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Abstract

In this paper, we axiomatically study how to measure the similarity of prefer-

ences in a group of individuals. For simplicity, we refer to this as the cohesive-

ness. First, we provide axioms that characterize a family of linear and additive

measures whose intersection is a partial ordinal criterion similar to first order

stochastic dominance. The introduction of some additional properties isolates

a one–parameter subfamily. This parameter evaluates the effect on the cohe-

siveness if one individual changes his ranking on a single pair of objects, as a

function of how many of the remaining individuals in the group rank the first

object over the second and vice versa. Finally, we characterize the focal mea-

sures of this subfamily separately showing that they coincide with measures

constructed using two, at first sight, totally different approaches suggested in

the literature.
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1 Introduction

The cohesion in a group depends, among many other factors, on how similar its

members are, where the similarity can be assessed using external characteristics

such as age, ethnicity, income, or the access to opportunities and internal charac-

teristics such as values, attitudes, or preferences (see, Eisenberg [12]). A significant

body of the economic literature has worked on the axiomatic derivation of measures

that evaluate the cohesion of a group in many of these dimensions —see, for ex-

ample, Gini [16] and Atkinson [2] who, among others, propose measures of income

inequality (also see Cowell [6] for an overview of this literature); Esteban and Ray

[14] and Duclos et al. [9] who, among others, suggest ways to assess income, ethnic,

or religious polarization; Hutchens [18] and Echenique and Fryer [10] who, among

others, propose measures for quantifying the segregation of individual occupations

and geographical districts; and, Kranich [22] and Roemer [24] who, among others,

evaluate the distribution of opportunities among individuals. However, only a few

studies have addressed the question of how to measure the similarity of preferences

of the group members, one of the before–mentioned internal characteristics. For

simplicity, we refer to this aspect from now on as the cohesiveness.

Bosch [5] was the first to define a cohesiveness measure as a function that assigns

to each ranking profile —a list of ordinal preferences on an abstract set of objects,

one ranking for each individual belonging to the group— a number from the unit

interval.1 He also provides axiomatizations of some simple measures, for example

the trivial measure that takes a value of one if all individuals have the same ranking,

and a value of zero otherwise. After that, Garćıa-Lapresta and Pérez-Román [15] in-

troduced several normative/operational properties, and studied whether some more

elaborated measures satisfy these criteria. The objective of this work is to go one

step further by providing closed axiomatic characterizations of some cohesiveness

measures.

One intuitive way to construct a cohesiveness measure is to calculate first the

similarity of preferences for each pair of individuals, and then aggregate these num-

1He uses the term consensus instead of cohesiveness.
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bers by taking the average. Given that many distance measures between pairs of

rankings have been studied in the literature, one can use them as indicators of dis-

similarity and construct the cohesiveness measures around them. For example, the

most well–known distance measure is probably Kemeny’s one (see, Kemeny [20])

that calculates the proportion of pairwise comparisons the two rankings do not co-

incide upon. The cohesiveness between two individuals could then be measured

by one minus the Kemeny distance —the proportion of pairwise comparisons the

two rankings agree upon—, a measure of similarity that is usually referred to as

Kendall’s τ (see, Kendall [20]). The cohesiveness could then finally be obtained

by calculating the average of the values of the τ measure over all possible pairs of

individuals. This measure, called average tau (τ̄), was introduced by Hays [17].

Even though the described way of constructing a cohesiveness measure is rea-

sonable and probably the most prominent one pursued in the literature, it has to

be noted that it is also possible to construct a cohesiveness measure from a “dual”

perspective: one determines first the degree to which the group agrees on how to

order each pair of objects, and then aggregates these values by taking the average

over all possible pairs of objects. This dual way of deriving a cohesiveness measure

leads to a different measure. However, we will show in this paper by means of

axiomatic characterizations that both approaches can be understood as focal cases

of a general family that imports the concept of first order stochastic dominance to

our setting.

We proceed as follows. In the next section, we introduce basic notation and

definitions. Section 3 presents the first set of basic axioms and the characterization

of a family of linear and additive measures (Ω). We also show that the partial

ordering constructed by taking the intersection of all measures of Ω resembles the

concept of first order stochastic dominance. Section 4 introduces some additional

properties and provides the characterization of a subfamily Γ of Ω that only de-

pends on a single parameter. Section 5 characterizes the focal measures of Γ and

shows that these measures can be interpreted as the most natural measures of the

two before–mentioned approaches. In fact, these characterizations identify a com-
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mon underlying structure of both approaches and the (surprisingly few) differences

between them. We conclude in Section 6. Proofs and the independence of the

properties used in the characterizations are relegated to the Appendix.

2 Notation and definitions

Consider a finite set of objects X of cardinality k ≥ 2 and a (countable) infinite set

of individuals denoted by the set of natural numbers N. Our objective is to evaluate

the cohesiveness for all finite groups N ⊂ N. We denote the size of the group N by

n and we assume that n ≥ 2. Elements of X are usually denoted by x, y, and z,

generic individuals are indexed by i and j. We will also make frequent use of the

letters A,B, and C to denote groups. Let Q be the set of rational numbers. Given

any rational number r ∈ Q, brc ∈ N refers to the largest natural number smaller

than or equal to r.

Let Pi be the ranking of individual i on X. We assume that Pi is a complete,

transitive, and antisymmetric binary relation. We denote the opposite ranking of

Pi by POPi ; that is, xPiy ⇔ yPOPi x for all x, y ∈ X. The set of all rankings on X

is denoted by P. A profile P = (Pi)i∈N ∈ PN is a list of all individual rankings.

Given a profile P ∈ PN and a group N ⊂ N, a ranking profile PN = (Pi)i∈N ∈ PN

is an n–tuple of rankings, one for each individual belonging to N . We also say that

two ranking profiles PA ∈ PA and P ′B ∈ PB , corresponding to the groups A and B

of equal size, are isomorphic whenever there exists a bijection π : A→ B such that

for all i ∈ A,Pi = P ′π(i).

Let X̄ = {{x, y} ∈ X2 : x 6= y} be the set of all pairs of distinct objects; for

example, if X = {x, y, z}, then X̄ = {{x, y}, {x, z}, {y, z}}. Given the ranking

profile PN ∈ PN and a pair of objects {x, y} ∈ X̄, #(xPNy) = #{i ∈ N : xPiy}

denotes the number of individuals who rank x over y at PN . Then, nx,y(PN ) =

|#(xPNy) − #(yPNx)| is the absolute difference between the number of individ-

uals who rank x over y and the ones who rank y over x, always at PN . For all

ranking profiles PN ∈ PN , let dj(PN ) = 2
k(k−1)

∣∣{x, y} ∈ X̄ : nx,y(PN ) = j
∣∣ be the

proportion of pairs of objects such that nx,y(PN ) is equal to j. It is easy to see
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that dj(PN ) may only take strictly positive values for j = 0, 2, . . . , n whenever the

size of the group is even and for j = 1, 3, . . . , n whenever n is odd. Consequently,

the notation d(PN ) = (d0(PN ), d2(PN ), . . . , dn(PN )) is used for any even n and

d(PN ) = (d1(PN ), d3(PN ), . . . , dn(PN )) for any odd n.

Given the ranking Pi ∈ P and the pair of objects {x, y} ∈ X̄, we will say that

the ordered pair (x, y) is a contiguous pair at Pi if xPiy and there is no other

object z ∈ X such that xPizPiy. For any two rankings Pi, P
′
i ∈ P and any pair of

objects {x, y} ∈ X̄, P ′i is said to be (x, y)–different from Pi if (y, x) is a contiguous

pair at Pi, (x, y) is a contiguous pair at P ′i , and wPiz ⇔ wP ′iz for all pairs of

objects {w, z} ∈ (X̄ \ {{x, y}}). Finally, given the ranking profiles PN , P
′
N ∈ PN ,

an individual i ∈ N , and a pair of objects {x, y} ∈ X̄, P ′N is said to be (x, y)–

different from PN for individual i if P ′i is (x, y)–different from Pi and P ′j = Pj for

all j 6∈ (N \ {i}). Intuitively, P ′N is (x, y)–different from PN for individual i if P ′N

can be derived from PN by only reversing the binary relation yPix. In this case, we

will also say that P ′N can be obtained from PN by means of a yPix–change.

Given a set of individuals N ⊂ N, a cohesiveness measure for group N is a

function MN : PN → [0, 1] that assigns to every ranking profile PN ∈ PN a real

number M(PN ) from the unit interval. For notational purposes, we will write

M(PN ) instead of MN (PN ). A cohesiveness measure M is a family of measures

{MN : PN → [0, 1]}N⊂N.

3 A linear and additive family of measures

We present four basic properties and show that they fully characterize a general

family of linear and additive measures. The first property, Anonymity, states that

all individuals are equally important in determining the cohesiveness. Formally,

this idea is modeled by requiring the cohesiveness measure to take equal values for

any two isomorphic ranking profiles. This property was included directly in the

definition of a cohesiveness measure by Bosch [5] and Garćıa-Lapresta and Pérez-

Román [15], but we prefer to consider it as an independent property.
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ANONYMITY (AN): The cohesiveness measure M is anonymous if for all groups

A,B ⊂ N and all isomorphic ranking profiles PA ∈ PA and P ′B ∈ PB ,

M(P ′B) = M(PA).

The second property, Independence, states that the effect on the cohesiveness

of a yPix–change is independent of all other pairwise comparisons. To express this

more formally, consider any two ranking profiles PN and P̄N with the property

that no individual changes her ranking on the pair {x, y} across the two situations.

Suppose also that (y, x) is a contiguous pair of objects for i at both ranking profiles.

Consider now the two ranking profiles P ′N and P̄ ′N that are obtained from PN and

P̄N , respectively, by changing the ordering between x and y for individual i. Then,

the cohesiveness should change in both situations by the same amount.

INDEPENDENCE (IND): The cohesiveness measure M is independent if for all

groups N ⊂ N, all individuals i ∈ N , all pairs of distinct objects {x, y} ∈ X̄, and

all ranking profiles PN , P
′
N , P̄N , P̄

′
N ∈ PN such that xPjy ⇔ xP̄jy for all j ∈ N ,

P ′N is (x, y)–different from PN for individual i, and P̄ ′N is (x, y)–different from P̄N

for individual i,

M(P̄ ′N )−M(P̄N ) = M(P ′N )−M(PN ).

The third property, Neutrality, states that the cohesiveness measure is not biased

with respect to certain objects. Formally, if it is possible to derive one ranking profile

from a distinct one by only relabeling objects, then the cohesiveness should be the

same in both situations. This property was also included directly in the definition

of a cohesiveness measure by Bosch [5] and Garćıa-Lapresta and Pérez-Román [15].

NEUTRALITY (NEU): The cohesiveness measure M is neutral if for all groups

N ⊂ N and all ranking profiles PN , P
′
N ∈ PN such that there exists a permutation

µ : X → X with the property that for all individuals i ∈ N and all pairs of distinct

objects {x, y} ∈ X̄, xPiy ⇔ µ(x)P ′iµ(y),

M(P ′N ) = M(PN ).
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The last property, Monotonicity, regards the situation when all individuals agree

on how to rank all pairs of objects apart from {x, y} and a single individual i

performs a yPix–change. Then, if the number of individuals in the rest of the

group who rank x over y is greater than the number of individuals who rank y

over x, the cohesiveness should increase. Monotonicity therefore highlights that the

effect on the cohesiveness of interchanging a contiguous pair of objects when there

is unanimity in the rest of comparisons should depend on the rankings the other

members of the group have on that pair of objects. In particular, the sign of the

change in the cohesiveness depends on which of the two objects is preferred by the

majority of individuals.

MONOTONICITY (MON): The cohesiveness measure M is monotonic if for all

groups N ⊂ N, all individuals i ∈ N , all pairs of distinct objects {x, y} ∈ X̄, and all

ranking profiles PN , P
′
N ∈ PN such that wPjz ⇔ wPlz for all {w, z} ∈ (X̄\{{x, y}})

and all j, l ∈ N , and P ′N is (x, y)–different from PN for individual i,

#(xPN\{i}y) > #(yPN\{i}x)⇒M(P ′N ) > M(PN ).

Theorem 1 shows that these properties fully characterize a family of linear and

additive cohesiveness measures with the vector of the absolute differences d(PN )

as main component. Note that because of Anonymity, the vector of weights an

depends on the size n of the group N and not on the group itself.

Theorem 1 The cohesiveness measure M satisfies AN, IND, NEU, and MON if

and only if for all groups N ⊂ N, there exists a vector an = (an1 , a
n
2 , . . . , a

n
bn2 c+1),

with ani ∈ [0, 1] for all i ∈ {1, 2, ..., bn2 c+1} and anj < anj+1 for all j ∈ {1, 2, ..., bn2 c},

such that for all ranking profiles PN ∈ PN ,

M(PN ) = an · d(PN ).

We denote the family of cohesiveness measures characterized in Theorem 1 by

Ω. We conclude this section with a graphical representation showing that the inter-

section of all measures belonging to Ω establishes a partial order on ranking profiles

of the same size that is of the same nature as first order stochastic dominance. The

following example will illustrate this point.
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Suppose that n = 8 and k = 5 so that, in total, there are ten different pairs

of objects. In Figure 1, the horizontal axis refers to the indexes of the vector d,

which are 0, 0.25, 0.5, 0.75 and 1. The vertical axis, on the other hand, collects

cumulative percentages of d represented by the function D(PN , j). This function

assigns to any ranking profile PN ∈ PN and any number j ∈ {0, 0.25, 0.5, 0.75, 1},

the value D(PN , j) =
∑
i≤j

di(PN ). For example, if D(PN , 0.25) = 0.6, as it is the

case of profile 3, nx,y(PN ) is smaller than or equal to 0.25 · 8=2, for sixty percent

of all possible pairs of objects.

Figure 1: Dominance criterion.

Now, if the values of D of one ranking profile lie never above and in some case

strictly below the ones of a second ranking profile, all measures belonging to Ω

assign a higher cohesiveness to the former profile. Thus, given the three ranking

profiles in Figure 1, the cohesiveness in profile 1 is higher than in profiles 2 and 3

for all measures in Ω. Note also the partial ordering induced by the intersection

of all the measures of the family Ω does not put any restriction on which ranking

profile has the higher cohesiveness whenever the values of D cross in some instance

(i.e., for profiles 2 and 3).

There are many ways to complete the partial order induced by Ω. One approach

is to calculate, for any two ranking profiles, the distances between the values of D.

The distances are then aggregated in order to decide which of the two ranking

8



profiles has the higher cohesiveness. Interestingly, this measure coincides with the

one constructed using one of the approaches explained in the introduction. This

correspondence and the exact formulation of the measure will be provided in Section

5.

4 A one-parameter subfamily of linear and addi-

tive measures

Theorem 1 shows that a set of intuitive axioms restricts the way in which the

cohesiveness should be measured; it imposes a linear and additive formula over the

majority results of all pairwise comparisons over objects. In addition, it also induces

some ordinal comparisons between ranking profiles of the same size. However, the

family Ω is rather large and includes measures that suffer from several shortcomings.

In particular:

1. So far, the structure introduced is not sufficient to establish an undoubtful

comparison between ranking profiles of different sizes, even in ordinal terms.

For example, Ω contains measures that assign less cohesiveness to an unan-

imous ranking profile of a group with size n than to a ranking profile from

individuals with very different rankings in a group of size n+ 1. Some struc-

ture on the values of a cohesiveness measure for ranking profiles of different

sizes is needed.

2. A particular characteristic of the family Ω is that the exact cardinal values

are not determined. For example, some cohesiveness measures of Ω only take

values between 0 and ε (for any ε > 0), whereas others only take values

between 1 − ε and 1. Ω even includes measures that take values between 0

and ε for some group sizes and values between 1 − ε and 1 for others. This

shows why some homogeneous structure is needed so that the value assigned

to a ranking profile has some meaning per se.

3. According to Theorem 1, a yPix–change increases the cohesiveness if at least
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as many individuals rank x over y as the other way round. It also allows the

quantity of this increase to depend on the size of the majority. However, Ω in-

cludes measures that evaluate these effects arbitrarily, for example depending

on whether or not the majority in a given ranking profile is a prime number.

Hence, some consistency in the quantity changes is asked for.

These shortcomings motivate us to propose additional axioms in order to further

restrict Ω. The first axiom, Replication Invariance, puts some structure on ranking

profiles belonging to groups of different sizes. Suppose that we are able to assess

the cohesiveness for groups of size n. Then, one can consider a sequence of ranking

profiles of size n. If it turns out that all ranking profiles belonging to the sequence are

isomorphic copies of each other, then the ranking profile that consists of the union

of all isomorphic copies has the same preference structure as each of its components.

Then, a basic coherence property requires that the cohesiveness in this augmented

ranking profile is the same as in any of its components (see Blackorby et al. [4] for

applications of this type of property in other social choice contexts).

REPLICATION INVARIANCE (REP): The cohesiveness measure M satisfies

replication invariance if for all ranking profiles PA ∈ PA and P ′B ∈ PB , where

|B| = m · |A| (with m ∈ N), such that P ′B consists of the union of m isomorphic

and disjoint copies of PA,

M(P ′B) = M(PA).

Replication Invariance reduces to Anonymity if m = 1. Intuitively, it implies

that the cohesiveness measure does not focus on the absolute number of individuals

having each possible ranking, but on the proportions.

To fill the second gap and construct homogeneous cohesiveness measures, we

require that the extreme values a cohesiveness measure can reach by definition (0

and 1) are attained for some ranking profiles (corresponding to possibly different

groups of possibly different sizes). This property serves the objective that the value

a cohesiveness measure assigns to a ranking profile provides some information per

se.
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FULL RANGE (FR): The cohesiveness measure M satisfies full range if there

are two groups A and B and two ranking profiles PA ∈ PA and P ′B ∈ PB such that

M(PA) = 0 and M(P ′B) = 1.

To introduce our next axiom, Concordance, consider a ranking profile PN such

that three individuals i, j, l ∈ N have a contiguous pair (y, x) in their rankings, but

there is a majority of individuals who rank x over y. Also, all individuals agree on

how to order all pairs of objects different from {x, y}. Now, suppose that individual

i changes her/his ranking over the pair {x, y}. This yPix–change could cause the

cohesiveness to vary (in particular, because of MON it increases the cohesiveness

for any measure of Ω). Suppose now that after this yPix–change, j also changes

her ranking on {x, y}. As a result, the cohesiveness could change again. Finally,

if l also switches her ranking, the cohesiveness could change again. However, it

seems natural that these changes (if they exist) are related to each other in some

way. For example, if the second change causes the cohesiveness to vary in the same

direction and quantity as the first one, then there are not apparent reasons why

the third quantity change should be different from the first two. If, however, the

second change increases the cohesiveness by a larger (smaller) quantity than the

first one, then it seems natural that the third change increases the cohesiveness by

this amount more (less) than the second one.

CONCORDANCE (CON): The cohesiveness measure M is concordant if for all

groups N ⊂ N, all individuals i, j, l ∈ N , all pairs of distinct objects {x, y} ∈ X̄,

and all ranking profiles PN , P
′
N , P

′′
N , P

′′′
N ∈ PN such that wPsz ⇔ wPmz for all

{w, z} ∈ (X̄ \ {{x, y}}) and all s,m ∈ N , P ′N is (x, y)–different from PN for i,

P ′′N is (x, y)–different from P ′N for j, P ′′′N is (x, y)–different from P ′′N for l, and

#(xPNy) ≥ #(yPNx),

(M(P ′N )−M(PN ))−(M(P ′′N )−M(P ′N )) = (M(P ′′N )−M(P ′N ))−(M(P ′′′N )−M(P ′′N )).

Adding FR and CON to the former properties and replacing AN by REP char-

acterizes a one-parameter subfamily of Ω.
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Theorem 2 The cohesiveness measure M satisfies IND, NEU, MON, REP, FR,

and CON if and only if M ∈ Ω and there exists γ ∈
[

1
4 ,

3
4

]
such that for all n ≥ 2

and all i ∈ {1, ..., bn2 c+ 1},

ani =


2(i−1)
n2

[
4
(
γ − 1

4

)
n+

(
1− 4

(
γ − 1

4

))
2(i− 1)

]
if n is even

2i−1
n2

[
4
(
γ − 1

4

)
n+

(
1− 4

(
γ − 1

4

))
(2i− 1)

]
if n is odd.

We denote the family of cohesiveness measures characterized in Theorem 2 by Γ.

With respect to the parameter γ, it follows from the proof that it is exactly equal to

a4
2. Hence, its value is related to the question of how much cohesiveness there is in

a group of four individuals if, for all pairs of objects, three individuals rank the first

object over the second and one individual the second over the first. Also, we knew

by Theorem 1 that any change of a contiguous pair of objects produces a variation

in any cohesiveness measure of Ω whose sign depends on which object is ranked

higher by the majority of the remaining individuals. However, the magnitude of this

variation was allowed to depend on the size of the majority and it is this dependence

that is now uniquely captured through the parameter γ. If γ = 0.5, all changes are

considered equally important; that is, the cohesiveness measure associated with this

value ignores the size of the majority when judging changes of contiguous pairs. If

γ > 0.5, the effect on the cohesiveness of a change in a contiguous pair is the higher

the more divided the group is on that particular pair of objects (and this effect is

the more pronounced the higher γ is). Finally, if γ < 0.5, a change of a contiguous

pair gets a higher weight the less divided the group is on these objects (and this

effect is the more pronounced the smaller γ is).

5 The measures of Γ

We will now introduce additional properties and show that when they are added

to the ones of Theorem 2, the measures corresponding to γ = 0.25 and γ = 0.5

are characterized. These measures have not only a special interest because they

are focal in the family Γ, but also because they have an intuitive interpretation in

terms of the two approaches to construct cohesiveness measures mentioned in the
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introduction. We will also see that the rest of measures of Γ can be related to these

two focal cases.

5.1 Corrected normalized average tau

To introduce the first additional property, we will focus on some correlation mea-

sures that have received a particular attention in the literature. For the special case

of two individuals, Kendall [19] has proposed a well–known correlation measure that

is based on the distance measure of Kemeny [20]. To define it formally, take any

group of two individuals N = {i, j} and any ranking profile PN ∈ PN of this group

as given. Now, for any pair of objects {x, y} ∈ X̄, τx,yi,j (PN ) = 1 if individual i and

j agree on the binary ordering between x and y, otherwise τx,yi,j (PN ) = 0. The cohe-

siveness in this group, τi,j(PN ), is then defined as the proportion of pairwise compar-

isons that both individuals agree upon; that is, τi,j(PN ) = 2
k(k−1)

∑
{x,y}∈X̄

τx,yi,j (PN ).

For the general case of any group N ⊂ N of size n, Hays [17] suggests to naturally ex-

tend Kendall’s τ by assigning to any ranking profile PN ∈ PN the average of all pos-

sible τi,j(PN ) values; that is, τ̄(PN ) = 2
n(n−1)

∑
i,j∈N :j 6=i

τi,j(PN ). This measure is re-

ferred to as average tau. Since the extreme values of τ̄(PN ) for a given group N may

be different from 0 and 1, Hays [17] also proposes to normalize the measure to the

unit interval. The normalized average tau is given by τ̃(PN ) = τ̄(PN )−min{τ̄N}
max{τ̄N}−min{τ̄N} ,

taking into account that max{τ̄N} = 1, min{τ̄N} = n−2
2(n−1) if n is even, and

min{τ̄N} = n−1
2n if n is odd.2

We have argued before that all measures belonging to Γ only differ in how the

cohesiveness varies as a response to a yPix–change. This magnitude is a function

of nx,y. Given the importance of τ̄ and τ̃ in the literature, we are thus interested in

studying how they behave in this aspect. The answer to this question will provide us

with an idea of a new property that allows us to discriminate between the measures

belonging to Γ.

By definition, τ̄ and τ̃ evaluate a change of a contiguous pair depending on the

variations in the distances between the ranking of this individual and the rankings of

2Lemma 1 of Alcalde-Unzu and Vorsatz [1] calculates these maximum and minimum values.
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each of the other individuals. To be more exact, a yPix–change produces two effects

on τ̄ and τ̃ : it reduces the distance (and, thus, increases the cohesiveness) between

the ranking of this individual i and the individuals who rank the object that is

made better off higher; simultaneously, it increases the distance (and, thus, reduces

the cohesiveness) between the ranking of i and the individuals who rank the object

that is made worse off higher. As a result, the increase in the cohesiveness changes

proportionally with the number of individuals who rank the object that moves up

in the ranking higher. Consequently, we can formally express this characteristic of

τ̄ and τ̃ by the following property, which is stronger than IND and CON.

PROPORTIONALITY (PROP): The cohesiveness measure M is proportional if

for all groups N ⊂ N, all individuals i ∈ N , all pairs of distinct objects {x, y} ∈ X̄,

and all ranking profiles PN , P
′
N , P̄N , P̄

′
N ∈ PN such that P ′N is (x, y)–different from

PN for individual i, P̄ ′N is (x, y)–different from P̄N for individual i, #(xPNy) ≥

#(yPNx), and #(xP̄Ny) ≥ #(yP̄Nx),

M(P ′N )−M(PN )

M(P̄ ′N )−M(P̄N )
=
nx,y(PN\{i})

nx,y(P̄N\{i})
.

Given that τ̄ and τ̃ satisfy PROP and that they are constructed using pairwise

comparisons, one would think that adding PROP to the former properties leads to

a characterization of one of these measures. However, this is not true. The reason is

that these measures, although they satisfy the other axioms, do not satisfy REP. To

see why, consider the ranking profile P{1,2,3} such that P1 = P2 = POP3 . Consider

now an extension of this ranking profile obtained by joining it with an isomorphic

and disjoint ranking profile; that is, consider the ranking profile P{1,2,3,4,5,6} such

that P1 = P2 = P4 = P5 = POP3 = POP6 . REP implies that the cohesiveness is

in both situations the same. However, τ̄(P{1,2,3}) = 1
3 and τ̄(P{1,2,3,4,5,6}) = 7

15 ,

whereas τ̃(P{1,2,3}) = 0 and τ̃(P{1,2,3,4,5,6}) = 1
9 .

Consequently, given the intuitive plausibility of PROP, the following question

arises: Which of the measures belonging to Γ satisfies PROP (if there is any)? We

are going to see that the unique measure is the one corresponding to γ = 0.25.

Curiously, it coincides with τ̃ for even groups, but it corrects it for odd groups
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in such a way that the deviation tends to zero as the size of the group goes to

infinity. In particular, for any ranking profile PN belonging to a group N with an

odd number of individuals, the measure can be calculated as 1
n2 + τ̃(PN ) n

2−1
n2 .

Definition 1 The cohesiveness measure M is called corrected normalized average

tau (τ̂) if M ∈ Γ and γ = 0.25 or, equivalently, if for all n ≥ 2 and all j ∈

{1, . . . , bn2 c+ 1},

ani =


(

2(i−1)
n

)2

if n is even(
2i−1
n

)2
if n is odd.

Replacing IND and CON by PROP isolates τ̂ from all measures in Γ.

Theorem 3 The cohesiveness measure M satisfies REP, NEU, PROP, MON, and

FR if and only if it is τ̂ .

5.2 Average sigma

While the measures in the previous subsection calculate first the distances between

individual rankings, an alternative approach determines first the distances in pair-

wise comparisons of objects. If there are only two objects –i.e., X = {x, y}– the

approach consists in calculating the absolute difference in the support of the two

objects and weighting it by the maximal difference possible; that is, for all N ⊂ N

and all ranking profiles PN ∈ PN , σx,y(PN ) =
nx,y(PN )

n . This measure can be

naturally extended to the case of an arbitrary number of objects by following the

reasoning of Hays [17] and calculating the average of all σx,y(PN ) for all pairs of

objects; that is, σ̄(PN ) = 2
k·(k−1)

∑
{x,y}∈X̄

σx,y(PN ). We will call this measure aver-

age sigma. As before, given the intuitive plausibility of σ̄, we would like to know

how it behaves in the aspect that differentiates the measures of Γ. It is easy to see

that, if the majority of the individuals rank x over y, any yPix–change induces σ̄ to

vary in the same way, independently of the size of the majority. Formally, this can

be expressed as a property that states that the effect of interchanging a contiguous

pair of objects only depends on which object was ranked higher by the majority

before the change in the ranking took place.
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STRONG INDEPENDENCE (SIND): The cohesiveness measure M is strongly

independent if for all groupsN ⊂ N, all individuals i ∈ N , all pairs of distinct objects

{x, y} ∈ X̄, and all ranking profiles PN , P
′
N , P̄N , P̄

′
N ∈ PN such that P ′N is (x, y)–

different from PN for individual i, P̄ ′N is (x, y)–different from P̄N for individual i,

#(xPNy) ≥ #(yPNx), and #(xP̄Ny) ≥ #(yP̄Nx),

M(P̄ ′N )−M(P̄N ) = M(P ′N )−M(PN ).

It can be easily checked that SIND implies IND and CON. The following result

shows that the only measure of Γ that satisfies SIND coincides with γ = 0.5, which

is exactly σ̄.

Theorem 4 The following statements are equivalent:

1. M satisfies REP, SIND, NEU, MON, and FR.

2. M ∈ Γ and γ = 0.5.

3. M ∈ Γ and for all n ≥ 2 and all j ∈ {1, . . . , bn2 c+ 1},

ani =


2(i−1)
n if n is even

2i−1
n if n is odd.

4. M is σ̄.

Finally, we would like to note that average sigma has a natural interpretation in

terms of Figure 1. It implies that a complete ordering on ranking profiles of groups

with the same size is obtained by summing up the distances in the values of the

function D.

5.3 Other measures of Γ

The remaining measures of Γ do not have a natural interpretation, nevertheless

we can relate them to the focal cases studied before. First, the polar measure that

corresponds to γ = 0.75 can be obtained by proposing an inverse property to PROP

such that the right–hand side of the property changes to
nx,y(P̄N\{i})

nx,y(PN\{i})
. Second, the

measures corresponding to parameter values between 0.25 and 0.5 are weighted
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averages of these two extremes, with weights depending on the distance between

the parameter value of the measure and these extremes.3 Exactly, any measure Mγ

of the family Γ, where γ ∈ [ 1
4 ,

1
2 ], can be written as

Mγ = 4

(
γ − 1

4

)
· σ̄ +

(
1− 4

(
γ − 1

4

))
· τ̂ .

That is, all these measures of the family are the different compromises between the

ideas of PROP and SIND of these two extremes.

Finally, this equivalence has a mirror counterpart with the measures whose pa-

rameter values are between 0.5 and 0.75.

6 Concluding discussion

Group cohesiveness can be defined as the degree to which the members of the group

stick together, both emotional and task–related. If we think, for example, of an

organizational unit at the workplace, group cohesiveness plays a central role not

only because it leads to a better performance (i.e., there is a higher likelihood

that a goal is met and/or the quality of the output is higher), but also because it

decreases the probability of internal conflicts.

The objective of this study has been to measure the cohesiveness of individuals

in a group on one particular dimension: preferences. We have first introduced a

set of basic properties (AN, IND, NEU and MON) and have shown that they fully

characterize a family of linear and additive measures Ω that takes the vector of

distances d as main component. In the next step of our study, we have used the

properties of REP, FR and CON to restrict Ω further. In particular, the three

additional properties imply that the set of weighting vectors an depends on a single

parameter γ, which determines the extend to which the size of the majority in

a pairwise comparison affects the changes in the cohesiveness. Finally, we have

established that the focal cases of Γ have natural explanations in terms of two

natural approaches to construct cohesiveness measures.

3We thank an anonymous referee for drawing our attention to this discussion.
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All measures characterized in the paper have in common that the unanimous

ranking profiles (i.e., all individuals have exactly the same ranking) are the only

profiles for which the cohesiveness is maximal. This is totally uncontroversial. In

fact, Bosch [5] and Garćıa-Lapresta and Pérez-Román [15] impose this condition as

part of the definition of a cohesiveness measure. The selection of the ranking profiles

with the minimal cohesiveness, on the other hand, is not as clear cut.4 Consider,

for example, two ranking profiles PN and P̄N such that individual preferences are

equally distributed over all possible preferences in PN , but under P̄N , half of the

population has a given ranking P̄i and the other half has exactly the opposite

ranking P̄OPi . Given that nx,y(PN ) = 0 and nx,y(P̄N ) = 0 for all x, y ∈ X, PN

and P̄N have both the lowest possible cohesiveness for any measure we characterize.

Yet, there are arguments to defend other possibilities.

On one hand, one can argue that the cohesiveness should be lower under PN

than under P̄N . After all, in P̄N there are two subgroups in the society that each

have full cohesiveness, although these subgroups are opposed to each other. On

the other hand, one can also argue that P̄N reflects a much more polarized society

than PN and this higher polarization can lead to more conflicts. Therefore, it seems

important to study in the future measures that can possibly differentiate between

ranking profiles such as PN and P̄N . For example, it might be interesting to consider

measures of polarization that explicitly consider intra-group cohesiveness and inter-

group distances.

Finally, we would like to mention that our work contributes to an extensive

literature in social choice in which distance measures play an important role. For

example, there are papers that study or construct voting rules using distance mea-

sures (see, among others, Eckert et al. [11], Elkind et al. [13] and Meskanen and

Nurmi [23]). With respect to the construction of distance measures, the results in

our paper directly relate to the seminal work of Kemeny [20]. However, alternative

distance measures have been proposed, for example, by Cook and Seiford [7, 8] and,

more recently, by Klamler [21] and Baldiga and Green [3]. The former authors sug-

4We thank an anonymous referee for drawing our attention to this discussion.
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gest to sum the differences in the positions of each object in the two rankings and

divide the resulting number by the maximal possible value of this sum. Klamler [21]

and Baldiga and Green [3], on the other hand, considers all possible subsets (with a

size of at least two) generated by the set of objects and calculates the proportion of

different maximal objects between the two rankings. An interesting area of further

research is the study of the properties of the corresponding cohesiveness measures

that can be constructed using these distances in the same straightforward way as τ̄

and τ̃ are constructed from the Kemeny distance through Kendall’s τ .
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Appendix

Proof of Theorem 1

It is straightforward to show that the family of cohesiveness measures defined in

the theorem satisfies the properties. Therefore, we consider from now on the other

implication. Take any cohesiveness measure M that satisfies AN, IND, NEU, and

MON. First, we show that for all groups N ⊂ N, MN is a function of d(PN ); that

is, we are going to prove that for any two ranking profiles PN , P
′
N ∈ PN such that

d(PN ) = d(P ′N ), M(PN ) = M(P ′N ).

Take any group N ⊂ N and any two ranking profiles PN , P
′
N ∈ PN with the

property that d(PN ) = d(P ′N ). Now, consider any unanimous ranking profile P̄N ∈

PN (i.e., for all i, j ∈ N, P̄i = P̄j) and observe that it is possible to arrive from PN

(and P ′N , respectively) to P̄N by means of successive changes of contiguous pairs of

objects. Then, given any pair of distinct objects {x, y} ∈ X̄, suppose without loss

of generality that #(xPNy) ≥ #(yPNx). Now, there are two possibilities: xP̄iy for

all i ∈ N or yP̄ix for all i ∈ N .

1. If xP̄iy for all i ∈ N , in the process of arriving from PN to P̄N , the contiguous

pair of objects (y, x) has to be changed exactly #(yPNx)–times to (x, y).

Consider first the particular case when PN is such that all individuals agree

on how to order all pairs {w, z} different from {x, y}. It follows from MON

that each of these changes raises the cohesiveness. Then, by IND, each xPiy–

change raises the cohesiveness also if there is no unanimity in the rankings for

pairs distinct from {x, y}. By IND and AN, each incremental only depends on

the number of individuals that rank x over y in the profile at which this change

is applied. Formally, denote by tj(x, y) the incremental in the cohesiveness

when a contiguous pair (y, x) is changed to (x, y) and there were j individuals

that rank x over y. Also by NEU, tj(x, y) = tj(z, w) ≡ tj for all ordered pairs

of objects (x, y), (z, w). Observe that the total incremental in the cohesiveness

from the changes of the contiguous pair (y, x) to (x, y) is Tx,y =
n−1∑

j=#(xPNy)

tj .

2. On the other hand, if yP̄ix for all i ∈ N , in the process of arriving from
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PN to P̄N , the total incremental in the cohesiveness from the changes of the

contiguous pair (x, y) to (y, x) equals Ty,x =
n−1∑

j=#(yPNx)

tj . By IND and NEU,

tj + tn−1−j = 0 for all j 6= n−1
2 and, by AN and IND, tn−1

2
= 0 when n is

odd. Consequently, Ty,x = Tx,y, which states that the total incremental in the

cohesiveness for the changes in the distinct pair of objects {x, y} ∈ X̄ in the

process of arriving from PN to P̄N is independent on which of the two objects

is preferred at any P̄i.

Since d(PN ) = d(P ′N ) by assumption, there exists a bijection φ : X̄ → X̄ such

that nφ({x,y})(P
′
N ) = nx,y(PN ). We can thus conclude that there exists a pair of

objects φ({x, y}) such that all changes of this pair in the process of arriving at

P̄N from P ′N raises the cohesiveness in the same quantity as changes of the pair of

objects {x, y} in the process of arriving at P̄N from PN . Repeating this process for

all elements of X̄, one can conclude that M(P̄N ) −M(P ′N ) = M(P̄N ) −M(PN ).

Hence, M(P ′N ) = M(PN ).

It remains to be shown that MN is a linear and additive function of d(PN ). To

do that, observe that MON and IND imply some restrictions on MN depending

on the values of d(PN ). In particular, MON implies that for all ranking profiles

PN , P
′
N ∈ PN such that dn(P ′N ) ≥ dn(PN ) = 1 − 2

k(k−1) , and for some i ≤ n − 2

di(P
′
N ) = di(PN ) − 2

k(k−1) and di+2(P ′N ) = di+2(PN ) + 2
k(k−1) , M(P ′N ) > M(PN ).

This implication is called Condition 1 from now on. Furthermore, IND implies

that for all ranking profiles PN , P
′
N , P̄N , P̄

′
N ∈ PN such that for some i ≤ n − 2,

di(P
′
N ) = di(PN ) − 2

k(k−1) , di+2(P ′N ) = di+2(PN ) + 2
k(k−1) , di(P̄

′
N ) = di(P̄N ) −

2
k(k−1) , di+2(P̄ ′N ) = di+2(P̄N ) + 2

k(k−1) , dj(P
′
N ) = dj(PN ) and dj(P̄

′
N ) = dj(P̄N ) for

all j 6= {i, i+2}, M(P ′N )−M(PN ) = M(P̄ ′N )−M(P̄N ). We refer to this implication

as Condition 2. It is easy to see that, in the presence of Condition 2, Condition 1

can be strengthened in the following way: for all ranking profiles PN , P
′
N ∈ PN such

that for some i ≤ n− 2, di(P
′
N ) = di(PN )− 2

k(k−1) , di+2(P ′N ) = di+2(PN ) + 2
k(k−1)

and dj(P
′
N ) = dj(PN ) for all j 6∈ {i, i + 2}, M(P ′N ) > M(PN ). This implication is

denoted Condition 3. Next, we proceed by induction separating the proof depending

on whether the size of the group is even or odd.
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1. Suppose that n is even. It follows directly from Condition 3 that MN would

attain its minimum at any ranking profile PN ∈ PN such that d0(PN ) = 1

and dj(PN ) = 0 for all j 6= 0. It is easy to see that this type of ranking

profile exists. An example is a ranking profile such that n
2 individuals have

any ranking Pi ∈ P and n
2 individuals have the ranking POPi . Without

loss of generality, let the cohesiveness at these profiles be aN1 . Consider now

any profile P ′N such that di(P
′
N ) = 0 for all i > 2. Then, by Condition 2,

M(P ′N ) = aN1 + d2(P ′N ) · k(k−1)
2 · tn

2
. Fix aN2 = aN1 + tn

2
· k(k−1)

2 .

Suppose now that for any ranking profile P ′′N such that di(P
′′
N ) = 0 for all i > q,

with q being an even number from {4, ..., n− 2}, M(P ′′N ) = aN1 + d2(P ′′N ) · tn
2
·

k(k−1)
2 +. . .+dq(P

′′
N )·tn+q−2

2
· k(k−1)

2 and that aNq
2 +1 = aNq

2
+tn+q−2

2
· k(k−1)

2 . Next,

consider any ranking profile P̃N such that di(P̃N ) = 0 for all i > q+ 2. Then,

by Condition 2, we have that M(P̃N ) = aN1 +d2(P̃N )·tn
2
· k(k−1)

2 +. . .+dq(P̃N )·

tn+q−2
2

k(k−1)
2 + dq+2(P̃N ) · tn+q

2
· k(k−1)

2 . Define aNq
2 +2 = aNq

2 +1 + tn+q
2
· k(k−1)

2 .

Hence, the vector aN is completely defined and it is easy to see that for any

arbitrary ranking profile PN ∈ PN , M(PN ) = aN · d(PN ).

2. Suppose that n is odd. It follows directly from Condition 3 that MN would

attain its minimum at any ranking profile PN ∈ PN such that d1(PN ) = 1

and di(PN ) = 0 for all i 6= 1. It is easy to see that this type of ranking

profile exists. An example is a ranking profile such that n−1
2 individuals have

any ranking Pi ∈ P and n+1
2 individuals have the ranking POPi . Without

loss of generality, let the cohesiveness at these profiles be aN1 . Consider now

any profile P ′N such that di(P
′
N ) = 0 for all i > 3. Then, by Condition 2,

M(P ′N ) = aN1 + d3(P ′N ) · tn+1
2
· k(k−1)

2 . Fix aN2 = aN1 + tn+1
2
· k(k−1)

2 .

Suppose now that for any ranking profile P ′′N such that di(P
′′
N ) = 0 for all i > q,

with q being an odd number from {5, ..., n−2}, M(P ′′N ) = aN1 +d3(P ′′N ) · tn+1
2
·

k(k−1)
2 + . . .+ dq(P

′′
N ) · tn+q−2

2
· k(k−1)

2 and that aNq+1
2

= aNq−1
2

+ tn+q−2
2
· k(k−1)

2 .

Next, consider any ranking profile P̃N such that di(P̃N ) = 0 for all i > q + 2.

Then, by Condition 2, we have that M(P̃N ) = aN1 +d3(P̃N )·tn+1
2
· k(k−1)

2 +. . .+

dq(P̃N )·tn+q−2
2
· k(k−1)

2 +dq+2(P̃N )·tn+q
2
· k(k−1)

2 . Let aNq+3
2

= aNq+1
2

+tn+q
2
· k(k−1)

2 .
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Hence, the vector aN is completely defined and it is easy to see that for any

arbitrary ranking profile PN ∈ PN , M(PN ) = aN · d(PN ).

It follows from AN that aN = aN̄ whenever the groups N and N̄ are equally sized.

Therefore, it can be concluded that for any arbitrary ranking profile PN ∈ PN ,

M(PN ) = an · d(PN ). By Condition 3, ti > 0 for all i ≥ n
2 . This implies that for

all n and all j ∈ {1, 2, ..., bn2 c}, a
n
j < anj+1. Given also that the minimal value of

MN is attained at all ranking profiles PN ∈ PN such that d0(PN ) = 1 if n is even

or d1(PN ) = 1 if n is odd, and by definition this minimal value has to be non–

negative, we get that an1 ≥ 0 for all n. Finally, by Condition 3, the maximal value

of MN would be attained at all ranking profiles PN ∈ PN such that dn(PN ) = 1.

Since these ranking profiles exist (i.e., the unanimous ranking profiles PN such that

Pi = Pj for all i, j ∈ N) and, by definition, the maximal value of MN cannot be

greater than 1, the restriction anbn2 c+1 ≤ 1 has to be satisfied.

Proof of Theorem 2

It is straightforward to show that the family of cohesiveness measures defined in

the theorem satisfies the properties. Therefore, we consider from now on the other

implication. Take any cohesiveness measure M that satisfies IND, NEU, MON,

REP, FR, and CON. By Theorem 1, M ∈ Ω. In the following, we investigate the

additional restrictions REP, FR, and CON impose on the set of vectors a ≡ {an}n≥2.

First, we establish six preliminary claims that will help us to develop the proof later

on.

Claim 1 If n is odd, ani = a2n
2i for all i ∈ {1, ..., bn2 c+ 1}.

Proof: Take any odd n, any i ∈ {1, ..., bn2 c+ 1}, and any ranking profile PN ∈ PN

such that d2i−1(PN ) = 1 and dj(PN ) = 0 for all j 6= 2i− 1. Such a ranking profile

always exists. For example, it is a ranking profile in which n−1
2 + i individuals have

a ranking Pi and n+1
2 − i have the ranking POPi . Then, by Theorem 1, we have that

M(PN ) = ani . Consider now a group N ′ of size 2n and a ranking profile P ′N ′ such

that it is the union of 2 isomorphic and disjoint copies of PN . Then, by definition,
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d4i−2(P ′N ′) = 1 and dj(P
′
N ′) = 0 for all j 6= 4i − 2. Then, by Theorem 1, we have

that M(P ′N ′) = a2n
2i . By REP, M(PN ) = M(P ′N ′). Therefore, ani = a2n

2i . �

Claim 2 If n is even, ani = a2n
2i−1 for all i ∈ {1, ..., bn2 c+ 1}.

Proof: Consider any even n and any i ∈ {1, ..., n2 + 1}. Take any ranking profile

PN ∈ PN such that d2i−2(PN ) = 1 and dj(PN ) = 0 for all j 6= 2i − 2. Such a

ranking profile always exists. For example, it is a ranking profile in which n
2 + i− 1

individuals have a ranking Pi and n
2 − i + 1 have the ranking POPi . Then, by

Theorem 1, we have that M(PN ) = ani . Consider now a group N ′ of size 2n and

a ranking profile P ′N ′ such that it is the union of 2 isomorphic and disjoint copies

of PN . Then, by definition, d4i−4(P ′N ′) = 1 and dj(P
′
N ′) = 0 for all j 6= 4i − 4.

Then, by Theorem 1, we have that M(P ′N ′) = a2n
2i−1. By REP, M(PN ) = M(P ′N ′).

Therefore, ani = a2n
2i−1. �

Claim 3 If n is odd, an1 > 0.

Proof: Suppose otherwise. Then, there is some odd n such that an1 = 0. Then, by

Claim 1, a2n
2 = 0. Since atj < atj+1 for all t and all j ∈ {1, . . . , b t2c} by Theorem 1,

it must be the case that a2n
1 < 0. But this is not possible given that at1 ≥ 0 for all

t by Theorem 1. �

Claim 4 If n is even, an1 = 0.

Proof: Consider any even n. By FR, there is some group C of size c and some

ranking profile P ′C ∈ PC such that M(P ′C) = 0. It follows from Theorem 1 that the

minimal value of MC is ac1. Then, it follows from Claim 3 that c is an even number.

By definition, P ′C should be one ranking profile with the minimal value of MC . By

Theorem 1, this minimal value is attained in ranking profiles P ′′C satisfying that

d0(P ′′C) = 1, which always exist. An example is P ′′C such that c
2 individuals have the

ranking P ′′i and the other c
2 individuals have the ranking (P ′′i )OP . By Theorem 1,

M(P ′′C) = M(P ′C) = 0.

Take any pair of individuals {i, j} ⊆ C such that P ′′i 6= P ′′j . By REP,M(P ′′{i,j}) =

M(P ′′C) = 0. Since d0(P ′′{i,j}) = 1 and d2(P ′′{i,j}) = 0, we know that M(P ′′{i,j}) = a2
1
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by Theorem 1. Hence, a2
1 = 0. Now, consider the ranking profile PN that consists

of the union of n
2 isomorphic and disjoint copies of P ′′{i,j}. Then, d0(PN ) = 1 and

dj(PN ) = 0 for all j 6= 0. By Theorem 1, we have that M(PN ) = an1 . By REP, we

have that M(PN ) = M(P ′′{i,j}) = 0. Therefore, an1 = 0. �

Claim 5 For all n, anbn2 c+1 = 1.

Proof: Consider any n. Observe first that, by FR, there exists a group C of size c

and a ranking profile P ′C ∈ PC for which the cohesiveness is 1. By definition, P ′C

should be one ranking profile with the maximal value of MC . By Theorem 1, this

maximal value is attained in ranking profiles P ′′C satisfying that dc(P
′′
C) = 1 and

di(P
′′
C) = 0 for all i 6= c, which always exist. An example is P ′′C such that P ′′i = P ′′j

for all i, j ∈ C. By Theorem 1, M(P ′C) = M(P ′′C) = acb c2 c+1 = 1. Consider now

the profile P̄B consisting in the union of n isomorphic and disjoint copies of P ′C .

Then, dnc(P̄B) = 1 and di(P̄B) = 0 for all i 6= nc. By REP, M(P̄B) = M(P ′C) = 1.

Therefore, ancbnc
2 c+1 = 1. Consider the profile PN of size n such that all individuals

i ∈ N have the ranking P ′′i . Note that dn(PN ) = 1 and di(PN ) = 0 for all i 6= n.

Then, M(PN ) = anbn2 c+1 and P̄B consists in the union of c isomorphic and disjoint

copies of PN . Then, by REP, M(PN ) = M(P̄B) = 1. Therefore, anbn2 c+1 = 1. �

Claim 6 If n is a multiple of 4, a4
2 = ann

4 +1.

Proof: Consider any n multiple of 4, a group C of size 4 and a ranking profile

P ′C ∈ PC such that d2(P ′C) = 1 and dj(P
′
C) = 0 for all j 6= 2. Then, M(P ′C) = a4

2.

Consider now the ranking profile PN of size n consisting in the union of n4 isomorphic

and disjoint copies of P ′C . Note that dn
2

(PN ) = 1 and dj(PN ) = 0 for all j 6= n
2 .

Then, M(PN ) = ann
4 +1. By REP, M(PN ) = M(P ′C). Therefore, a4

2 = ann
4 +1. �

To find the exact description of the set of vectors a, we divide the proof into two

parts, depending on whether the size of the group N is even or odd.

1. Suppose that n is even. We know from Claims 4 and 5 that an1 = 0 and

ann
2 +1 = 1. This concludes the proof for the case n = 2. Therefore, sup-

pose next that n ≥ 4. If n = 4, the unique value not determined by the
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axioms is a4
2. Define γ ≡ a4

2 and observe that, for the moment, by Theorem 1,

γ ∈ (0, 1). If n ≥ 6, it follows from CON and IND that for all i ∈ {1, . . . , n2 −

2},
(
(ani+2 − ani+1)− (ani+1 − ani )

)
=
(
(ani+3 − ani+2)− (ani+2 − ani+1)

)
. Conse-

quently, if we define p̄(n, γ) ≡ an2 and q̄(n, γ) ≡
(
(ani+2 − ani+1)− (ani+1 − ani )

)
for any i ∈ {1, . . . , n2 −2}, we have that ani = (i−1) p̄(n, γ)+ (i−2)(i−1)

2 q̄(n, γ)

for all i ∈ {1, . . . , n2 + 1}.

In case n is a multiple of 4, ann
4 +1 = a4

2 = γ by Claim 6. Using this and Claim

5 we obtain the following set of linear equations:

n
2 p̄(n, γ) +

n
2 ( n

2−1)

2 q̄(n, γ) = 1

n
4 p̄(n, γ) +

n
4 ( n

4−1)

2 q̄(n, γ) = γ.

Solving for p̄(n, γ) and q̄(n, γ) yields

p̄(n, γ) = 1
n2 (16γ + (8γ − 2)(n− 4))

q̄(n, γ) = 1
n2 (16− 32γ).

Letting p(n, γ) = n2 p̄(n, γ) and q(n, γ) = n2 q̄(n, γ), one can easily check that

if n is a multiple of 4, then for all i ∈ {1, . . . , n2 + 1}.

ani =
i− 1

2n2
(2 p(n, γ) + (i− 2) q(n, γ)) .

Then, we have that

ani =
i− 1

2n2
[2(16γ + (8γ − 2)(n− 4)) + (i− 2)(16− 32γ)] .

Slightly tedious but straightforward manipulations of this equation imply that

ani =
2(i− 1)

n2
[n(4γ − 1) + 2(i− 1)(2− 4γ)],

which can be easily rewritten in the desired form:

ani =
2(i− 1)

n2
[4(γ − 0.25) · n+ (1− 4(γ − 0.25)) · 2(i− 1)].

For all other even values of n, observe that ani = a2n
2i−1 by Claim 2. Then,

given that 2n is a multiple of 4, we have that for all i ∈ {1, . . . , n2 + 1},

ani =
2(2i− 2)

4n2
[4(γ − 0.25) · 2n+ (1− 4(γ − 0.25)) · 2(2i− 2)].

It can be easily seen that this is the desired result.
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2. Suppose now that n is odd. We know from Claim 1 that ani = a2n
2i . Conse-

quently, we have that for all i ∈ {1, . . . , bn2 c+ 1},

ani =
2(2i− 1)

4n2
[4(γ − 0.25) · 2n+ (1− 4(γ − 0.25)) · 2(2i− 1)].

It can be easily seen that this is the desired result.

Finally, it remains to be shown that γ ∈ [ 1
4 ,

3
4 ]. We know from Theorem 1 that for

all n and all i ∈ {2, . . . , bn2 c+ 1}, it is necessary that ani − ani−1 > 0. To guarantee

it, we can focus on the cases in which n is even and strictly greater than 2.5 We

have then that for all i ∈ {2, . . . , n2 + 1}, ani − ani−1 = p̄(n, γ) + (i − 2) q̄(n, γ).

Since this equation reduces to an2 − an1 = p̄(n, γ) for i = 2, it is necessary that

p(n, γ) > 0 for all n even and strictly greater than 2. Consequently, it is required

that 16γ+(8γ−2)(n−4) > 0 for all n even and strictly greater than 2. It is easy to

see that if this inequality holds for n→∞, it also holds for all n even and strictly

greater than 2. For n→∞ this equation reduces to 8γ− 2 ≥ 0, which is equivalent

to γ ≥ 1
4 .

To establish that ani − ani−1 > 0 for all i ∈ {3, . . . , n2 + 1}, we only have to show

that ann
2 +1 − ann2 = p̄(n, γ) + (n2 − 1) q̄(n, γ) > 0. This is because p̄(n, γ) > 0 for

γ ≥ 1
4 and for any negative q̄(n, γ), ani −ani−1 is minimized for i = n

2 +1. Using some

algebra, it can be verified that the necessary condition is n(6− 8γ) + 8(2γ− 1) > 0.

Again, it is sufficient to check the condition for n → ∞. For n → ∞ this equation

reduces to 6− 8γ ≥ 0, which is equivalent to γ ≤ 3
4 .

Proof of Theorem 3

It is straightforward to show that τ̂ satisfies the set of axioms. To show the other

implication, consider any cohesiveness measure M that satisfies REP, NEU, PROP,

MON, and FR. Since IND and CON are implied by the other five properties, Theo-

rem 2 applies and we only have to determine γ = a4
2. Since it follows from Theorem

2 that a4
1 = 0 and a4

3 = 1, we can apply PROP to obtain that γ
1−γ = 1

3 . This

equation solves for γ = 0.25.

5To see why, suppose that n is odd and that ani < ani−1 for some i ∈ {1, . . . , bn
2
c + 1}. Then,

by Claim 2, a2n2i < a2n2i−2. Hence, the condition is also violated for some even n. For the special

case when n = 2, we already know that a22 = 1 > 0 = a21.
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Proof of Theorem 4

It is straightforward to show that σ̄ satisfies the set of axioms. Similarly, some

basic calculus can show that σ̄ can be formulated as stated in points 2 and 3.

Then, we have to show only that the set of axioms of point 1 imply that the

cohesiveness measure is exactly the measure of Γ with γ = 1
2 . To show it, consider

any cohesiveness measure M that satisfies REP, SIND, NEU, MON, and FR. Since

IND and CON are implied by the other five properties, Theorem 2 applies and we

only have to determine γ = a4
2. Since it follows from Theorem 2 that a4

1 = 0 and

a4
3 = 1, we can apply SIND to obtain that γ − 0 = 1− γ. Hence, γ = 0.5.

Independence in Theorem 1

We show by means of four examples that the properties in Theorem 1 are indepen-

dent.

Anonymity: For every group N ⊂ N, assign to each group of individuals A ⊆ N

a non–negative number pN (A) such that pN (A) = 0 if #A ≤ n
2 , pN (A) > pN (B)

if #A > #B and #A > n
2 , pN (N) = 2

k(k−1) , and pN ′(A) 6= pN ′(B) for some

group N ′ ⊂ N and some A,B ⊂ N ′ such that A 6= B and #A = #B. Given

a ranking profile PN and a pair of objects {x, y} ∈ X̄, denote the value assigned

to the maximal set of individuals who prefer the object that is favored by the

majority as sx,y(PN ) = pN ({A ⊆ N : #(xPAy) ≥ #(yPAx) and there is no B ⊆

N s.t. #(xPBy) > #(xPAy)}). Now, let cohesiveness measure M1 be such that

for all groups N ∈ N and all ranking profiles PN , M1(PN ) =
∑

{x,y}∈X̄
sx,y(PN ).

This cohesiveness measure satisfies NEU, IND, and MON. The following example

shows that it is not anonymous. Let N = {1, 2, 3} and X = {x, y}. Suppose that

the ranking profiles PN and P ′N are such that xP1y, xP2y, yP3x, yP ′1x, xP ′2y, and

xP ′3y. Moreover, let pN ({1, 2}) = pN ({1, 3}) = 1
2 and pN ({2, 3}) = 3

4 . Then,

M1(PN ) = 1
2 and M1(P ′N ) = 3

4 . AN would imply that M1(PN ) = M1(P ′N ).

Neutrality: Let q : X̄ → R++ be a function that assigns to each pair of objects

{x, y} ∈ X̄ a strictly positive weight qx,y > 0 in such a way that qx,y 6= qw,z for
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some {w, z} ∈ (X̄ \{{x, y}}). Now, let cohesiveness measure M2 be such that for all

groups N ∈ N and all ranking profiles PN , M2(PN ) =
∑

{x,y}∈X̄

qx,y∑
{w,z}∈X̄

qw,z
σx,y(PN ).

This cohesiveness measure satisfies AN, IND, and MON. The following example

shows that it is not neutral. Let N = {1, 2} and X = {x, y, z}. Suppose that

the ranking profiles PN and P ′N are such that xP1yP1z, yP2xP2z, zP
′
1yP

′
1x, and

yP ′2zP
′
2x. Moreover, let qx,z = qy,z = 1 and qx,y = 2. Then, M2(PN ) = 2

4 and

M2(P ′N ) = 3
4 . NEU would imply that M2(PN ) = M2(P ′N ).

Independence: Let f : {1, . . . , k} → R++ be a function that assigns to each

position in a ranking a strictly positive weight such that f(v) 6= f(w) for some

v, w ∈ {1, . . . , k}. Then, for each group N ⊂ N, define the function FN : X ×

PN → R++ as FN (x, PN ) =
∑
i∈N

f(#{y ∈ X : ¬yPix}). Let the cohesiveness

measure M3 be such that for all groups N ∈ N and all ranking profiles PN ,

M3(PN ) =
∑

{x,y}∈X̄

FN (x,PN )+FN (y,PN )∑
{w,z}∈X̄

FN (w,PN )+FN (z,PN ) σx,y(PN ). This cohesiveness measure

satisfies AN, NEU, and MON. The following example shows that it is not indepen-

dent. Let N = {1, 2, 3} and X = {x, y, z}. Suppose that the ranking profiles PN and

P̄N are such that xP1yP1z, P2 = P1, yP3xP3z, zP̄1xP̄1y, P̄2 = P̄1, and zP̄3yP̄3x.

Let the ranking profiles P ′N and P̄ ′N be obtained by performing a yP3x–change and

a yP̄3x–change, respectively. Moreover, let f(1) = 3, f(2) = 2 and f(3) = 1. Then

M3(P ′N )−M3(PN ) = 1− 2
3 = 1

3 and M3(P̄ ′N )−M3(P̄N ) = 1− 8
9 = 1

9 . IND would

imply that M3(P ′N )−M3(PN ) = M3(P̄ ′N )−M3(P̄N ).

Monotonicity: Let the cohesiveness measure M4 be such that for all groups N ∈ N

and all ranking profiles PN , M4(PN ) = 1 − σ̄(PN ). This cohesiveness measure

satisfies AN, NEU, and IND. The following example shows that it is not monotonic.

Let N = {1, 2} and X = {x, y}. Suppose that the ranking profiles PN and P ′N are

such that xP1y, yP2x, xP ′1y, and xP ′2y. Then, M4(PN ) = 1 and M4(P ′N ) = 0.

MON would imply that M4(P ′N ) > M4(PN ).
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Independence in Theorem 2

We show by means of six examples that the properties in Theorem 2 are indepen-

dent.

Replication Invariance: As we showed in Section 5.1, the measure τ̄ satisfies NEU,

IND, MON, FR and CON, but it does not satisfy REP.

Neutrality: The cohesiveness measure M2 satisfies REP, IND, MON, FR, and CON.

However, it is not neutral.

Independence: The cohesiveness measure M3 satisfies REP, NEU, MON, FR, and

CON. However, it is not independent.

Monotonicity: The cohesiveness measure M4 satisfies REP, NEU, IND, FR, and

CON. However, it is not monotonic.

Full Range: Let the cohesiveness measure M5 be such that for all groups N ∈ N

and all ranking profiles PN , M6(PN ) = 1
2 σ̄(PN ). This cohesiveness measure satisfies

REP, NEU, IND, MON, and CON. Since its maximum is 1
2 , it does not satisfy Full

Range.

Concordance: For every group N ⊂ N, denote the vector of weights associated with

the measure σ̄ by an(σ̄). Now, let the cohesiveness measure M6 ∈ Ω be such that for

all n, anbn2 c+1 = 1 and ani =
ani (σ̄)

2 for all i ∈ {1, ..., bn2 c}. This cohesiveness measure

satisfies REP, NEU, IND, MON, and FR. The following example shows that it is not

concordant. Suppose that N = {1, 2, 3, 4, 5, 6} and X = {x, y}. Let PN be such that

xP1y, yP4x, P1 = P2 = P3, and P4 = P5 = P6. Then, M6(PN ) = 0. If the ranking

profile P ′N is (x, y)–different from PN for 4, then M6(P ′N ) = 1
6 . If the ranking profile

P ′′N is (x, y)–different from P ′N for individual 5, then M6(P ′′N ) = 1
3 . Finally, if the

ranking profile P ′′′N is (x, y)–different from P ′′N for individual 6, then M6(P ′′′N ) = 1.

Consequently, (M6(P ′′N ) −M6(P ′N )) − (M6(P ′N ) −M6(PN )) = 1
6 −

1
6 = 0, whereas

(M6(P ′′′N )−M6(P ′′N ))− (M6(P ′′N )−M6(P ′N )) = 2
3 −

1
6 = 1

2 . CON would imply that
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(M6(P ′′N )−M6(P ′N ))− (M6(P ′N )−M6(PN )) = (M6(P ′′′N )−M6(P ′′N ))− (M6(P ′′N )−

M6(P ′N )).

Independence in Theorem 3

We show by means of five examples that the properties in Theorem 3 are indepen-

dent.

Replication Invariance: The cohesiveness measure τ̄ satisfies NEU, PROP, MON,

and FR. However, it does not satisfy REP.

Neutrality: Let q : X̄ → R++ be a function that assigns to each pair of objects

{x, y} ∈ X̄ a strictly positive weight qx,y > 0 in such a way that qx,y 6= qw,z for

some {w, z} ∈ (X̄ \ {{x, y}}). Given a group N ∈ N, a ranking profile PN , and

two distinct individuals i, j ∈ N , let wi,j(PN ) =
∑

{x,y}∈X̄

qx,y∑
{w,z}∈X̄

qw,z
· τx,yi,j (PN ) be

the weighted percentage of pairwise comparisons individual i and j agree upon.

Define w̄(PN ) = 2
n(n−1)

∑
i,j∈N :j 6=i

wi,j(PN ) as the average weighted tau. Now, let

cohesiveness measure M7 be such that for all groups N ∈ N and all ranking profiles

PN , M7(PN ) =
w̄(PN )− 1

n
n−1
n

if n is even and M7(PN ) = 1
n2 +

w̄(PN )−n−1
2n

n+1
2n

n2−1
n2 if n is

odd. This cohesiveness measure satisfies REP, PROP, MON, and FR. The following

example shows that it is not neutral. Let N = {1, 2} and X = {x, y, z}. Suppose

that the ranking profiles PN and P ′N are such that xP1yP1z, yP2xP2z, zP
′
1yP

′
1x,

and yP ′2zP
′
2x. Moreover, let qx,z = qy,z = 1 and qx,y = 2. Then, M7(PN ) = 2

4 and

M7(P ′N ) = 3
4 . NEU would imply that M7(PN ) = M7(P ′N ).

Proportionality: Let the cohesiveness measure M8 be such that for all groups N ∈ N

and all ranking profiles PN , M8(PN ) = σ̄(PN ). This cohesiveness measure satisfies

REP, NEU, MON, and FR. The following example shows that it is not proportional.

Let N = {1, 2, 3, 4} and X = {x, y}. Suppose that the ranking profiles PN and P̄N

are such that xP1y, yP2x, P3 = P1, P4 = P2, P̄1 = P̄2 = P̄3 = P1, and P̄4 = P2.

Let the ranking profiles P ′N and P̄ ′N be obtained by performing a yP4x–change

and a yP̄4x–change, respectively. Then, M8(P ′N ) − M8(PN ) = 1
2 − 0 = 1

2 and

M8(P̄ ′N )−M8(P̄N ) = 1− 1
2 = 1

2 . PROP would imply that
M8(P ′N )−M8(PN )

M8(P̄ ′N )−M8(P̄N )
= 1

3 .
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Monotonicity: Let the cohesiveness measure M9 be such that for all groups N ∈ N

and all ranking profiles PN , M9(PN ) = 1 − τ̂(PN ). This cohesiveness measure

satisfies REP, NEU, PROP, and FR. The following example shows that it is not

monotonic. Let N = {1, 2} and X = {x, y}. Suppose that the ranking profiles

PN and P ′N are such that xP1y, yP2x, xP ′1y, and xP ′2y. Then, M9(PN ) = 1 and

M9(P ′N ) = 0. MON would imply that M9(P ′N ) > M9(PN ).

Full Range: Let the cohesiveness measure M10 be such that for all groups N ∈

N and all ranking profiles PN , M10(PN ) = 1
2 τ̂(PN ). This cohesiveness measure

satisfies REP, NEU, PROP, and MON. Since its maximum is 1
2 , it does not satisfy

FR.

Independence in Theorem 4

We show by means of five examples that the properties in Theorem 4 are indepen-

dent.

Replication Invariance: Let the cohesiveness measure M11 be such that for all

groups N ∈ N and all ranking profiles PN , M11(PN ) = σ̄(PN ) whenever n is even

and M11(PN ) =
σ̄(PN )− 1

n

1− 1
n

if n is odd. This cohesiveness measure satisfies NEU,

SIND, MON, and FR. The following example shows that it does not satisfy REP.

Let N = {1, 2, 3}, N̄ = {1, 2, 3, 4, 5, 6}, and X = {x, y}. Let xP1y, yP2x, P3 = P4 =

P6 = P1, and P5 = P2. Then, M11(PN ) = 0 and M11(PN̄ ) = 1
3 . REP would imply

that M11(PN̄ ) = M11(PN ).

Neutrality: The cohesiveness measure M2 satisfies REP, SIND, MON, and FR.

However, it is not neutral.

Strong Independence: Let the cohesiveness measure M12 be such that for all groups

N ∈ N and all ranking profiles PN , M12(PN ) = τ̂(PN ). This cohesiveness measure

satisfies REP, NEU, MON, and FR. The following example shows that it is not

strongly independent. Let N = {1, 2, 3, 4} and X = {x, y}. Suppose that the

ranking profiles PN and P̄N are such that xP1y, yP2x, P3 = P1, P4 = P2, P̄1 =
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P̄2 = P̄3 = P1, and P̄4 = P2. Let the ranking profiles P ′N and P̄ ′N be obtained

by performing a yP4x–change and a yP̄4x–change, respectively. Then, M12(P ′N )−

M12(PN ) = 1
4 − 0 = 1

4 and M12(P̄ ′N ) −M12(P̄N ) = 1 − 1
4 = 3

4 . SIND would imply

that M12(P ′N )−M12(PN ) = M12(P̄ ′N )−M12(P̄N ).

Monotonicity: The cohesiveness measure M4 satisfies REP, NEU, SIND, and FR.

However, it is not monotonic.

Full Range: The cohesiveness measure M5 satisfies REP, NEU, SIND, and MON.

However, it does not satisfy FR.
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