant-like fashion (Figure 2.4), we hoped that a highly sulfated 

disaccharide would be sufficient due to enhanced local concentrations of a partially 

bioactive unit.34 The effectiveness of this type of approach has been previously observed in 

our lab in studies of neuroactive disaccharide- and tetrasaccharide-based CS 

Figure 2.4: Synthetic HS glycopolymer vs natural HS polysaccharide.  
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glycopolymers.35,36 

In designing a disaccharide-based HS glycopolymer, it was critical to select a 

minimal unit that effectively encapsulated the key determinants of the AT-binding 

pentasaccharide.  We selected a disaccharide motif from the reducing end of the 

pentasaccharide sequence (G and H, Figure 2.5). These two monosaccharides have well-

characterized interactions with the A-helix (R46, R47) and P-helix (K114, D113) of AT,37 

and allowed us to exploit the conformational flexibility of the G unit L-IdoA, which has 

been shown to substantially improve the affinity of heparin for AT.38 Importantly, the 3-O-

sulfate group on unit H mimics the structure of Org31550, in the presence of the 3-O-

sulfate group of unit F, was found to increase the anti-fXa activity by two-fold in 

pharmacological animal studies.39 With all such considerations, the target disaccharide 

GlcNS3S6S-!-(1!4)-IdoA2S would be presented along a polymeric backbone to display 

this bioactive anticoagulant sulfation pattern in a multivalent fashion to mimic the sulfation 

pattern and overall charge display of natural heparin and HS polysaccharides (Figure 2.4).  

 The mechanism of anticoagulant heparin activity suggests that a structure of an 

oligosaccharide that could mimic its full anti-fXa and anti-thrombin activity would require 

an AT-binding domain (Figure 2.1, A-domain) coupled to a thrombin-binding domain 
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Figure 2.5: Structures of Arixtra and Org31550. The HS glycopolymers contain the monosaccharide units 
G and H of Arixtra and Org31550. 
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(Figure 2.1, T-domain).40 Given that this type of heparin polysaccharide would comprise 

between 14 and 20 saccharide units,28,41-43 we envisioned that an extended A-domain 

displaying the pentasaccharide sulfation pattern could potentially serve as a T-domain, 

which would allow AT binding at either end of the molecule and attract thrombin. With 

this type of display, one could expect to observe thrombin inhibition as soon as the 

polysaccharide chain is long enough to simultaneously accommodate AT and thrombin. 

  Using chemical synthesis, we aimed to synthesize an anticoagulant HS mimetic 

with tunable length and charge, in order to understand the effects of sulfation pattern and 

macromolecular structure on the biological activity of GAG mimetic glycopolymers. We 

decided to utilize polymerization chemistry to achieve a multivalent display, to control the 

length of HS mimetics, and to mimic the macromolecular structure of natural GAG 

polysaccharides. By controlling polymer length strictly with the hydrocarbon backbone, we 

would retain the biologically active anticoagulant sulfation pattern and mimic the charge 

distribution of a heparin polysaccharide required for thrombin inhibition.  
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Synthesis of HS monomer building blocks 
 

GAG-based oligosaccharides are generally perceived to be difficult to synthesize by 

purely chemical methods. Without the help of glycosyltransferases, it is synthetically 

challenging to establish the specific stereochemistry and regioselectivity of complex 

carbohydrate structures. Additionally, the polyfunctional nature of carbohydrates requires 

extensive protecting group (PG) chemistry for the synthesis of even the simplest 

derivatives.44 While only hydroxyl groups need to be protected, a variety of PGs are 

necessary to precisely control the availability of each of the hydroxyl groups. Such PG 

manipulation is more pronounced in the preparation of complex oligosaccharides and GAG 

fragments. 

PGs temporarily mask functional groups that interfere with intermediary reactions, 

and thus require a number of different properties for efficient syntheses: 1) reagents for 

their introduction and removal must be readily available; 2) their introduction should not be 

accompanied by the formation of a new asymmetric center or only one stereoisomer must 

be formed; 3) they should be stable throughout all intermediate reactions and work-up 

conditions. If possible, protecting groups can be manipulated to produce hydrophobic 

intermediates to simplify extractive work-ups, or can be used to afford crystalline 

compounds for convenient purification. Finally, separation of the protected or deprotected 

products should ideally be easily separated from the preceding compounds.  

For the synthesis of complex carbohydrate structures, two types of PGs are 

generally used. ‘Permanent’ PGs are carried through to the very last synthetic steps, to 

unveil hydroxyl groups on target compounds. Benzyl or benzyl-derivative groups are often 

applied as permanent PGs if the target compound is sensitive to basic conditions; ester-PGs 
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are used when compounds carry unsaturated groups that can be reduced by hydrogenolysis 

reactions. ‘Temporary’ PGs are selectively removed during the synthetic route to expose 

hydroxyl groups for specific transformations (i.e., glycosylation reactions or other chemical 

modifications). In the case of a branched oligosaccharides or when substituents (e.g., 

sulfate, phosphate) are present, numerous orthogonal temporary groups are necessary so 

they can be selectively removable in the presence of each other. 

The PGs employed in carbohydrate chemistry are essentially identical to those 

commonly used in organic chemistry (Figure 2.6). To differentiate the hydroxyl groups on 

carbohydrates, multiple PG manipulations are usually necessary. Of the possible PG 

functionalities, acetyl, benzoyl, and benzyl groups are most commonly used because of 

their ease of orthogonal introduction and removal. Many other groups, such as silyl, 

chloroacetyl, p-methoxybenzyl, and various acetal groups are also used as temporary PGs 

for their efficient introduction at multiple positions and their selective cleavage. Benzoate 

esters can be used as permanent groups with selectively removable acetate or chloroacetate 

esters. Pivaloyl, levulinoyl, or chloroacetyl groups can also be selectively removed in the 

Figure 2.6: Commonly used protecting groups in carbohydrate chemistry and organic synthesis. 
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presence of permanent acetate esters. Acetals are usually employed for the simultaneous 

temporary protection of multiple hydroxyl groups, and can be cleaved in a selective 

manner.  

Although PGs are traditionally used to simply mask specific functional groups, in 

the context of carbohydrate chemistry, they can also indirectly participate in reactions. 

While carbohydrate PGs still serve to inhibit the participation of hydroxyl or other 

functional groups, incorporation of particular PGs into the donor and acceptor molecules 

can strongly influence the stereochemical outcome of activation and coupling reactions 

through electronic and/or steric influences. This influence of PGs on the stereochemistry of 

reactions is known as ‘neighboring-group participation’ or ‘anchimeric assistance’.  

The most common form of neighboring-group participation is the participation of 

acyl groups at the C-2 position of monosaccharides. During glycosylation reactions 

(Scheme 2.1), the neighboring acyl group of the donor assists the departure of the activated 

anomeric leaving group, subsequently leading to the formation of a stable dioxolenium ion. 

Because the glycosyl acceptor can only attack from the backside, forming a 1,2-trans 

glycoside. With this effect, glucosyl-type donors afford !-glycosides, and manno-type 

donors produce "-glycosides. Many ester-type PGs such as acetate, chloroacetate, 

benzoate, and pivaloate are used to construct 1,2-trans glycosidic linkages. Recently, new 

participating groups have been developed to expand their scope beyond 1,2-trans 

Scheme 2.1: The stereoselective formation of glycosidic bonds by neighboring-group participation.  
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glycosidic linkages to construct 1,2-cis glycosides, by allowing the intermediate 

oxocarbenium-ions to be attacked from one particular side.  

With the importance of orthogonal PGs and the role of neighboring-group 

participation in mind, we designed a retrosynthetic strategy for the proposed HS 

glycopolymers based on a tetrasulfated HS disaccharide and norbornene-based linker 

(Scheme 2.2). The HS disaccharide monomer can be divided into three main building 

blocks: a protected IdoA, a protected GlcN, and a norbornene-diethylene glycol linker. 

Protecting groups on the disaccharide were selected to be orthogonal to allow access to a 

variety of different sulfation patterns, as well as two distinct glycosidic bonds. These HS 

building blocks have been used to synthesize anticoagulant HS glycopolymers, as well as 

tunable HS glycopolymers that can modulate chemokine activity.45 

A combination of permanent and temporary protecting groups were selected to 

allow for orthogonal protection of the disaccharide hydroxyl groups. Permanent benzyl 

(Bn) and tert-butyldimethylsilyl (TBS) groups were selected to protect the C-3 and C-4 

positions of IdoA, respectively. While the Bn group would not be removed until the final 

hydrogenolysis reaction, the TBS group would be available for selective removal from the 

IdoA monosaccharide to allow for the GlcN α(1à4) IdoA glycosylation reaction. The C-2 

hydroxyl of IdoA was protected with an acetyl group that could be simultaneously installed 

with an anomeric glycosyl phosphate from an idoA 1,2-orthoester precursor. This C-2 

acetyl group would also act as a participating group to guide the stereoselectivity of the 

IdoA-GlcN glycosidic bond. 

Similarly, the GlcN monosaccharide was also designed to entail a variety of 

permanent and temporary protecting groups. The amine was protected as an azide 
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throughout the majority of synthesis, until it would be reductively aminated and 

subsequently sulfated. The C-3 hydroxyl was protected with benzoate (Bz) for 

simultaneous deprotection with the C-6 GlcN acetate (Ac) and C-3 acetate of IdoA under 

basic conditions. A TBS group was used to protect the C-4 hydroxyl group of GlcN; by 

being orthogonal to the C-3 benzoate group, the TBS group could be selectively removed 

Scheme 2.2: Retrosynthesis of HS glycopolymers. Bn = benzyl, Me = methyl, Ac = acetyl, Bz = benzoyl, 
TBS = tert-butyldimethylsilyl. 
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for glycosidic bond formation. For an alternative polymer derivative (GlcN-IdoA-linker 

monomer), the TBS group would act as a permanent protecting group and be desilylated 

towards the end of the synthesis. Finally, the anomeric position of the GlcN was activated 

with a trichloriacetimidate for efficient coupling with the norbornene linker or idoA 

acceptor. 

Overall, the ester-based protecting groups installed on the C-2 of IdoA and C-3/C-6 

of GlcN were selected to reduce the number of synthetic steps by allowing for 

simultaneous deprotection under basic conditions and subsequent O-sulfation at three 

unique positions. Additionally, both O- and N-sulfation reactions would be carried out 

before polymerization; while this was expected to affect solubility of the monomers, it 

would ensure complete, homogeneous sulfation of the HS disaccharides. 

A norbornene-based linker was utilized to take advantage of its ring-strain during 

ring-opening metathesis polymerization (ROMP) chemistry; ROMP chemistry has been 

previously shown to have high functional group tolerance and has been used for other 

biologically relevant polymer species (see chapter 3). ROMP’s mild reaction conditions 

were essential for HS monomer polymerization due to their labile sulfate groups. A 

diethylene glycol linker was added to the norbornene ring to increase hydrophilicity and 

flexibility, which could potentially aid in protein recognition. This type of norbornene-

based linker has been previously used in our lab for the synthesis of various CS 

glycopolymers.35,36 
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Synthesis of protected glucosamine 
 
The orthogonally protected glcN trichloriacetimidate building block can be 

synthesized from commercially available glucosamine hydrochloride in 10 steps with an 

overall 35% yield (Scheme 2.3). D-Glucosamine hydrochloride 1 was subjected to a diazo 

transfer reaction to convert the 2-amino group into the corresponding azide,46 which was 

necessary for "-selective glycosylations and masked the free amine until it was sulfated at a 

later stage. This type of direct installation of an azide from commercially available amino 

sugars was first reported for the preparation of 2-azido-2-deoxy-D-gluco, D-manno, D-

galacto, and D-allo derivatives.47 The resulting azide intermediate was directly subjected to 

benzylidenation using benzaldehyde dimethyl acetal and catalytic camphorsulfonic acid 

(CSA) in acetonitrile to install the 4,6-benzylidene on 3.46,48-51 Both reactions proceed in 

Scheme 2.3: Synthesis of orthogonally protected GlcA monomer. Ac = acetyl, CSA = (±)-DL-camphor-10-
sulfonic acid, Ph = phenyl, TBSCl = tert-butyldimethylsilyl chloride, TBS = tert-butyldimethylsilyl, Bn = 
benzyl, TFA = trifluoroacetic acid, TBSOTf = tert-butyldimethylsilyl trifluoromethanesulfonate, Bz = 
benzoyl, TBAF = tetrabutylammonium fluoride, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. 
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near-quantitative yield and are highly scalable (~150g). 

Stereoselective silylation installed an anomeric TBS group using TBSCl and 

imidazole to reach compound 4 in 70% yield.52 Subsequent benzylation of the 3-hydroxyl 

group using freshly prepared Ag2O and benzyl bromide afforded 5 in 95% yield.53 This 

protected glucosamine derivative was then subjected to 60% aqueous TFA, which removed 

the 4,6-benzylidene and exposed the two corresponding hydroxyl groups of compound 6. 

This compound was then subjected to acetylation, which resulted in the selective primary 

acetylation to afford 7 in 90% yield.54 A TBS group was then installed on the remaining C-

4 hydroxyl group using tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf), to 

afford the fully protected glucosamine intermediate 8.  

Compound 8 could be directly used towards syntheses with final C-3 hydroxyl 

groups; for use towards our anticoagulant HS glycopolymers, 8 was subjected to further 

reactions to oxidize the Bn group to a Bz functionality to allow for removal under basic 

conditions. Towards this end, several oxidation conditions were examined. Ozonolysis55 of 

Table 2.1: Optimization of 3-O benzyl oxidation reaction.  

OTBSO
BnO

N3
OTBS

OAc
[O] OTBSO

BzO
N3

OTBS
OAc

8 9

NaIO4 RuO2 Yield Sm recovery 
4.1 5 mol % No conversion 100 % 
4.1 20 mol % 25 % 70 % 
4.1 50 mol % 52 % 39 % 
10 20 mol % 31 % 60 % 
10 50 mol % 78 % 12 % 
10 1 eqa 61 % n/a 
10 1 eqb 83 % 13 % 

          aReaction stirred for 36 h at rt; 
          bReaction stirred for 18 h at rt. 
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8 afforded benzoate protected compound 9 in 62% yield. In an effort to increase reaction 

yields, ruthenium-mediated oxidation conditions were explored.56-58 Unlike the conditions 

reported in literature, excess amounts of NaIO4 (10 eq) and RuO2 (1 eq) were necessary to 

drive the reactions closer to completion (83 %). Upon exploring the effects of reaction 

times, it was found that extending the reaction times from 18 h to 36 h was detrimental to 

the reactions due to decomposition of the product under acidic conditions.  

Following the oxidation of the 3-O-benzyl group to a benzoate group, the final 

GlcN building block was synthesized by anomeric desilylation of the TBS group and 

subsequent installation of the trichloroacetimidate. Compound 9 was first subjected to 

desilylation using TBAF and AcOH;59 this crude material was subjected to a 

trichloriacetimidate reaction using trichloroacetonitrile and catalytic K2CO3 or DBU to 

reach desired compound 10 in 75% yield over the two synthetic steps. Both α and β 

isomers were observed, but subjecting both isomers to coupling reactions had little or no 

effect on the stereochemical outcome of the reactions.  

 

Synthesis of protected iduronic acid  

 The synthesis of the partially protected idoA intermediate 18 was synthesized in 

30% yield over 10 steps (Scheme 2.4). Commercially available diacetone-D-glucose 11 

was first transformed to diol 12 through benzylation with NaH and benzyl bromide and 

selective acetal cleavage with aqueous acetic acid.54 This afforded the monobenzylated diol 

12 in 90% yield over two steps. Subsequent oxidative cleavage of 12 with aqueous NaIO4 

adsorbed onto silica yielded aldehyde 13.60-63 Unlike reaction conditions that have 
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previously been reported,64 a second portion of SiO2 was necessary after the reaction was 

complete. The crude aldehyde intermediate 13 was directly subjected to the next reaction. 

Due to the conformational flexibility of furanose rings and various chelate 

possibilities, it is difficult to control the stereochemical outcome of organometallic reagent 

additions on dialdose derivatives such as 13. Previous studies have demonstrated that the 

addition of bulky groups such as tris-(phenylthio)methyl lithium65 led to high conversion to 

L-ido diastereomers.63,66 Reaction of aldehyde 13 with freshly prepared tris-

(phenylthio)orthoformate and n-butyl lithium produced tris-(phenylthio)methyllithium in 

situ, forming the L-idose configured thioortho ester intermediate in high yield.63 The 

resulting tris-phenylthioorthoester was treated with CuCl2/CuO in a MeOH/H2O/CH2Cl2 

solvent mixture67,68 to cleave the thioortho ester to furanose methyl ester 14 in 72 % yield 

over two steps.69 Though previous studies have reported the need for K2CO3 in methanol to 

convert small amounts of a phenylthioester byproduct,54 this byproduct was not observed.  

Scheme 2.4: Synthesis of orthogonally protected IdoA monomer. TBAI = tetrabutylammonium iodide, Ac = 
acetyl, Bn = benzyl, Bu = butyl, TFA = trifluoroacetic acid, pyr = pyridine, Me = methyl, DMAP = 4-
dimethylaminopyridine. 
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The 1,2-isopropylidene was removed from furanose 14 in quantitative yield using 

90 % aqueous trifluoroacetic acid. This yielded the crystalline 3-O-benzyl iduronic methyl 

ester monosaccharide 15 in its pyranose form in near-quantitative yield.62 Recrystallization 

was required to obtain the desired pyranose 15-pyr-"; purification with silica gel 

chromatography resulted in the formation of undesired pyranose and furanose isomers 

(Scheme 2.5). AcCl was used as an acetylating agent with pyridine as base and DMAP as 

catalyst; conditions using Ac2O were avoided because it has previously been shown to give 

low yields of the desired furanose compounds.70  

Nearly quantitative conversion of 16"/! into anomeric bromide intermediate was 

then performed with TiBr4, as previously described.69 The crude brominated intermediate 

was immediately subjected to a reaction to install a 1,2-methylorthoester using methanol 

and 2,4,6-collidine.71 The methylorthoester was intentionally installed to simultaneously 

protect the C-2 position with an acetyl group during the installation of an activating group 

to the anomeric position. Additionally, the orthoester served to lock the monosaccharide in 

a stable 1C4 pyranose form. Compound 18 was designed to serve as a glycosyl acceptor in 

the synthesis of different HS disaccharide molecules by adjusting the C-4 PG. For the 

Scheme 2.5: Isomers produced by triol intermediate 15 in situ. Me = methyl, Bn = benzyl.  
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purpose of synthesizing the proposed anticoagulant HS glycopolymers, the C-4 hydroxyl 

group of 18 was first protected, and then subsequently converted to a glycosyl donor by 

activating the anomeric position as a glycosyl phosphate.  

The introduction of different protecting groups, including silyl ethers, esters, and 

alkyl ethers on the open C-4 hydroxyl can be readily achieved, as seen in various idoA 

derivatives.54 Silylation can be accomplished through the use of silyl triflates, and esters 

can be introduced with acid anhydrides and DMAP. In contrast, alkylation poses more of a 

challenge; the C-5 stereocenter can epimerize in the presence of a strong base, but 

alkylation has been successfully accomplished with silver oxide and corresponding alkyl 

bromides.64 Several attempts were made to install a variety of silyl and alkyl ethers to the 

C-4 hydroxyl group of methylorthoester IdoA 18.   

Following the original retrosynthesis, reaction conditions were first examined to 

install a TBS group to 18 (Table 2.2); this would allow for the selective deprotection of the 

C-4 hydroxyl group, allowing access to a GlcN-α(1,4)-IdoA glycosidic bond in addition to 

the IdoA-α(1,4)-GlcN glycosidic linkage. At low temperatures (-20 °C), the desired TBS 

protected compound 19 was generated using tert-butyldimethylsilyl trifluoromethane-

sulfonate (TBSOTf) and 2,6-lutidine, but only in low to moderate yields.72,73 Upon 

optimizing the equivalents of TBSOTf and reaction temperatures, 19 was furnished in up to 

94 % yield using an excess amount of TBSOTf in pyridine at 0 °C for 18 h. Compound 19 

was then used to prepare glycosyl phosphate 20 for use in the glycosylation reaction with 

GlcN acceptor 34. 

Although 1,2-glycosyl orthoesters are valuable synthetic intermediates use to 

prepare carbohydrate building blocks, direct coupling generally results in poor yields, and 
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excess orthoester is required.74 Recently, the Seeberger group reported the stereoselective 

conversion of 1,2-orthoesters to glycosyl 1-phosphate triesters by employing phosphate 

diesters as both a nucleophile and an acidic activator.75 Although there are a variety of 

traditionally used anomeric leaving groups,76 such as glycosyl chlorides, bromides, iodides, 

trichloroacetimidates, fluorides, n-pentenyl glycosides, anhydro sugars, anomeric aryl 

sulfoxides, and thioglycosides for the construction of glycosidic linkages,77 we decided to 

employ glycosyl phosphates as glycosylating agents78 to utilize the methylorthoester’s 

functionality to simultaneously install the C-2 acetyl PG during anomeric activation.  

Conversion of the TBS-protected 19 to the glycosyl phosphate 20 was achieved by 

following the simplified reaction conditions reported by the Seeberger group,75 without 

further optimization. However, in the process of synthesizing cyclooctene-based 

glycopolymers using glycosyl phosphate 20, it was discovered that while the glycosylation 

reaction proceeded smoothly, the C-4 IdoA silyl group was removed during the 

saponification stage of the synthesis (Scheme 2.6; also see Appendix). This required us to 

reexamine the PG strategy for the C-4 hydroxyl of 18. Attempts were made to synthesize 

Table 2.2: Optimization of C-4 TBS protection of 18. Me = methyl, Bn = benzyl, TBSOTf = tert-
butyldimethylsilyl trifluoromethanesulfonate, pyr = pyridine, TBS = tert-butldimethylsilyl. 

Entry TBSOTf Base Temperature Yield
1 2.5 eq 2,6-lutidine; 3 eq -20 °C 25 % 
2 10 eq 2,6-lutidine; 10 eq -20 °C 49 % 
3 3 eq pyridine (0.1 M) 0 °C to rt 43 % 
4 10 eq pyridine (0.1 M) 0 °C to rt 50 % 
5 3 eq pyridine (0.1 M) 0 °C 75 % 
6 10 eq pyridine (0.1 M) 0 °C 94 % 
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glycosyl phosphates with triisopropylsilyl (TIPS), p-methoxybenzyl (PMB), and benzyl 

(Bn) groups.  

 Following the installation of the C-4 TBS group, a TIPS protected derivative of 18 

was synthesized. Attempts to install a TIPS group at the open hydroxyl group using 

triisopropyl trifluoromethanesulfonate (TIPSOTf) were largely unsuccessful (Table 2.3). 

The reaction conditions most frequently resulted in the formation of a ‘caged’ iduronic acid 

byproduct (Table 2.3, entries 2-4; Scheme 2.7); this particular byproduct formation was 

irreversible, and was frequently observed during the installation of various other PGs.  

Scheme 2.6. Saponification of TBS-protected cyclooctene-based HS disaccharide monomer. Me = methyl, 
TBS = tert-butyldimethylsilyl, Bn = benzyl, Bz = benzoyl, Ac = acetyl.  
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Entry Reaction conditions Temp/time yield 
1 TIPSOTf (2 eq), NaH (1.5 eq), 

THF1,2 
-10 °C to 0 °C, 20 min decomposition 

2 TIPSOTf (5 eq), pyr rt to -10 °C, 1.5 h Byproduct 22
3 TIPSOTf (5 eq), 2,6-lutidine1 rt to -10 °C, 1.5 h Sm and byproduct 22 
4 TIPSOTf (1.3 eq), pyr (2 eq), 

CH2Cl2 
0 °C, o/n Incomplete 

conversion to 22  
 

Table 2.3: Reaction conditions for TIPS protection of ido8. Me = methyl, Bn = benzyl, TIPS = 
triisopropylsilyl. 
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 Following the silylation of 18, attempts were also made to install a PMB PG. PMB 

trichloriacetimidate (PMBTCA) was selected to introduce the functional group with 

BF3"OEt2 as the promoter.79 Previously reported reaction conditions using 1.2 eq of 

PMBTCA and 2.5 mol% of the promoter afforded the desired product in only moderate 

yields, even at elevated temperatures. By increasing the eqs of PMBTCA to 10 eqs and 

BF3"OEt2 to 0.1 eq, the desired product could be obtained in 70 % yield. Milder reaction 

conditions using PMBTCA and lanthanum triflate were also used in an attempt to increase 

the reaction yield further.80 Although high yields (~95 %) were reported for the protection 

of protected monosaccharides in under 5 min, the reported reaction conditions only yielded 

30 % of the desired PMB protected idoA derivative 23.  

A protecting group of particular interest to the HS disaccharide synthesis was the 

installation of a C-4 benzyl group; since the C-4 IdoA position on the target compound is 

Scheme 2.7: Caged byproduct formation  
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Table 2.4: Reaction conditions for PMB protection of ido8. Me = methyl, Bn = benzyl, PMB = p-
methoxybenzyl, PMBTCA = p-methoxybenzyl trichloriacetimidate. 
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not sulfated, this permanent benzyl group could be simultaneously removed with the C-3 

benzyl group, reducing the number of synthetic steps. Initial attempts utilized traditional 

benzylation conditions, using benzyl bromide with sodium hydride or silver oxide. 

Conditions using NaH with benzyl bromide in DMF or THF resulted in low conversion or 

decomposition of the starting material (Table 2.5, entries 1-3). For conditions utilizing 

BnBr and Ag2O, higher equivalents of benzyl bromide and Ag2O were required to achieve 

moderate yields of the desired product (Table 2.5, entries 4-7).  

Many attempts were made to synthesize benzyl-protected compound 24, using a 

Entry Reaction conditions Temp/time Yield 
1 BnBr (2.5 eq), NaH (2.5 eq), DMF5 0 °C-rt, o/n Low conversion  
2 BnBr (1.5 eq), NaH (1.5 eq), THF 4 °C, 3 h Decomposition 
3 BnBr (1.5 eq), NaH (1.2 eq), THF -25 °C-0 °C, o/n Decomposition 
4 BnBr (2.5 eq), Ag2O (3 eq), 4 Å MS, CH2Cl2 rt, o/n Low conversion 
5 BnBr (1.5 eq), Ag2O (2 eq), 4 Å MS, CH2Cl2 rt, o/n Byproduct 22
6 BnBr (10 eq), Ag2O (4 eq), 4Å MS, CH2Cl2 rt, 3d 35 % 
7 BnBr (10 eq), Ag2O (5 eq), 4Å MS, DMF7 rt, 2d ~ 50 %  
8 Bn-OPT (3 eq), Et3N (2 eq), toluene 90 °C, o/n Decomposition 
9 Bn-OPT (2 eq), MgO (2 eq), toluene 90 °C, o/n Byproduct 22
10 BnONHCCl3 (20 eq), BF3

.OEt2 (0.05 eq), 
CH2Cl2 

-40 °C-rt, 1.5 h Low conversion 
to 22 

11 BnONHCCl3 (10 eq), BF3
.OEt2 (0.1 eq), CH2Cl2 -40 °C, 1.5 h Low conversion 

12 BnONHCCl3 (20 eq), BF3
.OEt2 (2 eq), CH2Cl2 -20 °C, 2 h Low conversion 

13 BnONHCCl3 (20 eq), TBSOTf (0.2 eq), CH2Cl2 -20 °C, 2 h Low conversion 
14 BnONHCCl3 (20 eq), TBSOTf (2 eq), CH2Cl2 -20 °C, 2 h Low conversion 
15 Ag2O (4 eq), 4Å MS, TBAI (0.1 eq), BnBr9 rt, 12 h 50 % 
16 Ag2O (5 eq), 4Å MS, TBAI (0.5 eq), BnBr rt, 12 h 63 % 
17 Ag2O (4 eq), 4Å MS, TBAI (0.8 eq), BnBr  rt, 12h 80 % 

 Table 2.5: Optimization of benzylation reaction using Ag2O and BnBr. Me = methyl, Bn = benzyl, Bn-OPT 
= 2-benzyloxy-1-methylpyridinium triflate, TBSOTf = tert-butyldimethylsilyl trifluoromethanesulfonate, 
TBAI = tertbutylammonium iodide. 
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variety of reagents and reaction conditions. 2-Benzyloxy-1-methylpyridinium triflate (Bn-

OPT) releases an electrophilic benzyl species upon warming, and has been used for the 

mild etherification of alcohols.81 The triflate salt can be pre-activated, precluding the need 

for strong acid or base in the reaction mixture. Initially, benzylation was attempted using 

Et3N as a base (Table 2.5, entry 8), but the reaction did not proceed and resulted in the 

decomposition of the starting material. As an alternative, the benzylation reaction was run 

with magnesium oxide (MgO), which has been successfully used for the benzylation of 

alcohols,82 but the reaction resulted in the formation of caged byproduct 22 (Table 2.5, 

entry 9). Unfortunately, alternative acid-catalyzed benzylation reaction conditions using 

benzyl trichloriacetimidate83,84 also resulted in low conversion to the desired product, or 

conversion to the caged byproduct (Table 2.5, entries 10-14).  

The successful benzylation of 18 was accomplished by subjecting the compound to 

harsher conditions than reported in literature. 18 was subjected to a reaction where benzyl 

bromide was used as a solvent (in large excess), in the presence of freshly prepared Ag2O 

and catalytic tetrabutylammonium iodide (TBAI).9 While the reaction proceeded relatively 

smoothly, reaction yields resulting from catalytic (0.1 eq) amounts of TBAI only afforded 

the desired compound 19 in moderate yields (~50%). Upon further optimization, increasing 

the amount of TBAI to near-stoichiometric amounts (0.8 eq) resulted in the successful 

benzylation of 19 in 80 % yield (Table 2.5, entries 15-17).  

 Upon obtaining the TIPS- (21), PMB- (23), and Bn-protected (24) idoA derivatives, 

glycosyl phosphate reactions were performed. Phosphorylation reactions of TIPS-protected 

(21) and PMB-protected (23) using the same reaction conditions used for the 

phosphorylation of TBS-protected (19) were unsuccessful. This procedure utilized the 
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simplified phosphorylation procedure, where the dibutyl phosphate reagent was added 

directly to a dry solution of the starting materials. Given the synthetic utility of the C-4 

benzyl group, we only continued to pursue the successful phosphorylation of compound 24.  

 The phosphorylation of the Bn-protected compound 24 was challenging, as it 

proved to particularly vulnerable to hydrolysis. The reaction conditions used for TBS-

derivative 19, where dibutyl phosphate was added to a solution of the starting material, 

resulted in only 50% of the desired product 25, with the remaining starting material being 

hydrolyzed to compound 26 (Table 2.6, entry 1). The addition of 4Å MS did not affect the 

formation of the hydrolyzed compound 26, and increasing the equivalents of dibutyl 

phosphate (HOPO(OBu)2) resulted in increasing amounts of the hydrolyzed product (Table 

2.6, entries 2,3). Fortunately, phosphorylation reaction proceeded in relatively high yields 

under inverse addition conditions. For the inverse addition procedure, a solution of 24 in 

CH2Cl2 and 4Å MS was added dropwise to a 3 M solution of HOPO(OBu)2 in the presence 

of 4Å MS. For smaller scale reactions, omission of 4Å MS was proven to be beneficial; it 

Entry Reaction Condition Yield 
1 HOPO(OBu)2 (3 eq) 50 % 
2 HOPO(OBu)2 (10 eq) 50 % 
3 HOPO(OBu)2 (30 eq) Anomeric hydroxyl 
4 HOPO(OBu)2 (4 eq) 

  [inverse addition] 
80 % 

 Table 2.6: Optimization of glycosyl phosphate idox. Me = methyl, Bn = benzyl, Ac = acetyl.  
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is believed that the chances of the 4Å MS introducing small amounts of moisture into the 

reaction are higher than their ability to remove water from the HOPO(OBu)2 reagent. 

Unfortunately, due to the hygroscopic nature of the HOPO(OBu)2 reagent, the amount of 

hydrolyzed byproduct varied depending on the batch of the reagent.  

 

Synthesis of norbornene-diethylene glycol linker 

The synthesis of the norbornene-diethylene glycol linker was adapted from the 

synthesis of a cyclooctene-diethylene glycol linker previously used in the lab.85 The 

synthesis comprises two main building blocks: the diethylene glycol linker, and a 

norbornene-methanol moiety (Scheme 2.8). The diethylethylene glycol linker was first 

mono-functionalized using tert-butyldimethylsilyl chloride (TBSCl) and triethylamine. 

Subsequent mesyl (Ms) protection of the remaining hydroxyl group afforded the TBS and 

Ms di-functionalized product in 83 % yield over two steps.  

Generally, exo-isomers have been shown to be more reactive in olefin metathesis 

reactions.86 To take advantage of this reactivity, the norbornene exo-isomer was first 

Scheme 2.8: Synthesis of norbornene-diethylene glycol linker. TBSCl = tert-butyldimethylsilyl chloride, 
MsCl = methanesulfonyl chloride, TBS = tert-butyldimethylsilyl, MS = methanesulfonyl, LAH = lithium 
aluminum hydride. 
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isolated from a commercially available exo/endo-isomer mixture of norbornene carboxylic 

acid 29 utilizing kinetic resolution by iodolactonization.87 This exo-norbornene carboxylic 

acid 30 was then reduced to the corresponding alcohol 31 using LAH.  

Previously, coupling of the exo-norbornene methanol to the diethylene glycol linker 

was accomplished using sodium hydride in DMF at 60 °C overnight.35 Unfortunately, the 

yields for this coupling were low (< 40 %), regardless of the quality of reagents or reaction 

time. By introducing a catalytic amount of 18-crown-6 and using 95 % NaH, the reaction 

proceeded to significantly higher yields (67 %). In addition to the increased reaction yield, 

the reaction conditions were much easier to work with; THF was used as a solvent instead 

of DMF, and the reaction proceeded to completion at rt within 2 h, compared to the 

previous 12 h reaction times. The TBS-functionalized intermediate was then deprotected 

under standard desilylation conditions using TBAF to afford the desired norbornene 

diethylene linker. 

 Upon obtaining the exo-norbornene linker, the protected glcN imidate 10 was 

coupled to linker 32 to afford the protected acceptor 33. Original reaction conditions using 

1 eq of BF3
.OEt2 at -30 °C produced the desired product in only 43.5% yield (Table 2.7, 

Entry Eq 10 Eq 32 Promoter Rxn conditions yield 
1 1.0 1.2 0. 25 M BF3

.OEt2 (1 eq) -30 °C, 2 h 43.5 % 
2 1.0 1.2 0. 25 M BF3

.OEt2 (1.2 eq) -30 °C, 2 h 56 % 
3 1.0 1.2 0. 25 M BF3

.OEt2 (0.9 eq) -30 °C, 1 h 57 % 
4 1.0 1.2 0. 25 M BF3

.OEt2 (0.5 eq) -30 °C, 1 h 94 % 
 

Table 2.7: Optimization of glucosamine donor and norbornene linker. TBS = tert-butyldimethylsilyl, Bz = 
benzoyl, Ac = acetyl. 

O
BzO

OAc

N3

OTBSO CCl3

NH

+ promoter
4Å MS, CH2Cl2

O
BzO

OAc

N3

O O OTBSO

10 32 33

O O OH
H



 47 

entry 1). Upon optimizing the reaction based on eqs of the promoter, the yield could be 

increased to 94% (Table 2.7, entry 4). Although original optimizations took place in the 

presence of 4Å MS, the optimized reaction proceeds quickly enough that omission of MS 

did not affect the outcome of this reaction.   

 With the coupled TBS-protected acceptor 33 in hand, conditions were sought to 

efficiently desilylate the C-4 hydroxyl functionality; the glycosylation with the C-1 position 

of glycosyl phosphate 25 to the C-4 position of acceptor 34 yields the desired α(1à4) 

glycosidic bond of heparan sulfate. Many of the standard desilylation conditions for TBS 

protecting groups failed to yield the desired compound 34 even in moderate yields (Table 

2.8, entries 1,4,5). Reactions using TBAF, even under neutral reaction conditions with the 

help of AcOH (Table 2.8, entries 1, 3),88 also resulted in low conversion to 34 or 

decomposition of the starting material 33. Seeking out even milder reaction conditions, we 

turned to the use of hydrogen fluoride stabilized in pyridine (HF.pyridine), which had been 

previously used for the desilylation of CS derivatives.89 When the compound 33 was 

subjected to excess HF.pyr in a THF/pyridine co-solvent system overnight, the desired 

product 34 was obtained in 87 % yield (Table 2.8, entry 6); 5-10 % of the starting material 

could be recovered upon purification using silica gel chromatography.  

 

Glycosylation, deprotection, and sulfation of HS disaccharide monomer 

Fundamentally, methods to chemically install glycosidic bonds are closely related 

to those observed in nature. The biosynthetic method of glycosylation involves a glycosyl 

donor, a nucleotide sugar such as UDP-Glc with a good leaving group (pyrophosphate) in 

the anomeric position. In the presence of a glycosyltransferases, this activated nucleotide 
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sugar reacts to exchange the leaving group with the free hydroxyl group of an acceptor to 

form the product glycosidic linkage. Chemists mimic this strategy by using glycosyl donors 

containing anomeric leaving groups and acceptors with free hydroxyl groups. In place of 

glycosyltransferases, chemical activators are used to couple the glycosyl donors and 

acceptors, and to obtain correct glycosidic regio- and stereoselectivity. Although there is no 

universal glycosyl donor, a variety of donors such as halides, trichloroacetimidates and 

thioglycosides are commonly utilized for glycosylation reactions according to their 

different properties, stabilities, and reactivities. 

 Two different mechanisms are possible during glycosylation reactions: the direct 

displacement of the leaving group by the acceptor, which leads to inversion at the anomeric 

center, or a two-step mechanism where leaving group dissociation is aided by a promoter to 

create a positively charged oxocarbenium intermediate, which is then attacked by the 

acceptor. The latter mechanism is by far the most common in chemical glycosylations. 

However, since the acceptor can attack the intermediate from the α or the β face, an 

anomeric mixture of products is formed, making stereoselective glycosylations challenging. 

Methods that allow the control of stereoselectivity in the attack of the acceptor on the 

activated glycosyl donor intermediate are required to form stereoselective glycosidic 

linkages. 

Silyl triflate reagents (TMSOTf and TBSOTf)78 have been shown to ensure high-

yielding glycosylations while the use of BF3
.OEt2 generally yields modest results.90 Initial 

attempts to install the glycosidic linkage of our HS disaccharides revolved around 

screening different activators, and optimizing reaction conditions based on eqs of the 

activator and reaction temperatures. As presented in Table 2.8 (entries 1-12), glycosylation 
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reactions were run at a range of different temperatures with the TMSOTf, TBSOTf, and 

BF3
.OEt2; unfortunately, these initial reaction conditions yielded very little of the desired 

disaccharide 38. During this process, it was discovered that the GlcN acceptor 34 was 

stable under these reaction conditions, even in the presence of high eqs of the activators. In 

contrast, the glycosyl phosphate donor 25 hydrolyzed or decomposed under most of these 

reaction conditions, which led us to focus on different aspects of the reaction set up.  

Following the two most promising glycosylation conditions using TBSOTf and 

TMSOTf (Table 2.8, entries 8, 13), we explored the use of alternative experimental 

Entry Eq 25 Eq 34 Promoter Rxn conditions yield 
1 1.3 eq 1.0 eq 1.5 eq BF3

.OEt2 -40 °C, 30 min < 10 % 
2 1.5 eq 1.0 eq 1.5 eq BF3

.OEt2 -30 °C, 30 min < 10 % 
3 1.3 eq 1.0 eq 1.5 eq TfOH -10 °C ! 0°C, 30 min < 20 % 
4 1.3 eq 1.0 eq 0.2 eq TMSOTf -10 °C ! 0 °C, 1 h no rxn 
5 2.0 eq 1.0 eq 1.2 eq TMSOTf -50 °C ! -30 °C, 1 h no rxn 
6 1.3 eq 1.0 eq 1.3 eq TMSOTf -30 °C ! -20 C, 1 h  < 10 % 
7 1.3 eq 1.0 eq 1.3 eq TMSOTf -10 °C, 30 min 20 % 
8 1.3 eq 1.0 eq 1.5 eq TMSOTf rt, 4 h 41 % 
9 1.3 eq 1.0 eq 1.3 eq TBSOTf -30 °C ! -20 °C, 1h < 10 % 
10 1.3 eq 1.0 eq 1.5 eq TBSOTf -40 °C, 30 min < 10 % 
11 1.5 eq 1.0 eq 1.5 eq TBSOTf -30 °C, 40 min < 10 % 
12 1.3 eq 1.0 eq 1.3 eq TBSOTf -10 °C, 40 min 25 % 
13 2.0 eq 1.0 eq 1.5 eq TBSOTf -40 °C, 1 h 45 %* 
14 1.3 eq 1.0 eq 1.5 eq TBSOTf -20 °C, 1h 75 %* 

* Reactions were run in Schlenk flask 

Table 2.8: Optimization of reaction conditions using TBSOTf and TBSOTf for glycosylation reactions. Me 
= methyl, Bn = benzyl, Ac = acetyl, Bu = butyl, Bz = benzoyl, TMSOTf = trimethylsilyl 
trifluoromethanesulfonate, TBSOTf = tert-butyldimethylsilyl trifluoromethanesulfonate.  
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procedures for the optimization of the reaction. Initial attempts used various activator stock 

solutions of different concentrations, and stock solutions that were cooled prior to addition 

to the reaction mixture. The reaction was run several times using an inverse procedure, 

where a glycosyl phosphate donor 25 was added to a solution of the acceptor 34 and 

activator. Additionally, reactions were run in the presence and absence of 4Å MS. 

Unfortunately, none of these experimental procedures had an effect on the outcome of the 

reactions.  

Fortuitously, we discovered that the acceptor’s sensitivity to water/moisture could 

be diminished by using a Schlenk flask for the reaction and adjusting cooling times. 

Connecting an argon line to the 14/20 ground glass joint and a placing septum on the valve 

outlet created the an air-free environment protected from perturbations, because the 

reaction flask is sufficiently removed from both valves (Figure 2.7). In addition to the air-

free setup, the solution of acceptor and donor was cooled for no 

longer than 1 min prior to the addition of the activator; this 

minimized any condensation of moisture from the environment. 

A combination of specialized glassware and moisture-sensitive 

techniques proved to be essential for the glycosylation reaction 

to proceed in up to 75% yield (Table 2.9, entries 13, 14). 

During the optimization process of the glycosylation reaction, two other methods to 

generate the HS monomers were developed in an attempt to increase reaction yields; as the 

prior glycosylation was sensitive to moisture, reactions did not always proceed in 

consistently high yields. To avoid the decomposition and hydrolysis of the donor 25, we 

first sought out to synthesize a trichloriacetimidate IdoA donor 40. Starting from the di-

Figure 2.7: Schlenk flask 
used for glycosylation 
reactions. 
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benzylated IdoA intermediate 24, the monosaccharide was subjected to hydrolysis and 

opening of the orthoester using DOWEX H+ resin. Subsequent treatment of the anomeric 

hydroxyl compound 39 with trichloroacetonitrile and DBU, as used in the synthesis of 

GlcN trichloriacetimidate, afforded the desired idoA 40. The glycosylation of 

trichloriacetimidate donor 40 and acceptor 34 was attempted using the same promoters as 

presented in Table 2.9. Unfortunately, a screen of the different activators at temperatures 

between -40 °C and rt all yielded the orthoester byproduct 41. 

 As a second alternative, the HS disaccharide monomer was built in a different 

order, where the disaccharide building block was assembled first, followed by the coupling 

to the norbornene linker. This order of HS glycopolymer assembly has been used to 

synthesize trisulfated HS glycopolymers.45 Unlike the coupling between glycosyl donor 25 

and acceptor 34, the coupling between the two monosaccharides 25 and 42 proceeded 

smoothly in over 80% yield, albeit in slightly lower yields than usual trichloriacetimidate 

activation reactions (>90%). Unfortunately, preliminary attempts to couple the disaccharide 

Scheme 2.9: Glycosylation using idoA-trichloroacetimidate donor. Me = methyl, Bn = benzyl, Ac = acetyl, 
Bz = benzoyl. 
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to the norbornene linker 32 using conventional lewis acid promoters (TBSOTf, TMSOTf, 

BF3
.OEt2) failed (Scheme 2.10).  

  Following efforts to optimize the glycosylation to reach the fully protected HS 

disaccharide monomer, selective PG removal, and sulfation reactions were carried out in 

the final stages of the HS monomer synthesis. The removal of protecting groups began with 

methyl ester hydrolysis using LiOOH, which was formed in situ by the simultaneous 

addition of LiOH and H2O2.91 While the number of eqs of LiOH and H2O2 in previously 

published literature on heparin fragment syntheses92 led to product formation (Table 2.9, 

Scheme 2.10: Coupling of HS disaccharide trichloriacetimidate to linker. Me = methyl, Bn = benzyl, Ac = 
acetyl, Bu = butyl, TBSOTf = tert-butyldimethylsilyl trifluoromethanesulfonate, TBAF = 
tetrabutylammonium fluoride, DBU = 1,8-diazabicycloundec-7-ene, Bz – benzoyl. 
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Table 2.9: Optimization of methyl ester hydrolysis reaction. Me = methyl, Bn = benzyl, Ac = acetyl, Bz = 
benzoyl.  
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Entry LiOH H2O2 result 
1 20 eq 100 eq incomplete rxn 
2 20 eq 3.7 eq incomplete rxn 
3 20 eq 50 eq incomplete rxn 
4 20 eq 10 eq 82 % 
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entries 1,2), a combination 20 eq LiOH and 10 eq H2O2 led to the most efficient, complete 

conversion to the deprotected disaccharide 44 (Table 2.10, entry 4). Subsequent 

saponification was completed using 4 M NaOH in methanol,93,94 which was added directly 

to the methyl ester hydrolysis and saponification reactions after 12 h.   

 O-Sulfation and subsequent reductive amination and N-sulfation reactions 

proceeded smoothly without complications. Briefly, the three O-sulfate groups were 

simultaneously installed onto the three hydroxyl groups exposed, as a result of the previous 

saponification reaction. Triol compound 44 was reacted with 30 eq of SO3
.TMA (10 

eq/hydroxyl) in DMF for 2d at 55 °C to afford the trisulfated intermediate 45 in 72% yield. 

Microwave-assisted sulfation methods95-97 to sulfate the accessible hydroxyl groups did not 

yield clean trisulfated disaccharide compounds, and often resulted in decomposition. The 

Scheme 2.11: Streamlined synthesis of HS disaccharide monomer 47. Me = methyl, Bn = benzyl, TBAI = 
tetrabutylammonium iodide, Ac = acetyl, Bu = butyl, Bz = benzoyl, THF = tetrahydrofuran, TBSOTf = 
tert-butyldimethylsilyl trifluoromethanesulfonate, TMA = trimethylamine, DMF = dimethylformamide, Pyr 
= pyridine. 
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desired product was isolated by purification via silica gel column chromatography using a 

triphasic eluent system of EtOAc, methanol, and water. 

Following the O-sulfation with SO3
.TMA, azide reduction using Staudinger 

reaction conditions with PMe3 and NaOH furnished the amine intermediate 46 in 

quantitative yield. A size exclusion LH-20 column was used with a 1:1 methanol/CH2Cl2 

eluent system to separate out any excess reagents, and the crude material was subjected to 

N-sulfation using 15 eq SO3
.pyr in a pyridine and triethylamine cosolvent system. The final 

tetrasulfated HS disaccharide monomer 47 was purified using silica column 

chromatography and was subjected to ring-opening metathesis polymerization chemistry to 

afford tetrasulfated HS glycopolymers. The streamlined synthesis of the HS monomer is 

presented in Scheme 2.11. 

We have successfully synthesized a HS disaccharide monomer targeted to have 

anticoagulant activity from three main building blocks: orthogonally protected IdoA and 

GluA monosaccharides, and a diethylene glycol-linked norbornene. This HS monomer was 

synthesized to take advantage of multivalency effects, and is comprised of a minimal HS 

anticoagulant disaccharide motif for targeted biological activity. This disaccharide contains 

the G and H monosaccharide units seen in Org31550, a derivative of the anticoagulant 

pentasaccharide with an additional 3-O-sulfate group, which has been shown to enhance in 

vitro anticoagulant activity. In addition to allowing access to an anticoagulant sulfation 

pattern, the orthogonally protected IdoA and GluA monosaccharide building blocks also 

allow for easy access to a variety of different sulfation patterns, through manipulation of 

the various PGs. This protected anticoagulant HS monomer 47 was subjected to 
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polymerization and deprotection chemistry to afford the desired tetrasulfated glycopolymer 

and was tested for in vitro and ex vivo anticoagulant activity. 
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Experimental methods and spectral data 

 
Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon atmosphere using dry solvents. Solvents were dried by passage through an 

activated alumina column under argon. All other reagents were purchased from Sigma-

Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise 

stated. Reaction temperatures were controlled by an IKAmag temperature modulator. 

Analytical LC/MS was performed on an Agilent 6140 single quadropole LC/MS with an 

Agilent 1290 Infinity UHPLC system. Thin layer chromatography (TLC) was performed 

using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Visualization of the 

developed chromatograms was performed by UV, cerium ammonium molybdate, or 

ninhydrin stain as necessary. ICN silica gel (particle size 0.032-0.063 mm) was used for 

flash chromatography.  

 1H NMR and proton decoupling experiments were recorded on a Varian Mercury 

300 (300 MHz), Varian MR-400 (400 MHz), or Varian Inova 500 (500 MHz) spectrometer 

and are reported in parts per million (δ) relative to residual CDCl3 (7.26 ppm), CD3OD 

(4.87 ppm), and D2O (4.80 ppm). Data for the 1H NMR spectra are reported as follows: 

chemical shift (δ ppm), multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = 

doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hz, and 

integration. 13C NMR spectra were obtained on a Varian MR-400 (101 MHz) or Varian 

Inova 500 (125 MHz) spectrometer and are reported relative to CDCl3 (77.2 ppm), CD3OD 

(49.0 ppm), and (CD3)2SO (39.5 ppm).  Mass spectra were obtained from the 

Protein/Peptide MicroAnalytical Laboratory, the Caltech Mass Spectrometry Facility (EI+ 

or FAB+), or on an Agilent 6200 Series TOF with an Agilent G1978A Multimode source 
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in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or 

mixed (MM) ionization mode.  

 

Trifluoromethanesulfonyl azide:50,51 NaN3 (15.6 g, 0.24 mmol) was dissolved at room 

temperature in H2O (40 mL) in a 1 L three-neck round bottom flask. The flask was fitted 

with an addition funnel, a septum, and an argon balloon. CH2Cl2 (50 mL) was added to the 

vigorously stirred solution at 0 °C. Tf2O (8 mL, 0.05 mmol) was added dropwise over 1 h. 

The mixture was stirred further for 2 h at 0 °C, and the organic layer was separated. The 

aqueous layer was extracted with CH2Cl2 (2 x 19.5 mL). The combined organic layers were 

washed with saturated aq NaHCO3 (39 mL) and H2O (39 mL), dried with MgSO4 and 

filtered to yield a 0.4 M solution of TfN3. Warning: TfN3 has been reported to be 

explosive when not in solution. 

 

 

tert-Butyldimethylsilyl 6-O-acetyl-2-azido-3-O-benzoyl-4-tert-butyldimethylsilyl-2-

deoxy-β-D-glucopyranoside (9). Compound 8 (200 mg, 0.35 mmol) was added to a 

mixture of 1 mL of carbon tetrachloride, 1 mL of acetonitrile, and 1.5 mL of H2O. To this, 

sodium metaperiodate (755 mg, 10 eq) and ruthenium dioxide (47 mg, 1 eq) were added 

sequentially, and the reaction was left to stir for 18 h at room temp in the dark. The 

resulting slurry as diluted with CH2Cl2, and the aqueous layer was extracted with CH2Cl2 

(3x). The organic layers were then combined, filtered through a pad of Celite, and 

concentrated in vacuo. The residue was purified by chromatography on silica gel (20:1 

OTBSO
BzO

N3
OTBS

OAc

9
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hexanes: ethyl acetate) to deliver 164 mg (80%) of 9 as a colorless oil. 1H NMR (300 

MHz, CDCl3) δ 8.07 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 

5.16 (dd, J = 10.2, 9.0 Hz, 1H), 4.72 (d, J = 7.5 Hz, 1H), 4.43 (dd, J = 11.7, 1.8 Hz, 1H), 

4.12 (dd, J = 12.0, 6.3 Hz, 1H), 3.85 (t, J = 9.0 Hz, 1H), 3.61 − 3.56 (m, 1H), 3.44 (dd, J 

= 10.5, 7.8 Hz, 1H), 2.10 (s, 3H), 0.93 (s, 9H), 0.75 (s, 9H), 0.16 (s, 6H), 0.02 (s, 3H), -

0.20 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 170.6, 165.4, 133.3, 129.9, 128.5, 97.1, 74.9, 

74.4, 69.6, 66.8, 63.0, 25.5, 22.2, 20.8, 17.9, 17.8, -4.1, -4.5, -4.9, -5.3; HRMS ES m/z 

calcd for C27H44N3O7Si2 [M-H]- 578.2718, obsd 578.2718. 

 

 

6-O-Acetyl-2-azido-3-O-benzoyl-4-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyrano-

side trichloroacetimidate (10). To a solution of tert-butyldimethylsilyl 6-O-acetyl-2-

azido-3-O-benzoyl-4-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyranoside 9 (5.01 g, 8.63 

mmol) in 60 mL THF at 0 °C was added glacial acetic acid (0.67 mL) and TBAF (1 M in 

THF, 10.4 mL) simultaneously. The reaction mixture was stirred at 0 °C for 2 h, and was 

then diluted with 200 mL diethyl ether, and washed with brine three times. The organic 

layer was dried over anhydrous MgSO4, filtered, and concentrated in vacuo.  

The crude residue was dissolved in CH2Cl2 (215 mL) and cooled to 0 °C. 

Trichloroacetonitrile (13 mL, 130 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (130 µL, 

0.87 mmol) were added and the reaction mixture was stirred for 2 h at 0 °C. After 2 h, the 

reaction mixture was concentrated in vacuo, and purified by silica gel chromatography 

(hexanes:ethyl acetate 10:1) to afford a mixture of 10 α and β (10/1, 3.8 g, 92%) as a light 

OTBSO
BzO

N3

OAc
O CCl3

NH
10
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yellow foam. 1H NMR (500 MHz; CDCl3): δ 8.34 (s, 1H), 8.08 (d, J = 7.0 Hz, 2H), 7.61 (t, 

J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 6.52 (d, J = 3.6 Hz, 1H), 5.73 (dd, J = 10.5, 8.4 

Hz, 1H), 4.42 (d, J = 10.5 Hz, 1H), 4.18-4.10 (m, 2H), 4.05 (t, J = 9.0 Hz, 1H), 3.64 (dd, J 

= 10.5, 3.5 Hz, 1H), 2.09 (s, 3H), 0.77 (s, 9H), 0.03 (s, 3H), -0.14 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 170.58, 165.50, 160.96, 133.61, 130.04, 129.67, 128.65, 94.91, 90.78, 

73.20, 72.85, 69.26, 62.51, 61.63, 29.83, 25.71, 25.71, 25.69, 25.67, 20.92, 18.04, -3.90, -

4.79; HRMS ESI MS: m/z calcd for C23H31Cl3N4O7SiNa [M+Na]+ 631.0925, obsd 

631.0925. 

 

 

3-O-benzyl-1,2-isopropylidine-α-D-glucofuranoside (12). Commercially available 

diacetone glucose 11 (4.15 g, 15.95 mmol) was dissolved in THF (40 mL) and NaH (60% 

in mineral oil; 0.78 g, 19.25 mmol) was added in portions. After evolution of hydrogen 

ceased, tetrabutylammonium iodide (40 mg, 0.1 mmol) and benzyl bromide (2 mL, 16.8 

mmol) were added and the mixture was stirred for 12 h at room temperature. Water was 

added slowly to the reaction mixture and the organic layer evaporated under reduced 

pressure. The aqueous phase was extracted with ethyl acetate (3 x 100 mL), and the organic 

phases combined and dried over MgSO4, filtered through a plug of silica, and the solvent 

removed under pressure.  

Aqueous acetic acid (66%, 25 mL) was added to the resulting oil and stirred 16 h at 

room temperature. The reaction mixture was evaporated under reduced pressure and the 

residue dissolved in CH2Cl2 and washed with saturated aq. NaHCO3. The aqueous phase 

O

O
O

HO

HO OBn
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was extracted with CH2Cl2 (2 x 100 mL) and the combined organic phases dried over 

MgSO4 and the solvent removed under reduced pressure. Flash silica column 

chromatography gel (hexanes/ethyl acetate 9:1à1:1) yielded 12 in 90%. 1H NMR (300 

MHz, CDCl3): δ 7.27 (m, 5H), 5.87 (d, J = 3.6, 1H), 4.55 (dd, J = 3.6, 2H), 4.54 (d, J = 3.6, 

2H), 4.05 (m, 1H), 3.94 (m, 1H), 3.74 (d, J = 3.3, 1H), 3.71 (d, J = 3.3, 1H), 3.62 (m, 1H), 

1.40 (s, 3H), 1.23 (s, 3H).  

 

 

Methyl 3-O-benzyl-1,2-isopropylidene-α-D-glucofuranosyluronate (13). To a 

suspension of silica gel (9.5 g) in CH2Cl2 (80 mL) was added a solution of NaIO4 (1.31 g, 

6.13mmol) in water (9.5 mL). The suspension was stirred vigorously for 30 min, followed 

by addition of a solution of 12 (1.47 g, 4.73 mmol) in CH2Cl2 (7.5 mL). The reaction was 

stirred for 2 h, followed by filtration through Celite and concentration under reduced 

pressure. The residue was dried under vaccum and used without further purification.  

  

Tris(phenylthio)orthoformate. In a roundbottom flask, thiophenol (100 mL, 0.97 mol) 

and trimethyl orthoformate (35.5 mL, 0.32 mol) were added. To this, BF3�OEt2 (5 mL, 

0.04 mol) was added dropwise, and was stirred for 8 days at room temperature. The 

resulting reaction mixture was diluted with CHCl3 and 1 M KOH, and washed with 1 M 

KOH (3 x 1500 mL). The solution was dried with MgSO4, and dried under vacuum. 1H 

NMR (400 MHz, CDCl3): δ 7.48 (m, 6H), 7.29 (m, 9H), 5.41 (s, 1H); 13C NMR (22.53 

MHz, CDCl3): δ 134.20, 132.97, 128.94, 128.33, 65.18. 

O
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Methyl 3-O-benzyl-1,2-isopropylidene-α-L-idofuranosiduronate (14). To a flame-dried 

flask was added freshly made tris(phenylthio)orthoformate (1.94 g, 5.68 mmol), followed 

by THF (7.5 mL). The reaction vessel was cooled to -78 °C and n-butyllithium (1.6M in 

hexanes, 3.25 mL, 5.2 mmol) was added dropwise. The bright yellow solution was allowed 

to warm slowly to -50 °C over 1 h, then cooled to -78 °C and stirred for 30 min. Crude 13 

(1.32 g, 4.73 mmol) was dissolved in THF (5 mL) and added dropwise via cannula to the 

reaction flask over 15 min. The reaction was stirred at -78 °C for 1 h, allowed to warm to 

room temperature over 30 min, and then quenched with saturated aqueous NH4Cl (25 mL). 

The aqueous phase was extracted with EtOAc (3 x 25 mL), and the combined organic 

phases were dried over MgSO4, filtered, concentrated under reduced pressure, and dried 

under vacuum. The crude product was used without further purification.  

 To CuCl2 (0.345 g, 2.02 mmol) and CuO (66 mg, 0.825 mmol) suspended in 

methanol/water (12:1, 6.5 mL) was added crude material from the previous step (0.27 g, 

0.4075 mmol) in CH2Cl2 (2.5 mL). The reaction was stirred at ambient temperature for 5 

min and then the solvent was evaporated under reduced pressure with gentle heat. The 

resulting green-white solid was dissolved in EtOAc (70 mL) and washed with 1N HCl (2 x 

10 mL), brine (2 x 10 mL), and saturated aqueous NaHCO3 (10 mL). The combined 

organic layers were dried over MgSO4, filtered, concentrated under reduced pressure, and 

dried under vacuum for 1 h. The resulting oil was dissolved in CH2Cl2 (6 mL), and 

methanol (1 mL) and K2CO3 (15 mg, 0.11 mmol) were added. The reaction was stirred at 

O
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ambient temperature for 1.5 h, then the solution was filtered through Celite and 

concentrated under reduced pressure. Purification via flash silica gel column 

chromatography (10%à15%à20%à25%à30% ethyl acetate/hexanes) afforded 14 in 

85% yield as a light yellow oil.  1H NMR (300 MHz, CDCl3): δ 7.40-7.27 (m, 5H), 6.04 (d, 

J = 3.9, 1H), 4.70-4.52 (m, 4H), 4.41 (dd, J = 6.2, 2.8, 1H), 4.16 (d, J = 3.8, 1H), 3.76 (s, 

3H), 3.34 (d, J = 9.1, 1H), 1.50 (s, 3H), 1.34 (s, 3H). The spectral data was in agreement 

with the reported data.69 

 

 

Methyl 3-O-benzyl-L-idopyranuronate (15). Compound 14 (mg, mmol) was dissolved in 

90% aqueous trifluoroacetic acid (mL) and stirred at ambient temperature for 35 min. The 

reaction solvent was removed and the crude product coevaporated with toluene (5 x mL), 

and dried under vacuum for 18 h. The resulting brown solid was recrystallized in ethyl 

acetate as necessary to obtain the triol product 15. 1H NMR (300 MHz, CD3OD): δ 7.26 (s, 

5H), 4.92 (broad s, 1Hα), 4.48 (d, J = 1.5, 1H), 3.94 (m, 1H), 3.80 (t, 1H), 3.70 and 3.60 

(2s, 3H).98 

 

 

Methyl 1,2,4-tri-O-acetyl-3-O-benzyl-α/β-L-idopyranuronate (16). CH2Cl2 (100 mL) 

was cooled to 0 °C. To this was added compound 15 (5 g, 16.75 mmol), and this was 

cooled further to -40 °C. 4-dimethylaminoppyridine (0.2 g, 1.675 mmol) was added to the 
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mixture, followed by the addition of pyridine (13.5 mL, 167.5 mmol). Acetyl chloride (7.14 

mL, 100.5 mmol) was added dropwise to the reaction mixture, and stirred for 10 hr at -40 

°C. This was quenched with aqueous NaHCO3, extracted with CH2Cl2 (2 x 250 mL), then 

washed with H2O, 1M H2SO4, and H2O. The combined organic fractions were dried over 

MgSO4 and concentrated under reduced pressure. Purification via silica column 

chromatography (3:1 hexanes/ethyl acetate) afforded compound 16 in quantitative yield. 1H 

NMR (300 MHz, CDCl3): δ 7.32 (s, 5H), 6.23 (broad s, 1H), 5.24 (m, 1H), 4.95 (m, 2H), 

4.72 (s, 2H), 3.88 (m, J2,3 and J3,4 = 3, 1H), 3.75 (s, 3H), 2.06 and 2.04 (2s, 9H).  

 

 

Methyl (2,4-di-O-acetyl-3-O-benzyl-α-L-idopyranosyl bromide) urontate. This 

compound is the intermediate compound in the formation of the 1,2-(methyl-orthoacetate). 

To a solution of compound 16 (2.6 g, 6.13 mmol) in anhydrous CH2Cl2 (50 mL) at room 

temperature, TiBr4 (3.04 g, 8.27 mmol) was added. This reaction mixture was stirred 

overnight with exclusion of light. This mixture was then quenched with ice cold H2O (2 x 

250 mL), filtered through a pad of celite, and concentrated under reduced pressure. This 

resulted in a brown oil, that was used in the next reaction without further purification. 1H 

NMR (300 MHz, CDCl3): δ 7.30 (m, 5H), 6.41 (broad s, 1H), 3.75 (s, 3H), 2.04 (s, 6H). 
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Methyl 4-O-acetyl-3-O‐benzyl‐1,2‐methylorthoaceto-α‐L‐idopyranosiduronate (17). 

The crude bromide intermediate (6.13 mmol) was dissolved in CH2Cl2 (75 mL) at room 

temperature. To this was added 2,4,6-collidine (4 mL, 30.04 mmol) and methanol (2.7 mL, 

66.82 mmol). After stirring overnight, the reaction mixture was diluted with CH2Cl2, and 

washed with aqueous NaHCO3 and H2O. The combined organics were dried over MgSO4, 

concentrated under reduced pressure, and purified via silica column chromatography (6:1 

hexanes/ethyl acetate + 0.5 % triethylamine) to yield the desired product 17 in 66 % yield 

over two steps. 1H NMR (300 MHz, CDCl3): δ 7.31 (s, 5H), 5.52 (d, J = 3, 1H), 5.18 (dd, 

J3,4 = 3, J4,5 = 1.5, 1H), 4.71 (s, 2H), 4.51 (d, J = 1.5, 1H), 4.10 (m, 2H), 3.74 (s, 3H), 3.22 

(s, 3H), 2.00 (s, 3H), 1.71 (s, 3H). 

 

 

Methyl 3-O-benzyl-β-L-idopyranuronate 1,2-(methylorthoacetate) (18). Methyl 4-O-

acetyl-3-O-benzyl-β-L-idopyranuronate 1,2-(methyl-orthoacetate) 17 (1.6 g, 3.99 mmol), 

was dissolved in methanol (10 mL) and cooled to -10 °C. A 0.5 M solution of NaOMe was 

added (3 x 0.4 mL) and stirred at -10 °C for 4 hr. Then the reaction mixture was stirred 

further at 4 °C overnight. This solution was then cooled to 0 °C, diluted with CH2Cl2, and 

quenched with aqueous NaHCO3 and H2O. Purification via silica column chromatography 

(4:1 hexanes/ethyl acetate + 0.5% triethylamine) afforded compound 18 in 72 % yield. 1H 
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NMR (300 MHz, CDCl3): δ 7.35 (s, 5H), 5.50 (d, J = 2, 1H), 4.68 (s, 2H), 4.49 (d, J = 1, 

1H), 3.81 (s, 3H), 3.30 (s, 3H), 2.80 (d, J = 12, 1H), 1.76 (s, 3H). 

 

 

Methyl 3-O‐benzyl‐1,2‐methylorthoaceto‐4-O-tert-butyldimethylsilyl-α‐L‐idopyranos-

iduronate (19). A solution of compound 18 (4.2 g, 11.85 mmol) in pyridine (60 mL) was 

cooled to -10 °C. TBSOTf (24.5 mL, 106.7 mmol) was added dropwise, and the reaction 

mixture was stired at -10 °C for 1.5 h. The reaction was warmed to 4 C and left to stir 

overnight. After confirming the completion of the reaction via TLC, the reaction was 

diluted with CH2Cl2, quenched with aqueous NaHCO3, and extracted with ethyl acetate (3 

x 150 mL). Purification via silica column chromatography (7:1 hexanes/ethyl acetate + 0.5 

% triethylamine) afforded compound 19 in 72% yield. 1H NMR (300 MHz, CDCl3): δ 7.45 

– 7.30 (m, 5H), 5.51 (d, J = 2.7 Hz, 1H), 4.65 (d, J = 5.4 Hz, 2H), 4.39 (d, J = 1.2 Hz, 1H), 

4.40 – 4.15 (m, 2H), 3.85 (t, J = 2.0 Hz, 1H), 3.77 (s, 3H), 3.29 (s, 3H), 1.72 (s, 3H), 0.82 

(s, 9H), -0.04 (s, 3H), -0.06 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 169.6, 137.0, 128.9, 

128.6, 128.2, 124.6, 97.1, 76.3, 74.6, 72.8, 72.5, 67.9, 52.4, 49.5, 29.9, 25.7, 25.6, -4.4, -

5.2; HRMS ES m/z calcd for C23H36O8SiNa [M + Na]+ 491.2077, obsd 491.2070. 
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Methyl dibutylphosphate-2-O-acetyl-3-O‐benzyl‐4-O-tert-butyldimethylsilyl-α‐L‐

idopyranos-iduronate (19). Compound 18 (40 mg, 0.085 mmol) was dissolved in CH2Cl2 

(1.5 mL) at rt. To this was added freshly activated 4Å molecular sieves (100 mg, 1g/mmol) 

and the solution was stirred for 30 min. Dibutylphosphate (48µL, 0.257 mmol) was added 

slowly, and the reaction mixture was left to stir overnight. After confirming the completion 

of phosphorylation by TLC, the reaction was quenched with triethylamine and concentrated 

under reduced pressure. Silica column chromatography (4:1 hexanes/ethyl acetate + 0.5% 

triethylamine) afforded the desired product 19 quantitatively. 1H NMR (300 MHz, CDCl3): 

δ 7.36 (m, 5H), 5.828 (d, J = 6.3, 1H), 4.97 (s, 1H), 4.81 (m, 2H), 4.63 (m, 1H), 4.067 (5H), 

3.77 (s, 3H), 3.61 (s, 1H), 2.04 (s, 3H), 1.62 (m, 4H), 1.35 (m, 4H), 0.90 (s, 6H), 0.81 (s, 

9H), -0.07 (s, 3H), -0.17 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 169.85, 169.19, 146.59, 

137.33, 128.45, 127.98, 95.38, 77.42, 77.00, 76.58, 73.77, 71.97, 69.98, 68.06, 67.82, 

67.01, 66.89, 52.09, 32.12, 25.44, 20.93, 18.56, 17.75, 13.54, -4.70, -5.72; ESI HRMS: m/z 

calcd for C30H52O11PSi [M + H]+ 647.3017, obsd 647.3001. 

 

 

Methyl 3,4‐di-O‐benzyl‐1,2‐methylorthoaceto‐α‐L‐idopyranosiduronate (24). Methyl 

3-O-benzyl-β-L-idopyranuronate 1,2-(methyl-orthoacetate) 18 (1.60 g, 4.52 mmol) was 

dissolved in neat benzyl bromide (20 mL, 5 mL/mmol) along with activated 4 Å molecular 
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sieves (500 mg/mmol). Benzyl bromide was filtered through a pad of activated basic 

alumina immediately before use. To this was added tetrabutylammonium iodide (1.34 g, 

3.62 mmol) and the resulting mixture was stirred at room temperature for 15 min. Freshly 

prepared silver oxide (4.19 g, 18.1 mmol) was added to the mixture and stirred at room 

temperature for 8 h in the absence of light. The resulting reaction mixture was diluted with 

diethyl ether, filtered through a pad of Celite®, and concentrated in vacuo.  Flash silica gel 

chromatography (hexanes:ethyl acetate 6:1 à 2:1, 0.5% Et3N) afforded the desired product 

24 (1.51 g) in 75% yield. 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.19 (m, 10H), 5.50 (d, J = 

2.9 Hz, 1H), 4.58 – 4.52 (m, 3H), 4.44 – 4.37 (m, 2H), 4.13 – 4.08 (m, 1H), 4.08 – 4.04 (m, 

1H), 3.85 – 3.80 (m, 1H), 3.71 (s, 3H), 3.25 (s, 3H), 1.67 (s, 3H); 13C NMR (125 MHz; 

CDCl3) δ 169.31, 137.72, 137.07, 128.74, 128.39, 128.36, 127.99, 127.83, 127.81, 124.50, 

96.85, 77.41, 77.16, 76.91, 76.31, 72.82, 72.77, 72.00, 71.40, 71.19, 52.43, 49.25, 25.08; 

HRMS ESI MS: m/z calcd for C24H28O8 [M + Na]+ 467.1687, obsd 467.1675. 

 

 

Methyl dibutylphosphate-2-O-acetyl-3,4‐di-O‐benzyl‐α‐L‐idopyranosiduronate (25). 

The 1,2-orthoester 24 (688 mg, 1.55 mmol) was azeotropically dried with toluene (3 x 10 

mL) followed by 1 h under vacuum. Activated 4Å molecular sieves (500 mg/mmol 1,2-

orthoester) under flux of argon were added and the sugar was dissolved in CH2Cl2 (1 

mL/0.10 mmol 1,2-orthoester). After stirring for 10 min at room temperature, this mixture 

was added dropwise via cannula (within 30 min) to a 3 M solution of dibutyl phosphate in 

CH2Cl2 (977 µL, 4.65 mmol) in the presence of 4Å molecular sieves (500 mg/mmol 
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dibutyl phosphate). After 5 h at room temperature, the reaction was cooled to 0°C and 

triethylamine (865 µL, 6.20 mmol) was added. The solution was warmed to room 

temperature and filtered through a pad of deactivated silica gel. The resulting mixture was 

concentrated in vacuo, and purified using flash silica gel chromatography (Hexanes:EtOAc 

4:1→2:1, 0.5% Et3N) to afford the desired product 25 (888 mg) in 92% yield. 1H NMR 

(500 MHz, CDCl3) δ 7.45 – 7.16 (m, 10H), 5.86 (d, J = 6.9, 1.3 Hz, 1H), 5.03 (dt, J = 2.8, 

1.2 Hz, 1H), 4.95 (d, J = 2.5 Hz, 1H), 4.83 – 4.57 (dd, 2H), 4.55 – 4.40 (dd, 2H), 4.15 – 

3.98 (m, 4H), 3.95 – 3.82 (m, 2H), 3.74 (s, 3H), 2.04 (s, 3H), 1.69 – 1.59 (m, 4H), 1.46 – 

1.32 (m, 4H), 0.99 – 0.87 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 169.65, 168.74, 

137.21, 137.05, 128.30, 128.22, 127.86, 127.82, 127.80, 127.66, 95.33, 95.29, 77.42, 77.16, 

76.90, 73.49, 72.32, 72.08, 70.62, 68.89, 67.82, 67.77, 67.75, 67.71, 66.83, 66.76, 52.04, 

32.06, 32.00, 31.95, 20.71, 18.44, 13.42, 13.41; HRMS ESI MS: m/z calcd for C31H44O11P 

[M + H]+ 623.2616, obsd 623.2624. 

 

 

3-O-Benzyl-1,2,4-O-ethylidene-β-L-idopyranuronate (22). 1H NMR (300 MHz, CDCl3) 

δ 7.30 (s, 5H, Ph), 5.83 (d, 1H, J = 4.5 Hz, H-1), 4.37 (dd, 1H, J = 4.5, 2.5 Hz, H-2), 3.99 

(dd, 1H, J = 2.5, 4.5 Hz, H-3), 3.75 (s, 3H, CO2Me), 1.55 (s, 3H, Me) 
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2-[2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]ethoxy]ethyl-1-methanesulfonate (28). To a 

solution of diethylene glycol 27 (150 mL, 1.58 mol) in CH2Cl2, tert-butyldimethylsilyl 

chloride (24 g, 158 mmol) and triethylamine (26 mL, 0.19 mol) was added, and the 

resulting mixture was stirred at rt for 2 h. The solution was extracted with hexanes:ethyl 

acetate (1:1) and washed with water to remove the excess diethylene glycol. The organic 

layer was dried with MgSO4, concentrated in vacuo, and used without further purification.  

To a solution of the TBS protected diethylene glycol intermediate (2.0 g, 9.08 

mmol) in CH2Cl2 at 0 °C, Et3N (1.05 mL, 13.6 mmol) and methanesulfonyl chloride (2.15 

mL, 15.4 mmol) were added dropwise. The reaction mixture was warmed to rt and stirred 

overnight. The resulting reaction mixture was concentrated in vacuo, and purified using 

silica column chromatography (hexanes:ethyl acetate 2:1) to afford the desired product 28 

in near-quantitative yield.  

 

 

Exo-5-norbornene-2-carboxylic acid (30). Commercially available endo/exo-5-

norbornene-2-carboxylic acid 29 (25 mL, 202 mmol) was dissolved in 0.75 M NaHCO3 

(500 mL). To this, a solution of KI (101 g, 608 mmol) and I2 (51 g, 202 mmol) in H2O (260 

mL) was added dropwise. The resulting brown mixture was stirred at room temp for 4 h. 

The aqueous layer was extracted with Et2O (5 x 100 mL) to remove the lactone. The 

aqueous layer was decolorized using 10 % NaHSO3 and adjusted to pH 2 with 1 N H2SO4. 

This aqueous layer was extracted again with Et2O (4 x 100 mL), with the pH adjusted to 

TBSO O OMs

28

OH

O

H
30
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pH 2 each time. The ether layers were combined, dried, and concentrated in vacuo to afford 

the desired product 30 (4.74 g) in 53 % yield. 1H NMR (300 MHz, CDCl3) δ 6.14 (p, J = 

5.4 Hz, 2H), 3.19 – 3.04 (m, 1H), 2.95 (s, 1H), 2.34 – 2.18 (m, 1H), 1.96 (dt, J = 12.8, 4.1 

Hz, 1H), 1.53 (s, 1H), 1.48 – 1.31 (m, 2H). 

 

 

Exo-5-norbornene-2-methanol (31). Exo-5-norbornene-2-carboxylic acid 30 (1 g, 7.24 

mmol) was dissolved in THF (13 mL) and cooled to 0 °C. LAH (0.83 g, 22 mmol) was 

added in small portions. The resulting mixture was warmed to rt and refluxed at 80 °C for 2 

h. After cooling back to room temp, the reaction was quenched with H2O (0.83 mL), 10 % 

NaOH (1.66 mL) and H2O (2.49 mL) in sequence. The resulting slurry was filtered through 

Celite, and concentrated under vacuum to obtain compound 31. Note: This compound is 

volatile and should not be dried completely or left on the high-vac line. 

 

 

2-(2-((2S)-Bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethanol (32). Exo-5-norbornene-

2-methanol 31 (4.09 g, 33.0 mmol) was dissolved in THF (60 mL) with 4Å molecular 

sieves and was stirred at room temperature for 30 min. The solution was cooled to 0 ºC, 

and 95% NaH in mineral oil (1.06 g, 41.2 mmol) was added in portions and left to stir at 0 

ºC for 30 min. To this, a solution of 2-[2-[[(1,1-

dimethylethyl)dimethylsilyl]oxy]ethoxy]ethyl-1-methanesulfonate 28 (8.20 g, 27.5 mmol) 

OH
H

31

O O OH
H

32
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and 18-crown-6 (1.45 g, 5.49 mmol) in THF (15 mL) was added dropwise. The reaction 

mixture was stirred for 2 h at room temperature, and water was added dropwise to quench 

the reaction until there was no further gas formation. The resulting solution was diluted 

with CH2Cl2, washed with saturated NaHCO3, and dried and concentrated under reduced 

pressure. Flash silica gel column chromatography (hexanes:ethyl acetate 20:1 → 5:1) 

afforded the desired tert-butyldimethylsilyl-protected intermediate (7.21 g) in 67% yield. 

1H NMR (500 MHz; CDCl3): δ 6.00 (d, J = 25 Hz, 2H), 3.71 (t, J = 5.5 Hz, 2H), 3.60 – 

3.28 (m, 8H), 2.72 (s, 1H), 2.69 (s, 1H), 1.65-1.62 (m, 1H), 1.26 – 1.21 (m, 2H), 1.19 – 

1.14 (m, 1H), 1.05-1.01 (m, 1H), 0.83 (s, 9H), 0.00 (s, 6H); 13C NMR (125 MHz; CDCl3): 

δ 147.1, 86.4, 83.0, 81.1, 80.7, 73.1, 55.3, 54.0, 51.9, 49.1, 40.0, 36.3, 28.7, 5.1. ESI MS: 

m/z calcd for C18H35O3Si [M + H]+ 327.2356, obsd 327.2356. 

The product from the previous step (7.21 g, 22.1 mmol) was dissolved in THF (100 

mL) and the temperature was lowered to 0 °C. A solution of 1 M TBAF in THF (44.2 mL, 

44.2 mmol) was added to the reaction mixture dropwise, and the reaction was stirred for 2 

h at 0 °C. The reaction was quenched with H2O and extracted with ethyl acetate (3 x 15 

mL). The organic layers were combined, dried over MgSO4, and concentrated under 

reduced pressure. Flash silica gel chromatography (hexanes:ethyl acetate 5:1 → 1:1) 

afforded the final linker 32 (4.55 g) in 97% yield. 1H NMR (500 MHz; CDCl3): δ 6.11 – 

6.04 (m, 2H), 3.72 – 3.37 (m, 10H), 2.80 (s, 1H), 2.74 (s, 1H), 2.48 (m, 1H), 1.71 (m, 1H), 

1.34 – 1.23 (m, 3H), 1.13 – 1.09 (m, 1H); 13C NMR (125 MHz; CDCl3): δ 136.9, 136.8, 

76.4, 72.2, 70.7, 70.6, 62.1, 45.2, 43.9, 41.8, 39, 30. ESI MS: m/z calcd for C12H21O3 [M + 

H]+ 213.1491, obsd 213.1483. 
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6-O-Acetyl-2-azido-3-O-benzoyl-4-O-tert-butyldimethylsilyl-1-O-(2-(2-((2S)-

bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-2-deoxy-β-D-glucopyranoside (33). 

6-O-Acetyl-2-azido-3-O-benzoyl-4-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyranoside 

trichloroacetimidate 10 (444 mg, 0.72 mmol) and 2-(2-((2S)-Bicyclo[2.2.1]hept-5-en-2-

ylmethoxy)ethoxy)ethanol 32 (230 mg, 1.08 mmol) were combined and azeotroped three 

times with toluene (5 mL) followed by 1 h under high vacuum. A solution of azeotroped 

starting materials in CH2Cl2 (5 mL) was mixed with activated 4 Å molecular sieves for 20 

min at room temperature. The reaction mixture was cooled to -20 °C, and BF3·OEt2 (0.72 

mL of 0.5 M solution in CH2Cl2, 0.36 mmol) was added dropwise. After stirring at -20 °C 

for 30 min, the reaction mixture was gradually warmed to 0 °C, quenched with 

triethylamine, and filtered through a pad of Celite® with an ethyl acetate rinse. After 

removal of organic solvents in vacuo, the residue was purified by flash silica gel 

chromatography (hexanes:ethyl acetate 3:1) to afford 33 (370 mg) in 84% yield as a white 

solid. 1H NMR (500 MHz; CDCl3): δ 8.04 (dt, J = 7.1, 1.4 Hz, 2H), 7.56 (t, 1H), 7.44 (t, 

2H), 6.04 (ddd, J = 26.4, 5.7, 2.9 Hz, 2H), 5.15 (dd, J = 10.4, 8.9 Hz, 1H), 4.58 (dd, J = 8.1, 

1.2 Hz, 1H), 4.43 (dd, J = 12.0, 2.2 Hz, 1H), 4.12 – 4.10 (m, 1H), 4.00 (dt, J = 11.2, 4.4 Hz, 

1H), 3.92 – 3.76 (m, 2H), 3.75 – 3.65 (m, 2H), 3.65 – 3.44 (m, 7H), 3.34 (td, J = 9.3, 4.3 

Hz, 1H), 2.79 – 2.69 (m, 2H), 2.01 (s, 3H), 1.29 – 1.26 (m, 1H), 1.07 (dt, J = 11.6, 3.9 Hz, 

1H), 0.72 (s, 7H), -0.02 (s, 3H), -0.22 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 170.76, 

165.51, 136.68, 136.61, 133.41, 129.93, 128.53, 102.22, 77.41, 77.16, 76.90, 76.11, 75.21, 

74.37, 70.71, 70.45, 70.30, 69.36, 69.29, 64.51, 62.81, 60.46, 45.05, 43.68, 41.57, 38.77, 

O
BzO

OAc
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29.77, 25.61, 21.09, 20.96, 17.87, 14.24, -4.02, -4.88; HRMS ESI MS: m/z calcd for 

C33H50N3O9Si [M+H]+ 660.3311, obsd 660.3297. 

 

 

6-O-Acetyl-2-azido-3-O-benzoyl-1-O-(2-(2-((2S)-bicyclo[2.2.1]hept-5-en-2-ylmethoxy) 

ethoxy)ethyl)-2-deoxy-β-D-glucopyranoside (34). To a solution of 33 (370 mg, 0.60 

mmol) in THF (6 mL) and pyridine (6 mL) at 0 °C was added HF·pyridine (3.5 mL) 

dropwise. The reaction mixture was allowed to warm up to room temperature and was 

stirred overnight. The reaction was quenched with saturated NaHCO3 solution and diluted 

with ethyl acetate. The separated aqueous layer was extracted with ethyl acetate three 

times, the combined organic layers were washed with saturated NaHCO3 solution, brine, 

and 10% CuSO4. The organic layer was dried over MgSO4 and concentrated in vacuo. The 

residue was purified by flash silica gel chromatography (CH2Cl2:hexanes:ethyl acetate 

1:1:2) to furnish compound 34 (250 mg) in 83 % yield as a white solid. 1H NMR (500 

MHz; CDCl3): δ 8.06 (dt, J = 6.8, 1.4 Hz, 2H), 7.64 – 7.54 (m, 1H), 7.49 – 7.42 (m, 2H), 

6.06 (ddd, J = 24.1, 5.6, 2.9 Hz, 2H), 5.06 (dd, J = 10.3, 9.1 Hz, 1H), 4.57 (d, J = 8.0 Hz, 

1H), 4.44 – 4.33 (m, 2H), 4.08 – 4.00 (m, 1H), 3.84 (ddd, J = 10.9, 6.1, 4.2 Hz, 1H), 3.75 – 

3.71 (m, 2H), 3.68 – 3.65 (m, 2H), 3.62 – 3.55 (m, 3H), 3.51 (ddd, J = 9.5, 6.2, 3.2 Hz, 1H), 

3.36 (td, J = 9.2, 4.8 Hz, 1H), 2.81 – 2.69 (m, 2H), 2.09 (s, 3H), 1.69 (tt, J = 9.4, 5.6 Hz, 

1H), 1.34 – 1.26 (m, 2H), 1.08 (ddd, J = 11.7, 4.3, 3.3 Hz, 1H); 13C NMR (125 MHz; 

CDCl3): δ 171.61, 167.00, 149.51, 136.76, 136.64, 133.76, 130.09, 129.17, 128.62, 102.36, 

76.16, 76.06, 74.17, 70.77, 70.46, 70.33, 69.53, 69.29, 63.90, 63.11, 45.09, 43.73, 41.62, 

O
BzO

OAc

N3
O O OHO
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38.82, 29.82, 20.98; HRMS ESI MS: m/z calcd for C27H36N3O9 [M+H]+ 546.2446, obsd 

546.2453. 

 

 

Methyl 2-O-acetyl-3,4-di-O-benzyl-α‐L‐idopyranosiduronate-(1à4)-6-O-acetyl-2-

azido-3-O-benzoyl-1-O-(2-(2-((2S)bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-

2-deoxy-β-D-gluco-pyranoside (38). Glycosyl phosphate donor 25 (51.6 mg, 0.083 mmol) 

and acceptor 34 (29.7 mg, 0.064 mmol) were combined and azeotropically dried with 

toluene (3 x 5 mL) followed by 2 h under vacuum. The mixture was dissolved in CH2Cl2 (2 

mL/0.10 mmol acceptor) and cooled to -30 °C for 2 min. tert-Butyldimethylsilyl 

trifluoromethanesulfonate (22 µL, 0.096 mmol) was added dropwise. After stirring at -30 

°C for 1 h, the reaction mixture was quenched with triethylamine (2 eq) and filtered 

through a pad of Celite® with an ethyl acetate rinse. After removal of organic solvents in 

vacuo, the residue was purified by flash silica gel chromatography (hexanes:ethyl acetate 

3:1) to afford compound 38 (47.5 mg) in 85 % as a colorless oil. 1H NMR (500 MHz; 

CDCl3): δ 8.07 – 8.02 (m, 2H), 7.59 – 7.52 (m, 1H), 7.42 (dd, J = 8.3, 7.2 Hz, 2H), 7.36 – 

7.19 (m, 8H), 7.12 – 7.07 (m, 2H), 6.07 (ddd, J = 25.9, 5.7, 3.0 Hz, 2H), 5.25 (dd, J = 10.3, 

9.2 Hz, 1H), 5.09 (d, J = 4.7 Hz, 1H), 4.77 – 4.72 (m, 1H), 4.63 (d, J = 12.1 Hz, 1H), 4.57 – 

4.52 (m, 2H), 4.41 (dd, J = 12.2, 2.0 Hz, 1H), 4.32 (dd, 2H), 4.22 – 4.15 (m, 2H), 4.08 – 

3.98 (m, 2H), 3.88 – 3.77 (m, 1H), 3.72 (dd, J = 5.7, 3.6 Hz, 2H), 3.68 – 3.50 (m, 6H), 3.41 

(s, 3H), 3.39 – 3.32 (m, 1H), 2.82 – 2.72 (m, 2H), 2.04 (s, 3H), 1.96 (s, 3H), 1.78 – 1.61 (m, 

1H), 1.33 – 1.19 (m, 2H), 1.13 – 1.06 (m, 1H); 13C NMR (125 MHz; CDCl3): δ 170.73, 

O
OMeO2C
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AcO BzO
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170.01, 169.66, 165.46, 137.91, 137.31, 136.75, 136.72, 133.09, 130.12, 129.90, 128.50, 

128.43, 128.32, 128.04, 127.91, 127.81, 127.65, 102.39, 99.00, 77.41, 77.16, 76.91, 76.20, 

76.09, 75.09, 74.16, 73.03, 73.01, 72.77, 72.60, 70.87, 70.74, 70.55, 70.43, 70.41, 70.25, 

69.55, 64.45, 62.28, 60.52, 51.79, 45.12, 43.75, 41.66, 38.86, 29.84, 21.19, 20.97, 20.90, 

14.33; HRMS ESI MS: m/z calcd for C50H59N3O16Na [M+Na]+ 980.3788, obsd 980.3783. 

 

 

3,4-Di-O-benzyl-α-L-idopyranosiduronate-(1à4)-2-azido-1-O-(2-(2-

((2S)bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-2-deoxy-β-D-glucopyranoside 

(44). To a solution of 38 (60mg, 0.063 mmol) in THF (5 mL) at -10 °C was added LiOH (1 

M solution, 0.63 mL) and H2O2 (30% solution, 0.36 mL) simultaneously. After stirring for 

12 h at room temperature, the mixture was cooled to -10 °C followed by the addition of 

methanol (5 mL) and NaOH (4 M solution, 0.79 mL). This reaction mixture was stirred at 

ambient temperature for 12 h, and neutralized with Amberlite® IR120 Hydrogen form 

resin, filtered, and concentrated in vacuo. The residue was first purified by Sephadex® LH-

20 chromatography with 1:1 methylene chloride:methanol, followed by silica gel 

chromatography (40:2:1 ethyl acetate: methanol: water) to furnish compound 44 (40.2 mg) 

in 82% as a colorless oil. 1H NMR (500 MHz, CD3OD) δ 7.39 – 7.20 (m, 10H), 6.06 (ddd, 

J = 20.5, 5.7, 3.0 Hz, 2H), 4.99 (d, J = 3.6 Hz, 1H), 4.69 (d, J = 11.3 Hz, 1H), 3.71 – 3.67 

(m, 3H), 4.65 (d, J = 2.6 Hz, 1H), 4.62 – 4.54 (m, 3H), 4.40 (d, J = 8.1 Hz, 1H), 4.09 (ddd, 

J = 3.6, 2.7, 0.8 Hz, 1H), 3.99 (dt, J = 11.2, 4.3 Hz, 1H), 3.83 (dd, J = 12.1, 2.3 Hz, 1H), 

3.81 – 3.69 (m, 2H), 3.68 – 3.56 (m, 6H), 3.52 (dd, J = 9.5, 6.3 Hz, 1H), 3.46 – 3.36 (m, 

O
OHOOC

BnO
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HO HO

OH
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2H), 3.17 (dd, J = 9.8, 8.2 Hz, 1H), 2.74 (d, J = 27.8 Hz, 2H), 1.65 (dddd, J = 14.7, 8.4, 4.4, 

1.4 Hz, 1H), 1.36 – 1.26 (m, 3H), 1.21 (dddd, J = 11.5, 8.4, 2.4, 0.8 Hz, 1H), 1.16 – 1.09 

(m, 1H); 13C NMR (126 MHz, CD3OD) δ 176.22, 139.73, 139.44, 137.69, 137.55, 129.45, 

129.29, 128.85, 128.77, 128.60, 103.76, 103.04, 79.61, 78.74, 78.61, 77.02, 76.78, 75.10, 

74.39, 73.31, 72.06, 71.62, 71.56, 71.40, 70.79, 69.99, 68.38, 61.87, 45.85, 44.89, 42.76, 

40.08, 30.63; HRMS ESI MS: m/z calcd for C38H49N3O13Na [M + Na]+ 778.3158, obsd 

778.3160. 

 

 

3,4-Di-O-benzyl-2-O-sulfonato-α-L-idopyranosiduronate-(1à4)-2-azido-3,6-di-O-

sulfonato-1-O-(2-(2-((2S)bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-2-deoxy-β-

D-glucopyranoside (45): To a solution of 44 (42.8 mg, 0.055mmol) in anhydrous DMF 

(3.5 mL) at ambient temperature was added SO3·NMe3 complex (237 mg, 1.70 mmol) as a 

solid in one portion. The reaction mixture was stirred at 55 °C for 2 days and then 

quenched with triethylamine (1 mL) and MeOH (3 mL). Upon evaporation of organic 

solvent, the residue was purified by Sephadex® LH-20 chromatography with 1:1 

methylene chloride: methanol to obtain compound 45 (39.7 mg) in 71% yield as a white 

solid. 1H NMR (500 MHz, CD3OD) δ 7.53 – 7.45 (m, 2H), 7.42 – 7.20 (m, 8H), 6.08 (ddd, 

J = 23.8, 5.7, 3.0 Hz, 2H), 4.67 (d, J = 12.1 Hz, 2H), 4.48 (t, J = 9.4 Hz, 2H), 4.36 (t, J = 

9.0 Hz, 1H), 4.31 – 4.18 (m, 4H), 4.00 (dt, J = 11.3, 4.4 Hz, 1H), 3.92 (s, 1H), 3.81 (dt, J = 

10.7, 4.9 Hz, 2H), 3.75 – 3.57 (m, 9H), 3.53 (dt, J = 9.5, 6.3 Hz, 1H), 3.41 (td, J = 9.2, 5.8 

Hz, 2H), 2.75 (d, J = 30.2 Hz, 2H), 1.67 (dddd, J = 9.4, 7.5, 5.3, 3.7 Hz, 1H), 1.40 – 1.32 
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(m, 3H), 1.23 (ddd, J = 11.0, 8.3, 2.3 Hz, 1H), 1.14 (dt, J = 11.7, 3.9 Hz, 1H); 13C NMR 

(126 MHz, CD3OD) δ 179.50, 157.52, 153.60, 144.04, 137.60, 129.40, 128.68, 127.75, 

112.94, 110.71, 106.19, 101.94, 79.98, 77.03, 71.56, 70.36, 67.22, 63.39, 56.82 , 45.87, 

44.90, 42.77, 40.04, 38.10, 35.00, 30.66, 30.65, 21.09, 20.04, 10.98; ESI MS: m/z calcd for 

C38H48N3O22S3Na [M + Na]- 1017.1795, obsd 1017.9629. 

 

 

3,4-Di-O-benzyl-2-O-sulfonato-α‐L‐idopyranosiduronate-(1à4)-2-amido-3,6-di-O-

sulfonato-1-O-(2-(2-((2S)bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-2-deoxy-β-

D-glucopyrano-side (46). To a solution of 45 (78 mg, 0.079 mol) in THF (10 mL), and 

NaOH (0.1 M solution, 4.7 mL) at ambient temperature was added PMe3 (1 M in THF, 

0.63 mL). The reaction mixture was stirred at room temperature overnight and was 

neutralized with a 0.1 M solution of HCl. After concentration in vacuo, the residue was 

purified using Sephadex® LH-20 chromatography with methanol, and this crude product 

46 was used for the next reaction. 1H NMR (500 MHz, CD3OD) δ 7.47 (d, J = 7.8 Hz, 2H), 

7.43 – 7.20 (m, 6H), 6.09 (ddd, J = 22.5, 5.7, 2.9 Hz, 2H), 4.65 (d, J = 11.8 Hz, 2H), 4.56 

(d, J = 10.3 Hz, 2H), 4.33 (q, J = 8.2 Hz, 3H), 4.25 (s, 1H), 4.08 – 3.98 (m, 1H), 3.94 (s, 

2H), 3.87 – 3.77 (m, 1H), 3.77 – 3.58 (m, 13H), 3.59 – 3.49 (m, 1H), 3.48 –3.39 (m, 1H), 

2.76 (d, J = 37.3 Hz, 2H), 1.73 – 1.65 (m, 1H), 1.36 (dd, J = 20.9, 12.3 Hz, 3H), 1.29 – 

1.20 (m, 1H), 1.21 – 1.11 (m, 1H); ESI MS: m/z calcd for C38H49NO22S3Na [M + 2H + Na]- 

990.1806, obsd 990.2563. 

 

O
O-OOC

BnO

OBn

-O3SO
-O3SO

OSO3-

NH2
O O O O

46



 78 

 

3,4-Di-O-benzyl-2-O-sulfonato-α‐L‐idopyranosiduronate-(1à4)-2-sulfonatamido-3,6-

di-O-sulfonato-1-O-(2-(2-((2S)bicyclo[2.2.1]hept-5-en-2-ylmethoxy)ethoxy)ethyl)-2-

deoxy-β-D-glucopyranoside (47). To a solution of crude 46 (78.2 mg, 0.079 mmol) in 

anhydrous pyridine (15 mL) and triethylamine (3 mL) at ambient temperature was added 

SO3·pyr complex (mg, mmol) as a solid in one portion. The reaction mixture was stirred at 

rt for 24 h and then quenched with triethylamine (5 mL) and methanol (10 mL). After 

evaporation of the organic solvent, the residue was purified by Sephadex® LH-20 with 

methanol to obtain 47 (45.5 mg) in 54% yield over two steps as a white solid. 1H NMR 

(500 MHz, CD3OD) δ 7.58 – 7.51 (m, 2H), 7.41 – 7.20 (m, 8H), 6.10 (ddd, J = 26.5, 5.8, 

3.0 Hz, 2H), 4.97 (d, J = 12.4 Hz, 1H), 4.72 (d, J = 12.4 Hz, 1H), 4.66 (d, J = 6.3 Hz, 1H), 

4.49 (d, J = 12.3 Hz, 2H), 4.43 (d, J = 10.8 Hz, 1H), 4.33 – 4.18 (m, 4H), 4.18 – 4.09 (m, 

2H), 4.03 (ddd, J = 9.9, 5.8, 3.8 Hz, 3H), 3.90 – 3.61 (m, 7H), 3.57 (td, J = 9.9, 6.4 Hz, 

1H), 3.52 – 3.39 (m, 1H), 3.37 (s, 1H), 2.77 (d, J = 20.4 Hz, 2H), 1.72 (dt, J = 13.6, 6.8 Hz, 

1H), 1.39 – 1.29 (m, 3H), 1.25 (d, J = 7.1 Hz, 1H), 1.19 – 1.14 (m, 1H); 13C NMR (126 

MHz, (CD3)2SO) δ 172.59, 138.60, 138.46, 136.53, 136.35, 128.33, 128.01, 127.82, 

127.65, 127.32, 126.96, 101.02, 76.54, 74.88, 73.70, 71.30, 70.88, 70.36, 70.05, 69.81, 

69.63, 69.50, 68.97, 67.32, 64.83, 55.73, 55.31, 44.67, 43.20, 41.00, 38.46, 31.28, 29.26, 

22.09, 21.01, 18.65, 13.96; ESI MS: m/z calcd for C38H46NO25S4Na [M + Na]- 1067.1134, 

obsd 1067.7520. 
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C h a p t e r  3  

POLYMERIZATION OF HEPARAN SULFATE GLYCOPOLYMERS 

 

Synthetic polymers continue to be utilized in biomedical applications for use in 

prostheses, dental materials, medical devices,4 as supports for the fabrication of engineered 

tissues,7 and as therapeutics or drug delivery agents.8 Successful polymerization chemistry 

of such biopolymers largely depends on finding appropriate reaction conditions that can 

accommodate the generally hydrophilic monomer units. It is necessary to control the 

polymerization chemistry to afford well-defined materials with specific polymer chain 

lengths, molecular weight distributions, block architectures, and composition of pendant 

and end-group functionalities to ensure biocompatibility of the materials that are designed 

for service in biological contexts. Although the target polymer properties can be altered by 

any or all of these parameters, the capacity to specify and vary structure is essential in 

controlling and developing structure-function relationships. Using modern ruthenium-based 

metathesis catalysts in both organic and aqueous solutions, it is possible to construct 

biologically active polymers to study the effects of macromolecular architecture on 

biological functions.  

 

Olefin metathesis and ring-opening metathesis polymerization chemistry 

Olefin metathesis is a powerful chemical transformation that is widely used for the 

formation of carbon-carbon double bonds. This metal-catalyzed transformation acts on 

carbon-carbon double bonds and rearranges them via cleavage and reassembly.5,9-11 The 
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widely accepted mechanism of transition metal metathesis proposed by Chauvin3 involves 

the coordination of an olefin to a metal carbene catalytic species, a direct [2+2] 

cycloaddition of the two alkenes, which then results in the reversible formation of a 

metallocyclobutane (Scheme 3.1). This intermediate can then undergo cycloreversion 

through two possible paths: the first is the non-productive path, which results in the re-

formation of the two starting materials; the second path is product-forming, which yields an 

olefin that has exchanged a carbon with the catalysts’ alkylidene species. As both processes 

are fully reversible in the absence of a thermodynamic driving force, only statistical 

mixtures of starting materials and other rearrangement products are produced.   

 The thermodynamic equilibrium of olefin metathesis reactions can be easily 

influenced with two main approaches to drive the reaction towards the desired metathesis 

product. The first approach utilizes Le Chatelier’s principle by continuously removing one 

of the undesired products from the reaction to shift the equilibrium in favor of the desired 

product. This method is especially effective for cross metathesis (CM)12 reactions, ring-

closing metathesis (RCM),13,14 and acyclic diene metathesis polymerization (ADMET) 15-17 

by removing the volatile ethylene gas by-product. The second approach takes advantage of 

the ring strain of cyclic olefins such as cyclooctenes and norbornenes. The energy released 

during the ring-opening step is sufficient to drive the reaction forward, and is the driving 

force behind ring-opening cross metathesis (ROCM)18,19 and ring-opening metathesis 

Scheme 3.1: General mechanism of olefin metathesis.3  

[M]
R1

R3R2

[M]
R1

R3R2

[M]

R1

R3R2
48 49 50
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polymerization (ROMP) (Scheme 3.2).20-22 In addition to these two main approaches, 

substrate concentrations or catalyst sensitivity to olefin substitution can also be exploited to 

influence product selectivity.23-26 

 Upon confirming the proposed mechanism with experimental evidence, rational 

catalyst design has resulted in the development of several well-defined, single-species 

metal catalysts. These transition metal catalysts have been developed with metals such as 

titanium,27 tungsten,28-30 molybdenum,31 rhenium,32,33 osmium,34,35 and ruthenium.36,37 

While such early transition metal catalysts are extremely active, some are sensitive to a 

variety of functional groups commonly used in organic synthesis. Air and moisture 

sensitivity limits their synthetic utility substantially; thus, appropriate catalysts must be 

selected for metathesis chemistry according to their functional group tolerance.  

As demonstrated in Table 3.1, transition metal metathesis catalysts exhibit 

variations in functional group tolerance. For example, tungsten metathesis catalysts 

preferentially react with olefins in the presence of esters or amides, but favor ketones, 

aldehydes, alcohols, acids, and water over existing olefins.5 In contrast, ruthenium-based 

Scheme 3.2: Types of olefin metathesis reactions.  
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catalysts are tolerant towards most polar functional groups and water, though overall 

reactivity of the catalyst is diminished compared to earlier transition metals.38 Molybdenum 

and ruthenium catalysts are most prominently used due to their versatility, high functional 

group tolerance, and reliable activity. For polymers with biomedical and/or biological 

applications, such as our HS glycopolymers, ruthenium catalysts are most frequently used 

due to their high functional group tolerance and ability to accommodate extremely polar 

functionalities (i.e., multiple sulfate groups of GAG-based polymers).  

 Despite the moderate activity of early ruthenium catalysts, their exceptional 

selectivity of olefins has led to the development of a number of modified catalysts. Initial 

ruthenium bis-triphenylphosphine (PPh3) catalysts were limited to ROMP of strained 

monomers, but performed well in polar media.38 Replacement of the PPh3 ligands with 

tricyclohexyl phosphines (PCy3) resulted in a much more active catalyst, commonly known 

as the “first generation Grubbs catalyst” 51 (Figure 3.1); this catalyst is capable of CM of 

acyclic olefins with high functional group tolerance.39 Further substitution of one of the 

phosphine ligands for an electron donating N-heterocyclic carbene (NHC) ligand resulted 

Table 3.1: Functional group tolerance of olefin metathesis catalysts.5 

Titanium (Ti) Tungsten (W) Molybdenum (Mo) Ruthenium (Ru) 

Acids Acids Acids Olefins 

Alcohols, Water Alcohols, Water Alcohols, Water Acids 

Aldehydes Aldehydes Aldehydes Alcohols, Water 

Ketones Ketones Olefins Aldehydes 

Esters, Amides Olefins Ketones Ketones 

Olefins Esters, Amides Esters, Amides Esters, Amides 

Increasing  
order of  

reactivity 

Functional group tolerance 
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in the “second generation Grubbs catalyst” 5240 and the phosphine-free catalyst 53.41 

Although both 52 and 53 maintain excellent selectivity for olefins and exhibit high 

functional group tolerance, their slow initiation rates have limited their applicability. More 

recently, the bispyridine catalyst 5442 has been utilized to promote ROMP of norbornenes 

with both high selectivity and functional group tolerance, and has been used towards the 

synthesis of GAG-based glycopolymers.43 The continuing development of metathesis 

catalysts has widened the scope of metathesis chemistry into asymmetric reactions,44 

sterically demanding monomers,45 and aqueous reaction conditions,46 which all have 

potential to be beneficial in the synthesis of polymers with biomedical applications. 

 

Multivalency effect of glycopolymers 

Carbohydrates have the capability to present diverse chemical motifs in high 

density through structural elements such as branching and multivalency. The valency of 

molecular structures with carbohydrate ligands is defined as the number of identical units 

that contribute to receptor binding.47 Multivalent interactions are defined as associations of 

the multiple carbohydrate ligands present on a structure that bind multiple receptors 

expressed on proteins or cell-surfaces. Such interactions are critical to 

carbohydrate−protein interactions in several biological phenomena. Multivalent ligand-

Figure 3.1: Ruthenium-based metathesis catalysts.  
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receptor interactions can produce potent biological activity by simply enhancing 

affinity,47,48 or through other methods such as clustering the relevant receptors.6 Thus, the 

mechanisms through which multivalent ligands act are important factors in determining 

methods to control the biological activity of synthetic multivalent scaffolds. 

Many carbohydrate-protein interactions appear to take advantage of multivalent 

interactions to compensate for weak single ligand-receptor interactions. Association 

constants for monovalent carbohydrate-protein interactions are often low (Ka = 103-4 M-1), 

even though the strength and specificity required for recognition in physiological settings is 

high.47,48 To compensate for these weak interactions, carbohydrate ligands are often 

displayed in multivalent arrays, where multiple copies of ligands are presented at the cell 

membrane or distributed along a glycoprotein. Similarly, a receptor can possess multiple 

binding sites or be present in multiple copies at the cell surface. The interaction between 

multivalent biomolecules and receptors with multiple ligand binding sites can result in the 

formation of numerous simultaneous binding events, resulting in the overall enhancement 

of affinity.  

Monovalent and multivalent ligands can interact with receptors via several different 

mechanisms. Monovalent ligands have access to a limited number of binding mechanisms, 

and typically bind a single receptor or dimerize receptors using two receptor-binding faces. 

In contrast, multivalent ligands can interact with receptors through many different 

mechanisms (Figure 3.2), such as enhancing ligand affinity by decreasing the off-rate 

(chelate effect), allowing for secondary interactions in addition to binding the primary 

receptor (subsite binding), preventing competing interactions (steric stabilization), and by 

receptor clustering or by increasing the local concentration of the ligand.2 Although the 
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structural complexity of multivalent macromolecules is greater than that of monovalent 

ligands, their modes of ligand binding can still be influenced by adjusting their 

macromolecular architecture.49  

To mimic the multivalent architectures observed in biological systems, and to 

manipulate the resulting carbohydrate-protein interactions, synthetic chemists have 

assembled a variety of multivalent arrays with carbohydrate epitopes (Figure 3.3). The 

synthetic homogeneous glycan structures generally serve as better tools for carbohydrate-

protein interaction studies, compared to naturally heterogeneous macromolecules. Recent 

progress in synthetic and chemoenzymatic methods allows for the preparation of well-

defined multivalent carbohydrate structures with precise control over the size, shape, 

valency, and functional group incorporation of glycopolymers. By virtue of their 

carbohydrate moieties, these structures constitute potent carbohydrate scaffolds that insure 

multivalency, and have been receiving increasing interest due to their numerous 

applications.50-53 Additionally, they can have several practical and financial advantages 

Figure 3.2: Modes of multivalent ligand binding.2 (a) The chelate effect functions by enhancing ligand 
affinity by decreasing the off-rate. (b) Subsite binding enhances ligand affinity through secondary 
interactions. (c) Steric stabilization prevents competing interactions. (d) Receptor clustering increases the 
proximity between bound receptors maximizing binding events. (e) Statistical effects enhance ligand affinity 
through an increase in local concentration of ligand.  
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over other forms of neoglycoconjugates (i.e., neoglycoproteins, neoglycolipids, and 

liposomes) depending on their method of assembly.  

Glycopolymer synthetic strategies include homo/heteropolymerization of 

carbohydrate monomers or polymer post-glycosylation, which can all result in tailored 

chemical functionalities. Homopolymers are the result of self-condensation of monomeric 

carbohydrate derivatives in the absence of any other added molecules. The polymerizable 

functionality can be placed at any position on the carbohydrate ring, and can be prepared as 

fully protected or deprotected carbohydrate monomers. Polymerization processes are 

initiated by suitable catalysts or by heating, and the resulting polymers are often isolated by 

precipitation or dialysis. This strategy has allowed the successful synthesis of a variety of 

glycopolymers with polyvinyl, polystyrene or poly(iminomethylene) backbones with 

potential biological applications such as biocompatible glycopolymers, drug delivery 

carriers, and immunodiagnostics.54  

While homopolymers contain a single polymerizable species, heteropolymers are 

built with added noncarbohydrate comonomers, which confer special physical and 

biophysical properties. These copolymers can be synthesized by direct copolymerization of 

two different monomers55 or by a post-polymerization modification56 approach. 

Figure 3.3: Different classes of multivalent ligands.6  
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Heteropolymers have the advantage of having the ability to control the incorporation of 

desired ratios of two monomers and thus determine saccharide density; custom-designed 

hybrid glycopolymers have also been synthesized using three distinct components to fine-

tune desired properties.57 Our lab has utilized this approach to alter the saccharide density 

of CS polymers, and have observed differences in biological activity by using a blank 

norbornene-diethylene glycol linker as a comonomer.58 

Organic chemistry allows access to novel architectures that provide a better 

understanding of biological processes involving carbohydrates. Polymerization chemistry 

allows for the effective presentation of multiple recognition elements on a single 

macromolecule, increasing their binding affinities relative to monovalent species. ROMP 

chemistry is commonly used to prepare multivalent polymers for biological applications59-

61 because of its ability to tolerate biologically relevant functional groups and its ease of 

controlling valency, ligand density, and chain length. Some common architectural motifs of 

multivalent ROMP polymers include polynorbornene or cyclooctadiene bearing pendant 

functional groups (Figure 3.4, A), amphiphilic block copolymer micelles (Figure 3.4, B), 

and end-functinoalized polymer structures (Figure 3.4, C). For the synthesis of our HS 

Figure 3.4: Common architectural motifs in ROMP polymers designed to utilize multivalency.1  
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glycopolymers, we utilized the most common multivalent ROMP array: a polynorbornene 

homopolymers bearing the HS disaccharide pendant groups.  

 

Use of ring-opening metathesis polymerization chemistry for biomedical applications  

 Ruthenium catalyzed ROMP is an attractive method to obtain multivalent polymer 

scaffolds because of its exceptional versatility and synthetic convenience.62,63 

Polymerization reactions which proceed in the absence of termination steps and chain 

transfer reactions, such as ROMP, are considered ‘living polymerizations’.64 Because the 

rate of polymer chain initiation is faster than chain propagation in these living systems, 

ROMP affords polymers with controllable molecular weights, narrow polydispersities, and 

block copolymer scaffolds,65 expanding opportunities to allow for the molecular level 

design of macromolecular structures for an enormous range of applications.  

 Norbornene-based monomer derivatives are commonly used for ROMP chemistry, 

taking advantage of the ring strain of the bicyclic structure and the resulting high reactivity 

towards irreversible ring-opening. An increase in steric bulk limits backbiting and 

interchain metathesis, and allows for the controlled synthesis of single chain multivalent 

polymers. With appropriate initiators and reaction conditions, living ROMP can be 

achieved with a variety of norbornene monomers to enable precise control over chain 

lengths and block copolymer architectures. However, due to the steric bulk associated with 

most biologically relevant functionalities, such as functionalized carbohydrates, 

norbornene-based monomers impose a considerable demand on the reactivity of ROMP 

initiators.  
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Several different types of norbornene monomers are used to obtain biologically 

relevant polymers, based on the solubility and biocompatibility of the resulting polymer 

backbones. Oxanorbornenes (Figure 3.5, A; X=O) are readily accessible by Diels−Alder 

reactions with furan. The furan ring of the resulting polymer backbone increases solubility 

in water, and its structural resemblance to furanose sugars has shown to improve 

biocompatibility.66 5,6-Disubstituted norbornene monomers containing two distinct 

pendant groups (Figure 3.5, B) are not commonly used due to the high density of functional 

groups of the resulting polymer chain. Although the steric bulk may hinder efficient chain 

elongation, a large number of polar groups could be valuable in improving solubility while 

masking potentially bioincompatible polymer backbones. Succinimide norbornenes are 

most commonly used, which are accessible from norbornene-5, 6-dicarboxylic anhydride 

(Figure 3.5, C). For all these norbornene derivatives, both endo and exo isomers are 

possible, but the exo monomers have been shown to have higher ROMP reactivity.67 

Solubility is a major issue in ROMP of polymers with biomedical applications, 

because they often bear hydrophilic functionalities. Like many other organometallic 

reactions, olefin metathesis is usually carried out in dry, degassed aprotic organic solvents 

Figure 3.5: Different types of norbornene monomers for biologically relevant polymers.1  
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to avoid catalyst deactivation by oxygen and moisture. However, completely deprotected 

biologically relevant monomers are rarely soluble in the aprotic organic solvents required 

for efficient ROMP. Thus, precipitation of growing polymer chains is a common obstacle 

when organic solvents are used for ROMP of monomers with polar substituents, especially 

as chain lengths increase. To accommodate the highly polar functionalities, it is critical for 

metathesis reactions of functionalized biopolymers to be carried out in polar solvents such 

as methanol or water. 

 Fortunately, the robustness of Ru initiators opens the possibility of metathesis in 

polar solvents such as methanol and water. Degassed water is an attractively inexpensive, 

nontoxic solvent that offers the potential for ROMP of hydrophilic monomers without need 

for protecting groups. While a number of water-soluble catalysts have been 

developed,46,68,69 these methodologies are not able to precisely control the polymerization 

of biological substrates. For reactions that require aqueous conditions, contact between the 

monomer and catalyst can be promoted using methanol as a co-solvent by use of an 

emulsifying agent such as dodecyltrimethylammonium bromide (DTAB).70,71 Emulsion 

polymerization has been shown to improve yields, and enable preparation of longer 

polymer chains.72 In most cases, the catalyst is usually predissolved in a chlorocarbon 

solvent such as CH2Cl2, because of its low solubility in aqueous media. 

 ROMP of carbohydrate-functionalized monomers have traditionally exhibited 

limited control over polymer chain lengths in the presence of methanol, often resulting in 

incomplete conversion. Previous examples of glycopolymer synthesis includes ROMP of a 

glucose-functionalized norbornene by RuCl2(PCy3)2(=CHCHCPh2) in 2:3 CH2Cl2:MeOH, 

which afforded only trace polymer even after 2 days at 50 °C.73 Similarly, Kiessling and 
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coworkers reported that ROMP of a monosulfated galactose monomer via 

RuCl2(PCy3)(H2IMes)(=CHPh) in 1.5:1 CH2Cl2:MeOH, which proceeded to only 25% 

yield after 2 days at 65 °C.74 Catalyst decomposition in the presence of methanol and 

insolubility of growing polymer chains is likely the cause of premature termination of these 

polymerization reactions. 

 ROMP has emerged as a versatile and powerful tool for the preparation of complex 

polymeric materials with high control over polymer chain lengths and architecture. 

Although polymerization conditions where the monomer and initiator are present in a 

homogeneous organic solution are ideal, the biologically active functionalities on many 

polymers for use in biomedical applications require the use of polar solvents. In an effort to 

accommodate the high polarity of our tetrasulfated HS disaccharide monomers, we 

investigated the effects of different Ru ROMP catalysts, reaction conditions, and solvent 

systems based on previously synthesized carbohydrate-based glycopolymers.  

 

Polymerization of glycosaminoglycan polymers 

 Investigations of efficient ROMP conditions for GAG-based glycopolymers were 

first investigated in our lab during the synthesis of CS-E cyclooctene-based 

glycopolymers.75 When CS-E monomers were reacted with 2.5 mol% of fast initiating 

bispyridine catalyst in MeOH, the reaction resulted in incomplete conversion (36%) with a 

low degree of polymerization (DP = 21). Simlarly, ROMP in aqueous media using the 

same catalyst loading of water soluble catalyst (H2IMes-

poly(ethyleneglycol))(Cl)2Ru=CH(o-iPrOC6H4)14 resulted in incomplete conversion (7%) 

and even lower molecular weight polymers (DP = 8). It is likely that these reactions did not 
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go to completion due to slow initiation of the water soluble catalyst76 and coordination of 

MeOH to the catalyst reactive intermediates, which reduced propagation rates and resulted 

in premature chain termination.42  

To address the problem of low polymer conversion in MeOH and aqueous 

conditions, the CS glycopolymers utilized polymerization in a cosolvent system comprised 

of MeOH and dichloroethane ((CH2Cl)2). Elevated temperatures were still necessary to 

completely solubilize the CS-E cyclooctene monomers. Reaction of the CS monomers with 

2.5 mol% catalyst with 1:5 MeOH/((CH2Cl)2 at 55 °C resulted in complete conversion to 

the desired polymer with 40 repeating units. These reaction conditions were applied to 

successfully synthesized norbornene-based CS-E polymers as well.43 

 

 With the reaction conditions used to obtain CS glycopolymers, HS monomer 47 

was first subjected to polymerization with 2 mol% catalyst using the MeOH/((CH2Cl)2 

cosolvent system (Scheme 3.4). In contrast to the disulfated CS monomers, we expected 

that tetrasulfated HS monomers would have compromised solubility as a result of the 

higher number of sulfate groups and fewer of organic PGs. Therefore, we tried the first 

polymerization reaction with an increased amount of methanol using 1:4 MeOH/((CH2Cl)2. 

Scheme 3.3. Polymerization of cyclooctene-based chrondroitin sulfate polymers  

O
-O2C

HO
HO

OH
O O

-O3SO OSO3-

NHAc
O O 2

O
-O2C

HO
HO

OH
O O

-O3SO OSO3-

NHAc
O O 2

Ph
n

N N

Ru
N

N Cl
Cl Ph

N N
Ru

Cl O

OPEG-Me

Cl

MeOH, 55 °C

H2O, 55 °C

55

54

53

55n



 118 

Unfortunately, solubility of the monomers remained low even with increased amounts of 

MeOH and at elevated temperatures, which resulted in only moderate yields. Product 

conversion stalled around 50% conversion, and the monomer could be recovered from the 

reaction mixture. Upon addition of the catalyst to the monomer solution, compound 

precipitated out immediately, suggesting that the tetrasulfated HS monomer was too polar 

and crashed out of the solution at an oligomeric stage.  

A few varying approaches were initially taken to increase monomer and polymer 

solubility while retaining catalyst activity. A series of different solvent systems were used 

to attempt successful polymerization. Dry, degassed nitromethane (CH3NO2) was used as a 

solvent, but led to minimal polymer conversion. Additionally, a cosolvent system using 

CH2Cl2, a more commonly used solvent for ROMP reactions, at both 2:1 DCE/MeOH and 

1:1 DCE/MeOH was unsuccessful. No significant product formation was observed, and the 

unreacted monomer was recovered.  

Upon attempting to control monomer and polymer solubility using different solvent 

systems, we looked into emulsion polymerization systems, which are commonly used for 

polar monomers in aqueous media. For emulsion polymerization reactions, the monomers 

were dispersed in deoxygenated water using an emulsifying agent, and the polymerizations 

were initiated by the injection of the catalyst dissolved in a small amount of DCE or DCM. 

We employed emulsification polymerization chemistry to our tetrasulfated monomers 

Scheme 3.4. Polymerization reaction using bis-pyridine Grubbs 2nd generation catalyst.  
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using the cationic emulsifying agent, dodecyltrimethylammonium bromide (DTAB), as it 

has been shown to afford higher yields of polar polynorbornenes than an anionic surfactant 

such as sodium dodecyl sulfate (SDS).77 

To a 4-dram vial equipped with a Teflon-coated stir bar, monomer 47 and DTAB (3 

eq) were added under argon. Degassed water was first added to dissolve the monomer, and 

the reaction was stirred vigorously at room temperature for 30 min. Bispyridine catalyst 54 

was dissolved in DCE, was briefly sonicated to ensure complete dissolution of the catalyst, 

and then injected (2 mol%) to the monomer solution via a gas-tight syringe. The ROMP 

reaction was terminated by adding an excess of ethyl vinyl ether to the reaction mixture. 

Unfortunately, this initial polymerization reaction was unsuccessful, and the unreacted 

monomer was recovered.  

The Kiessling group had previously reported successful synthesis of high molecular 

weight neoglycopolymers from a norbornene-succinimide monomer with a fully 

deprotected monosaccharide.71 At lower catalyst loadings, the polymerization stalled at 

approximately 50% conversion, suggesting that termination processes were competing with 

elongation of the polymer chains. Emulsion conditions were successfully employed to 

synthesize longer neoglycopolymers (DP = 143) with 1 mol % catalyst loading. Following 

the experimental procedure reported in the synthesis of these long neoglycopolymers, 

monomer 47 was subjected to the reported reaction conditions: the monomer was subjected 

to a reaction with 3 eq DTAB with 2 mol% of catalyst 54 in 2:1 DCE/H2O. After stirring at 

rt for 30 min, the mixture was stirred vigorously at 55 °C overnight. The reaction was 

terminated by adding an excess of ethyl vinyl ether to inactivate the catalyst, but there was 

minimal polymer product formation. 
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In addition to ROMP under emulsifying conditions, we also investigated ROMP 

conditions that utilize nanometer micelles. ROMP has been reported to proceed with high 

efficiency at room temperature by including a small percentage of nonionoic, vitamin E-

based amphiphile, polyoxyethanyl α-tocopheryl sebacate (PTS) in aqueous media.78 The 

presence of this amphiphilic “dissolves” the otherwise water-insoluble reaction components 

(organic catalyst) within its nanometer micelles that self-assemble in aqueous media. 

Monomer 47 was subjected to ROMP with 2.5% PTS by weight and 2 mol % catalyst 

loading in water at rt for 3 h; unfortunately, there was minimal conversion of the monomer 

to the desired glycopolymer.  

After exploring different polymerization reactions using emulsifiers in aqueous 

media, the previous DCE/MeOH cosolvent system was modified to accommodate the 

insoluble monomer. With these homogeneous conditions, a linear relationship between the 

catalyst loading and average degree of polymerization were observed, which is 

characteristic of living polymerizations; DCE/MeOH ratios were adjusted according to the 

various target polymer lengths (Table 3.1). Reactions targeting short polymers were run in 

4:1 DCE/MeOH with high catalyst loadings, to afford polymers with lengths varying from 

DP = 4 – 8. Medium length polymers were run in a higher 3:1 DCE/MeOH cosolvent ratio 

and appropriately low catalyst loadings. Polymerization reactions with the longest target 

Table 3.2: Characterization of polymer series.  

Entry DCE/MeOH Mol % 54 Polymer n Mn (g/mol) PDI 
1 4:1 30 474 4 4 373 2.03 
2 4:1 17 476 6 6 167 1.25 
3 4:1 12.5 478 8 8 535 1.54 
4 3:1 10.7 4710 10 11 207 1.29 
5 3:1 6.5 4715 15 15 452 1.32 
6 2.5:1 5.2 4730 30 32 721 1.41 
7 2.5:1 2 4745 45 42 970 1.25 
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lengths had the lowest catalyst loadings, and were run in 2.5:1 DCE/MeOH to 

accommodate the decrease in solubility of the long polymer chains. Even at a cosolvent 

ratio of 2.5:1 DCE/MeOH, longer polymers crashed out within minutes of initiation, and 

afforded polymers with lengths of ~45 repeating units; HS and CS polymers with fewer 

sulfate groups have been shown to furnish polymers with up to 200 repeating units. Further 

increases in the amount of MeOH (i.e., 1:1 DCE/MeOH) resulted in incomplete conversion 

of the monomer, likely due to coordination of MeOH to the active catalyst species.  

Upon purification of the various polymer species with an aqueous G-50 column, the 

glycopolymers were characterized by 1H NMR spectroscopy and gel permeation 

chromatography (GPC). A representative GPC run is shown in Figure 3.6. GPC for 

polymers 47n were carried out in an organic system in 0.2 M LiBr in DMF on two I-series 

Mixed Bed Low Molecular Weight ViscoGel columns (Viscotek), connected in series with 

a DAWN EOS multi-angle laser light scattering (MALLS) detector and an Optilab DSP 

differential refractometer (both from Wyatt Technology). 

Once the synthesized polymers were characterized, they were subjected to 

Figure 3.6: Representative GPC run for HS glycopolymers.  

Desired polymer 
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hydrogenation/hydrogenolysis to remove the permanent benzyl PGs to afford the final, 

fully deprotected tetrasulfated HS glycopolymers. Several different hydrogenation catalysts 

were tested for their effectiveness of removing benzyl groups and reducing the olefins 

along the hydrocarbon backbone of the polymers. These catalysts were tested on previously 

synthesized HS glycopolymers with a GlcN-IdoA acid linkage (Table 3.3). We began with 

the classically used Pd/C and pearlman’s catalyst, Pd(OH)2/C. Pd/C resulted in incomplete 

conversion, even after 3 days at 800 psi of H2. Pearlmans’s catalyst resulted in complete 

hydrogenation and debenzylation of the protected polymers. Simultaneously, Pt/C, 

Rh(OAc)6, and Rh/C were used for hydrogenation chemistry, but all resulted in either 

incomplete hydrogenation or debenzylation of the polymers. The polymers were subjected 

to hydrogenations in a cosolvent for 80 mM phosphate buffer (pH = 7.2) and MeOH; the 

phosphate buffer ensured solubility of the polymer and maintained the pH of the reaction to 

protect against the loss of sulfate groups. Interestingly, at these high H2 atms, we still 

observed removal of the C-4 TBS group in conjunction with debenzylation and reduction 

of the hydrocarbon backbone.  
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Table 3.3: Hydrogenation catalysts used for the compound 56n. Reactions were run in 1:1 80 mM 
phosphate buffer:MeOH, 800 psi H2 for 3 days at room temperature. 

Entry Catalyst Amount Result 
1 Pd/C 6x by weight incomplete 
2 Pd(OH)2/C 6x by weight complete 
3 Pt/C 6x by weight incomplete 
4 Rh(OAc)6 6x by weight incomplete 
5 Rh/C 10x by weight incomplete 
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 Pearlman’s catalyst was successfully employed to fully hydrogenate and 

debenzylate the series of polymers 47n (Scheme 3.5). However, we found that it was 

unnecessary to apply the polymers to such harsh reaction conditions (800 psi H2). 

Hydrogenation using balloons with H2 gas over 3 days resulted in full hydrogenation and 

deprotection of all HS glycopolymers. After hydrogenation, the reaction mixtures were 

filtered, lyophilized, then further purified using G-50 columns in ddH2O to remove trace 

amounts of remaining catalyst. These polymers were then desalted for subsequent use in 

biological testing for anticoagulant activity.  

 Polymerization reactions of highly functionalized biological monomers are often 

challenging, due to the presence of charged functional groups and solubility issues related 

to the hydrophilic monomer species. By employing a DCE/MeOH cosolvent system at 

elevated temperatures, we have been able to successfully utilize ROMP chemistry to afford 

desired tetrasulfated HS glycopolymers 57n. A series of glycopolymers were synthesized, 

with polymer lengths ranging between 4 – 45 repeating units. The final polymer series was 

obtained by subjecting each of the polymers to a single-step hydrogenation reaction, which 

simultaneously reduced double binds and cleaved the remaining Bn groups. With the 

glycopolymer series in hand, we then investigated the effects of length and sulfation pattern 

specificity on anticoagulant activity in vitro and ex vivo.  

 
 
 

Scheme 3.5: Hydrogenation of HS glycopolymer series.  
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Experimental methods and spectral data 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon atmosphere using dry, degassed solvents. Solvents were dried by passage through 

an activated alumina column under argon. All other reagents were purchased from Sigma-

Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise 

stated. Reaction temperatures were controlled by an IKAmag temperature modulator. Thin 

layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated 

plates (0.25 mm). Visualization of the developed chromatograms was performed by UV, 

cerium ammonium molybdate, or ninhydrin stain as necessary. Sephadex G-25 and G-50 

columns were used for size exclusion chromatography. 

 1H NMR and proton decoupling experiments were recorded on a Varian Mercury 

300 (300 MHz), Varian MR-400 (400 MHz), or Varian Inova 500 (500 MHz) spectrometer 

and are reported in parts per million (δ) relative to residual D2O (4.80 ppm). Data for the 1H 

NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, bs = 

broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), 

coupling constants in Hz, and integration. 13C NMR spectra were obtained on a Varian 

MR-400 (101 MHz) or Varian Inova 500 (125 MHz) spectrometer.   

The glycopolymers were characterized by 1H NMR spectroscopy and gel 

permeation chromatography (GPC). GPC for polymers 47 were carried out in an organic 

system, and GPC for polymer 10 was carried out in an aqueous systems. The organic GPC 

was carried out in 0.2 M LiBr in DMF on two I-series Mixed Bed Low Molecular Weight 

ViscoGel columns (Viscotek), connected in series with a DAWN EOS multi-angle laser 

light scattering (MALLS) detector and an Optilab DSP differential refractometer (both 
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from Wyatt Technology). The aqueous system was carried out in 100 mM NaNO3 and 200 

ppm NaN3 in H2O on a single OHpak SB-804 HQ column (Shodex), connected in series 

with a miniDAWN TREOSTM multi-angle laser light scattering (MALLS) detector and an 

Optilab® rEXTM refractive index detector (both from Wyatt Technology).  

 

 
 

Grubbs 2nd-generation bis-pyridine catalyst (IMesH2)(C5H5N)2(Cl)2Ru=CHPh (54)36,42 

Grubbs 2nd generation catalyst (1.0 g, 1.18 mmol) was dissolved in pyridine (7.5 mL, 92.5 

mmol). The reaction was stirred for 5 min at room temperature, during which time a color 

change from red to bright green was observed. To this reaction mixture, cold pentane (-10 

°C, 25 mL) was added, and a green solid precipitated.  The precipitate was filtered, washed 

with 4 x 15 mL of pentane, and dried under vacuum1 to afford catalyst 54 as a green 

powder (0.73 g, 85% yield). Alternatively, pentane was added to the solution of complex A 

and pyridine, and was left in the cold room overnight to facilitate crystallization of the 

desired catalyst 54.  

 

 

                                                
1 Do not leave prepared catalyst under vacuum for more than 15 minutes. The catalyst will decompose as a 
result of pyridine being pulled off from the complex.  
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Polymerization Procedure for Protected HS Monomers (47n). In a typical 

polymerization experiment, a small vial was charged with HS monomer 47 (22.0 mg, 0.021 

mmol) and a small stirbar under the flow of argon. To this was added dry, degassed 

methanol (150 µL) and dry, degassed DCE (750 µL). The ratio of MeOH:(CH2Cl)2 varied 

from 1:5 to 1:2.5 depending on the target polymer length. The monomer solution was 

heated and stirred at 55 °C for 10 min. The desired amount of bis-pyridine catalyst (0.013M 

stock solution in (CH2Cl)2) was then quickly added via syringe at 55 °C. The reaction 

mixture was stirred and heated at 55 °C for 2 h. At this point, the reaction mixture turned 

cloudy and the TLC of the crude reaction mixture showed complete consumption of 

starting material. The polymerization reaction was quenched by the addition of ethyl vinyl 

ether (300 µL). The solvent was removed in vacuo to obtain a solid precipitate, which was 

dissolved in a minimal amount of CH2Cl2:MeOH (10:1). The polymer was then 

precipitated by slowly adding this solution to 25 mL of hexanes in a 50 mL beaker. This 

solution was centrifuged, and the hexanes was decanted to obtain the HS polymer 47n as a 

white precipitate (n = number of repeating units determined by GPC). The 1H NMR of the 

crude product showed the disappearance of the norbornene olefinic protons ~6 ppm, 

indicating completion of the polymerization reaction. The resulting pellet was dried, and 

purified using a Sephadex G-50 column eluted with water. 1H NMR (400 MHz, D2O) δ 

7.39 – 7.11 (m, 10H), 4.94 – 4.87 (m, 1H), 4.81 – 4.68 (m, 1H), 4.69 – 4.60 (m, 1H), 4.61 – 

4.53 (m, 1H), 4.53 – 4.44 (m, 2H), 4.38 (bs, 3H), 4.28 (bs, 2H), 4.23 – 4.09 (m, 3H), 4.10 – 

47n

O
O-OOC

BnO

OBn

-O3SO
-O3SO

OSO3-

NHSO3-
O O O O

Ph
n
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4.00 (m, 1H), 4.00 – 3.74 (m, 4H), 3.73 – 3.37 (m, 6H), 4.23 – 4.09 (m, 2H), 2.22 – 1.99 

(m, 2H), 1.99 – 1.70 (m, 3H), 1.69 – 1.37 (m, 3H). 

 

 

Polymer Hydrogenation/hydrogenolysis. A mixture of the protected polymer 47n (21 

mg) and 20% Pd(OH)2/C (126 mg, 6x by weight) was dissolved in a mixed solvent of 

phosphate buffer (80 mM, pH = 7.2) and methanol (1/3 ratio, 2 mL). The reaction vessel 

was equipped with a hydrogen balloon, and the mixture was stirred at room temperature for 

2 days. The reaction mixture was filtered through a Millipore Nylon Membrane (pore size 

0.45 µM, Filter diameter 47 mm, Product #HNWP04700), and the membrane filter was 

washed with warm water (37 °C), and the filtrate was lyophilized. The dry residue was 

dissolved in H2O (500 µL), and purified through a Sephadex G-50 column eluted with 

water, and desalted using a Sephadex G-25 column in water. The product fractions were 

lyophilized to obtain the target polymers 57n. 1H NMR (500 MHz, D2O) δ 5.16 (bs, 1H), 

4.85 – 4.73 (m, 1H), 4.63 – 4.52 (m, 1H), 4.40 – 4.32 (m, 1H), 4.31 – 4.20 (m, 3H), 4.05 

(bs, 1H). 4.03 – 3.92 (bs, 3H), 3.82 – 3.53 (m, 16H), 3.51 – 3.44 (m, 1H), 3.37 – 3.22 (bs, 

2H), 1.89 – 1.70 (m, 2H), 1.68 – 1.55 (bs, 1H), 1.51 – 1.08 (m, 8H). 

 

Recovery of Polymers After GPC Runs 

Samples were prepared from fresh 0.2 M LiBr in DMF at 1 mg/mL concentrations. Both 

organic and aqueous GPCs have an injection loop of 100 uL. The injection loops were 

57n

O
O-OOC

HO

OH

-O3SO
-O3SO

OSO3-

NHSO3-
O O O O

Ph
n
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flushed with fresh eluent (DMF or ddH2O) to clean the loop prior to sample injection. 1 mL 

of the sample solution was injected into the injection loops, and the excess sample (0.9 mL) 

was collected into a conical tube at the end of the injection loop and lyophilized for 

recovery. This samples was run through G-25 columns with ddH2O, and were salted (0.2 M 

NaCl) then desalted (ddH2O) for further use in biological assays.  
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C h a p t e r  4  

EVALUATING THE ANTICOAGULANT ACTIVITY OF                                          
HEPARAN SULFATE GLYCOPOLYMERS 

 

Mechanism of anticoagulant activity 

Heparin is widely used as an anticoagulant drug, based on its ability to accelerate 

the rate at which AT inhibits serine proteases in the blood coagulation cascade. In the 

simplest terms, blood coagulation is the process that converts the circulating soluble blood 

protein, fibrinogen, into an insoluble fibrin gel; this gel plugs blood vessel leaks and stops 

the loss of blood.4 Despite the widespread clinical use of heparin and related LMWHs as 

anticoagulants, heparin based drugs have major disadvantages, such as their inherent 

structural diversity,5 their potential for contamination due to their origin from animal 

tissues, and the clinical occurrence of heparin-induced thrombocytopenia (HIT).  

Hemostasis is a process that stops bleeding by keeping blood within a damaged 

blood vessel, and is the first stage of wound healing. This process occurs when blood is 

present outside of the blood vessels, and is the body’s instinctive response to stop bleeding. 

During hemostasis, three steps occur in a rapid sequence: 1) the vascular spasm constricts 

blood vessels to reduce blood loss, 2) platelet plug formation forms a temporary seal of 

platelets to cover the break in the vessel wall, and 3) blood coagulation reinforces the 

platelet plug with fibrin threads and acts as a “molecular glue.”6  

The coagulation process begins almost instantly after injury to the blood vessel has 

damaged the endothelium lining. During ‘primary hemostasis,’ platelets immediately 

aggregate to form a plug at the site of injury to temporarily reduce the loss of blood. This 
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sets the stage for initiation of the coagulation cascade by presenting negatively charged 

phospholipids such as phosphatidylserine on the surface of the activated platelets or 

damaged cell membranes. ‘Secondary hemostasis’ occurs simultaneously, where 

coagulation factors in the blood plasma respond in a complex cascade to form fibrin strands 

to strengthen the platelet plug and begin the process of tissue repair.7 Within seconds of a 

blood vessel’s epithelial wall being disrupted, platelets begin to adhere to the sub-

endothelium surface; it takes approximately sixty seconds until the first fibrin strands begin 

to interdisperse around the wound, and platelet plugs are completely formed within several 

minutes.8 

Although damage to blood vessels is the primary trigger for hemostasis, the 

coagulation cascade of secondary hemostasis can be initiated by two pathways (Figure 

4.1):9 the extrinsic pathway is triggered by release of tissue factor (TF) from the site of 

injury of a damaged blood vessel, and the intrinsic pathway is stimulated by contact with a 

negatively charged surface. The explosive activation of the hemostatic system is possible 

because of the cascade system of coagulation, in which inactive zymogens and cofactors 

are sequentially activated by proteolytic cleavage. Following the initial triggers, a series of 

serine proteases is sequentially activated, culminating in the formation of thrombin, which 

is responsible for the conversion of soluble fibrinogen to the insoluble fibrin clot. Almost 

immediately, the fibrinolytic system is stimulated, limiting fibrin deposition to the site of 

injury, and feedback in the system of naturally occurring anticoagulants blocks further 

activation of the coagulation cascade. 
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The intrinsic pathway 

The intrinsic pathway, also called the contact pathway, is activated by the binding 

of factor XII to a negatively charged surface. This surface contact results in the formation 

of the primary complex on collagen by high-molecular-weight kininogen (HMWK), 

prekalllikrein, and fXII (Hageman factor). Here, prekallikrein is converted to kallikrein, 

which activates fXII to fXIIa. The intrinsic pathway continues when fXIIa activates fXI 

Figure 4.1: The coagulation cascade is divided into the intrinsic, extrinsic, and common pathways.1,2 (a) 
The intrinsic pathway is initiated by non-endothelial cells, followed by the activation of circulating 
coagulation factors, leading to the formation of fXa. (b) The extrinsic pathway is activated by tissue 
damage, releasing thromboplastin, calcium and phospholipids from the cell membrane. These factors 
activate factor VII, transforming factor X to its active form, factor Xa. Both the intrinsic and extrinsic 
pathways merge into a final common pathway. (c) The common pathway includes the conversion of 
prothrombin (factor II) to thrombin (factor IIa) under fXa catalysis, then thrombin cleavage of fibrinogen to 
form a fibrin clot.  
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into fXIa, fXIa activates fIX to fIXa, and the resulting fIXa forms a tenase complex with its 

co-factor fVIIIa, which finally converts fX to fXa. Proteins of the intrinsic pathway have 

diverse biological roles throughout the vascular system. Prekallikrein and HMWK are 

involved in the regulation of blood pressure and participate in fibrinolysis. Additionally, 

fXII can activate neutrophils and upregulate the release of cytokines from monocytes and 

macrophages.10 

Despite the diverse roles of the coagulation factors in the intrinsic pathway, the 

intrinsic pathway has low significance under normal physiological conditions. Although in 

vitro defects in the intrinsic pathway manifest as a prolongation of partial thromboplastin 

time (PTT), deficiencies in these factors do not cause bleeding. The most clinically 

significant activation of the intrinsic pathway is by contact of the vessel wall 

with lipoprotein particles, very-low-density-lipoproteins (VLDLs) and chylomicrons, 

which demonstrates the role of hyperlipidemia in the generation of atherosclerosis. The 

intrinsic pathway can also be activated by vessel wall contact with bacteria.  

 

The extrinsic pathway 

The main role of the extrinsic pathway is to generate a “thrombin burst,” where 

thrombin is very rapidly released; thrombin is the most important constituent of the 

coagulation cascade in terms of its feedback activation roles. When a blood vessel is 

damaged, TFs are released from the vessel, which triggers the extrinsic pathway (also 

called the tissue factor pathway). Unlike other members of the coagulation cascade, TF is 

always present as an active cofactor. Although TF is not normally expressed in cells that 

come into contact with plasma, upon vascular injury cells expressing membrane-bound TF 
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are exposed to plasma and can bind factor VII. The binding of factor VII to TF leads to the 

formation of TF-VIIa which, when attached to the cell membrane, becomes the most potent 

activator known of the coagulation cascade. Upon formation of TF-VIIa, fX is activated to 

fXa and platelets begin to stick to the damaged vessel wall and form a mesh of fibrin, 

trapping more platelets in a process called thrombosis.2 

 

The common pathway 

Following activation of fX to fXa by the intrinsic or extrinsic pathways, coagulation 

is maintained in a prothrombotic state until it is down-regulated by the feedback 

anticoagulant pathways. In this prothrombotic state, prothrombin is converted to thrombin; 

although thrombin has a large array of functions, its primary role is the conversion of 

fibrinogen to fibrin, the building block of a hemostatic plug. While fXa alone can catalyze 

the conversion of prothrombin to thrombin, this reaction is greatly accelerated by the 

addition of fVa and the binding of the resulting complex to the phospholipid surface of 

either activated platelets or monocytes. Upon activation of prothrombin to thrombin, 

soluble fibrinogen is converted into an insoluble fibrin polymer, which seals the site of 

injury and protects damaged tissue during wound healing. Here, dimeric fibrinogen 

molecules are cleaved by thrombin to produce soluble fibrin monomers, and subsequent 

non-covalent interactions result in the formation of fibers or strands that aggregate to form 

a mesh. The newly formed fibrin clot is then stabilized by cross-linking, which is catalyzed 

by thrombin-activated coagulation factor XIIIa. 
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The coagulant activity of these cascades is balanced by several natural 

anticoagulant mechanisms; binding of HS to AT represents the most important of these 

mechanisms. For both fXa and thrombin, heparin-bound AT acts by forming stable 1:1 

enzyme-inhibitor complexes, thus blocking the active sites and preventing blood from 

clotting. Despite its invaluable benefits in anticoagulant therapy, heparin has substantial 

limitations due to the negatively charged polysaccharide chains interacting with a number 

of biological components outside the coagulation cascade.11 

The main disadvantage of therapeutic heparin is its potential to cause HIT type 2,12 

an immunological response that involves the generation of antibodies against heparin-

platelet factor 4 (PF4) complexes (Figure 4.2).13 The origin of the heparin appears to have 

little bearing on this response, although bovine material is reported to be more 

immunogenic.14 The route of heparin administration also appears to have no effects on the 

prevalence of HIT. The sulfation grade of heparin, and the length of the oligosaccharide 

chains are expected to correlate with its ability to generate antibodies and subsequently 

Figure 4.2: Heparin-induced thrombocytopenia caused by heparin anticoagulant therapy.3 Heparin-induced 
thrombocytopaenia type 2 arises when antibodies are raised against a complex of heparin and PF4. 
Subsequent binding of platelet-surface PF4 by heparin results in immune-mediated platelet activation and 
possible thrombosis.  
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produce HIT. When HIT and thrombosis occur as sudden and acute life-threatening 

complications,15 it then becomes necessary to withdraw heparin and replace it with an 

alternative anticoagulant according to the patient’s immediate clinical risk.16 HIT occurs in 

0.5-2 % of patients treated with UF heparin and in less than 0.2 % of those treated with 

LMWH, although the generation of heparin-dependent antibodies is far more frequent.15,17 

HIT is now better recognized and managed; however, this disease remains difficult to 

diagnose in many clinical contexts, depending on the presence of other causes of 

thrombocytopenia.18  

Heparin polysaccharides with at least 12-14 sulfated oligosaccharide chain lengths 

are required to wrap around PF4 tetramers and render it antigenic; thus, LMWHs based on 

the anticoagulant pentasaccharide motif do not form immunoreactive complexes with 

PF4.19 Compared to UF heparin, LMWH compounds have risen in popularity over the past 

decade, due to their more attractive pharmacokinetic profile and reduction of side effects. 

Today, LMWH heparins have expanding applications and are the drug of choice for the 

acute-phase treatment of thrombosis and for its prevention in high-risk surgical or clinical 

contexts, even with the risk of HIT.20 

With our tetrasulfated HS glycopolymers in hand, we sought to understand their 

anticoagulant activity in vitro and ex vivo. Given that our glycopolymers were designed to 

incorporate key components of the anticoagulant pentasaccharide sulfation motif, we 

investigated their anticoagulant activity intersection of the intrinsic and extrinsic pathways, 

where the pentasaccharide selectively inhibits fXa. Additionally, as our glycopolymers 

were potentially long enough to interact with thrombin, we examined their ability to inhibit 

thrombin activity following fXa inhibition. To test the specific binding and inhibition of 
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fXa and thrombin, we turned to assays that allowed us to quantify the inhibition of fXa and 

thrombin in vitro, as well as methods to determine compound anticoagulant activities ex 

vivo in the presence of other coagulation factors. 

 

In vitro fXa and fIIa inhibition 

Several techniques, including clot-based tests, chromogenic or color assays, direct 

chemical measurements, and ELISAs, are used for coagulation testing. Of these techniques, 

chromogenic and clot-based assays are most commonly used; whereas chromogenic tests 

are designed to measure the level or function of specific factors, clotting assays provide a 

global assessment of coagulation function. We first evaluated the inhibitory activity of our 

glycopolymers on fXa and thrombin using enzyme specific chromogenic substrate assays.  

A chromogenic substrate is a compound that, after reaction with a specific enzyme, 

generates a colored product (Figure 4.3). Taking advantage of the specificity that serine 

proteases have for specific peptide bonds, a variety of synthetic substrates have been 

developed to match enzyme specificity. Many 

chromogenic substrates have been developed on 

the basis of short peptide fragments terminating 

with p-nitroaniline, which fluoresce upon 

cleavage. Fluorescence measurements, along 

with the specificity of chromogenic substrates, 

allow for the efficient determination of the 

activity of a single coagulation factor in the presence of other coagulation factors.  

Chromophore 

Enzyme 

Enzyme substrate 

Cleaved substrate 

Color change 

Figure 4.3: Mechanism of chromogenic 
substrates.  
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The anti-fXa chromogenic assay used the chromogenic substrate CS-11, which has 

a p-nitroaniline chromophore attached to a fXa-specific peptide fragment (Figure 4.3). 

When fXa cleaves the chromogenic substrate, it releases p-nitroaniline as a yellow color 

that can be detected with a spectrophotometer; the resulting fluorescence is directly 

proportional to the amount of fXa present. When a known amount of fXa is added to an in 

vitro sample containing heparin, the heparin inhibits fXa by binding to AT and fXa, leaving 

residual fXa to cleave the substrate. By determining fXa inhibitory activity at various 

concentrations of heparin compounds, we established half maximal inhibitory 

concentrations (IC50) values of heparin standards and the glycopolymer series. To 

determine the thrombin inhibitory activity, chromogenic substrate CS-01 was used (Figure 

4.3), following the same mechanism as described for the fXa substrate. 

Both the anti-fXa and anti-fIIa chromogenic substrate assays were used to 

determine the in vitro anticoagulant activity of each of the standards and HS glycopolymer 

samples. The anti-fXa and anti-fIIa activities were first determined using three controls: 

heparin (MW 20k), LMWH (MW 3.5k), and the pentasaccharide drug Arixtra (MW 1727) 

(Figure 4.5). The anti-fXa and fIIa activity of heparin were determined to be 16.5 nM and 

11.0 nM, respectively. In contrast, the anti-fXa activities of LMWH and Arixtra were 

Figure 4.4: Chemical structures of fXa and fIIa chromogenic substrates, and mechanisms of action. fXa 
chromogenic assays use substrate CS-11, and fIIa chromogenic assays us CS-01. 

Heparin + AT ! [AT-Hep.] 
[AT-Hep.] + [fXa (excess)] ! [fXa-AT-Hep.] + [residual fXa] 
[residual fXa] + Substrate ! Peptide + pNA 

fXa substrate: Biophen CS-11 

Heparin + AT ! [AT-Hep.] 
[AT-Hep.] + [fIIa (excess)] ! [fXa-AT-Hep.] + [residual fIIa] 
[residual fIIa] + Substrate ! Peptide + pNA 

fIIa substrate: Biophen CS-01 
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Figure 4.5: Anti-fXa and anti-thrombin activity of controls. Heparin has an anti-fXa activity of 16.5 nM 
(A) and anti-fIIa activity 11.0 nM (B); LMWH has an anti-fXa activity of 526 nM (C), and has no anti-fIIa 
activity (D); Arixtra has anti-fXa activity of 11.0 nM (E), but has no anti-fIIa activity (F).   
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determined to be 526 nM and 11.0 nM (Table 4.1, entries 1-3). As expected, heparin had 

the highest IC50 values of the three controls. While LMWH displayed significantly lower 

anti-fXa activity than heparin, Arixtra exhibited similar potency to heparin, which can be 

attributed to its specificity in targeting fXa. Neither LMWH nor Arixtra displayed anti-fIIa 

activity, which reflects previously published observations that shorter heparin chains do not 

have long enough charged polysaccharides to bind thrombin after AT binding and 

activation.  

 We first sought to understand the effects of sulfation pattern specificity of our 

glycopolymers. The anti-fXa and anti-fIIa activity of polymer 5745, the longest of the 

tetrasulfated HS polymer series (n = 45), was compared to the activity of a trisulfated HS 

polymer21 59 (Figure 4.7). Compared to the tetrasulfated glycopolymers, the trisulfated HS 

Figure 4.6: Sulfation dependence of Anti-fXa (A) and anti-thrombin (B) activity of polymer 5745, and 59. 
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polymer lacks the 3-O-sulfate group on the glucosamine residue, which is known to be 

critical for the anticoagulant activity of the biologically active HS pentasaccharide. To our 

delight, the anti-fXa (Figure 4.7, A) and anti-fIIa (Figure 4.7, B) activities were completely 

abolished with the elimination of the critical 3-O-sulfate group (Table 4.1, entry 12). It is 

important to note that the trisulfated polymer is significantly longer than the tetrasulfated 

polymer (n = 155 vs n = 45). The contrast in activity, despite the differences in polymer 

lengths and overall charge, emphasizes the significance of sulfation pattern specificity for 

biological activity in the context of blood coagulation.   

It is well understood that the allosteric activation of AT after heparin 

pentasaccharide-binding results in the recognition and inhibition of fXa.22,23 In contrast, 

thrombin inhibition requires both AT and thrombin to bind to the same heparin chain; 

thrombin is electrostatically attracted to the negative charges along the heparin 

polysaccharide chain of the heparin-bound AT complex. Previous studies have shown that 

a heparin polysaccharide of 14 and 20 saccharide units is required for thrombin binding,24-

Figure 4.7: Anti-fXa (A) and anti-thrombin (B) activity of short polymers (574, 576, 578).   
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27 and we envisioned mimicking these extended domains by tuning polymer lengths. An 

extended display of repeating HS disaccharides could, in theory, accommodate AT-binding 

by the active sulfation motif, and still be able to attract thrombin with the remaining 

disaccharide units.  

The polymers synthesized in Chapter 3 were tested for their anti-fXa and anti-fIIa 

activity using the previously mentioned chromogenic substrate assays. Based on their 

inhibitory activities, we could split the polymer series into three groups: short polymers 

574,6,8, medium-length polymers 5710,15, and long polymers 5730,45. The shortest polymers 

(574 and 576) did not exhibit either anti-fXa or fIIa activity, but polymer 578 began to 

display some measurable inhibition for both assays at high concentrations (Figure 4.8). 

Similarly, the medium length polymers 5710 and 5715 (Figure 4.8) displayed measurable 

inhibition for both assays, but their inhibitory effects were not high enough to determine 

IC50 values.  

In stark contrast to the short and medium length polymers, the longer polymers 5730 

Figure 4.8: Anti-fXa (A) and anti-thrombin (B) activity of medium-length polymers (5710, 5715).   
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and 5745 displayed potent fXa and fIIa inhibitory activity (Figure 4.9). Polymer 5730 had an 

anti-fXa activity of 684 nM and anti-fIIa activity of 577 nM (Table 4.1, entry 9). The 

longest polymer 5745, comprised of 45 repeating disaccharide units, displayed even higher 

potency, with an anti-fXa activity of 5.76 nM and anti-fIIa activity of 0.114 nM (Table 4.1, 

entry 10). Compared to the controls, 5730 exhibited anti-fXa activity comparable to 

Figure 4.9: Anti-fXa (A) and anti-thrombin (B) activity of long polymers (5730, 5745).    
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Table 4.1 Factor Xa and thrombin inhibition activity of glycopolymer series.  

 
Entry 

 
Polymer 

 
# saccharides 

Anti-fXa  
IC50 (nM) 

Anti-fIIa  
IC50 (nM) 

1 Heparin 45-50 16.5 11.0 
2 LMWH 4-5 526 >1000 
3 Arixtra 5 11.0 >1000 
4 574 8 >1000 >1000
5 576 12 >1000 >1000 
6 578 16 >1000 >1000 
7 5710 20 >1000 >1000 
8 5715 30 1 473 >1000 
9 5730 60 684 577 
10 5745 90 5.76 0.114 
11        59 310 >1000 >1000 
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LMWH, but had strong anti-fIIa activity unlike LMWH. Most importantly, the longest 

polymer 5745 proved itself to have 3 fold higher anti-fXa activity and 100 fold higher anti-

fIIa activity compared to fXa and thrombin inhibition of the heparin control (Table 4.1). 

The dramatic increase in thrombin inhibition is thought to be a result of the extremely high 

charge density of the 45-mer polymer. Most heparin chains found in nature are di- or tri-

sulfated disaccharides, so it was somewhat expected that the high charge of our HS 

disaccharide polymers would interact with coagulation factors such as thrombin in this 

fashion, especially since thrombin is known to form complexes by interacting with the 

negative charges of heparin chains.  

  An important goal for this project was to synthesize anticoagulant HS mimetics 

that had reduced side effects. Following the evaluation of our polymers’ anti-fXa and anti-

fIIa activity, we examined the potential for our HS glycomimetics to cause HIT. Similar to 

the electrostatic interactions required for thrombin inhibition, the negatively charged sulfate 

groups attract the positively charged lysine and arginine groups of PF4, resulting in 

complexes against which an immune response is formed. Based on previously published 

literature reporting 12-14 oligosaccharide chain lengths causing PF4 neutralization, we 

hypothesized that our polymers may have the same antigenic results.  

PF4 neutralization was tested by subjecting the heparin standards and polymers to 

the anti-fIIa chromogenic substrate assay in the presence of PF4. Aside from the addition of 

PF4, all other reaction conditions were kept constant. Heparin was first used as a control to 

determine an appropriate concentration of PF4; the addition of 20 µg/mL PF4 completely 

neutralized fIIa inhibition by heparin (Figure 4.10, A). Unfortunately, subjecting 

glycopolymers 5730 and 5745 also resulted in neutralization of thrombin inhibition; polymer 
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5730 was only partially neutralized (~20%), while polymer 5745 was completely neutralized 

as observed with the heparin standard.  

 Based on these in vitro studies, we were able to understand how our polymers 

interacted with the key coagulation factors fXa and fIIa in the context of polymer lengths. 

Short polymers, even with the key sulfation moieties from the anticoagulant 

pentasaccharide, did not display any anticoagulant activity. With increasing chain length, 

Figure 4.10: PF4 neutralization of anti-thrombin activity of heparin (A), polymer 5730 (B), and polymer 
5745 (C). 
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we were able to observe increased in vitro anticoagulant activity. Importantly, medium 

length glycopolymers behaved similarly to LMWH, with moderate fXa activity and no 

thrombin inhibition. In contrast, the longer polymers behaved very much like heparin, 

where the polymers exhibited potent fXa and thrombin inhibitory activity. Our findings 

support the notion that an extended pentasaccharide domain can act to mimic the 

electronegative template of natural heparin polysaccharides, with which thrombin can 

interact with to form a heparin-AT-fIIa complex to inhibit blood coagulation.  

The first set of chromogenic substrate assays was used to determine the activity of 

our glycopolymers with purified fXa and thrombin, which are the two main coagulation 

factors at the junction of the intrinsic and extrinsic pathways. While fXa and thrombin are 

the critical components that interact with heparin-based anticoagulants, it was important to 

evaluate their activity in a more native environment, and in the presence of various other 

plasma factors. To this end, we subjected the glycopolymers to the two most commonly 

used ex vivo clot-time assays. 

 

Ex vivo activity of HS glycopolymers in human plasma 

Clot-based assays are commonly used to evaluate patients with suspected bleeding 

abnormalities and to monitor anticoagulant therapy.28 Prothrombin time (PT) and activated 

partial thromboplastin time (aPTT) tests help differentiate intrinsic, extrinsic, and common, 

and multiple pathway deficiencies. When used in conjunction, these tests allow clinicians 

to specifically detect the location of coagulation disorders to one or more of the three 

pathways, and are the testing protocols of choice when testing for coagulation disorders or 

monitoring progress after heparin therapy.  
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PT and its derived measures of prothrombin ratio (PR) and international normalized 

ratio (INR) are measures of the extrinsic and common coagulation pathways. PT 

specifically measures the classic factors of the extrinsic and common pathways: factors I 

(fibrinogen), II (prothrombin), V, VII, and X, and is clinically used to determine the 

clotting tendency of blood in the measure of warfarin dosage, liver damage, and vitamin K 

status. PT times are performed by measuring the clotting time upon addition of a 

thromboplastin reagent, which contains tissue factor and calcium, to plasma, which then 

initiates the extrinsic pathway (Figure 4.11). Typically, PT reagents contain excess 

phospholipid such that nonspecific inhibitors, which react with anionic phospholipids, do 

not prolong clot times.29 PT times are prolonged with deficiencies of factors VII, X, V, 

prothrombin, or fibrinogen and by antibodies directed against these factors. Additionally, 

Figure 4.11: Activated partial thromboplastin time (aPTT) and prothrombin (PT) time tests. The intrinsic 
pathway is activated by addition of a contact activator, calcium, and phospholipids to plasma samples; the 
efficacy of the intrinsic and common pathways is measured by aPTT tests. The extrinsic pathway is 
activated by tissue factor (TF), calcium, and phosphoplipids; the efficacy of the extrinsic and common 
pathways is measured by PT tests.  
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patients with inhibitors of fibrinogen-to-fibrin conversion, including high doses of heparin 

or warfarin, and the presence of fibrin degradation products result in abnormal PT times. 

While PT times vary with reagents and coagulometers, normal times typically range 

between 10-14 seconds.30 

While PT tests measure abnormalities in the extrinsic and common pathways, aPTT 

tests are a performance indicator measuring the efficacy of the intrinsic and common 

coagulation pathways. Normal aPTT times require the presence of the coagulation factors I, 

II, V, VIII, IX, X, XI, and XII; prolonged clot times are commonly observed with 

deficiencies of contact factors such as IX, VIII, X, V, prothrombin, or fibrinogen. 

Antiphospholipid antibodies, deficiencies in coagulation factors (hemophilia), and sepsis 

(coagulation factor consumption) may also prolong aPTT. Specific factor inhibitors, fibrin 

degradation products, and anticoagulants also prolong the aPTT, although aPTT is less 

sensitive to warfarin than is the PT.31 aPTT is performed by first adding a surface activator 

(e.g., kaolin, Celite, ellagic acid, or silica) and diluted phospholipid (e.g., cephalin) to 

citrated plasma (Figure 4.11);30 the phospholipid in this assay is called partial 

thromboplastin because TF is absent, and normal clot times typically range between 22-45 

seconds.32  

Our HS glycopolymers were each subjected to aPTT and PT tests in human plasma 

to test their anticoagulant activity ex vivo. Initially, varying concentrations of standards 

were subjected to the clot tests to evaluate appropriate sample concentrations. High sample 

concentrations (150 µg/mL) were used for all standard and polymer samples to increase the 

range of clot times; this allowed us to observe more easily the differences between aPTT 

and PT values. 3.2% Citrate concentration in flash frozen human platelet-poor plasma (PPP) 
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was necessary for these assays, as higher citrate concentrations (3.8%) did not give clot 

times within the instrument detection range. Samples without added anticoagulants 

produced clot times within the expected normal ranges (Table 4.2, entry 1). 

The aPTT and PT values of the standards reflected the trends obtained from the in 

vitro chromogenic substrate assays (Table 4.2, entries 2-4). At sample concentrations of 

150 µg/mL, heparin displayed an aPTT time of greater than 180 seconds (maximum 

instrument limit), and a PT time of 84 seconds. LMWH had a slightly lower aPTT time of 

117 seconds, and Arixtra had an even lower aPTT time of 78 seconds; neither LMWH nor 

Arixtra had noticeably prolonged PT times. As expected, the higher MW of LMWH (MW 

3500) compared to Arixtra resulted in prolonged aPTT times, likely because Arixtra reacts 

selectively with fXa, while LMWH is known to interact with other coagulation factors in 

the intrinsic pathway.33 

With the normal and control aPTT and PT times in hand, we tested our polymer 

series to examine the effects of polymer length and sulfation pattern on their anticoagulant 

Entry Polymer # saccharides APTT (s) PT (s) 
1 None n/a 31.2 ± 0.25 13.3 ± 0.06 
2 Heparin 45-50 >180 84.2 ± 17.8 
3 LMWH 4-5 116.9 ± 3.00 14.8 ± 0.15 
4 Arixtra 5 78.3 ± 0.40 15.1 ± 0.31 
5 574  8 32.5 ± 0.31 13.2 ± 0.1 
6 576 12 32.2 ± 0.17 13.2 ± 0.26 
7 578 16 not determined not determined 
8 5710 20 59.6 ± 0.32 15.8 ± 0.4 
9 5715 30 82.9 ± 0.55 23.4 ± 1.85 

10 5730 60 100.8 ± 0.52 50.8 ± 6.3 
11 5745 90 119.4 ± 0.50 52.2 ± 7.83 
12        59           310 46.1 ± 0.38  12.7 ± 0.06 

 
Table 4.2. Activated partial thromboplastin time (APTT) and prothrombin time (PT) experiments. Assays 
were determined using citrated human plasma. The number of monosaccharide units are noted for 
comparison of standards and polymers.  
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activities ex vivo. Glycopolymer 59, which lacks the critical 3-O-sulfate group, exhibited a 

slight prolongation in aPTT clot time, but produced PT times within the normal range. 

When studying the effects of length dependence on ex vivo anticoagulant activity, our 

glycopolymers 57n exhibited activity in a length-dependent manner, similar to our 

observations in vitro. In agreement with the chromogenic substrate assays, the shortest 

polymers 544-8 did not display noticeable prolongation of aPTT or PT times, producing 

normal clot times (Table 4.2, entries 5-7).  

The glycopolymers 5710,15,30,45 prolonged both aPTT and PT clot times, with the 

most interesting activity observed with the longest polymers. Polymer 5710 exhibited 

activity very similar to that of Arixtra, where aPTT times were prolonged moderately while 

producing normal PT times  (Table 4.2, entry 8). In contrast, 5715 prolonged aPTT times 

with clot times close to Arixtra, but moderately increased PT times to 23 seconds; this 

increase in PT times is characteristic of the anticoagulant activity of heparin, albeit to a 

lesser degree (Table 4.2, entry 9). We began to observe significantly increased clot times 

for both aPTT and PT for polymers 5730 and 5745. Both polymers had significantly 

prolonged aPTT times with values similar to LMWH (100-120 sec). Although these aPTT 

times mirrored values produced by LMWH, the PT times of polymers 5730 and 5745 

approached values observed with heparin. Interestingly, based on the extents to which our 

glycopolymers prolong aPTT and PT clot times, they exhibit hybrid properties by 

recapitulating the anticoagulant activity of both heparin and LMWH/Arixtra.  

 Based on observations of polymers’ in vitro and ex vivo activity in the aPTT and PT 

assays, we have demonstrated how we are able to simultaneously recapitulate anticoagulant 

properties of both heparin and LMWH/Arixtra by chemically controlling the HS 
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glycopolymer structures. We found that at least 10 repeating units are required for effective 

anticoagulant activity in vivo and ex vivo. In contrast, the longer polymers exhibit 

interesting hybrid characteristics, by simultaneously recapitulating anticoagulant properties 

of both LMWH/Arixtra and heparin. With increasing polymer lengths, we observed that 

our HS glycopolymers could prolong aPTT clot times close to those of Arixtra and LMWH, 

and also moderately prolong PT clot times, which is characteristic of the anticoagulant 

activity of heparin.  

  

Discussion and conclusions 

Heparin-based therapeutics are essential to modern medicine and will likely remain 

an important class of drugs. Modern biotechnological methods have advanced 

manufacturing processes for heparins through improvements in the extractive methods 

developed in the early 20th century and more modern chemoenzymatic and synthetic 

methods. By assessing the effects of structural variations on the anticoagulant 

pentasaccharide, structure-activity relationships have been established and utilized towards 

the synthesis of a new generation of heparin therapeutics.  

 We have described, starting from a detailed analysis of the interactions between 

heparin and the coagulation factors AT and thrombin, how we were able to design and 

synthesize a novel anticoagulant HS mimetic glycopolymer. By displaying the key 

sulfation moieties of the anticoagulant heparan sulfate pentasaccharide derivative on a 

disaccharide pendant homopolymer, we have been able to mimic the multivalent nature of 

the natural polysaccharides. Our goal was to recapitulate the three-dimensional display of 
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recognition epitopes by installing stereoselective glycosidic bonds of HS, and sulfate 

groups onto a disaccharide for the selective recognition by key coagulation factors. 

A series of glycopolymers were synthesized, which comprise of repeating 

tetrasulfated HS disaccharides. These polymers exhibited in vitro and ex vivo anticoagulant 

activity in a sulfation dependent manner; polymers lacking the critical 3-O-sulfate group 

had negligible activity in all assays. Two of the longest polymers, with 30 and 45 repeating 

disaccharide units, displayed potent fXa and thrombin inhibition in vitro. In particular, the 

glycopolymer with 45 repeating units exhibited anti-fXa activity 10-fold higher than 

heparin and Arixtra, and 2-fold higher inhibitory activity than LMWH. Most notably, this 

same polymer displayed substantially higher fIIa inhibitory activity in comparison to 

heparin, with a 100-fold increase in activity. Although this observed thrombin inhibition 

was neutralized by the addition of PF4, we believe that we may be able to tune this effect 

by altering the chemical properties of our polymers during polymerization.  

  These in vitro chromogenic substrate assays emphasize the significance of both 

sulfation pattern and the length of polymers required for anticoagulant activity. The 

abolishment of in vitro fXa and thrombin inhibition by trisulfated polymer 59 emphasizes 

and supports previous studies that have determined the necessity of the 3-O-sulfate group 

of glucosamine for anticoagulant activity. The increase in anti-thrombin activity in a 

length-dependent manner supports the accepted mechanism for thrombin inhibition, where 

the formation of a ternary complex involving heparin, thrombin and AT requires negatively 

charged polysaccharide chains of at least 14-20 monosaccharide units. We have observed 

that our polymers require at least 30 repeating units (60 monosaccharide units) to be long 

enough to bind both AT and thrombin. We believe that the high charge density of our 
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polymers is responsible for the efficient binding of AT and thrombin, which occurs mainly 

through electrostatic interactions.  

 Following the in vitro assays, ex vivo clotting assays were conducted in human 

plasma, which revealed interesting length-dependent anticoagulant activity of our 

glycopolymers. aPPT and PT tests resulted in the prolonged clot times of the polymers with 

10, 15, 30 and 45 repeating disaccharide units. Specifically, polymer 5710 only moderately 

prolonged aPTT clot times, exhibiting anticoagulant activity comparable to Arixtra. In 

contrast, polymer 5715 affected both aPTT and PT times, and exhibited aPTT times 

characteristic of Arixtra, and prolonged PT times characteristic to heparin. The longer 

polymers 5730 and 5745 prolonged both aPTT and PT clot times substantially, though the 

observed values were lower than those produced by heparin. aPTT times were 

characteristic to clot times resulting from LMWH, while prolongation of PT clot times 

were, again, characteristic to heparin. Together, these observations reflect the tunable 

anticoagulant activity of our HS glycopolymers, where we can modulate the LMWH-like 

or heparin-like anticoagulant activity by altering polymer lengths.  

Our polymers have a number of advantages over the heterogeneous, animal-sourced 

heparin, which remains the anticoagulant drug of choice. The homogeneity of our 

glycopolymers should presumably yield more predictable biological activity, and minimize 

side effects that result from undesired interactions with competing GAG-based structures 

(i.e., over-sulfated CS). Based on the partial neutralization of 5730 by PF4 in fIIa inhibition 

in vitro, we believe that our polymers can successfully incorporate hybrid anticoagulant 

properties of heparin and its low molecular weight variants, while diminishing potential 

side effects, such as PF4-mediated immune responses. We have the ability to utilize 
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chemistry to tune such chemical properties of these HS glycopolymers from late-stage 

monomer intermediates; we can alter the sulfation pattern, length of the PEG linker, and 

polymer architecture to modulate biological activity. Additionally, the predictability of 

ROMP chemistry gives us the ability to control the display and distribution of the bioactive 

disaccharide moieties using spacer groups, as well as polymer architectures. We believe 

that the versatility and synthetic accessibility of these HS glycopolymers are an attractive 

alternative to commercially available anticoagulants, and are a powerful tool in 

understanding the effects of sulfation pattern specificity and multivalency in the interaction 

between GAG mimetic structures and their biological receptors.  

 In summary, we have synthesized a series of novel HS mimetic glycopolymers 

through ROMP of tetrasulfated HS disaccharide monomers. These polymers recapitulate 

the key features of anticoagulant HS GAGs by displaying the critical sulfate groups found 

on a biologically active HS pentasaccharide motif. The use of polymerization chemistry 

greatly simplifies the synthesis of such complex GAG structures, providing a facile method 

of generating homogeneous GAG-based macromolecules with tunable biological and 

chemical properties. These studies emphasize the significance of multivalent interactions of 

GAG mimetics, and highlights the extent to which sulfation pattern specificity affects 

biological activity. The presented method of preparing carbohydrate-mimetics is a useful 

method of efficiently generating GAG-like molecules. By taking advantage of the 

multivalency effects of carbohydrate-protein interactions, such polymer scaffolds could 

potentially recapitulate many different biological functions and be useful as synthetically 

accessibly carbohydrate-based therapeutics. 
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Experimental methods 

Heparin was purchased from Sigma-Aldrich and Neoparin (Alameda, CA), low 

molecular weight heparin was purchased from Neoparin (Alameda, CA). Arixtra® was 

generously provided by Professor Jian Liu at the University of North Carolina at Chapel 

Hill. BIOPHEN Heparin Anti-Xa (2 stages) USP/EP (Product # A221010-USP) kits from 

Aniara (West Chester, OH) were used for the factor Xa activity assays. BIOPHEN Heparin 

Anti-IIa (2 stages) USP/EP (Product # A221025-USP) chromogenic assay kits from Aniara 

were used for the factor IIa activity assays. Human platelet factor 4 was purchased from 

Haematologic Technologies, Inc. (Product # HPF4-0180). The chromogenic anti-fXa and 

anti-fIIa methods for measuring homogeneous heparin in plasma or in purified systems 

using a two stage method are in compliance with Pharmacopoeias (USP, EP) and FDA 

guidelines. The clot time assays were performed by the Clinical & Translational Research 

Laboratory, Department of Pathology & Laboratory Medicine at the University of 

California, Los Angeles using the Sysmex® CA-1500 Coagulation Analyzer (Siemens AG, 

Erlangen, Germany).  

 

Chromogenic Assays for the Measurement of Anti-fXa and Anti-thrombin Activity 

Factor Xa Activity. All reagents were prepared according to manufacturer instructions and 

incubated at 37 °C for 15 min. Varying concentrations of heparin, low molecular weight 

heparin, Arixtra® or synthetic glycopolymers (40 µL) and antithrombin (40 µL) were 

added to a microcentrifuge tube, mixed, and incubated at 37 °C for 2 min. To this, Factor 

Xa (40 µL) was added and was incubated at 37 °C for exactly 2 min (stage 1), then factor 

Xa chromogenic substrate (40 µL) was added. After exactly 2 min (stage 2), the reaction 
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was stopped by introducing (240 µL) citric acid (20 g/L). Absorbance at 405 nm was 

measured. The sample blank was obtained by mixing the reagents in reverse order from 

that of the test i.e.: Citric acid (20 g/L), factor Xa substrate, factor Xa, antithrombin, and 

heparinized sample. The sample blank value was deducted from the absorbance measured 

for the corresponding assay.    

 

Factor IIa Activity. All reagents were prepared according to manufacturer instructions and 

incubated at 37 °C for 15 min. Varying concentrations of heparin, low molecular weight 

heparin, or synthetic glycopolymers (40 µL), and antithrombin (40 µL) were added to a 

microcentrifuge tube, mixed, and incubated at 37 °C for 2 min. To this, thrombin (40 µL) 

was added and was incubated at 37 °C for exactly 2 min (stage 1), then Thrombin 

chromogenic substrate (40 µL) was added. After exactly 2 min (stage 2), the reaction was 

stopped by introducing (240 µL) citric acid (20 g/L). Absorbance at 405 nm was measured. 

The sample blank was obtained by mixing the reagents in reverse order from that of the test 

i.e., Citric acid (20 g/L), factor Xa substrate, factor Xa, Antithrombin and heparinized 

sample. The sample blank value was deducted from the absorbance measured for the 

corresponding assay. 

 

Platelet Factor 4 Neutralization. All reagents were prepared according to manufacturer 

instructions and incubated at 37 °C for 15 min. Varying concentrations of heparin, low 

molecular weight heparin, or synthetic glycopolymers (40 µL) and antithrombin (40 µL) 

were added to a microcentrifuge tube, mixed, and incubated at 37 °C for 2 min. To this, 

thrombin (40 µL) was added and was incubated at 37 °C for exactly 2 min (stage 1) in the 
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presence or absence of PF4 (20 µg mL-1). Thrombin chromogenic substrate (40 µL) was 

then added and incubated for exactly 2 min (stage 2). The reaction was stopped by 

introducing (240 µL) citric acid (20 g/L), and absorbance at 405 nm was measured. The 

sample blank was obtained by mixing the reagents in reverse order from that of the test i.e., 

Citric acid (20 g/L), factor Xa substrate, factor Xa, Antithrombin and heparinized sample. 

The sample blank value was deducted from the absorbance measured for the corresponding 

assay. 

 

Activated Partial Thromboplastin Time and Prothrombin Time Analysis 

Citrated Plasma. Flash frozen, platelet-poor human plasma with 3.2% citrate was 

purchased from Valley Biomedical (Winchester, VA) for coagulation assays. Samples were 

thawed at room temperature over 30 min and used immediately for aPPT and PT assays. 

 

Activated Partial Thromboplastin Time (aPTT) Analysis.34 Samples were prepared by 

mixing 300 µL of the heparin standard or glycopolymer in 0.9% saline with 2.7 mL citrated 

human plasma. The tube was inverted 3 times to mix the sample thoroughly. Dade® 

Actin® activated cephaloplastin reagent was used as a plasma activator. To 100 µL of the 

plasma/anticoagulant sample, 100 µL of prewarmed aPTT reagent (0.2% ellagic acid) was 

added. After incubation for 4 min, clotting was initiated by adding 100 µL of 25 mM CaCl2 

at 37 ºC and the time to clot formation was measured. Clotting time in the absence of an 

anticoagulant was determined using 300 µL saline solution water. Each clotting assay was 

performed in triplicate.  
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Prothrombin Time (PT) Determination Analysis.35 Samples were prepared by mixing 

300 µL of the heparin standard or glycopolymer in 0.9% saline with 2.7 mL citrated human 

plasma. The tube was inverted 3 times to mix the sample thoroughly. Dade® Innovin® 

reagent was reconstituted according to manufacturer’s directions and warmed to 37 ºC. 100 

µL of the submitted plasma/anticoagulant sample was incubated for 3 min at 37 ºC 

followed by the addition of 200 µL prewarmed thromboplastin, and the time to clot 

formation was measured. Clotting time in the absence of an anticoagulant was determined 

using 300 µL saline solution. Each clotting assay was performed in triplicate. 
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A p p e n d i x  

PROGRESS TOWARDS CYCLOOCTENE-BASED                                                   
HEPARAN SULFATE GLYCOPOLYMERS 

  
Our lab has been working on the development of synthetically accessible CS and 

HS mimetics that retain key properties of natural polysaccharides. These synthetic 

polysaccharides have defined sulfation sequences and tunable chemical and biological 

properties. Our initial approach towards synthesizing HS mimetic glycopolymers utilized a 

cyclooctene-based polymer backbone to furnish polymers with good control over chain 

length and polydispersity. Additionally, reduction of the unsaturated backbone was 

expected to allow for maximum conformational flexibility to facilitate efficient protein 

interactions. This chemistry was successfully employed in the synthesis of neuroactive CS 

glycomimetics.36 The goal of this portion of the HS project was to synthesize two polymers 

with opposing carbohydrate sequences, and to evaluate their anticoagulant activity as seen 

in Chapter 4.  

 

Synthetic design of cyclooctene-based HS glycopolymers 

The rationale behind the design of the cyclooctene HS glycopolymers is identical to 

that presented for the synthesis of norbornene-based HS glycopolymers. The retrosynthetic 

schemes (Scheme A.1) of the two polymers are very similar, and revolve around three main 

building blocks: orthogonally protected IdoA, GlcA monosaccharides, and a cyclooctene-

diethylene glycol linker. The target disaccharide GlcNS3S6S-α-(1à4)-IdoA2S is based on 

the critical sulfate groups found on the anticoagulant HS pentasaccharide, and the 



 162 

orthogonal protecting group strategy allows access to a variety of different sulfation 

patterns. Global deprotection of esters allows for simultaneous O-sulfation, minimizing the 

number of synthetic steps to functionalize the disaccharide monomer. Similar to the 

norbornene-based HS glycopolymers, sulfated monomers were used in the polymerization 

reactions to ensure a high degree of control over the sulfation pattern. Further details 

regarding the rationale behind the carbohydrate structures and protecting group strategy can 

be found in Chapter 2.  

Scheme A.1: Retrosynthesis of cyclooctene-based HS glycopolymers. Bn = benzyl, Me = methyl, Ac = 
acetyl, Bz = benzoyl, TBS = tert-butyldimethylsilyl. 
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A cyclooctene polymer backbone was selected before norbornene because we 

expected its hydrocarbon backbone to offer a more flexible scaffold, allowing it to adapt 

better to relevant receptors. While the ring-strain is not as high as that of norbornene, it is 

sufficient to thermodynamically drive the ROMP reaction towards the desired product. As 

described in Chapter 3, ROMP chemistry was utilized to accommodate the functional 

complexity of the sulfated HS monomers to afford glycopolymers of controllable length 

and narrow polydispersities. 

  

Synthesis of cyclooctene linker 

 The cyclooctene-based linker is comprised of a cyclooctene unit and a diethylene 

glycol chain (Scheme A.2), much like the norbornene-diethylene glycol linker. 4-

cyclooctenol was obtained by epoxidation of commercially available cyclooctadiene 59 

with meta-chloroperoxybenzoic acid (mCPBA). The resulting epixide 60 was opened with 

lithium aluminum hydride (LAH) to afford the cyclooctene alcohol 61. The 

methanesulfonyl (Ms) and t-butyldimethylsilyl (TBS) protected diethylene glycol 28 is 

identical to the one used for the norbornene linker synthesis. 4-Cyclooctenol was coupled 

to the protected diethylene glycol chain using NaH in DMF, and the resulting TBS 

protected linker intermediate was desilylated using HF"pyridine. All reactions are highly 

Scheme A.2: Synthesis of norbornene-based ROMP linker. mCPBA = m-Chloroperoxybenzoic acid, LAH 
= lithium aluminum hydride, MS = methanesulfonyl, TBS = tert-butyldimethylsilyl.  
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scalable and have been optimized to proceed at up to a 30 gram reaction scale.  

 

Coupling of Glucosamine and Cyclooctenol Linker 

In order to efficiently couple the glucosamine monomer and the cyclooctenol 

linker, activation of the monomer’s anomeric carbon was necessary for the reaction 

proceed cleanly with the free hydroxyl group of the linker. Imidate formation is commonly 

used in carbohydrate chemistry because of its high reactivity and stability to silica gel 

chromatography, and was therefore the chosen method of activation. The orthogonally 

protected GlcA trichloroacetimidate 10 was reacted with cyclooctene linker 62 using a 

Reagent Solvent Conditions Time Results 
TMSOTf (0.2 eq) CH2Cl2 -78 °C! rt 2 hr 70% "-product 
TMSOTf (0.2 eq) CH2Cl2 -78 °C!-60 °C  12 hr Reaction incomplete 
TMSOTf (0.2 eq) CH2Cl2 -78 °C!  -40 °C 2 hr 85%  !-product 
TMSOTf (0.2 eq) Et2O -78 °C ! -20 °C 2 hr "-product + 3 others 
CSA (0.1 eq) CH2Cl2 Room temp 2 hr "-product + 4 others 
CSA (0.1 eq) Et2O -20 °C 2 hr "-prod. + 4 others 
TfOH (0.1 eq) Et2O:CH2Cl2 Room temp 2 hr "-prod. > #-prod.
TsOH (0.1 eq) Et2O -20 °C 2 hr # –prod. > " –prod. 
TsOH (0.5 eq) Et2O -20 °C 2 hr "-prod. > #-prod. 

+ major byproduct 
TsOH (1 eq) Et2O -20 °C 2 hr "-prod. > #-prod. 

+ major byproduct 
+ decomposition 

 

OTBSO
BzO

OAc

N3
O CCl3

NH

O
O

OH

+ OTBSO
BzO

OAc

N3

O
O

O
10

62

63

Table A.1: Coupling of protected glcA and cyclooctene linker. TBS = tert-butyldimethylsilyl, Bz = 
benzoyl, Ac = acetyl. 
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variety of lewis acid activators (Table A.1). All reactions were carried out with three 

equivalents of the cyclooctene linker, with freshly activated 4Å molecular sieves. Upon 

testing reaction conditions by varying solvents and reaction temperatures, the reaction was 

optimized to use 0.2 eq of TMSOTf in CH2Cl2 at -40 °C, which yielded the "-product in 

85% yield. The resulting TBS-protected compound 63 was desilylated using HF•pyridine 

deprotection conditions to afford the free acceptor 64. 

 

Glycosylation and deprotection of orthogonally protected disaccharide 

Upon obtaining the cyclooctene acceptor 64, the #-1!4 glycosidic linkage was 

installed by coupling the TBS-protected glycosyl phosphate 19 to the cyclooctene acceptor 

64. All reactions were carried out with 1.5 eq glycosylphosphate monomer in CH2Cl2 and 

OMeO2C

TBSO

OBn

OAc

O P
O
OBu
OBu

OHO
BzO

OAc

N3

O
O

O

+
O

O
MeO2C

TBSO

OBn

OAc

O
BzO

N3

OAc

O
O

O19

64

35

Entry Reagent Eq 19 Temp Time Result 
1 BF3•OEt2 2.0 -30 °C 1 hr 40%, 4 byproducts 
2 BF3•OEt2 1.5 -78 °C 1 hr 40%, 2 byproduct 
3 BF3•OEt2 1.2 -30 °C! 0 °C Overnight 45%, 2 byproducts 
4 TMSOTf 1.5 -78 °C 1 hr Decomposition 
5 TMSOTf 1.5 -78 °C! 0 °C Overnight 23% 
6 TMSOTf 1.5 -30 °C! 0 °C 2 hr 46% 
7 TBSOTf 1.5 -78 °C! 0 °C 1 hr 35%, byproduct 

Decomposition 
8 TBSOTf 1.5 -30 °C!  0 °C 2 hr 86% 

 
Table A.2: Glycosylation reaction of idoA donor 19 and glcA acceptor 64. Me = methyl, TBS = tert-
butyldimethylsilyl, Bn = benzyl, Bz = benzoyl, Ac = acetyl. 
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freshly activated 4Å molecular sieves. Although trimethylsilyl triflate (TMSOTf) had been 

reported to effectively activate glycosyl phosphates, a thorough analysis of other activating 

reagents under a variety of reaction conditions revealed that glycosylation using 1.5 eq 

TBSOTf at controlled temperatures furnished the desired protected disaccharide 65 at a 

high yield of 86% (Table A.2, entry 8).  

 With the orthogonally protected HS disaccharide in hand, methyl ester hydrolysis 

and saponification of the disaccharide was planned according to previously reported 

procedures.37 Unfortunately, the C-4 TBS group of GlcA proved itself to be unstable during 

methyl ester hydrolysis using LiOOH, under mildly basic conditions. Various 

concentrations of LiOH and H2O2 were used, but all protecting groups except the benzyl- 

group were consistently removed (Scheme A.3). The TBS group was only labile in the case 

of disaccharide 35; the ester hydrolysis and saponification of protected disaccharide 66 

proceeded without complications. We believe that the TBS group of disaccharide 35 is 

particularly labile due to its neighboring functional groups. The neighboring C-2 acetate 

and C-5 methyl ester are most likely withdrawing electron density from C-4, allowing the 

TBS group to leave, even under extremely mild conditions. 

 

Scheme A.3: Saponification of TBS-protected cyclooctene-based HS disaccharide monomer. Me = 
methyl, TBS = tert-butyldimethylsilyl, Bn = benzyl, Bz = benzoyl, Ac = acetyl.  
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 Upon discovering the instability of the C-4 TBS group, attempts were made to 

switch the TBS group to more stable functional groups. TBS protected disaccharide 35 was 

first desilylated in order to add another functional group; standard HF•pyr procedures, as 

used previously for CS glycopolymer synthesis, afforded the desired product in 80% yield. 

The main concerns of installing a new protecting group at this stage was stability of the 

other functional groups during the introduction of the new functional group, steric 

hindrance, electron withdrawal from the neighboring methyl ester and acetate groups, and 

most importantly, base stability of the new functional group, to avoid deprotection during 

the hydrolysis and saponification reactions. 

 Several attempts were made to protect the free C-4 hydroxyl group with other ester-

type protecting groups, such as p-methylbenzyl (PMB), benzyl (Bn), or triisopropylsilyl 

(TIPS) ethers, using standard methods commonly used in organic synthesis. However, 

protection strategies using benzyl imidate, PMB imidate, and TIPS imidate did not result in 

the successful introduction of any of these functional groups. At this stage, different C-4 

protected idoA derivatives were synthesized to incorporate benzyl, TIPS, and PMB 

functionalities (see Chapter 2).  

Simultaneous to our discovery of the instability of the C-4 TBS group, our lab 

decided to switch to norbornene-based monomers from the cyclooctene-based monomers. 

The cyclooctene-based CS polymers had proven difficult to purify and had given moderate 

PDI values. The increased ring-strain of the norbornene bicyclic species generally result in 

easier purification and narrow PDIs, and allow for easy access to block copolymer species. 

With all such advantages in mind, the new IdoA derivatives and norbornene-diethylene 
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glycol linker were used towards the synthesis of the norbornene-based HS glycopolymer 

series.  

 Although the cyclooctene-based HS glycopolymer series were not pursued further, 

the synthesis should proceed smoothly as originally planned. Based on the optimization 

process for both monomer species, the cyclooctene-based monomers have proven to be 

more stable than the norbornene variants and display more predictable reactivity. Using the 

benzyl-protected IdoA glycosyl phosphate 25 and reaction conditions used for the synthesis 

of the norbornene HS glycopolymers, the following scheme (Scheme A.4) is proposed for 

the synthesis of cyclooctene HS glycopolymers: 

 
Scheme A.4: Proposed synthetic route to cyclooctene HS glycopolymers. Me = methyl, Bn = benzyl, TBAI = 
tetrabutylammonium iodide, Ac = acetyl, Bu = butyl, Bz = benzoyl, THF = tetrahydrofuran, TBSOTf = tert-
butyldimethylsilyl trifluoromethanesulfonate, TMA = trimethylamine, DMF = dimethylformamide, Pyr = 
pyridine. 
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Experimental methods and spectral data 

 Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon atmosphere, using dry solvents. Solvents were dried by passage through an 

activated alumina column under argon. All other commercially obtained reagents were 

used as received unless otherwise noted. Thin layer chromatography (TLC) was performed 

using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Visualization of the 

developed chromatogram was performed by UV, cerium ammonium molybdate and 

ninhydrin stain as necessary. ICN silica gel (particle size 0.032 - 0.063 mm) was used for 

flash chromatography. Gel filtration chromatography (Sephadex LH-20) was used in order 

to achieve purification of the final products. 

1H NMR and proton decoupling experiments were recorded on Varian Mercury 

300 (300 MHz) and Varian Mercury 500 (500 MHz) spectrometers and are reported in 

parts per million (δ) relative to CDCl3 (7.26 ppm). Data for 1H are reported as follows: 

chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet), coupling constant in Hz, and integration. 13C NMR spectra were obtained on a 

Varian Mercury 300 (75 MHz) spectrometer and are reported in terms of chemical shift. 

Mass spectra were obtained from the Protein/Peptide Microanalytical Laboratory and the 

Mass Spectrometry facility at the California Institute of Technology. 
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2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl 6-O-acetyl-2-azido-3-benzoyl-4-β-D-

glucopyranoside (63). A mixture of compound 10 (50 mg, 0.082 mmol) and cyclooctenol 

linker 62 (88 mg, 0.41 mmol) was azeotroped with toluene (3 x 10 mL). To this was added 

freshly activated 4Å molecular sieves (82 mg, 1g/mmol) and CH2Cl2 (1 mL). The mixture 

was stirred for 30 min at room temperature, and then cooled to -78 °C. TMSOTf (70 µL, 

0.017 mmol) was added dropwise, and the reaction mixture was slowly warmed to room 

temperature. After 1 h, the reaction was quenched with triethylamine, and filtered through a 

pad of celite. Purification via silica column chromatography (7:1à5:1à3:1 hexanes/ethyl 

acetate) afforded the desired compound 63 in 85 % yield.   

 1H NMR (300 MHz, CDCl3): δ 8.06 (d, J = 8.4, 1H), 7.59 (t, , 2H), 7.47 (t, , 1H), 

5.62 (m, 2H), 5.18 (t, J = 9, 8.7, 1H), 4.62 (d, J = 8.1, 1H), 4.28 (dd, J = 4.8, 4.5, 2H), 3.99 

(m, 1H), 3.91 (m, 1H), 3.25-3.90 (m, 9H), 2.38 (m, 1H), 2.11 (s, 3H), 1.2-2.0 (m, 10H), 

0.743 (s, 9H), -0.004 (s, 3H), -0.201 (s, 3H); ESI MS: m/z calcd for [C33H52SiN3O9]: 

662.3441, obsd 662.3472.  

 

 

2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl 6-O-acetyl-2-azido-3-benzoyl-4-deoxy-β-D-

glucopyranoside (64). In a plastic container, compound 63 (18.5 mg, 0.0279 mmol) was 

dissolved in a mixture of 1:1 pyridine:THF (0.9 mL) and cooled to 0 °C. This mixture was 

stirred for 30 min, and HF•pyr (143 µL) was added slowly. The reaction was slowly 

OTBSO
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O
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warmed to room temperature and left to stir overnight. After confirmation of the reaction 

completion via TLC, the reaction mixture was diluted with ethyl acetate, quenched with 

aqueous NaHCO3, then extracted with ethyl acetate (3 x 50 mL). Purification via silica gel 

column chromatography (3:1 hexanes/ethyl acetate) afforded compound 64 in 80% yield.  

 1H NMR (300 MHz, CDCl3): δ 8.10 (d, J = 8.4, 2H), 7.61 (t, J = 7.2, 1H), 7.51 (t, J 

= 7.8, 2H), 5.62 (m, 2H), 5.03 (t, J = 9.6, 1H), 4.58 (d, J = 8.1, 1H), 4.40 (dd, J = 4.2,2H), 

4.02 (m, 1H), 3.85 (m, 1H), 3.25-3.8 (m, 9H), 3.21 (d, J = 4.2, 1H), 2.33 (m, 1H), 2.12 (s, 

3H), 1.25-2.0 (m, 10H); ESI MS: m/z calcd for [C27H37N3O9 + H] 548.25, obsvd 548.26.   

 

 

2-(2-(Cyclooct-4-enyloxy) ethoxy) ethyl (methyl 2-O-acetyl-3-O-benzyl-4-O-

tertbutylsilyl-α -L-idopyranosid)uronate)-(1à4)-6-O-acetyl-2-azido-3-benzoyl-4-

deoxy-β-D-glucopyranoside (35). Compound 64 (25 mg, 0.046 mmol) and 19 (38.2 mg, 

0.059 mmol) were combined in a reaction flask and azeotroped with toluene (3 x 2 mL). 

This anhydrous material was dissolved in CH2Cl2 (0.5 mL), and freshly activated 4Å 

molecular sieves (46 mg, 1g/mmol) were added. The reaction mixture was cooled to -30 

°C, and TBSOTf (15.7 µL, 0.069 mmol) was added dropwise. This was allowed to warm to 

0 °C for 2 h. After completion, the reaction mixture was quenched with triethylamine and 

concentrated under reduced pressure. Silica column chromatography (4:1 hexanes/ethyl 

acetate) afforded compound 35 in 86% yield.    

 1H NMR (500MHz, CDCl3): δ 8.06 (d, J = 7.2, 2H), 7.55 (t, J = 7.2, 1H), 7.43 (t, J 

= 7.8, 2H), 7.26 (m, 5H), 5.66 (m, 2H), 5.26 (t, J = 9.3, 1H), 5.12 (d, J = 4.8, 1H), 4.73 (t, J 

O
O
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TBSO

OBn

OAc

O
BzO
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OAc

O
O

O
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= 4.2, 1H), 4.61 (dd, J = 19.8, 12, 2H), 4.49 (s, 1H), 4.47 (d, J = 10.5, 1H), 4.16 (dd, J = 

4.2, 4.5, 2H), 4.08 (m, 2H), 3.3-3.90 (m, 9H), 3.42 (s, 3H), 2.12 (s, 3H), 1.93 (s, 3H), 1.0-

1.83 (m, 10H), 1.32 (m, 1H), -0.75 (s, 9H), -0.21 (d, J = 5.4, 6H); ESI MS: m/z calcd for 

[C50H61N3O16 + Na+] 982.41, obsvd 982.37. 
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