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Abstract

We study axiomatically situations in which the society agrees to treat

voters with different characteristics distinctly. In this setting, we pro-

pose a set of intuitive axioms and show that they jointly characterize

a new class of voting procedures, called Type–weighted Approval Vot-

ing. According to this family, each voter has a strictly positive and

finite weight (the weight is necessarily the same for all voters with the

same characteristics) and the alternative with the highest number of

weighted votes is elected. The implemented voting procedure reduces

to Approval Voting in case all voters are identical or the procedure

assigns the same weight to all types. Using this idea, we also obtain

a new characterization of Approval Voting.
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1 Introduction

Motivation There are many instances in which the members of a society or

an institution vote in order to take a decision and each voter’s impact on the

outcome depends on her/his underlying characteristics. Examples include

the EU Member Council or the IMF Board of Directors, where the weight

of a country is determined by its population size or its stake, respectively

(see, Tables 1 and 2 in the Appendix); management boards, where the vote

of the CEO tends to count double in case of a tie; or hiring decisions in

academic institutions, where the opinion of senior members is usually given

more weight. From a theoretical point of view, this implies that voters are not

treated equally and that existing axiomatic results on the question of which

voting procedure to implement do not directly apply. It is consequently the

aim of this study to complement the existing literature on axiomatic voting

theory by suggesting a general class of voting procedures that is able to cover

these kinds of situations.

The aggregation procedures discussed in the literature differ essentially

in the type of information they take into account from the individual prefer-

ences. For example, Plurality Voting, the most widely used voting procedure,

allows each individual to indicate only her most preferred alternative (and

the alternative with most votes is elected). One common critique of Plurality

Voting is that it may actually result in the election of the worst alternative

for a majority of individuals even in single–winner elections. As a simple

example, consider the case when there are three alternatives, two of which

are very similar. Then, if the votes for the two similar alternatives are dis-

tributed equally, the third alternative may be elected even though a majority

of the voters would prefer either of the other two alternatives.

Approval Voting, introduced by Brams and Fishburn (1978), has been ex-
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plicitly designed to overcome this drawback of Plurality Voting by allowing

individuals to vote for (or approve of) as many alternatives as they wish to.

As usual, the alternative with most votes wins the election. Recent evidence

from field experiments by Laslier and van der Straten (2008) in France and

Alós–Ferrer and Granić (2011) in Germany has shown that Approval Voting

modifies the overall ranking of the alternatives and that it tends to elect the

alternative that is most widely accepted in the population. This is the main

reason why we deviate from using Plurality Voting as a benchmark and frame

our analysis in the (more general and more complex) context when individ-

uals can approve any number of alternatives.

Characterizations We are interested in general voting procedures that are

operable in different voting environments in which the set of voters and the

set of alternatives might vary. In particular, given a population of potential

voters and a conceivable set of alternatives, a voting procedure should specify

an outcome (a non-empty subset of the set of feasible alternatives) for every

electorate (the individuals that indeed vote) and every set of feasible alterna-

tives (the alternatives actually standing for election). We also assume that

voters are partitioned into types according to some exogenous characteristics

in such a way that individuals with equally relevant characteristics belong

to the same type. In the examples of indirect democracy mentioned earlier,

one can think of classifying voters into types in function of the number of

people or the stake the voter represents. In problems of decision making in

small groups, the voter’s type could be associated with some of her personal

characteristics such as seniority, age, etc.

In this setting, we consider a set of intuitive properties. First, we in-

troduce two consistency properties that impose some structure on how the

result of the voting procedure should be adapted when the set of alternatives
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or the set of individuals change: Consistency in alternatives, which is the

analogue of Arrow’s Choice Axiom, states that if the set of feasible alterna-

tives is reduced yet some of the originally elected alternatives remain feasible,

then exactly those alternatives have to be elected in the new situation; and

Consistency in voters, which requires that if two disjoint electorates select a

common set out of two feasible alternatives, then exactly this set has to be

elected when the two electorates are assembled. Afterwards, we consider two

symmetry properties: Symmetry across types, which means that voters of

the same type have to be treated equally; and Symmetry across alternatives,

which is the classical neutrality property. Finally, we add two well-known

conditions: Faithfulness, which asks that if there is a single voter who ap-

proves x but not y, then x has to be elected whenever x and y are the only two

feasible alternatives; and Continuity which, roughly speaking, states that no

group of individuals should be able to always impose completely its opinion

on the result of an election when joint with a sufficiently large electorate

formed by many subgroups that agree among them on the set of alternatives

that has to be selected.

Our first result, Theorem 1, shows that these properties fully characterize

a general class of voting procedures that we will call Type–weighted Approval

Voting. Each voting procedure of this family is associated with a vector of

strictly positive and finite weights, one for each type of voter, and the win-

ning alternative is the one with the highest number of weighted votes. If

no discrimination across types have sense in a particular context, all weights

should be equal and the voting procedure reduces to Approval Voting. Ex-

ploiting this fact, we show in our second result, Theorem 2, that if Symmetry

across types is strengthened to the classical condition of Anonymity (Symme-

try across voters), one essentially obtains a new characterization of Approval
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Voting in which Faithfulness and Continuity are eliminated as necessary re-

quirements.

Related Literature Our work contributes to the existing literature on ax-

iomatic voting theory. Roberts (1991) was the first to characterize Plurality

Voting. Richelson (1978), Ching (1996), and Yeh (2008) also characterize

the Plurality Rule, but as a social choice correspondence and not as a voting

procedure; that is, in these studies, the domain is the Cartesian product of all

linear orders on the set of alternatives. Fishburn (1978, 1979), Sertel (1988),

Baigent and Xu (1991), Goodin and List (2006), Vorsatz (2007) and Sato

(2013) provide different characterizations of Approval Voting. Alós–Ferrer

(2006) shows that the properties in one of Fishburn’s characterizations are

not independent. Maniquet and Mongin (2013) study possible social wel-

fare orderings corresponding to Approval Voting and characterize them by

Arrow’s conditions when preferences are dichotomous. Finally, Massó and

Vorsatz (2008) and Alcalde–Unzu and Vorsatz (2009) introduce classes of vot-

ing procedures that generalize Approval Voting in natural ways. In Massó

and Vorsatz (2008), the neutrality property is relaxed; in Alcalde–Unzu and

Vorsatz (2009), the weight of a vote is a decreasing function in the number

of approved alternatives.

One can think of Massó and Vorsatz (2008) and the characterization ob-

tained in Theorem 1 as dual approaches that bear important similarities.

Massó and Vorsatz (2008) relax neutrality and, as a result, characterize vot-

ing rules that assign different weights to alternatives. In this paper, we

weaken the classical anonymity property and, as a consequence, weights are

assigned to voters. However, there is still one important asymmetry that

naturally occurs in the formal analysis. In Massó and Vorsatz (2008), the

relative weight between two alternatives can be easily determined because it
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is known from the voting rule how many votes one alternative has to receive

in order to compensate one vote to the other alternative. Yet, the construc-

tion of a weighted representation of a voting rule when anonymity is relaxed

is more complicated. This is because adding one voter to an election has the

effect that the particular weight of this voter has to be determined endoge-

nously as well, and therefore, does not provide sufficient information of how

to determine the relative weights of the other voters. Only the additional

requirement that voters are divided into types and that there is an infinite

population of potential voters of each type allows us to determine the relative

weights.

Our second characterization, Theorem 2, also relates to the literature

mentioned before. By working with a variable set of alternatives, contrary

to the majority of studies found in the literature, we can naturally impose

the property of Consistency in alternatives (which ultimately allows the de-

cision maker to go forth and back between social choice and social welfare

functions) in substitution of other properties. The only two other studies

along the same line that characterize Approval Voting are Vorsatz (2007)

and Sato (2013). The former characterizes Approval Voting in a dichoto-

mous preference setting using strategy–proofness. The latter characterizes

Approval Voting independently and simultaneously to this paper by using a

very similar set of axioms to that imposed in Theorem 2 (see the detailed

discussion in Section 3).

2 Notation and Definitions

We consider a setting with variable sets of voters and alternatives. Formally,

let X be a finite set of conceivable alternatives. Generic alternatives will be
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denoted by x, y, and z; subsets of X by S and T . The cardinality of X,

∣X∣, is greater than or equal to 3.1 The set of feasible alternatives K, the

alternatives that are actually standing for an election, is a non–empty subset

of X. Our analysis focuses on the idea that the individuals participating in

the election may differ in their characteristics. To model this, we assume that

there is a finite set of types Θ = {1, 2, . . . , �} and that for each type t ∈ Θ,

there is an infinite number of potential voters It. Hence, I ≡
∪
t∈Θ It is the

population of all potential voters. The individuals actually participating in an

election, an electorate N , is a non–empty and finite subset of the population

I. We will also make frequent use of the capital letters A and B to denote

electorates.

Each individual i ∈ I partitions the set of alternatives X into two sets:

Mi ∈ 2X and (X∖Mi). The interpretation is thatMi is the set of alternatives i

votes for (or approves of). Thus, we can describe the opinion of an individual

i by only referring to the set Mi. A profile M = (Mi)i∈I ∈ (2X)I is a

list of all votes. Given a profile M and an electorate N , a response profile

MN = (Mi)i∈N ∈ (2X)N is the n–tuple of votes coming from the electorate N

at profile M . Given the response profile MN , the number of votes x receives

from the individuals of type t who belong to the electorate N is denoted by

Gt
x(MN). Thus, Gx(MN) =

∑
t∈Θ G

t
x(MN) is the total number of votes x

gets at MN .

Given a set of feasible alternatives K and an electorate N , a voting rule

vK,N : (2X)I → (2K ∖ ∅) selects for all profiles M a non–empty set of feasible

alternatives vK,N(M) with the property that for all M, M̄ ∈ (2X)I such that

1If there are only two conceivable alternatives, all results of the paper hold true. The

unique difference is that, when ∣X∣ = 2, one of the axioms, Consistency in alternatives, is

superfluous. This will become evident from the proofs.
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MK
N = M̄K

N , vK,N(M) = vK,N(M̄). We write vK(MN) instead of vK,N(M).

A voting procedure {vK,N : (2X)I → (2K ∖ ∅)}K⊆X,N⊂I is a family of voting

rules, one for every set of feasible alternatives K and every electorate N . It is

denoted by v. Given the voting procedure v and a set of feasible alternatives

K, the subfamily {vK,N : (2X)I → (2K ∖ ∅)}N⊂I is denoted by vK .

Next, we introduce some known voting procedures in this context.

Definition 1 The voting procedure v is Approval Voting if for all sets of

feasible alternatives K ⊆ X and all electorates N ⊂ I,

x ∈ vK(MN) if and only if Gx(MN) ≥ Gy(MN) for all y ∈ K.

Definition 2 The voting procedure v is Disapproval Voting if for all sets of

feasible alternatives K ⊆ X and all electorates N ⊂ I,

x ∈ vK(MN) if and only if Gx(MN) ≤ Gy(MN) for all y ∈ K.

As we have already outlined in the Introduction, the main objective of

our study is to relax the anonymity assumption underlying Approval Voting.

One natural way to achieve this goal is to treat individuals with the same type

equally but to possibly discriminate between votes coming from individuals

of distinct types. The family we introduce next conceptualizes this idea by

assigning an exogenous (possibly different) weight to each type.

Definition 3 The voting procedure v is a Type–weighted Approval Voting if

there exists a vector of weights p = (p1, p2, . . . , p�) ∈ ℝ�
++ such that for all

sets of feasible alternatives K ⊆ X and all electorates N ⊂ I,

x ∈ vK(MN) if and only if
∑
t∈Θ

pt ⋅Gt
x(MN) ≥

∑
t∈Θ

pt ⋅Gt
y(MN) for all y ∈ K.

If p is such that ps = pt for all s, t ∈ Θ, then all voters are treated equally

and the voting procedure coincides with Approval Voting.
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3 Axioms and Characterizations

In this section, we are going to present a characterization of all Type–

weighted Approval Voting procedures and a new characterization of Approval

Voting. We start by introducing several properties.

Since we allow in our analysis for variable sets of feasible alternatives and

voters, we necessarily need two consistency conditions that establish how

the selected set of alternatives adapts as either of these changes. The first

property states that if the set of feasible alternatives is reduced and some

of the alternatives that originally were selected remain feasible, then exactly

those have to be selected in the new situation.

Consistency in alternatives: The voting procedure v is consistent in

alternatives if for all feasible sets of alternatives S ⊂ T ⊆ X, all profiles

M ∈ (2X)I , and all electorates N ⊂ I such that vT (MN) ∩ S ∕= ∅,

vS(MN) = vT (MN) ∩ S.

The property of Consistency in alternatives is important because it allows

us to reformulate the question of which alternatives to choose from each

subset of alternatives to the question of how to order all alternatives of the

universal set X. To say it differently, the problems of constructing a social

choice function and a social welfare function become equivalent (see, Arrow

1959). This is the reason why we can restrict our attention in the remaining

axioms to sets of feasible alternatives that only contain two alternatives.

The second consistency property, Consistency in voters, says that if two

disjoint groups of voters elect some common alternatives from the set {x, y},

then exactly those alternatives have to be elected if the two groups are joined.
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This kind of property has been used in many characterizations of voting pro-

cedures and social choice functions; examples include, Smith (1973), Young

(1974), Hansson and Sahlquist (1976), Fishburn (1978), Richelson (1978),

Sertel (1988), Alós–Ferrer (2006), Massó and Vorsatz (2008), and Alcalde-

Unzu and Vorsatz (2009).

Consistency in voters: The voting procedure v is consistent in voters

if for all alternatives x, y ∈ X, all profiles M ∈ (2X)I , and all disjoint elec-

torates A,B ⊂ I such that v{x,y}(MA) ∩ v{x,y}(MB) ∕= ∅,

v{x,y}(MA∪B) = v{x,y}(MA) ∩ v{x,y}(MB).

To shorten our notation, we will say that a voting procedure v is consistent

if it is both consistent in alternatives and consistent in voters.

Next, we will introduce three symmetry conditions. The first one, Sym-

metry across alternatives, is the standard Neutrality condition. It states that

if alternatives are permuted, then the set of elected alternatives has to be

permuted accordingly. To introduce it formally, we need additional notation:

given a permutation � : X → X and a pair of alternatives {x, y}, let �(MN)

and �(v{x,y}(MN)) be the response profile and the set of elected alternatives

permuted according to �.

Symmetry across alternatives: The voting procedure v is symmetric

across alternatives (or neutral) if for all alternatives x, y ∈ X, all profiles

M ∈ (2X)I , all electorates N ⊂ I, and all permutations � : X → X,

�(v{x,y}(MN)) = v�({x,y})(�(MN)).

The second symmetry condition, Symmetry across types, relaxes the clas-

sical anonymity axiom according to which the result of the election should
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be invariant to permutations of voters. Here, we only require this symmetry

condition to hold true if voters of the same type are permuted. To introduce

it formally, we say that two response profiles MA and M ′
B are isomorphic

relative to {x, y} if for all t ∈ Θ, there is a permutation �t : It ∩ A→ It ∩ B

such that M ′
�t(i)
∩ {x, y} = Mi ∩ {x, y}.

Symmetry across types: The voting procedure v is symmetric across

types (or type–wise anonymous) if for all alternatives x, y ∈ X and all re-

sponse profiles MA and M ′
B that are isomorphic relative to {x, y},

v{x,y}(MA) = v{x,y}(M ′
B).

Finally, the last symmetry condition, Symmetry across voters, is the clas-

sical Anonymity axiom. To introduce it formally, we will say that two re-

sponse profiles MA and M ′
B are strongly isomorphic relative to {x, y} if there

is a permutation � : A→ B such that M ′
�(i) ∩ {x, y} = Mi ∩ {x, y}.

Symmetry across voters: The voting procedure v is symmetric across

voters (or anonymous) if for all alternatives x, y ∈ X and all response profiles

MA and M ′
B that are strongly isomorphic relative to {x, y},

v{x,y}(MA) = v{x,y}(M ′
B).

To shorten our notation, we will say that a voting procedure v is weakly

symmetric if it is both symmetric across alternatives and symmetric across

types. We will say that it is symmetric if it is also symmetric across voters.

To introduce the next property, Continuity, consider an infinite number

of disjoint electorates such that all of them only select the same alternative

x from the set {x, y}. Suppose also that there is another electorate A, dis-

joint from the other electorates, for which y is the unique alternative elected
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from the set {x, y}. The idea of continuity is that if a sufficient number of

electorates that elect x are joined together with A, then alternative x should

be elected (but not necessarily excluding y). This condition eliminates, for

example, dictatorship–like procedures that give an infinite weight to some

type of voters or procedures that break ties in a lexicographic way.

Continuity: The voting procedure v is continuous if for all alternatives

x, y ∈ X, all profiles M ∈ (2X)I , all successions of disjoint electorates {Np}

such that v{x,y}(Np) = {x} for all p ∈ ℕ, and any other electorate A for

which A ∩ Np = ∅ for all p ∈ ℕ and v{x,y}(MA) = {y}, there exists k ∈ ℕ

such that

x ∈ v{x,y}(MN1∪N2∪...∪Nk∪A).

In the literature, similar conditions to Continuity are found under the

names of Archimedean Property or Overwhelming Majority; see, Smith (1973),

Young (1975), Richelson (1978), Myerson (1996), or Alcalde-Unzu and Vor-

satz (2009).2

Finally, we introduce a weak unanimity condition which establishes that

getting more votes is desirable. The following property is a weak condition

inspired by Fishburn (1978).

Faithfulness: The voting procedure v is faithful if for all individuals i ∈ I

and all alternatives x, y ∈ X,

Mi = {x} ⇒ v{x,y}(Mi) = {x}.
2The main differences between this version and others are: (i) In other stronger ver-

sions, it is imposed that v{x,y}(MN1∪N2∪...∪Nk∪A) = {x} and/or that the requirement has

to be satisfied also for any k′ > k; and (ii) other versions require that the electorates of

the sequence have to be isomorphic instead of requiring that they select the same set of

alternatives.
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Our first and main result is a characterization of all Type-weighted Ap-

proval Voting procedures.

Theorem 1 The voting procedure v is consistent, weakly symmetric, contin-

uous, and faithful if and only if it is a Type–weighted Approval Voting.

The proof that the mentioned properties imply v to be a Type–weighted

Approval Voting is constructive and divided into several steps (see the Ap-

pendix). We now shortly explain the structure of the proof in order to facil-

itate its reading.

1. It is shown in Lemma 1 that consistency in voters and neutrality implies

that if one individual either approves both x and y or neither of the

two alternatives, then eliminating this individual from the electorate

does not affect the result of the election in case x and y are the only

two feasible alternatives.

2. Lemma 2 shows that consistency in voters and weak symmetry implies

that if x and y receive the same number of votes from each type t ∈ Θ,

then both alternatives have to be elected if they are the only two feasible

alternatives.

3. Lemma 3 establishes that consistency in voters, weak symmetry and

previous lemmas implies that if alternatives z and w receive the same

number of votes from each type t ∈ Θ under the response profile M ′
B as

alternatives x and y, respectively, under the response profile MA, then

z (respectively, w) is elected from the set {z, w} at M ′
B if and only if x

(respectively, y) is elected from the set {x, y} at MA.

4. We construct a binary relation ≿ over vectors (x1, x2, . . . , x�) ∈ ℕ�,

interpreting each of the vectors as a possible combination of numbers
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of votes from each type. The binary relation represents which combi-

nations of votes is better than another for an alternative to be selected

by the voting procedure when there are only two alternatives standing

for election.

5. Given consistency in voters, weak symmetry, continuity and Lemma 3,

Lemma 4 proves that the triple (ℕ�,≿,+) is a closed extensive struc-

ture.

6. Using a result in Krantz et al. (1971) about closed extensive structures,

we can deduce that the binary relation ≿ can be computed by calculat-

ing the number of weighted votes of each alternative, where the weight

of a vote depends on the type of the individual casting this vote. By

faithfulness, all these weights are strictly positive.

7. Then, combining steps 4 to 6, we deduce that the subfamily {vK}∣K∣=2

behaves as a Type–weighted Approval Voting rule. The exact value

of the weights of each particular rule are obtained by observing in the

results of the rule how many votes one alternative has to receive to

compensate one vote for the other alternative.

8. Finally, by applying consistency in alternatives, we extend this argu-

ment to sets of alternatives of any size to show that v is a Type–

weighted Approval Voting procedure.

We also show in the Appendix that the properties used in Theorem 1

are independent, separating both consistency and weak symmetry in their

respective parts.

Proposition 1 The properties in Theorem 1 are independent.
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At this point it is important to study the consequences of strengthen-

ing Symmetry across types to the classical Anonymity property (that is,

to strengthen weak symmetry to symmetry).3 Since Approval Voting is the

unique Type–weighted Approval Voting procedure that is also symmetric, we

obviously obtain a characterization of Approval Voting. However, one impor-

tant insight is that one can then, at the same time, eliminate the continuity

axiom, a fact that has been shown independently and simultaneously to this

paper by Sato (2013) using a different proof technique.4 But one can even go

one step further as it is shown in our second theorem: if one strengthens weak

symmetry to symmetry and eliminates faithfulness together with continuity,

one still obtains essentially a characterization of Approval Voting.5 Before

introducing the result, we need to define a non–degenerate voting procedure

as a voting procedure that does not always select all available alternatives.6

Theorem 2 A non-degenerate voting procedure v is consistent and symmet-

ric if and only if it is Approval Voting or Disapproval Voting.

We say that Theorem 2 is essentially a characterization of Approval Voting

because of the following reasoning: if individuals are rational, each voter i ∈ I
3We are very grateful to an anonymous referee for indicating this question to us.
4There are slight but non-essential differences across the two settings: (i) Sato (2013)

defines all axioms for any possible size of the set of feasible alternatives, whereas we

define the properties for sets with only two feasible alternatives, except Consistency in

alternatives; (ii) Sato (2013) considers an independent property called Consistency in

ballot response profiles, an assumption that we included in the definition of the voting

procedure; and (iii) We impose a condition of non-degeneration in our next result that it

is not needed when faithfulness is added as a necessary axiom.
5We omit the independence of the axioms given that it is very similar to the one of

Theorem 1.
6Formally, v is a non–degenerate voting procedure if there exists a set of alternatives

K ⊆ X, a set of voters N ⊂ I and a profile M ∈ (2X)I such that vK(MN ) ∕= K.
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will permute the sets Mi and (X ∖Mi) if Disapproval Voting is implemented

instead of Approval Voting. Thus, the results of the two voting procedures

are always the same for rational voters. Yet, if one wants to isolate Approval

Voting in its classical definition, an additional requirement satisfied by Ap-

proval but not by Disapproval Voting becomes necessary. Some possibilities

are Faithfulness (as shown by Sato, 2013), any other unanimity property, any

monotonicity condition, or even a No-Disapproval Voting axiom: a minimal

property that only eliminates Disapproval Voting from the set of possible

voting procedures.7

The proof that the mentioned properties imply v to be Approval Voting

or Disapproval Voting is constructive and similar to that of Theorem 1 (see

the Appendix). In particular, step 1 is the same in both proofs, step 2 is

not necessary any further, and the remaining steps follow a similar path, but

with strong results in this case given that the set of properties is stronger.

We now shortly explain this final part in order to facilitate the reading of

the proof.

3. Lemma 5 shows, applying Lemma 1, that under consistency and sym-

metry if alternatives z and w receive the same number of total votes

under the response profile M ′
B as alternatives x and y, respectively,

under the response profile MA, then z (respectively, w) is elected from

the set {z, w} at MA if and only if x (respectively, y) is elected from

the set {x, y} at M ′
B.

4. We construct a binary relation≿ over ℕ. The binary relation represents

which number of votes is better than another for an alternative to

7This is the weakest possible axiom because it only eliminates one voting procedure

from the analysis. A similar axiom, but in a totally different context, was proposed by

D’Aspremont and Gevers (1977) to isolate the leximin principle from the leximax one.
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be selected by the voting procedure when there are only two feasible

alternatives.

5. Lemma 6 shows, using Consistency in voters, symmetry and Lemma 5,

that ≿ corresponds with ≥, ≤ or =. Hence, the subfamily {vK}∣K∣=2

behaves as Approval Voting (≥), as Disapproval Voting (≤) or as a

degenerate voting procedure (=).

6. Using Consistency in alternatives, we extend this argument to sets of

alternatives of any size. Thus, if v is non-degenerate, it is Approval or

Disapproval Voting.

The main difference between this characterization of Approval Voting

(and the one by Sato, 2013) with respect to other known characterizations

is that we work with a variable set of alternatives instead of a fixed one, as

other papers do. This fact allows, apart of the possibility of not including a

monotonicity property, to include Consistency in alternatives replacing other

axioms that are perhaps hinting too direct to the resulting voting procedure.

For example, the property of Cancellation — which requires that all alterna-

tives are elected whenever all alternatives receive the same number of votes

—, used in Fishburn (1978) and in Alós-Ferrer (2006), practically imposes

that only the total number of votes matter. Similarly, Baigent and Xu (1991)

and Goodin and List (2006) suggest a property that ensures that the result of

the voting procedure does not change if we permute the individual who cast

a vote for a given alternative. A final example along this line is the property

of Disjoint Equality, considered by Fishburn (1978) and Sertel (1988), which

states that if two voters approve disjoint sets of alternatives, then the elec-

torate composed by the two voters selects the union of these two approved

sets. These axioms are well–founded, yet Consistency in alternatives — Ar-
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row’s axiom of choice, which is a necessary and sufficient condition so that no

information is distorted if a transitive and complete binary relation is derived

from the pairwise choices of a given social choice function and, afterwards,

the social choice function is re-derived as the top indifference class of the

derived social welfare function restricted to the set of available alternatives

— seems to us a far more basic property.

The imposition of Consistency in alternatives also allows us to directly

relate our characterization to existing results on social welfare functions.8

For example, Ju (2011) shows that if preferences are dichotomous, then all

monotonic, neutral, and anonymous social welfare orderings are acyclic and

the majority rule is the unique non–degenerate one that is transitive. Since

one can reinterpret the alternatives Mi an individual i votes for as the set of

good alternatives and the alternatives an individual does not vote for as the

set of bad alternatives of a dichotomous preference relation, there is an obvi-

ous equivalence between our framework and the domain restriction Ju (2011)

imposes and, therefore, between Approval Voting and the majority rule. Us-

ing this interpretation, since faithfulness and consistency in voters imply the

monotonicity condition of Ju (2011), Theorem 1 shows that there are addi-

tional transitive social welfare orderings once the anonymity assumption is

relaxed. Similarly, Theorem 2 shows that the substitution of monotonicity by

Consistency in voters also allows us to characterize essentially the majority

rule under a dichotomous domain restriction.

8We thank an anonymous referee for drawing our attention to this discussion.
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4 Conclusion

We have characterized a family of voting procedures that generalizes Ap-

proval Voting for the cases when the society agrees not to treat all voters

equally. In particular, we have shown that a voting procedure is consis-

tent, weakly symmetric, continuous, and faithful if and only if there exists a

strictly positive and finite weight for each type of voter and the alternatives

with the maximal sum of weighted votes are selected.

Since we characterize a large class of voting rules and therefore allow a

priori for a wide variety of discrimination between voters, there is the need to

discuss how the weights are ultimately determined. In particular, one needs

to identify first the relevant characteristics of the voters. Only afterwards

one has to decide how to weigh different voters.

In some cases of indirect democracy in which each voter represents a set

of citizens, the first step is not controversial: the classification should be done

in function of the number of people each voter represents. However, there is

a vast literature that discusses which weight each representative should have

as a function of her type. At a first sight, one would think that the weights

should be proportional to the number of people each voter represents. Yet, it

has been shown that this is probably not the best voting rule. Barbera and

Jackson (2006) characterize the efficient weights –the ones that maximize the

total expected utility–, which turn out to be different from the proportional

ones. Other authors have proposed also structures of weights in basis of other

criteria such as the equality of the probability of each person to be pivotal

in the election or the equality of the expected satisfaction of each person

with the outcome. See, for example, Laruelle and Valenciano (2008) for this

strand of the literature.

In many other cases the voters only represent themselves, yet it might
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still be desirable to implement a discriminative voting rule. This is the point

where the discussion about which characteristics should determine the weight

clearly emerges. Even though it is impossible to provide a definite guideline,

one can look, for example, at elections in universities. In some of them, voters

are classified depending on their type of affiliation (students, administrative

staff, professors, etc.); in others, the classification is more detailed and also

considers other aspects such as seniority.

All in all, and independently of the more or less difficulty to define the ap-

propriate criteria to classify voters, our axiomatic study provides a theoretical

background for the use of a Type–weighted Approval Voting procedure.
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Proofs

The proofs of Theorems 1 and 2 have the following lemma in common.

Lemma 1 If the voting procedure v is consistent in voters and neutral, then

for all alternatives x, y ∈ X, all profiles M ∈ (2X)I , all electorates N ⊂ I

and all voters i ∈ N such that Mi ∩ {x, y} ∈ {∅, {x, y}},

v{x,y}(MN) = v{x,y}(MN∖{i}).

Proof: Take any two alternatives x, y ∈ X, any profile M ∈ (2X)I , any

electorate N ⊂ I and any voter i ∈ N such that Mi ∩ {x, y} ∈ {∅, {x, y}}.

We are going to show first by contradiction that v{x,y}(Mi) = {x, y}.

Suppose that v{x,y}(Mi) = {x}. Consider the permutation � : X → X

such that �(x) = y, �(y) = x and �(z) = z for all z ∈ X ∖ {x, y}. Then, by

neutrality, �(v{x,y}(Mi)) = v�({x,y})(�(Mi)). Given that �(v{x,y}(Mi)) = {y},

that �({x, y}) = {x, y} by definition of � and that �(Mi) = Mi, we have

that v{x,y}(Mi) = {y}. This is a contradiction. Since v{x,y}(Mi) = {y} can

be excluded using a similar argument and since v{x,y}(Mi) ∕= ∅ by definition,

we can conclude that v{x,y}(Mi) = {x, y}. Finally, v{x,y}(MN∖{i})∩{x, y} ∕= ∅

implies that we can apply consistency in voters to obtain that v{x,y}(MN) =

v{x,y}(MN∖{i}). This concludes the proof of the lemma. □

The successive applications of Lemma 1 implies that given an electorate

N and any two alternatives x and y standing for election, it can be assumed

that all individuals belonging to N vote for one and only one of these two

alternatives (voters who do not declare a strict preference between x and y

can simply be discarded). Also note that if Mi ∈ {∅, {x, y}} for all i ∈ N ,

then both alternatives have to be elected by neutrality.
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Proof of Theorem 1

It is easy to check that all Type–weighted Approval Voting procedures satisfy

consistency, weak symmetry, continuity and faithfulness. The proof that

these properties imply v to be a Type–weighted Approval Voting follows the

steps mentioned in the main text.

We first have that Lemma 1 can be applied. Now, we establish other lemmas.

Lemma 2 If the voting procedure v is consistent in voters and weakly sym-

metric, then for all alternatives x, y ∈ X, all profiles M ∈ (2X)I , and all

electorates N ⊂ I such that Gt
x(MN) = Gt

y(MN) for all t ∈ Θ,

v{x,y}(MN) = {x, y}.

Proof: Take any two alternatives x, y ∈ X, any profile M ∈ (2X)I , and any

electorate N ⊂ I such that Gt
x(MN) = Gt

y(MN) for all t ∈ Θ. By Lemma

1, we can assume that Mi ∩ {x, y} ∈ {{x}, {y}} for all i ∈ N . Partition the

electorate N into � sub–electorates N1, . . . , N� in such a way that i ∈ Nt if

and only if i ∈ N ∩ It.

Consider any type t ∈ Θ for which ∣Nt∣ > 0. We are going to show by con-

tradiction that v{x,y}(MNt) = {x, y}. Suppose that v{x,y}(MNt) = {x}. Take

the permutation � : X → X such that �(x) = y, �(y) = x, and �(z) = z for

all z ∈ X ∖ {x, y}. Then, by neutrality, v�({x,y})(�(MNt)) = �(v{x,y}(MNt)) =

{y}. Since �({x, y}) = {x, y} by the definition of the permutation, the former

equation can be rewritten as v{x,y}(�(MNt)) = {y}. Now observe that �(MNt)

is an isomorphic copy of MNt relative to {x, y} because Gt
x(MN) = Gt

y(MN)

by assumption. By type–wise anonymity, v{x,y}(MNt) = v{x,y}(�(MNt)) =

{y}, which contradicts our initial assumption that v{x,y}(MNt) = {x}. A

symmetric argument proves that v{x,y}(MNt) ∕= {y} and, therefore, we are

able to conclude that v{x,y}(MNt) = {x, y}.
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Finally, using that
∩
t∈Θ:∣Nt∣>0 v

{x,y}(MNt) ∕= ∅, the iterative application

of consistency in voters implies that

v{x,y}(MN) = v{x,y}

⎛⎝ ∑
t∈Θ:∣Nt∣>0

MNt

⎞⎠ =
∩

t∈Θ:∣Nt∣>0

v{x,y}(MNt) = {x, y}.

This concludes the proof of the lemma. □

Before introducing the next lemma, let dtx,y(MN) = Gt
x(MN) − Gt

y(MN)

be the difference of the number of votes of type t between alternatives x and

y at MN .

Lemma 3 If the voting procedure v is consistent in voters and weakly sym-

metric, then for all alternatives x, y, z, w ∈ X, all profiles M,M ′ ∈ (2X)I ,

and all electorates A,B ⊂ I such that Gt
x(MA) = Gt

z(M
′
B) and Gt

y(MA) =

Gt
w(M ′

B) for all t ∈ Θ,

x ∈ v{x,y}(MA)⇔ z ∈ v{z,w}(M ′
B) and y ∈ v{x,y}(MA)⇔ w ∈ v{z,w}(M ′

B).

Proof: Take any four alternatives x, y, z, w ∈ X, any two profiles M,M ′ ∈

(2X)I , and any two electorates A,B ⊂ I such that Gt
x(MA) = Gt

z(M
′
B)

and Gt
y(MA) = Gt

w(M ′
B) for all t ∈ Θ. By Lemma 1, we can assume that

Mi ∩ {x, y} ∈ {{x}, {y}} for all i ∈ A and M ′
j ∩ {x, y} ∈ {{x}, {y}} for all

j ∈ B. Partition the electorate A into � sub–electorates A1, . . . , A� in such a

way that i ∈ At if and only if i ∈ A∩It. Construct the electorates B1, . . . , B�

in an identical manner.

For each type t ∈ Θ, partition the electorate At into two sub–electorates,

At1 and At2 , in such a way that exactly ∣dtx,y(MA)∣ individuals belong to At1

and all these individuals only vote for the alternative that receives more votes

at MA; that is, for all i ∈ At1 , Mi∩{x, y} = {x} whenever Gt
x(MA) > Gt

y(MA)

and Mi ∩ {x, y} = {y} whenever Gt
x(MA) < Gt

y(MA) and, obviously, At1 = ∅
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in case Gt
x(MA) = Gt

y(MA). Then, At2 = At ∖ At1 . The electorates Bt1 and

Bt2 are derived from Bt in a similar fashion.

Consider the permutation � : X → X such that �(z) = x and �(w) = y.

Then, �(M ′
Btj

) and MAtj
are isomorphic relative to {x, y} for all t ∈ Θ and all

j ∈ {1, 2}. Summing up over all types we can see that the response profiles

MA1 =
∑

t∈Θ:∣At1 ∣>0MAt1
and �(M ′

B1
) =

∑
t∈Θ:∣Bt1 ∣>0 �(M ′

Bt1
) are isomorphic

relative to {x, y}. By type–wise anonymity,

v{x,y}(MA1) = v{x,y}(�(M ′
B1

)). (1)

Also, we have that dtx,y(MAt2
) = dtz,w(M ′

Bt2
) = 0 for all t ∈ Θ by the

way we partitioned the electorates. So, define MA2 =
∑

t∈Θ:∣At2 ∣>0MAt2
and

�(M ′
B2

) =
∑

t∈Θ:∣Bt2 ∣>0 �(M ′
Bt2

) and apply Lemma 2 to see that

v{x,y}(MA2) = v{x,y}(�(M ′
B2

)) = {x, y}. (2)

Now, apply consistency in voters together with Equations (1) and (2) to see

that v{x,y}(MA) = v{x,y}(MA1∪A2) = v{x,y}(MA1) and that v{x,y}(�(M ′
B)) =

v{x,y}(�(M ′
B1∪B2

)) = v{x,y}(�(M ′
B1

)). This, together with Equation (1), im-

plies that

v{x,y}(MA) = v{x,y}(�(M ′
B)). (3)

Finally, consider the permutation �−1. By neutrality, �−1(v{x,y}(�(M ′
B))) =

v�
−1({x,y})(�−1(�(M ′

B))) = v{z,w}(M ′
B). This, together with Equation (3),

implies that �−1(v{x,y}(MA)) = v{z,w}(M ′
B). Hence, x ∈ v{x,y}(MA) if and

only if z ∈ v{z,w}(M ′
B) and y ∈ v{x,y}(MA) if and only if w ∈ v{z,w}(M ′

B). □

Consider the following binary relation ≿ defined over ℕ� × ℕ�: for all

(x1, . . . , x�), (y1, . . . , y�) ∈ ℕ�, (x1, . . . , x�) ≿ (y1, . . . , y�) if there exists a

response profile MN and two alternatives x, y ∈ X such that x ∈ v{x,y}(MN)

and for all t ∈ Θ, Gt
x(MN) = xt and Gt

y(MN) = yt. Our objective is to show

28



that the triple (ℕ�,≿,+) is a closed extensive structure; that is, this triple

satisfies the following properties (see Krantz et al. 1971):

1. Complete preorder: ≿ is a complete preorder over ℕ� × ℕ�.

2. Associativity: For all (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�) ∈ ℕ�, we

have that (x1, . . . , x�) + ((y1, . . . , y�) + (z1, . . . , z�)) ∼ ((x1, . . . , x�) +

(y1, . . . , y�)) + (z1, . . . , z�).

3. Independence: For all (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�) ∈ ℕ�, we

have that (x1, . . . , x�) ≿ (y1, . . . , y�) ⇔ ((x1, . . . , x�) + (z1, . . . , z�)) ≿

((y1, . . . , y�)+(z1, . . . , z�))⇔ ((z1, . . . , z�)+(x1, . . . , x�)) ≿ ((z1, . . . , z�)+

(y1, . . . , y�)).

4. Archimedean: For all four (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�) and

(w1, . . . , w�) ∈ ℕ�, if (x1, . . . , x�) ≻ (y1, . . . , y�), then there exists a pos-

itive integer t such that (k⋅(x1, . . . , x�)+(z1, . . . , z�)) ≿ (k⋅(y1, . . . , y�)+

(w1, . . . , w�)).

Lemma 4 If the voting procedure v is consistent in voters, weakly symmetric

and continuous, the triple (ℕ�,≿,+) is a closed extensive structure.

Proof: We show that the triple (ℕ�,≿,+) satisfies the conditions of Com-

plete Preorder, Associativity, Independence, and Archimedean.

Complete Preorder: To see that the binary relation ≿ is well-defined,

take any (x1, . . . , x�), (y1, . . . , y�) ∈ ℕ� and consider the response profiles

MA,M
′
B together with the alternatives x, y, z, w ∈ X such that Gt

x(MA) =

Gt
z(M

′
B) = xt and Gt

y(MA) = Gt
w(M ′

B) = yt for all t ∈ Θ. We have to

establish that x ∈ v{x,y}(MA)⇔ z ∈ v{z,w}(M ′
B) and that y ∈ v{x,y}(MA)⇔
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w ∈ v{z,w}(M ′
B). But this is exactly what we have shown in Lemma 3. Hence,

≿ is well-defined.

To show that the binary relation ≿ is complete, note first that for any

(x1, . . . , x�), (y1, . . . , y�) ∈ ℕ�, we can consider a response profile MN and

two alternatives x, y ∈ X such that for all t ∈ Θ, N ∩ It consists of xt

individuals voting only for alternative x and yt individuals voting only for

alternative y. This is always possible because It is an infinite set for all

t ∈ Θ. By definition of v, we have that v{x,y}(MN) ∈ {{x}, {y}, {x, y}}.

Then, it follows from the definition of ≿ that (x1, . . . , x�) ≿ (y1, . . . , y�)

and/or (y1, . . . , y�) ≿ (x1, . . . , x�). Hence, ≿ is complete.

To see that≿ is transitive, take any (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�) ∈

ℕ� such that (x1, . . . , x�) ≿ (y1, . . . , y�) and (y1, . . . , y�) ≿ (z1, . . . , z�). Con-

sider any response profile MN and any three alternatives x, y, z ∈ X such

that for all t ∈ Θ, N ∩ It consists of xt individuals voting only for al-

ternative x, yt individuals voting only for alternative y, and zt individ-

uals voting only for alternative z. Since (x1, . . . , x�) ≿ (y1, . . . , y�) and

(y1, . . . , y�) ≿ (z1, . . . , z�) by assumption, the definition of ≿ implies that

x ∈ v{x,y}(MN) and y ∈ v{y,z}(MN). Suppose that transitivity is violated;

that is, v{x,z}(MN) = {z}. Then,

(a) x ∕∈ v{x,y,z}(MN). If it was the case that x ∈ v{x,y,z}(MN), then, by

consistency in alternatives, we would have x ∈ v{x,z}(MN). This con-

tradicts v{x,z}(MN) = {z}.

(b) y ∕∈ v{x,y,z}(MN). If it was the case that y ∈ v{x,y,z}(MN), then, by con-

sistency in alternatives, we would have y ∈ v{x,y}(MN). This, together

with the assumption x ∈ v{x,y}(MN), would imply that v{x,y}(MN) =

{x, y}. Hence, by consistency in alternatives, x ∈ v{x,y,z}(MN), which

contradicts case (a).
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(c) z ∕∈ v{x,y,z}(MN). If it was the case that z ∈ v{x,y,z}(MN), then, by con-

sistency in alternatives, we would have z ∈ v{y,z}(MN). This, together

with the assumption y ∈ v{y,z}(MN), would imply that v{y,z}(MN) =

{y, z}. Hence, by consistency in alternatives, y ∈ v{x,y,z}(MN), which

contradicts case (b).

The three cases together imply that v{x,y,z}(MN) = ∅. This is not possible

by definition and, therefore, we have reached a contradiction. Consequently,

≿ is transitive. Since the binary relation ≿ is well-defined, complete, and

transitive, it is a complete preorder.

Associativity: The property holds because +, the usual addition operator

on vectors, is associative.

Independence: Consider any triple (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�) ∈

ℕ� such that (x1, . . . , x�) ≿ (y1, . . . , y�). Take any profile M , any two dis-

joint electorates A,B ⊂ I, and any two alternatives x, y ∈ X such that

for all t ∈ Θ, Gt
x(MA) = xt, G

t
y(MA) = yt, and Gt

x(MB) = Gt
y(MB) = zt.

Since (x1, . . . , x�) ≿ (y1, . . . , y�) by assumption, the definition of ≿ implies

that x ∈ v{x,y}(MA). Also, v{x,y}(MB) = {x, y} by Lemma 2. By con-

sistency in voters, x ∈ v{x,y}(MA∪B). Given that Gt
x(MA∪B) = xt + zt

and Gt
y(MA∪B) = yt + zt for all t ∈ Θ, it follows from the definition of

≿ that (x1 + z1, . . . , x� + z�) ≿ (y1 + z1, . . . , y� + z�). Hence, as desired,

((x1, . . . , x�) + (z1, . . . , z�)) ≿ ((y1, . . . , y�) + (z1, . . . , z�)) and ((z1, . . . , z�) +

(x1, . . . , x�)) ≿ ((z1, . . . , z�) + (y1, . . . , y�)).

Archimedean: Take any (x1, . . . , x�), (y1, . . . , y�), (z1, . . . , z�), (w1, . . . , w�)

belonging to ℕ� such that (x1, . . . , x�) ≻ (y1, . . . , y�). Consider any profile

M , any two alternatives x, y ∈ X, any electorate A ⊂ I, and any succes-
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sion of disjoint electorates {Np}p∈ℕ such that Gt
x(MA) = zt, G

t
y(MA) = wt,

v{x,y}(Np) = {x}, A ∩ Np = ∅, Gt
x(MNp) = xt and Gt

y(MNp) = yt for all

p ∈ ℕ. By continuity, there exists k ∈ ℕ such that x ∈ v{x,y}(MN1∪...∪Nk∪A).

Since Gt
x(MN1∪...∪Nk∪A) = k ⋅ xt + zt and Gt

y(MN1∪...∪Nk∪A) = k ⋅ yt + wt

for all t ∈ Θ, we have, as desired, that (k ⋅ (x1, . . . , x�) + (z1, . . . , z�)) ≿

(k ⋅ (y1, . . . , y�) + (w1, . . . , w�)). □

Since the triple (ℕ�,≿,+) is a closed extensive structure, we can apply Theo-

rem 1 in Krantz et al. (1971) which guarantees that there exists a real-valued

function f over ℕ� such that for all (x1, . . . , x�), (y1, . . . , y�) ∈ ℕ�:

(i) (x1, . . . , x�) ≿ (y1, . . . , y�)⇔ f(x1, . . . , x�) ≥ f(y1, . . . , y�) and

(ii) f((x1, . . . , x�) + (y1, . . . , y�)) = f(x1, . . . , x�) + f(y1, . . . , y�).

Additionally, any other function g satisfies conditions (i) and (ii) if and only

if there exists t ∈ ℝ++ such that g = t ⋅ f .

Using this result we construct the vector of weights p = (p1, . . . , p�) by

setting f(1, 0, . . . , 0) equal to p1, f(0, 1, 0, . . . , 0) equal to p2, and so forth.

Since we know from condition (ii) that f(x1, . . . , x�) = f(x1, 0, . . . , 0) +

f(0, x2, 0, . . . , 0) + . . .+ f(0, 0, . . . , x�), we have that

f(x1, . . . , x�) ≥ f(y1, . . . , y�)⇔
�∑
t=1

pt ⋅ xt ≥
�∑
t=1

pt ⋅ yt.

Then, it follows from condition (i) and the definition of ≿ that for all response

profiles MN and all alternatives x, y ∈ X,

x ∈ v{x,y}(MN)⇔
�∑
t=1

pt ⋅Gt
x(MN) ≥

�∑
t=1

pt ⋅Gt
y(MN).

We also know from Faithfulness that pt > 0 for all t ∈ Θ and, therefore, we

have shown that the subfamily {vK}∣K∣=2 is a Type–weighted Approval Vot-

ing with respect to the vector of weights p = (p1, p2, . . . , p�). Consequently,
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it remains to be shown that the vector of weights p = (p1, p2, . . . , p�) is such

that for all sets of feasible alternatives K ⊆ X, independently of its size, and

all response profiles MN ,

x ∈ vK(MN) if and only if
∑
t∈Θ

pt ⋅Gt
x(MN) ≥

∑
t∈Θ

pt ⋅Gt
y(MN) for all y ∈ K.

Suppose first that x ∈ vK(MN). Then, by consistency in alternatives,

x ∈ v{x,y}(MN) for all y ∈ K ∖ {x}. Since we already know that, for all pairs

of alternatives, v{x,y} is the Type–weighted Approval Voting with respect to

p = (p1, p2, . . . , p�), it has to be the case that
∑

t∈Θ pt ⋅Gt
x(MN) ≥

∑
t∈Θ pt ⋅

Gt
y(MN) for all y ∈ K.

Suppose now that
∑

t∈Θ pt ⋅ Gt
x(MN) ≥

∑
t∈Θ pt ⋅ Gt

y(MN) for all y ∈

K. Then, given that, for all pairs of alternatives, v{x,y}(MN) is the Type–

weighted Approval Voting with respect to p = (p1, p2, . . . , p�), x ∈ v{x,y}(MN)

for all y ∈ K ∖ {x}. If there is some z ∕= x such that z ∈ vK(MN),

then vK(MN) ∩ {x, z} ∕= ∅ and it follows from consistency in alternatives

that v{x,z}(MN) = vK(MN) ∩ {x, z}. Since we have already seen that x ∈

v{x,z}(MN) it also has to be that x ∈ vK(MN). Finally, if there is no z ∕= x

such that z ∈ vK(MN), then vK(MN) = {x} because vK(MN) ∕= ∅. This

concludes the proof of the theorem.

Proof of Proposition 1

To establish the independence of the axioms, we are going to present six

voting procedures that violate one different axiom each and satisfy the re-

maining five properties.

Consistency in alternatives: Take any type t ∈ Θ. Let the voting proce-

dure v be equal to Approval Voting whenever the set of feasible alternatives
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K contains exactly two alternatives; otherwise, apply the Type–weighted

Approval Voting with weights pt = 1 and ps = 2 for all types s ∕= t. This

procedure is consistent in voters, type–wise anonymous, neutral, faithful,

and continuous. The following example shows that it is not consistent in

alternatives.

Consider X = {x, y, z} and suppose that i ∈ Is and j ∈ It. If Mi = {x}

and Mj = {y}, then vX(M{i,j}) = {x} and v{x,y}(M{i,j}) = {x, y}. Since

vX(M{i,j})∩{x, y} ∕= ∅, consistency in alternatives implies that v{x,y}(M{i,j}) =

vX(M{i,j}) ∩ {x, y} = {x}. This contradicts that v{x,y}(M{i,j}) = {x, y}.

Consistency in voters: Let the voting procedure v be equal to Approval

Voting whenever all individuals belonging to the electorate N are of the same

type; otherwise select all feasible alternatives. This procedure is consistent

in alternatives, type–wise anonymous, neutral, faithful, and continuous. The

following example shows that it is not consistent in voters.

Consider X = {x, y} and suppose that 1 ∈ Is and 2 ∈ It. If M1 = M2 =

{x}, then v{x,y}(M1) = v{x,y}(M2) = {x} and v{x,y}(M{1,2}) = {x, y}. Since

v{x,y}(M1)∩v{x,y}(M2) ∕= ∅, consistency in voters implies that v{x,y}(M{1,2}) =

{x}. This contradicts that v{x,y}(M{1,2}) = {x, y}.

Type–wise anonymity: Assign to each individual i ∈ I a weight pi greater

than a strictly positive number �. Also assume that pi > pj for some pair

i, j ∈ It for some t ∈ Θ. Let the voting procedure v be such that for all sets

of feasible alternatives K ⊆ X, all profiles M ∈ (2X)I , and all electorates

N ⊂ I, x ∈ vK(MN) if and only if
∑

i∈N :x∈Mi
pi ≥

∑
i∈N :y∈Mi

pi for all

y ∈ K. This procedure is consistent in alternatives, consistent in voters,

neutral, faithful, and continuous. The following example shows that it is not

type–wise anonymous.
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Consider X = {x, y} and i, j ∈ It for some t ∈ Θ such that pi > pj.

If Mi = {x} and Mj = {y}, then v{x,y}(M{i,j}) = {x}. Now, take any

permutation �t : It → It such that �t(i) = j and �t(j) = i. Then,

v{x,y}(M{�t(i),�t(j)}) = {y}. Since type–wise anonymity implies that v{x,y}

(M�t(i),�t(j)}) = v{x,y}(M{i,j}), this is a contradiction.

Neutrality: Assign to each alternative x ∈ X a strictly positive weight px.

Assume also that px > py for some x, y ∈ X. Let the voting procedure v

be such that for all sets of feasible alternatives K ⊆ X, all profiles M ∈

(2X)I , and all electorates N ⊂ I, x ∈ vK(MN) if and only if px ⋅ Gx(MN) ≥

py ⋅ Gy(MN) for all y ∈ K. This procedure is consistent in alternatives,

consistent in voters, type–wise anonymous, faithful and continuous. The

following example shows that it is not neutral.

Consider X = {x, y} and N = {i, j} and suppose that px < py. If

Mi = {x} and Mj = {y}, then v{x,y}(MN) = {y}. Now let the per-

mutation � : X → X be such that �(x) = y and �(y) = x. Then,

�(v{x,y}(MN)) = {x} and v�({x,y})(�(MN)) = {y}. Since neutrality implies

that �(v{x,y}(MN)) = v�({x,y})(�(MN)), this is a contradiction.

Faithfulness: Let the voting procedure v be such that for all sets of feasi-

ble alternatives K ⊆ X, all profiles M ∈ (2X)I , and all electorates N ⊂ I,

vK(MN) = K. This procedure is consistent in alternatives, consistent in vot-

ers, type–wise anonymous, neutral, and continuous. The following example

shows that it is not faithful.

Consider X = {x, y} and N = {i}. Suppose that Mi = {x}. Then,

v{x,y}(Mi) = {x, y}. However, faithfulness implies that v{x,y}(Mi) = Mi ∩

{x, y} = {x}, which is a contradiction.

Continuity: Take any vector q = (q1, q2, . . . , q�) of strictly positive weights
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such that qi ∕= qj for some i, j ∈ Θ. Let the voting procedure v be such that

for all sets of feasible alternatives K ⊆ X, all profiles M ∈ (2X)I , and all

electorates N ⊂ I, x ∈ vK(MN) if and only if (a) Gx(MN) ≥ Gy(MN) for all

y ∈ K and (b)
∑

t∈Θ qt ⋅Gt
x(MN) ≥

∑
t∈Θ qt ⋅Gt

y(MN) for all y ∈ K such that

Gx(MN) = Gy(MN). This procedure is consistent in alternatives, consistent

in voters, type–wise anonymous, neutral, and faithful. The following example

shows that it is not continuous.

Consider X = {x, y}, Is = {ji}i∈ℕ, It = {ki}i∈ℕ such that qs > qt. Sup-

pose that Mj = {x} for all j ∈ Is and Mk = {y} for all k ∈ It. Suppose addi-

tionally that Ml = {y} for some l ∈ It. Consider the electorates Ni = {ji, ki}

for all i ∈ ℕ. By the definition of v, v{x,y}(Ml) = {y} and v{x,y}(MNi
) = {x}

for all i ∈ ℕ. Consequently, continuity implies that there is some b ∈ ℕ such

that x ∈ v{x,y}(MN1∪N2∪...∪Nb∪{l}). However, since Gy(MN1∪N2∪...∪Nb∪{l}) >

Gx(MN1∪N2∪...∪Nb∪{l}) for all b ∈ ℕ, v{x,y}(MN1∪N2∪...∪Nb∪{l}) = {y} for all

b ∈ ℕ. This is a contradiction.

Proof of Theorem 2

It is easy to check that Approval and Disapproval Voting satisfy consistency

and symmetry. The proof that these properties imply v to be one of these

voting procedures follows the steps mentioned in the main text.

Observe that Lemma 1 still applies. The following lemma introduces

a stronger result than that of Lemma 3, given the strengthening of weak

symmetry to symmetry.

Lemma 5 If the voting procedure v is consistent in voters and symmetric,

then for all alternatives x, y, z, w ∈ X, all profiles M,M ′ ∈ (2X)I , and all
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electorates A,B ⊂ I such that Gx(MA) = Gz(M
′
B) and Gy(MA) = Gw(M ′

B),

x ∈ v{x,y}(MA)⇔ z ∈ v{z,w}(M ′
B) and y ∈ v{x,y}(MA)⇔ w ∈ v{z,w}(M ′

B).

Proof: Take any four alternatives x, y, z, w ∈ X, any two profiles M,M ′ ∈

(2X)I , and any two electorates A,B ⊂ I such that Gx(MA) = Gz(M
′
B)

and Gy(MA) = Gw(M ′
B). By Lemma 1, we can assume that Mi ∩ {x, y} ∈

{{x}, {y}} for all i ∈ A and M ′
j ∩{x, y} ∈ {{x}, {y}} for all j ∈ B. Consider

the permutation � : X → X such that �(z) = x and �(w) = y. Then, it is

easy to see that �(M ′
B) and MA are strongly isomorphic relative to {x, y}.

Then, by anonymity,

v{x,y}(MA) = v{x,y}(�(M ′
B)). (4)

Finally, consider the permutation �−1. By neutrality, �−1(v{x,y}(�(M ′
B))) =

v�
−1({x,y})(�−1(�(M ′

B))) = v{z,w}(M ′
B). This, together with Equation (4),

implies that �−1(v{x,y}(MA)) = v{z,w}(M ′
B). Hence, x ∈ v{x,y}(MA) if and

only if z ∈ v{z,w}(M ′
B) and y ∈ v{x,y}(MA) if and only if w ∈ v{z,w}(M ′

B). □

Now, we introduce a binary relation ≿ defined over ℕ×ℕ: for all a, b ∈ ℕ,

a ≿ b if there exists a response profile MN and two alternatives x, y ∈ X

such that x ∈ v{x,y}(MN), Gx(MN) = a and Gy(MN) = b.

Lemma 6 The binary relation ≿ is ≥, ≤, or =.

Proof: First, it is easy to see that, by Lemma 5, ≿ is well-defined. The proof

that it is complete and transitive follows the same steps as the corresponding

proof of Theorem 1. Thus, it is omitted.

Since the binary relation ≿ is well-defined, complete, and transitive, it is

a complete preorder. Now, we will show that for all a, b ∈ ℕ, a ≿ b if and

only if (a+ 1) ≿ (b+ 1). To prove this, consider a response profile MN such
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that Gx(MN) = a and Gy(MN) = b and two individuals i, j ∈ (I ∖ N) such

that Mi ∩ {x, y} = {x} and Mj ∩ {x, y} = {y}.

Assume first that a ≿ b. Then, by definition of ≿, we have that x ∈

v{x,y}(MN) and, by reflexivity of ≿, v{x,y}(M{i,j}) = {x, y}. Finally, apply

consistency in voters to see that x ∈ v{x,y}(MN∪{i,j}). Thus, (a+1) ≿ (b+1).

Similarly, assume now that (a + 1) ≿ (b + 1). Then, by definition of ≿,

we have that x ∈ v{x,y}(MN∪{i,j}) and, by reflexivity of ≿, v{x,y}(M{i,j}) =

{x, y}. Finally, use consistency in voters and the fact that v{x,y}(MN) ∕= ∅

by definition, to see that x ∈ v{x,y}(MN). Thus, a ≿ b.

Therefore, it is easy to see that ≿ must be ≥, ≤ or =. □

It follows from Lemma 6 and the definition of ≿ that if the subfamily

{vK}∣K∣=2 is non–degenerate, it must be Approval or Disapproval Voting. The

proof that this also occurs independently of the size of K follows the same

steps than in the proof of Theorem 1 and is thus omitted. This concludes

the proof of the theorem.
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EU Member State Population Weight

Germany 81,757,595 29
France 64,709,480 29
United Kingdom 62,041,708 29
Italy 60,397,353 29
Spain 46,087,170 27
Poland 38,163,895 27
Romania 21,466,174 14
Netherlands 16,576,800 13
Greece 11,125,179 12
Belgium 10,827,519 12
Portugal 10,636,888 12
Czech Republic 10,512,397 12
Hungary 10,013,628 12
Sweden 9,372,899 10
Austria 8,372,930 10
Bulgaria 7,576,751 10
Denmark 5,547,088 7
Slovakia 5,424,057 7
Finland 5,350,475 7
Ireland 4,450,878 7
Lithuania 3,329,227 7
Latvia 2,248,961 4
Slovenia 2,054,119 4
Estonia 1,340,274 4
Cyprus 801,851 4
Luxembourg 502,207 4
Malta 416,333 3

Table 1: Voting Weights in the EU Member State Council as of July 2011.
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IMF Board of Directors Percentage of Fund Weight

United States 16.77% 421,964
Japan 6.24% 157,025
Germany 5.82% 146,395
France 4.30% 108,125
United Kingdom 4.30% 108,125
Belgium (Austria) 4.98% 125,221
Mexico (Venezuela) 4.65% 117,053
Netherlands (Ukraine) 4.52% 113,822
Italy (Greece) 4.26% 107,077
Singapore (Indonesia) 3.94% 99,062
China 3.82% 95,999
Australia (Korea) 3.63% 91,347
Canada (Ireland) 3.61% 90,708
Denmark (Norway) 3.39% 85,352
Lesotho (Gambia) 3.22% 81,085
Egypt (Lebanon) 3.13% 78,692
India (Sri Lanka) 2.81% 70,705
Saudi Arabia 2.81% 70,595
Brazil (Colombia) 2.79% 70,188
Switzerland (Poland) 2.78% 69,842
Russian Federation 2.36% 60,194
Iran (Morocco) 2.27% 57,092
Argentina (Chile) 1.84% 46,335
Togo (Chad) 1.55% 39,039

Table 2: Voting Weights in the Board of Directors of the IMF as of July

2011. One voter tends to represent several countries, the only exceptions are

the United States, Japan, Germany, France, United Kingdom, China, and

the Russian Federation. For example, Argentina is grouped with Bolivia,

Chile, Paraguay, Peru, and Uruguay. In case the Argentinian representant is

absent, the Chilean representant replaces her/him. The exact categorization

can be consulted at http://www.imf.org/external/np/sec/memdir/eds.aspx.
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