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Abstract

We present a model that is closely related to the so-called models of

choice under complete uncertainty, in which the agent has no informa-

tion about the probability of the outcomes. There are two approaches

within the said models: the state space-based approach, which takes

into account the possible states of nature and the correspondence be-

tween states and outcomes; and the set-based approach, which ignores

such information, and solves certain difficulties arising from the state

space-based approach. Kelsey [?] incorporates into a state space-based

framework the assumption that the agent has ordinal information about

the likelihood of the states. This paper incorporates this same assump-

tion into a set-based framework, thus filling a theoretical gap in the

literature. Compared to the set-based models of choice under complete

uncertainty we introduce the information about the ordinal likelihood

of the outcomes while, compared to Kelsey’s approach, we incorpo-

rate the advantages of describing uncertainty environments from the

set-based perspective. We present an axiomatic study that includes

adaptations of some of the axioms found in the related literature and

we characterize some rules featuring different combinations of infor-

mation about the ordinal likelihood of the outcomes and information

about their desirability.

Keywords: Complete Uncertainty, Ordinal Likelihood, Leximax, Leximin.

JEL code: D81.
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1 Introduction

In so-called models of choice under complete uncertainty or ignorance, agents

cannot formulate any kind of belief about the probabilities associated to each

action, or even their relative likelihood. We find two approaches in these

kinds of models. One, the state space-based approach, describes each action

by means of a vector of outcomes contingent upon the possible states of nature.

In this case, complete uncertainty concerns the probability or likelihood of the

states of nature (see Arrow and Hurwicz [?], Maskin [?], Cohen and Jaffray [?],

Barberà and Jackson [?], and Barrett and Pattanaik [?], among others). The

other, the set-based approach, describes each action exclusively in terms of the

outcomes it might generate. That is, complete uncertainty in this framework

directly concerns the probability or likelihood of the outcomes (see Barberà

et al. [?], Kannai and Peleg [?], Nitzan and Pattanaik [?], Pattanaik and

Peleg [?], Bossert [?, ?], Bossert et al. [?], Arlegi [?, ?], and, for a survey, see

Barberà et al. [?]).

The authors of the set-based approach invoke several relative advantages

over the state space-based formulation. One is that the former might be more

suitable for the tractability of overly complex problems, where it might be

difficult, first, to accurately identify the states of nature and, second, to find

the correspondence between states and outcomes. These tasks are sometimes

unnecessary or simply impossible, in which case, only the possible outcomes of

each action are considered. In some situations, moreover, the states of nature

may be arbitrarily partitioned in different ways, making the state space-based

approach subject to this arbitrariness. Finally, the set-based approach has

also been defended as a more suitable way to represent the Rawlsian problem

of choice under the veil of ignorance (a deeper discussion of all these arguments

can be found in Pattanaik and Peleg [?], and Bossert et al. [?]).

In this paper, we model a choice situation with uncertainty where the

decision maker’s beliefs have the structure of an ordinal ranking by likelihood

of the outcomes associated with each action. The consideration of only ordinal

likelihood information in an uncertainty environment is an approach that has

already been made by Kelsey [?] within a state space framework, but the

model we propose adopts the set-based perspective. Thus, while in Kelsey

[?] actions are described by a function that associates outcomes with states

of nature on which a likelihood ordering is defined, each action in our model
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is described simply by the set of outcomes it might generate, the elements of

which appear ordered from most to least likely. In short, compared to the

set-based models of choice under complete uncertainty we introduce in the

problem the information about the ordinal likelihood of the outcomes while,

compared to Kelsey’s approach, we incorporate the aforementioned advantages

of describing uncertain environments from the set-based perspective.

Our model also relates to Jaffray’s ([?], [?]) model of choice among be-

lief functions. In fact, our likelihood-ordered sets are special cases of what

Jaffray ([?], [?]) calls imprecise risk situations, i.e., decision problems under

uncertainty where there is some imprecision about the probability of their

consequences, and for which a belief function can be defined. Jaffray ([?], [?])

axiomatically characterizes a generalized expected utility function to compare

such kind of alternatives. However, his model does not apply to our setting,

basically because, while we are interested in a particular class of decision

problems (which we represent by means of likelihood-ordered sets) over which

we assume transitive and complete comparability, Jaffray ([?], [?]) assumes

transitivity and completeness when comparing any pair of belief functions,

thus making a stronger assumption. This affects the applicability of Jaffray’s

model both at the axiomatic level and the results level. In particular, under

complete comparability of any kind of belief functions, he imposes axioms that

imply dealing with linear combinations of belief functions. However, although

likelihood-ordered sets are representable by belief functions, it is not true that

any linear combination of belief functions finds a corresponding representa-

tion as a likelihood-ordered set, making it impossible to fit his axioms into our

framework. Similarly, the generalized expected utility function that he charac-

terizes to evaluate imprecise risk situations uses as support elementary belief

functions, which are a specific kind of belief functions that are also beyond our

domain: they are, too, unrepresentable by means of likelihood-ordered sets.

Methodologically, we present an axiomatic study that includes adaptations

of some axioms from the related literature and investigate their logical impli-

cations in our setting. In particular, we characterize alternative criteria that

combine information about the ordinal likelihood of the outcomes with infor-

mation about their desirability in different ways. Two of the families of rules

that we characterize, the leximax-desirability rules and the leximin-desirability

rules, are related to other criteria that appear in the literature on complete
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uncertainty, the leximax and leximin rules proposed by Pattanaik and Pe-

leg [?], in the sense that they closely reflect extreme types of optimistic and

pessimistic behavior in the agent, while also incorporating the ordinal likeli-

hood information. We also characterize another family of criteria, namely, the

leximax-likelihood rules, which display a type of behavior in which the agent’s

attention is focused on the most likely outcome of each action. Unlike the

previous two, the leximax-likelihood family has no parallel in the complete

uncertainty literature, but it does in the state-space approach to the ordi-

nal likelihood information problem formulated by Kelsey [?]. Additionally,

we present a family of weighted likelihood criteria, which evaluate actions by

calculating a weighted average of the utilities of all the possible results that

the action may generate, using higher weights for the results perceived by

the agent as most likely. These criteria can naturally be interpreted from a

subjective expected utility perspective.

The paper is organized as follows: Section 2 contains the basic notation of

the model and presents a preliminary result showing that there is no preorder

over the set of actions that at once satisfies three simple properties. This

result hints that the number of possible outcomes of each action is relevant in

the analysis. This fact will determine the structure of Section 3. In Section

3.1, we restrict the domain to rankings involving only actions with the same

cardinality (equal number of possible outcomes). This enables the character-

ization of some lexicographic criteria. In Section 3.2, we extend these criteria

to the general domain, obtaining some families of rankings. In Section 4, we

present a discussion on the combinations of axioms that appear in the charac-

terization results of Section 3 and, as a consequence, we present new axioms

that characterize the weighted likelihood criteria. We conclude in Section 5

by indicating some possible lines of further research. The Appendix collects

the proofs of all the results presented throughout the paper.

2 A model of ordinal uncertainty and a first

result

Our agent is equipped with a complete preorder, R, defined over an infinite

universal set of outcomes X, which reflects the agent’s preferences over this
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set.1 We will denote by P and I the asymmetric and the symmetric parts of

R, respectively.

We want to derive individual preferences over actions, where an action is a

set of possible final outcomes determined by a chance mechanism. The main

assumption of our model is that the decision maker is only able to assign a

likelihood ranking over the possible outcomes of an action. Thus, actions are

denoted ~a = (a1, . . . , an), where the mutually exclusive outcomes a1, . . . , an

(and no others) are perceived to be the possible final outcomes in decreasing

order of likelihood, that is, ai is perceived to be more likely than aj if i < j.2

The set of all possible actions includes all non-empty finite ordered subsets of

X, which we denote by Q.

In particular, by considering only ordinal likelihood information, the pos-

sibility is excluded that the agent determines, for example, how much more

likely outcomes are with respect to each other. Moreover, it is also excluded

the possibility that the agent can compare the likelihood of results across dif-

ferent actions. Our model can thus be seen as an intermediate model between

the standard lottery representation and the choice under complete uncertainty.

In the former, an action would also include each outcome’s exact probability

of occurring. In the latter, an action merely describes the set of possible

outcomes with no information about their likelihood or probability.3

We denote by % the individual preference over actions, where we assume

that for all x, y ∈ X, xRy ⇔ (x) % (y). This natural assumption is usu-

ally presented in the literature of choice under complete uncertainty as an

independent axiom under the name of Extension.

Let us discuss the interest and complexity of the problem at hand by in-

troducing a set of basic properties on how to construct individual preferences

over actions. The first property, called Reordering (REO), refers to an intu-

ition already established in Kelsey [?] under the name of Interchange. Assume

that ai and aj are possible outcomes under a certain action ~a. Suppose that

1We will say that a binary relation is a preorder if it satisfies reflexivity and transitivity,
and that it is a complete preorder if it is both a preorder and also satisfies completeness.

2We assume throughout the paper that the likelihood binary relation takes the form of
a linear ordering. The implications of other possible structures are addressed in Section 5.

3Obviously, in the choice under complete uncertainty framework, the order of presenta-
tion is meaningless, and the same action could be represented by any permutation of the
outcomes. In our framework, any permutation of the outcomes within a set would represent
a different action, since it would modify the relative likelihood of the outcomes.
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aj is the better outcome of the two, i.e., ajPai, but it is also the less likely of

the two, i.e., i < j. Then, action Π(i,j)(~a), which simply consists of permuting

the likelihood positions of ai and aj in ~a, has to be perceived as strictly better

than ~a.4

Reordering: For all ~a ∈ Q and i < j,

ajPai ⇒ Π(i,j)(~a) � ~a.

The second property is a plausible adaptation of the Dominance axiom

(DOM) in the set-based approach to choice under complete uncertainty and

is related to Gärdenfors’ principle [?], introduced by Kannai and Peleg [?].

Consider an action ~a and another action with the same possible outcomes as

~a and the same relative likelihood ordering plus an additional outcome x that

is the least likely outcome in this new action. We will represent this action by

(~a, x). Then, the axiom says that, if the new outcome x is strictly better than

all the outcomes of ~a, then action (~a, x) is strictly better than ~a. Similarly,

if x is strictly worse than all the outcomes of ~a, then action (~a, x) is strictly

worse than ~a. Finally, if x is indifferent to all the outcomes of ~a, then (~a, x)

is indifferent to ~a.

Dominance: For all ~a ∈ Q and all x 6∈ ~a:

xPai for all i ∈ {1, . . . , |~a|} ⇒ (~a, x) � ~a.

xIai for all i ∈ {1, . . . , |~a|} ⇒ (~a, x) ∼ ~a.

aiPx for all i ∈ {1, . . . , |~a|} ⇒ ~a � (~a, x).

The last property describes a consistency property on the composition

of actions, along the lines of the independence conditions in the set-based

approach. We will say that the composition of actions ~a and ~c, with ~a∩~c = ∅,
is the action (~a,~c) = (a1, . . . , a|~a|, c1, . . . , c|~c|).

5 Such a composition considers

all possible outcomes in ~a and ~c, maintains the internal likelihood orders of the

outcomes of ~a and ~c, and is such that any outcome in ~a is more likely than any

outcome in ~c. Now, suppose that action ~a is strictly better than action ~b, and

similarly, action ~c is strictly better than action ~d. The Composition axiom

(COM) establishes that the composition of ~b and ~d should not be strictly

better than the composition of ~a and ~c.

4Formally, Π(i,j)(~a) = (aπ(1), . . . , aπ(|~a|)), where π is a permutation on {1, . . . , |~a|} such
that π(i) = j, π(j) = i, and π(l) = l for all l 6∈ {i, j}.

5We define the intersection of two ordered sets, ~a and ~b, as the non-ordered set ~a ∩~b =
{x ∈ X | x ∈ ~a and x ∈ ~b}. The union of ordered sets is defined analogously.
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Composition: For all ~a,~b,~c, ~d ∈ Q such that ~a � ~b, ~c � ~d and ~a ∩ ~c =
~b ∩ ~d = ∅,

(~a,~c) % (~b, ~d).

Although the three proposed properties might seem rather natural, they

are, in fact, mutually incompatible, as the following result shows.

Result 1 If there are at least three non-indifferent outcomes in X, there is

no preorder % satisfying REO, DOM and COM.6

When investigating the source of the impossibility addressed by Result

??, we find that COM is controversial when the actions to be compared are

of different cardinality. Consider, as in the statement of the axiom, that ~a is

better than~b and ~c is better than ~d. Imagine, furthermore, that the cardinality

of ~a is greater than that of ~b and that both ~a and ~b are considerably worse

sets of outcomes than either ~c or ~d. Then, the addition of ~c at the end of ~a

and the addition of ~d at the end of ~b both have a positive effect. However,

given that ~a is bigger than ~b, the effect of ~c on ~a is smaller than that of ~d on ~b,

due to the lesser importance of the outcomes of ~c in (~a,~c) in relation to those

of ~d in (~b, ~d). Therefore, (~b, ~d) might become a better action than (~a,~c). In

other words, even though ~a is better than ~b and ~c is better than ~d, the relative

importance of the outcomes of ~c and ~d in (~a,~c) and (~b, ~d) is a crucial aspect.

Clearly, such a relative importance is going to depend on the cardinality of

the involved actions.

Hence, COM makes the implicit assumption that the addition of new out-

comes at the end of an action has similar effects on its desirability, regardless

of the cardinality of the action. However, and with no detriment to our as-

sumption of only ordinal likelihood information within a given action, it makes

sense to recognize that there is information to be deduced from the number

of outcomes in an action. For example, the addition of an outstandingly good

outcome, x, at the end of two actions makes it the least likely to occur in

either case, but it is natural to expect the agent to attach more importance

to x when it is added to a singleton than when it is added to a large set of

outcomes. As a matter of fact, Result ?? highlights this problem by showing

6The result also applies for the case in which X is finite. Additionally, the Extension
assumption over % can also be eliminated without affecting the impossibility.
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that COM is logically incompatible with REO and DOM, which are rather

plausible properties.

This lack of plausibility of COM in the case of unequal cardinality mo-

tivates the direction of the rest of the paper. Throughout the following sec-

tions we will provide independence properties that constitute an alternative

to COM.

3 Lexicographic criteria

In this section, we examine the way in which the combination of an inde-

pendence property that is an alternative to COM with other axioms leads

to characterizations of some lexicographic criteria. These criteria reflect be-

haviors in which the individual focuses on the most likely outcomes, the best

outcomes and the worst outcomes, respectively.

3.1 The equal-cardinality case

Given the apparent relevance of cardinality in comparing actions, we first

study the case in which the agent establishes comparisons only between actions

with an equal number of outcomes. Formally, a preference on equal-cardinality

actions will be a subset of
⋃
k∈N(Qk×Qk), instead of a subset of Q×Q, where

Qk is the set of all ordered subsets of X with cardinality k. In other words,

the agent can compare actions with exactly the same number of outcomes, but

cannot establish any comparison between actions with different cardinalities.

In Section 3.2, we will generalize the preferences derived in this section to the

general domain.

We propose a collection of axioms for the comparison of sets with the same

number of outcomes. We sort them into four categories on the basis of the

ideas they describe: (i) an independence property, (ii) an invariance property

(iii) likelihood sensitivity properties and (iv) outcome sensitivity properties.

Later, we will provide several characterization results by using a combination

of, at most, one property in each of the categories.

An independence property

Independence-like conditions are very common across most of the set-

ranking models, including choice under complete uncertainty problems (see
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Kannai and Peleg [?], or Pattanaik and Peleg [?], among others). Axiom

COM constituted a first crude attempt to reflect this idea. In this section,

we propose a property for the case of equal-cardinality comparisons. Inde-

pendence (IND) is a translation to our framework of Savage’s [?] Sure-Thing

Principle in line with Kelsey [?]: Consider two actions, ~a and ~b, and a further

two new actions that have the same possible outcomes as ~a and~b, respectively,

while also maintaining the original relative likelihood ordering of these out-

comes. Assume, furthermore, that the new actions have one extra outcome

each, x and y, that are mutually indifferent and occupy the same position in

the likelihood ordering. Axiom IND says that the two new actions should be

compared in the same way as ~a and ~b. Formally,

Independence: For all k ∈ N, all ~a,~b ∈ Qk, all x 6∈ ~a, y 6∈ ~b such that

xIy, and all m ∈ {1, 2, . . . , k + 1},

~a % ~b⇔ (a1, . . . , am−1, x, am, . . . , ak) % (b1, . . . , bm−1, y, bm, . . . , bk).
7

An invariance property

Neutrality (NEU) is a natural adaptation to our informational framework

of an axiom with the same name that appears in the literature of choice under

complete uncertainty (see Bossert [?], Nitzan and Pattanaik [?] and Pattanaik

and Peleg [?], among others), and also of the Independence of Ranking of

Irrelevant Outcomes property in Kelsey [?]. In words, NEU implies that the

criterion % should be immune to changes with no effect either on the likelihood

ordering of the outcomes within each action or on the desirability ordering of

all the outcomes of the two actions to be compared. In particular, NEU

implies that the criterion to be constructed disregards any kind of cardinal

information in the agent’s preferences. NEU therefore has a more natural

interpretation in a context where the decision-maker is a social planner who

has access only to ordinal information about individual’s preferences over the

consequences.

Neutrality: For all k ∈ N, all ~a,~b ∈ Qk and all one-to-one mappings

f : X → X such that for all x, y ∈ (~a ∪~b), xRy ⇔ f(x)Rf(y),

~a % ~b⇔ (f(a1), . . . , f(ak)) % (f(b1), . . . , f(bk)).

7Obviously, when m = 1, the results am−1 and bm−1 do not exist and the two ordered
sets start with outcomes x and y. Similarly, when m = k+ 1, the two ordered sets end with
outcomes x and y.
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Likelihood sensitivity properties

The consideration of likelihood information is the new feature that differ-

entiates this analysis from the previous literature on choice under complete

uncertainty. REO reflects a basic idea about how likelihood information can

be considered. The following property, called Likelihood Sensitivity (LS), en-

compasses the idea of the sensitivity of the ranking % with respect to the

likelihood information. To introduce this property, let us consider two ac-

tions with the same cardinality, ~a and ~b, such that action ~a is strictly better

than action ~b. Furthermore, let us consider two new outcomes, x and y. The

property states that we can always find an action ~c such that the composite

action (~a,~c, x) is preferred to (~b,~c, y), regardless of the difference in desirabil-

ity between x and y. The real scope of the axiom arises when yPx. Then, LS

establishes that we can reduce the relative likelihood of outcomes x and y by

a degree sufficient to maintain the original preference for ~a over ~b. This axiom

is specific to our framework and has no direct links with any axiom from the

literature on choice under complete uncertainty.

Likelihood Sensitivity: For all k ∈ N, all ~a,~b ∈ Qk such that ¬(aiIbi)

for all i ∈ {1, . . . , k}, and all x 6∈ ~a, y 6∈ ~b, there exists ~c ∈ Q such that

~a � ~b⇒ (~a,~c, x) � (~b,~c, y).

We now introduce two weaker versions of LS, called Weak Likelihood Sen-

sitivity 1 (WLS1) and Weak Likelihood Sensitivity 2 (WLS2). They also

reflect related ideas of “robustness” of the strict preference relation between

actions. WLS1 (respectively, WLS2) requires the new outcomes x and y to

be no better (respectively, worse) than the best (respectively, worst) outcome

in the original actions, thus making the argument in LS more plausible. In

order to formulate these axioms we need to introduce an additional piece of

notation: for all finite C ⊂ X, max{C} = {x ∈ C | xRy for all y ∈ C} and

min{C} = {x ∈ C | yRx for all y ∈ C}. With a slight abuse of notation,

we define the max and min operators for the elements of Q in the same way.

That is, max{~a} (min{~a}) represents the subset of best (worst) outcomes in

~a.8

8Given that all elements of the best (worst) outcomes of a set belong to the same
indifference class according to R, we will apply, with a slight abuse of notation, this binary
relation to these sets also.
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Weak Likelihood Sensitivity 1: For all k ∈ N, all ~a,~b ∈ Qk such

that ¬(aiIbi) for all i ∈ {1, . . . , k}, and all x 6∈ ~a, y 6∈ ~b such that max{~a ∪
~b}Rmax{x, y}, there exists ~c ∈ Q such that

~a � ~b⇒ (~a,~c, x) � (~b,~c, y).

Weak Likelihood Sensitivity 2: For all k ∈ N, all ~a,~b ∈ Qk such that

¬(aiIbi) for all i ∈ {1, . . . , k}, and all x 6∈ ~a, y 6∈ ~b such that min{x, y}Rmin{~a∪
~b}, there exists ~c ∈ Q such that

~a � ~b⇒ (~a,~c, x) � (~b,~c, y).

Outcome sensitivity properties

The Extension assumption made in this model implies that the desirability

of the outcomes matters when comparing elementary actions. We now discuss

two properties related to the sensitivity of the preferences towards the desir-

ability of the outcomes that go beyond such a basic assumption as Extension.

These properties, called High Outcome Sensitivity (HOS) and Low Outcome

Sensitivity (LOS), reflect the idea that there always exist outcomes that are

sufficiently good or bad as to reverse a given preference over two actions. To

see the implications of HOS, consider two actions, ~a and ~b, and suppose that
~b is better than ~a. Then, construct another new action that has the same

outcomes as ~a, except the least likely one, with the same likelihood ordering.

Then, HOS states that it is always possible to find a sufficiently good outcome,

y, that, when taking last place in the likelihood ordering, will make the new

action better than ~b. The intuitive idea is that we can always compensate for

the difference in the preference between ~a and ~b with an outcome, x, provided

it is sufficiently good. LOS is a dual property, which establishes that it is

possible for a sufficiently bad outcome to compensate for a difference in the

preference between two actions. The purpose of these properties is to estab-

lish that the criterion % should be sensitive to the utilities of the outcomes.

These properties are also specific to our framework.

High Outcome Sensitivity: For all k ∈ N and all ~a,~b ∈ Qk such that

there exists x ∈ X with xPz for any z ∈ (~a ∪~b), there exists y 6∈ (~a ∪~b) such

that

(a1, . . . , ak−1, y) � ~b.
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Low Outcome Sensitivity: For all k ∈ N and all ~a,~b ∈ Qk such that

there exists x ∈ X with zPx for any z ∈ (~a ∪~b), there exists y 6∈ (~a ∪~b) such

that

~b � (a1, . . . , ak−1, y).

We have presented four classes of axioms for ranking actions of the same

cardinality. We now present characterization results for the equal-cardinality

case in which we always make use of the new independence property (IND).

In our first result, we will show the great strength of LS when combined

with IND so that it determines a very particular way of ranking actions.

The combination of these two properties is strong enough to: (i) imply an

invariance property like NEU, and (ii) be incompatible with any of the above

proposed outcome sensitivity properties.

Theorem 1 A reflexive binary relation %⊆
⋃
k∈N(Qk×Qk) satisfies IND and

LS if, and only if, for all ~a,~b ∈ Qk for any k ∈ N:

~a % ~b⇔ there is not j ≤ k such that biIai for all i < j and bjPaj.

Theorem ??, in fact, characterizes what we will call the leximax-likelihood

rule, %LL, which proceeds as follows: the agent first looks at the most likely

outcome in each action. If one of them is strictly better than the other, then

the action with the better most likely outcome is declared strictly preferred.

In the event of a tie, the agent looks at the second most likely outcome in ~a and
~b respectively and proceeds analogously. If ties occur successively until both

sets are exhausted, they are then declared indifferent. Clearly, this criterion

leaves no room for outcome sensitivity properties.

Next, we explore the consequences of weakening LS by means of WLS1

and WLS2. As the next two results show, this will allow for some outcome

sensitivity (in the form of HOS and LOS). In order to present the theorems,

we need some additional notation. For all ~a ∈ Qk, γ(~a) (respectively, β(~a))

will denote the permutation of the outcomes in ~a such that γi(~a)Rγi+1(~a)

(respectively, βi+1(~a)Rβi(~a)) for all i < k and, in case of indifference, the most

likely outcome occupies a previous (lower) position after the permutation,

where γi(~a) (respectively, βi(~a)) denotes the element of ~a that occupies the

i-th position after the permutation. That is, γ (respectively, β) reorders the
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elements of an action from best to worst (respectively, worst to best), in

terms of the preferability of the outcomes, while preserving, in the event of

indifference, their relative positions in terms of their likelihood.

Furthermore, L(γi(~a)) will denote the position in likelihood terms that

element γi(~a) occupies in ~a. That is, L(γi(~a)) = s if γi(~a) = as. The position

L(βi(~a)) is defined analogously.

Theorem 2 A preorder %⊆
⋃
k∈N(Qk ×Qk) satisfies IND, NEU, WLS1 and

HOS if, and only if, for all ~a,~b ∈ Qk for any k ∈ N:

~a % ~b⇔ there is not j ≤ k such that:

for all i < j,
[
γi(~b)Iγi(~a) and L(γi(~b)) = L(γi(~a))

]
and[

γj(~b)Pγj(~a) or
(
γj(~b)Iγj(~a) and L(γj(~b)) < L(γj(~a))

)]
.

Theorem ?? characterizes what we will call the leximax-desirability rule,

%LD, which starts by looking, respectively, at the best outcome in each action

(if the best outcome is not unique, the criterion focuses on the most likely of

these outcomes). If there is a strict preference for one of the outcomes over

the other then the action that contains the former is declared strictly better.

In the event of indifference between the two outcomes, the rule proceeds to

look at their positions in likelihood terms and declares a strict preference for

the action whose best outcome takes a lower likelihood position. Only in the

event that the respective best outcomes take the same likelihood positions the

criterion proceeds to look, respectively, at the best remaining outcome of each

action (with the same tie-breaking rule) and proceeds as previously.

Theorem 3 A preorder %⊆
⋃
k∈N(Qk ×Qk) satisfies IND, NEU, WLS2 and

LOS if, and only if, for all ~a,~b ∈ Qk for any k ∈ N:

~a % ~b⇔ there is not j ≤ k such that:

for all i < j,
[
βi(~b)Iβi(~a) and L(βi(~b)) = L(βi(~a))

]
and[

βj(~b)Pβj(~a) or
(
βj(~b)Iβj(~a) and L(βj(~b)) > L(βj(~a))

)]
.

14



Theorem ?? characterizes what we will call the leximin-desirability rule,

%ld, which is, in a sense, dual with respect to %LD. The rule looks at the

respective worst outcome in each set (if the worst outcome is not unique, the

criterion focuses on the most likely of these outcomes). The set where the

worst outcome is better is declared preferred, and in the event of indifference,

the rule selects the action in which the worst outcome occupies a less likely

position. If the two outcomes occupy the same likelihood position in their

sets, then the rule looks at next worst outcome of each action (with the same

tie-breaking rule) and proceeds as previously described.

The three rules characterized above are related to other lexicographic rules

in Pattanaik and Peleg [?] within the set-based approach to problems of choice

under complete uncertainty, and in Kelsey [?] within the state space-based

approach to our problem. The leximax-desirability rule and the leximin-

desirability rule reflect, respectively, optimistic and pessimistic attitudes of

the agent. Under the former, the agent focuses on the best possible outcome

of each action, while, under the latter, the agent tries to maximize the worst

possible outcome. In contrast with the leximax and leximin rules in Pattanaik

and Peleg [?], our rules assign a relevant role to likelihood information. While

in the complete uncertainty case, the leximax (respectively, leximin) rule pro-

ceeds to consider the second best (respectively, worst) outcome of each action

in the event of indifference between the best (respectively, worst) ones, in our

context, the rule takes into account information about the relative likelihood

of the best (respectively, worst) outcomes. Only if they are also equivalent

in terms of their likelihood, the rule proceeds to consider the second best

(respectively, worst) outcome.

Likelihood information plays a more important role in the leximax-likelihood

rule, where the agent focuses her attention on the most likely outcome of each

action, and it does not appear to matter whether the agent’s attitude is pes-

simistic or optimistic. This rule has the same spirit as the lex-likelihood rule

of Kelsey [?], which evaluates primarily the outcomes that arise in the most

likely state of nature. Both rules also proceed in a similar fashion in the event

of this first comparison between two actions being inconclusive: that is, look-

ing at the second most likely outcome of each action in the case of our rule,

and at the respective outcomes that arise in the second most likely state of

nature in Kelsey’s case.
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We additionally show that the axioms used in each of the previous theorems

are independent.

Proposition 1 The following collections of axioms are independent:

1. IND and LS.

2. IND, NEU, WLS1 and HOS.

3. IND, NEU, WLS2 and LOS.

3.2 The general case

We now generalize the criteria characterized in Section 3.1 to the general case

in which actions may have different cardinality. We will approach the problem

solely by adding DOM, which is rather plausible in the general case, to the

axioms used in the above characterization theorems. We will also add a tech-

nical condition of richness of the domain X, which states that, for all x, y ∈ X
such that xPy, there exist a, b, c ∈ X such that aPxPbPyPc. That is, in a

rich domain, for any two outcomes, there is always another that is better,

another that is worse, and another that is between the two. In rich domains,

the addition of DOM provides extensions of the rules characterized in Section

3.1, in the sense that they compare actions having the same cardinality as

their respective particularizations, while also establishing certain comparisons

between actions having different cardinality.9

We will first introduce some families of rules that extend each of the lexico-

graphic criteria characterized in the previous section.

Definition 1 A preorder %⊆ Q×Q belongs to the family of extended leximax-

likelihood rules, %∈%eLL, if % extends %LL and, for all ~a,~b ∈ Q such that

|~a| < |~b|:

• If (b1, . . . , b|~a|) �LL ~a or [(b1, . . . , b|~a|) ∼LL ~a and bjPbi for all j > |~a|
and i ≤ |~a|]}, then ~b � ~a.

• If ~a �LL (b1, . . . , b|~a|) or [~a ∼LL (b1, . . . , b|~a|) and biPbj for all i ≤ |~a|
and j > |~a|], then ~a � ~b.

9Formally, a preference over actions %⊆ Q×Q extends a preference on equal-cardinality

actions %∗⊆
⋃
k∈N(Qk ×Qk) if for all ~a,~b such that |~a| = |~b|, ~a % ~b⇔ ~a %∗ ~b.
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• If aiIbj for all i, j ≤ |~a| and γ1(~b)Pβ1(~b)Iγ1(~a), then ~b � ~a.

• If aiIbj for all i, j ≤ |~a| and γ1(~a)Iγ1(~b)Pβ1(~b), then ~a � ~b.

• If aiIbj for all ai ∈ ~a, bj ∈ ~b, then ~a ∼ ~b.

The extended leximax-likelihood rules coincide with the leximax-likelihood

rule when the actions to be compared have the same cardinality. When the

cardinality of the actions is different, the extended leximax-likelihood rules

proceed as follows: they select the first (more likely) outcomes of the action

with the greater cardinality, such as to form a subset (another action) con-

taining the same number of outcomes as in the other set. Then, the extended

leximax-likelihood rules compare these sets by the leximax-likelihood rule. If

there is a strict preference, they replicate what is established by the leximax-

likelihood rule. Otherwise, if the two selected sets are indifferent, they look at

the remaining (less likely) outcomes of the larger set. If all of these are weakly

better than all the preceding outcomes with at least one strict inequality,

then the action with the larger set of outcomes is declared the better of the

two. If they are weakly worse with at least one strict inequality, the action

with the smaller set of outcomes is the better of the two. If all the outcomes

are indifferent, then the two actions are indifferent. The remaining possible

comparisons are not univocally determined, which is what distinguishes the

different members of the family of extended leximax-likelihood rules.

Definition 2 A preorder %⊆ Q×Q belongs to the family of extended leximax-

desirability rules, %∈%eLD, if % extends %LD and, for all ~a,~b ∈ Q such that

|~a| < |~b|:

• If {γ1(~b)Pγ1(~a) or β1(~b)Iγ1(~a)Pβ1(~a)}, then ~b � ~a.

• If there is j ≤ |~a| such that:

for all i < j,
[
γi(~a)Iγi(~b) and L(γi(~a)) = L(γi(~b))

]
and

[
γj(~a)Pγj(~b) or

(
γj(~a)Iγj(~b) and L(γj(~a)) < L(γj(~b))

)]
,

then ~a � ~b.
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• If aiIbi for all i ≤ |~a| and {β1(~a)Pγ|~a|+1(~b) or γ1(~a)Iβ1(~a)Iγ1(~b) Pβ1(~b)},
then ~a � ~b.

• If aiIbj for all ai ∈ ~a, bj ∈ ~b, then ~a ∼ ~b.

The extended leximax-desirability rules coincide with the leximax-desirability

rule when the actions to be compared have the same cardinality. When the

actions to be compared have different cardinality, the intersection of all the

extended leximax-desirability rules does not treat them symmetrically. In or-

der to establish a preference for the smaller set, ~a, it follows a lexicographic

procedure parallel to the leximax-desirability rule. If this lexicographic pro-

cedure leads to an indifference between ~a and (b1, . . . , b|~a|), then ~a is preferred

when (i): the remaining outcomes of ~b are strictly worse or (ii): they are

weakly worse with at least one strict inequality and all the outcomes of ~a are

indifferent. The conditions to ensure that a strict preference for the larger set

is declared by every rule in the family are more demanding, however. They

require either: (i): that the best outcome of the larger action is strictly better

than the best outcome of the smaller one or (ii): that all the outcomes of the

larger action are weakly better than all the outcomes of the smaller one, with

at least one strict preference. The intuition behind these more demanding

conditions is that, when the best outcomes of the two sets are indifferent and

occupy the same likelihood position, this same likelihood position appears to

hold more weight when the number of outcomes is smaller. If all the outcomes

of the two actions are indifferent, then the two actions are declared indiffer-

ent. In all other cases, comparisons are not univocally determined by all the

members of the family.

Definition 3 A preorder %⊆ Q×Q belongs to the family of extended leximin-

desirability rules, %∈%eld, if % extends %ld and, for all ~a,~b ∈ Q such that

|~a| < |~b|:

• If β1(~a)Pβ1(~b) or γ1(~a)Pβ1(~a)Iγ1(~b), then ~a � ~b.

• If there is j ≤ |~a| such that:

for all i < j,
[
βi(~b)Iβi(~a) and L(βi(~b)) = L(βi(~a))

]
and

[
βj(~b)Pβj(~a) or

(
βj(~b)Iβj(~a) and L(βj(~b)) > L(βj(~a))

)]
,
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then ~b � ~a.

• If aiIbi for all i ≤ |~a| and {β|~a|+1(~b)Pγ1(~a) or γ1(~b)Pβ1(~b)Iγ1(~a)Iβ1(~a)},
then ~b � ~a.

• If aiIbj for all ai ∈ ~a, bj ∈ ~b then ~a ∼ ~b.

Again, the extended leximin-desirability rules coincide with the leximin-desirability

rule when the actions to be compared have the same cardinality. Otherwise,

they follow a comparison process that is dual to that of the extended leximax-

desirability rules. In particular, a preference for the action with the smaller

number of outcomes is now established unanimously by every rule in the family

only if its worst outcome is better than the worst outcome of the other action

or when all the outcomes of the smaller action are weakly better than all those

of the larger one. In turn, in order to ensure a unanimous preference for the

action with the larger number of outcomes, the extended leximin-desirability

rules apply the leximin-desirability procedure in a way analogous to that in

which extended leximax-desirability rules apply the leximax-desirability pro-

cedure to establish a preference for the action with the smaller number of

outcomes.

The above extensions can be identified by making use of the axiomatic

battery from Section 3 and the additional assumptions of DOM and richness

of the domain.10

Theorem 4 Let X be rich. Then, a preorder %⊆ Q × Q satisfies IND, LS

and DOM if, and only if, %∈%eLL.

Theorem 5 Let X be rich. Then, a preorder %⊆ Q×Q satisfies IND, NEU,

WLS1, HOS and DOM if, and only if, %∈%eLD.

Theorem 6 Let X be rich. Then, a preorder %⊆ Q×Q satisfies IND, NEU,

WLS2, LOS and DOM if, and only if, %∈%eld.

Remark 1 Kannai and Peleg [?] proved the impossibility of combining cer-

tain ideas of Dominance and Independence in the set-based approach to choice

10Although one might think these families of rules are empty due to intransitivities, this
is not the case, as shown by the examples included in the Appendix, where we present
examples of rules from each of the families.

19



under complete uncertainty (ranking sets of outcomes with no likelihood infor-

mation) when X has at least six non-indifferent outcomes. Also, Bossert [?]

and Barberà et al. [?] proved that, when adding Neutrality to the said ideas of

Dominance and Independence, the impossibility holds for any domain X with

at least four non-indifferent outcomes. A remarkable feature of Theorems ??,

?? and ?? is that, if we admit ordinal likelihood information, our proposed

adaptations of the ideas of Dominance, Independence and Neutrality (axioms

DOM, IND and NEU) become compatible, even in an infinite domain.

4 Weighted likelihood criteria

The results of Theorems ?? to ?? contribute towards a discussion of the pro-

posed lexicographic rules based on their axiomatic structure.11 %LL is charac-

terized in Theorem ?? by the combination of IND and LS. However, IND and

LS seem to appeal to logically incompatible ideas. LS appeals to the intuitive

idea that the relative likelihood of one outcome of an action with respect to

another depends on the number of places between them in the likelihood or-

dering. Meanwhile, IND argues that the deletion of the same outcome of two

actions, when their position is the same, makes no difference to the comparison

between the actions, which is an implicit assumption that there is no infor-

mation to be gained from the number of places (in the likelihood ordering)

separating two outcomes of an action. Thus, what Theorem 1 makes clear to

us is that there is a way of making the two conditions compatible, but that it

forces the rule to proceed lexicographically in the manner of %LL.12

Axioms IND and LS are not the only ones introducing strong logical ten-

sion into the characterization results. IND also conflicts indirectly with NEU

because their combination leads to the strong conclusion that there is no pos-

sible trade-off between the desirability of the outcomes and their likelihood

positions. To see this, let a, b, c, d, e ∈ X be such that aPbPcPdPe. Then,

observe that, by IND, we have that (b, c) � (b, d) and, by NEU, we have that

(a, e) ∼ (b, d) ⇔ (a, e) ∼ (b, c). These two facts, together with transitivity,

imply that it is not possible for a criterion satisfying IND and NEU to estab-

lish that (a, e) ∼ (b, d). This is a quite plausible comparison that is precluded

11We thank an anonymous referee for drawing our attention to this discussion.
12The same applies to the combination of IND and the weaker versions of LS used in

Theorems ?? and ??.

20



by rules such as %LD and %ld, which, as shown in Theorems ?? and ??, are

characterized by the combination of these axioms.13

In sum, IND seems to be at the center of many axiomatic tensions. Next,

we proceed by relaxing IND to the following implied property, which we call

Responsiveness (RES): Consider two actions ~a and ~b such that both share

(k−1) possible outcomes with the same relative likelihood ordering. The only

difference is that ~a and ~b may each generate an additional outcome (aj and

bj, respectively) at the same relative likelihood position. Then, RES states

that the preferred action is the one where the different outcome is better.

RES is related to the Dominance properties in Kelsey’s [?] state space-based

framework.

Responsiveness: For all j, k ∈ N such that j ≤ k, and all ~a,~b ∈ Qk such

that ai = bi for all i ∈ ({1, . . . , k} \ {j}),

ajRbj ⇔ ~a % ~b.

According to the above discussion, the weakening of IND to RES allevi-

ates the tension with LS, but not with NEU. Therefore, besides relaxing the

independence property IND to RES, in this section we proceed by replacing

NEU with a new invariance property called Reversal of Order (RO). As we

will observe, this replacement allows for cardinal information to be embedded

in the preference ranking. The new property is inspired by another of the

same name that appears in the Anscombe-Aumann subjective expected util-

ity model (see Anscombe and Aumann [?] and Hammond [?]). Intuitively, the

property states that, if the outcome the agent receives is to be determined by

both an uncertain situation and a risk situation, then it is irrelevant whether

the risk is faced before or after the uncertainty. A formal definition requires

the extension of our model to cover risk situations.

We denote a standard risk situation (i.e., lottery) by [p1, x1; p
2, x2; . . . ; p

k, xk],

where pi specifies the objective probability of outcome xi. In a similar fashion,

we can define lotteries in which probabilities are associated to actions rather

than outcomes. A lottery over actions is denoted by [p1,~a1; p2,~a2; . . . ; pk,~ak].

In this general model, we must also consider actions in which the ordinal

likelihood relation applies not to final outcomes but to lotteries. We denote

13This fact is not exclusive to our characterizations. Something similar happens with
Pattanaik and Peleg’s [?] characterization of the leximin criterion for the case of complete
uncertainty.
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such general actions by ([p1,~a1; p2,~a2; . . . ; pk,~ak], . . . , [q1,~b1; q2,~b2; . . . ; ql,~bl]).

In this extended model, a preference must compare not only uncertainty situa-

tions (i.e., actions) but also lotteries, and more generally lotteries over actions

and actions over lotteries. For the sake of simplicity, we will maintain the

same notation for the preference relation defined on this extended domain.

Reversal of Order: For all k,m ∈ N, for all probability distribution

(p1, . . . , pm) and all ~a1, . . . , ~am ∈ Qk,

[p1, ~a1; . . . ; pm, ~am] ∼ ([p1, a11; . . . , p
m, am1 ], . . . , [p1, amk ; . . . ; pm, amk ]).

Finally, we assume that the agent satisfies the standard Expected Utility

assumptions on lotteries on outcomes. We call this the Expected Utility (EU)

axiom.

Expected Utility: % satisfies the Expected Utility assumptions on lot-

teries on final outcomes.

An additional piece of notation will be useful for formulating our next

result. Take any cardinality, k ∈ N, of actions, any s ∈ {1, . . . , k} and any

T ⊆ {1, . . . , k}. Then, we define T−s = {j ∈ T, j < s}, T+s = {j ∈ T, j ≥ s}
and T ∗+s = {j ∈ {2, . . . , k + 1}, j = p+ 1, with p ∈ T+s}.

T represents any subset of positions of actions of dimension k, T−s and T+s

represent the respective subsets of the positions in T which are lower (resp.

higher) than a given position s, and T ∗+s represents a set consisting of the

positions of T+s increased in one unit.

We are now ready to introduce the characterization theorem of the fam-

ily of weighted likelihood criteria, where actions are evaluated by a weighted

average of the utilities of their outcomes according to weights that decrease

with the likelihood positions.14

Theorem 7 Let X be rich such that all indifference classes are infinite and

assume that RO and EU hold. Then, a complete preorder %⊆ Q×Q satisfies

RES, REO and DOM if, and only if, there exists u : X → R and for all

k ∈ N, there exists ωk = (ωk1 , . . . , ω
k
k) ∈ Rk

++ such that (i) ωki > ωki+1 for

14The family of weighted likelihood criteria can, alternatively, be characterized by axioms
that deal only with uncertain actions, but Theorem ?? allows us to obtain the character-
ization on the basis of more primitive assumptions. We thank an anonymous referee for
guiding us in this direction.
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all i ∈ {1, . . . , k − 1}, (ii)
k∑
i=1

ωki = 1, (iii)
∑
i∈T

ωki ≤
∑

i∈T−s∪T ∗+s∪{s}
ωk+1
i for all

s ∈ {1, . . . , k} and all T ⊆ {1, . . . , k}, such that:

for all ~a,~b ∈ Q, ~a % ~b⇔
|~a|∑
i=1

ω
|~a|
i · u(ai) ≥

|~b|∑
i=1

ω
|~b|
i · u(bi).

The weighted likelihood criteria compare actions with the same cardinality

in a subjective expected utility manner. However, when comparing actions with

different cardinality, it is necessary to determine a vector of weights for each

cardinality value. In this case, the axioms imply that, when a new better

outcome is inserted into an action, the distribution function for the random

utility associated with the new action first order stochastically dominates the

distribution function for the random utility associated with the given action.

Formally, this is expressed by condition (iii), which imposes restrictions on the

way weights can vary across different cardinality values, as follows: Consider

any action, ~a ∈ Qk, for any k ∈ N. The sum of the weights of any subset

of outcomes of ~a that occupy a set of positions T should be lower than the

sum of the weights of this set of outcomes and the weight of a new outcome

that has been inserted into any s-th position of this action. For example,

for k = 5, if we consider T = {1, 4, 5} and s = 4, the restriction says that

ω5
1 + ω5

4 + ω5
5 ≤ ω6

1 + ω6
4 + ω6

5 + ω6
6.15

5 Conclusions and further research

We have proposed a new formal framework for the analysis of problems of

choice under uncertainty in environments where the decision-maker is unable

to establish a complete probability distribution among the outcomes of each

action, but is able to rank them in terms of their likelihood. We first show that

the comparison of actions having different cardinality poses more difficulties

than the comparison of actions having equal cardinality. We therefore begin by

analyzing the equal-cardinality case, characterizing different rules by imposing

intuitive adaptations to our framework of axioms from the related literature.

These rules compare actions lexicographically, maintaining the spirit of other

15As in Theorems ??, ?? and ??, one might think that the weighted likelihood family is
empty, in this case due to the incompatibility of all the restrictions imposed on the weights.
Again, we show in the Appendix that this is, in fact, not the case.

23



lexicographic rules proposed in the related literature. Taking these results

as a reference, we explore the different-cardinality case by simply introducing

the Dominance axiom, thus obtaining the characterization of three families

that extend the respective rules of the equal-cardinality case to the general

case. Additionally, we characterize a family of rules that evaluate actions by

a weighted utility of the possible outcomes, in which the weights retain the

ordinal likelihood ordering perceived by the individual.

Regarding further research, it would be of interest to investigate whether

additional plausible conditions might constrain the families characterized in

the paper. Another line of research would be to relax the linearity assump-

tion about the likelihood relation among the outcomes within each action. It

could be the case that certain pairs of possible outcomes within an action are

perceived by the agent as being equally likely, in which case the likelihood

relation among the outcomes should admit indifferences. It appears that this

would affect the model in a nontrivial way, right from the notational stage,

because actions could then no longer be described as ordered sets.

As a matter of fact, from a bounded rationality-like perspective, it would be

reasonable to relax even further the structure of the binary likelihood relation

among the outcomes within each action. A very appealing line of research

would be to analyze the consequences of assuming that the likelihood relation

is, for example, no more than an interval order, a semi-order, or a partial

order.

It is also worth noting that, in our framework, the agent is able to establish

comparisons of relative likelihood between consequences of the same action,

but not across outcomes that are consequences of different actions.16 For

example, our framework does not allow us to determine whether an outcome

x under action A is more or less likely than outcome y under action B. There

are numerous situations in which ordinal comparisons of this kind are part of

the decision-maker’s input of the problem. Consideration of this possibility

would constitute a very reasonable extension of our model. An adequate

development of this issue is sufficiently complicated as to be beyond the scope

of this paper.

16We thank an anonymous referee for raising this point.
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Appendix

Here we show the proofs of the theorems. We begin with a lemma that will

be useful in the proofs of the results.

Lemma 1 Let % be a binary relation on Q. Then, the following statements

hold:

1. If % satisfies IND and WLS1, then it also satisfies REO.

2. If % satisfies IND and WLS2, then it also satisfies REO.

Proof: We will prove both statements using the same reasoning. Let %⊆
(Q×Q) satisfying IND and WLS1 (or WLS2), and ~a ∈ Qk for any k ∈ N such

that ajPai, with j > i. Note that Π(i,j)(~a) and ~a have the same outcomes in

each position, except for positions i and j. Then, we apply IND (k− 2)-times

obtaining

~a % Π(i,j)(~a)⇔ (ai, aj) % (aj, ai)

Π(i,j)(~a) % ~a⇔ (aj, ai) % (ai, aj)

Given that (aj) � (ai), the application of WLS1 (or WLS2) implies that

there exists ~c ∈ Q such that (aj,~c, ai) � (ai,~c, aj). Now, applying IND |~c|-
times, we obtain that (aj, ai) � (ai, aj). Consequently, Π(i,j)(~a) � ~a and %

satisfies REO. �

Proof of Result ??

Let x, y, z ∈ X be such that xPyPz, and consider the set ~a = (x, z, y). Then,

if we apply the permutation Π(2,3) to ~a, we obtain the set Π(2,3)(~a) = (x, y, z).

Given that yPz, by REO we have that (x, y, z) � (x, z, y). Furthermore, by

DOM we can conclude that (x) � (x, y) and (z, y) � (z). Applying COM,

we have that (x, z, y) % (x, y, z), and by transitivity, (x, y, z) � (x, y, z), thus

contradicting reflexivity.

Proof of Theorem ??

The necessary part can easily be checked. To prove the sufficient part, take

~a,~b ∈ Qk. If aiIbi for all i ∈ {1, . . . , k}, then, by the Extension assumption on
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% we have that (a1) ∼ (b1). Then, by successive applications of IND we obtain

~a ∼ ~b. Otherwise, we can assume, by IND, that ¬(aiIbi) for all i ∈ {1, . . . , k}
and we need to prove that ~a � ~b whenever a1Pb1. We will proceed by induction

on k. Let us start with k = 1. Suppose, without loss of generality, that a1Pb1.

Then, by the Extension assumption, we have that (a1) � (b1) and it is proved

for k = 1. Now, we will suppose that the statement is true for k = t and

we will prove the case k = t + 1. We have, by the induction hypothesis, that

(a1, . . . , at) � (b1, . . . , bt) when a1Pb1. Then, LS says that there exists ~c ∈ Q
such that (a1, . . . , at,~c, at+1) � (b1, . . . , bt,~c, bt+1). Applying IND |~c|-times, we

obtain that ~a � ~b, thus proving the result. Therefore, %=%LL.

Proof of Theorem ??

The necessary part is straightforward. To prove the sufficient part, take ~a,~b ∈
Qk. If aiIbi for all i ∈ {1, . . . , k}, then, by the Extension assumption on

% we have that (a1) ∼ (b1). Then, by successive applications of IND we

obtain ~a ∼ ~b. In other case, we can assume, by IND, that ¬(aiIbi) for all

i ∈ {1, . . . , k}. If k = 1, we know that a1Pb1 ⇒ ~a � ~b. If k > 1, we need to

prove, without loss of generality, the following two cases:

1. For all x ∈ max{~a}, y ∈ max{~b}, xPy. Consider, first, that |max{~a}| =
1 and L(γ1(~a)) = k. Select x 6∈ ~a such that akPx, the existence of which

is guaranteed. Then, we construct the set ~a
′

= (a1, . . . , ak−1, x). Now,

by applying HOS to sets ~a
′

and ~b, we find that there exists y 6∈ ~a′ such

that (a1, . . . , ak−1, y) � ~b. Now, if akRy, we can apply RES, which is

weaker than IND (see Section 4) and which gives us ~a % (a1, . . . , ak−1, y).

Transitivity allows us to conclude that ~a � ~b. If yPak, then, by NEU

and transitivity, ~a � ~b. If |max{~a}| = 1 and L(γ1(~a)) = i < k, we have,

by Lemma ??, that REO can be applied to give ~a � Π(i,k)(~a). Now,

by applying the previous reasoning to Π(i,k)(~a) and ~b, we obtain that

Π(i,k)(~a) � ~b. Transitivity allows us to conclude that ~a � ~b. If, on the

other hand, |max{~a}| > 1, let j = L(γ1(~a)) and let T ⊂ {1, . . . , k} be

such that i ∈ T ⇔ ai /∈ max{~a}. Then, we construct the set ~a
′′

such

that ai = a
′′
i for all i ∈ T∪{j} and aiPa

′′
i for all i ∈ {1, . . . , k}\(T∪{j}).

By RES, ~a � ~a′′ . Given that |max{~a′′}| = 1, we can apply the previous

reasoning to obtain ~a
′′ � ~b. By transitivity ~a � ~b.
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2. For all x ∈ max{~a}, y ∈ max{~b}, xIy, with L(γ1(~a)) = i < L(γ1(~b)).

Consider the actions (a1, . . . , ai), (b1, . . . , bi) ∈ Qi. We can apply Case 1,

which gives us (a1, . . . , ai) � (b1, . . . , bi). We know, by WLS1, that there

exists ~c ∈ Q such that (a1, . . . , ai,~c, ai+1) � (b1, . . . , bi,~c, bi+1). Then, by

applying IND |~c|-times, we find that (a1, . . . , ai, ai+1) � (b1, . . . , bi, bi+1).

By repeating this process (k − i)-times, we obtain ~a � ~b.

Therefore, %=%LD.

Proof of Theorem ??

The necessary part is straightforward. To prove the sufficient part, take ~a,~b ∈
Qk. If aiIbi for all i ∈ {1, . . . , k}, then, by the Extension assumption on

% we have that (a1) ∼ (b1). Then, by successive applications of IND we

obtain ~a ∼ ~b. In other case, we can assume, by IND, that ¬(aiIbi) for all

i ∈ {1, . . . , k}. If k = 1, we know that a1Pb1 ⇒ ~a � ~b. If k > 1, we need to

prove, without loss of generality, the following two cases:

1. For all x ∈ min{~a}, y ∈ min{~b}, xPy. Consider, first, that |min{~b}| = 1

and L(β1(~b)) = k. Select x 6∈ ~b such that xPbk, the existence of which is

guaranteed. Then, we construct the action ~b
′

= (b1, . . . , bk−1, x). Now,

by applying LOS to actions ~a and ~b
′
, we find that there exists y 6∈ ~b′

such that ~a � (b1, . . . , bk−1, y). Now, if yRbk, we can apply RES, which

is weaker than IND and which gives us (b1, . . . , bk−1, y) % ~b. Transitivity

allows us to conclude that ~a � ~b. If bkPy, then, by NEU and transitivity,

~a � ~b. If |min{~b}| = 1 and L(β1(~b)) = i < k, we have, by Lemma

??, that REO can be applied to give Π(i,k)(~b) � ~b. Now, by applying

the previous reasoning to ~a and Π(i,k)(~b), we obtain that ~a � Π(i,k)(~b).

Transitivity allows us to conclude that ~a � ~b. If, on the other hand,

|min{~b}| > 1, let j = L(β1(~b)) and let T ⊂ {1, . . . , k} be such that

i ∈ T ⇔ bi /∈ min{~b}. Then, we construct the set ~b
′′

such that bi = b
′′
i

for all i ∈ T ∪ {j} and b
′′
i Pbi for all i ∈ {1, . . . , k} \ (T ∪ {j}). By RES,

~b
′′ � ~b. Given that |min{~b′′}| = 1, we can apply the previous reasoning

to obtain ~a � ~b′′ . By transitivity, ~a � ~b.

2. For all x ∈ min{~a}, y ∈ min{~b}, xIy, with L(β1(~a)) = i > L(β1(~b)).

Consider the actions (a1, . . . , ai), (b1, . . . , bi) ∈ Qi. We can apply Case 1,

27



which gives us (a1, . . . , ai) � (b1, . . . , bi). We know, by WLS2, that there

exists ~c ∈ Q such that (a1, . . . , ai,~c, ai+1) � (b1, . . . , bi,~c, bi+1). Then, by

applying IND |~c|-times, we find that (a1, . . . , ai, ai+1) � (b1, . . . , bi, bi+1).

By repeating this process (k − i)-times, we obtain ~a � ~b.

Therefore, %=%ld.

Proof of Proposition ??

We will now define some rankings on
⋃
k∈N(Qk×Qk) to show the independence

of the collections of axioms used in the different characterization theorems of

Section 3.1.

1. Independence of IND and LS.

• Let %1∈
⋃
k∈N(Qk ×Qk) be such that for all ~a,~b ∈ Qk for any k ∈ N,

~a %1
~b⇔ a1Rb1. Then, %1 satisfies LS, but it does not satisfy IND.

• %LD satisfies IND, but it does not satisfy LS.

2. Independence of IND, NEU, WLS1 and HOS.

• Let %2∈
⋃
k∈N(Qk ×Qk) be such that for all ~a,~b ∈ Qk for any k ∈ N,

~a %2
~b⇔ [γ1(~a)Pγ1(~b) or (γ1(~a)Iγ1(~b) and L(γ1(~a)) ≤ L(γ1(~b)))].

Then, %2 satisfies NEU, WLS1 and HOS, but not IND.

• Consider a utility function u that represents R, any x, y ∈ X, with

x 6= y, and a non-decreasing real-valued function, f , such that f(u(x)) =

f(u(y)) and such that it is strictly increasing outside the interval be-

tween u(x) and u(y). We denote by π(~a) a permutation of the outcomes

in ~a such that for all i ∈ {1, . . . , k − 1}, f(u(πi(~a))) > f(u(πi+1(~a)))

or f(u(πi(~a))) = f(u(πi+1(~a))) and L(πi(~a)) < L(πi+1(~a)), where πi(~a)

denotes the element of ~a that occupies the i-th position after the per-

mutation.

Let %3∈
⋃
k∈N(Qk ×Qk) be such that for all ~a,~b ∈ Qk for any k ∈ N,

~a %3
~b⇔ there is j ≤ k such that:
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for all i ≤ j,
[
f(u(πi(~a))) = f(u(πi(~b))) and L(πi(~a)) = L(πi(~b))

]
and

− If j < k,
[
f(u(πj(~a))) > f(u(πj(~b))) or

(
f(u(πj(~a))) = f(u(πj(~b)))

and L(πj(~a)) < L(πj(~b))
)]

.

− If j = k, ~a %LD ~b.

Then, %3 satisfies IND, WLS1 and HOS, but not NEU.

• Let %4∈
⋃
k∈N(Qk ×Qk) be such that for all ~a,~b ∈ Qk for any k ∈ N,

~a %4
~b⇔ there is not j ≤ k such that for all i <

j, γi(~b)Iγi(~a) and γj(~b)Pγj(~a).

Then, %4 satisfies IND, NEU and HOS, but not WLS1.

• %LL satisfies IND, NEU and WLS1, but not HOS.

3. Independence of IND, NEU, WLS2 and LOS. The proof is analogous to

that of item 2. The kind of rules that enable us to prove the indepen-

dence of each axiom are dual to those used in item 2.

Proof of Theorem ??

We have that IND and LS imply the desired result for all comparisons when

the sets are of the same cardinality (see Theorem ??). For the remaining

comparisons, take ~a ∈ Qk and ~b ∈ Qm, with k < m. We have to prove the

following cases:

1. (b1, . . . , bk) �LL ~a. Then, the richness assumption enables us to select

y1, . . . , ym−k ∈ X such that ym−kPym−k−1P . . . Py1Pγ1(~a). By applying

DOM, we find that (~a, y1) � ~a. By another application of DOM we

find that (~a, y1, y2) � (~a, y1). Successive applications of this process and

transitivity show that (~a, y1, . . . , ym−k) � ~a. Note that (~a, y1, . . . , ym−k)

and ~b have the same cardinality. Then, by Theorem ??, we know that
~b � (~a, y1, . . . , ym−k) and, by transitivity, ~b � ~a.

2. (b1, . . . , bk) ∼LL ~a and bjPbi for all j > k and i ≤ k. Then, the

richness assumption enables us to select z1, . . . , zm−k ∈ X such that
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γ1(~b)Pzm−kP . . . Pz1Pγ1(~a). Then, by applying DOM and transitivity,

as in item 1, we find that (~a, z1, . . . zm−k) � ~a. Note that (~a, z1, . . . ,

zm−k) and ~b have the same cardinality. Then, by Theorem ??, we know

that ~b � (~a, z1, . . . , zm−k) and, by transitivity, ~b � ~a.

3. ~a �LL (b1, . . . , bk). Then, by the richness assumption, we can select

x1, . . . , xm−k ∈ X such that β1(~a)Px1P . . . Pxm−k. By applying DOM,

we find that ~a � (~a, x1). By another application of DOM, we find that

(~a, x1) � (~a, x1, x2). Successive applications of this process and transi-

tivity show that ~a � (~a, x1, . . . , xm−k). Note that (~a, x1, . . . , xm−k) and ~b

have the same cardinality. By Theorem ??, we know that (~a, x1, . . . , xm−k)

� ~b, and by transitivity, ~a � ~b.

4. (b1, . . . , bk) ∼LL ~a and biPbj for all i ≤ k and j > k. Then, the

richness assumption enables us to select w1, . . . , wm−k ∈ X such that

β1(~a)Pw1P . . . Pwm−kPγk+1(~b). Then, by applying DOM and transi-

tivity, as in item 1, we find that ~a � (~a, w1, . . . wm−k). Note that

(~a, w1, . . . , wm−k) and ~b have the same cardinality. Then, by Theorem

??, we know that (~a, w1, . . . , wm−k) � ~b and, by transitivity, ~a � ~b.

5. aiIbj for all i, j ≤ |~a| and γ1(~b)Pβ1(~b)Iγ1(~a). If bjPbi for all j > k

and i ≤ k, case 2 applies. If not, let t be the highest integer such

that β1(~b)Iβt(~b). Observe that k < t < m. Consider t − k outcomes

w1, . . . , wt−k ∈ (X \ ~a) such that wiIβ1(~b) for all i ∈ {1, . . . , t − k},
which always exist by definition of t. Then, by DOM and transitivity,

we have that ~a ∼ (~a, w1, . . . , wt−k). On the other hand, consider β(~b) =

(β1(~b), . . . , βm(~b)). By Lemma ??, we can apply REO to obtain that ~b �
β(~b). Now, by the richness assumption, consider v1, . . . , vm−t ∈ X such

that βt+1(~b)Pvm−tP . . . Pv1Pβ1(~b). Successive applications of DOM and

transitivity leads to (~a, w1, . . . , wt−k, v1, . . . , vm−t) � (~a, w1, . . . , wt−k).

Note that (~a, w1, . . . , wt−k, v1, . . . , vm−t) and β(~b) have the same cardi-

nality and, therefore, Theorem ?? can be applied to obtain that β(~b) �
(~a, w1, . . . , wt−k, v1, . . . , vm−t). Transitivity concludes that ~b � ~a.

6. aiIbj for all i, j ≤ |~a| and γ1(~a)Iγ1(~b)Pβ1(~b). If biPbj for all i ≤
k and j > k, then case 4 applies. Otherwise, let t be the highest

integer such that γ1(~b)Iγt(~b). Observe that k < t < m. Consider
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t − k outcomes w1, . . . , wt−k ∈ (X \ ~a) such that wiIγ1(~b) for all i ∈
{1, . . . , t − k} that always exist by definition of t. Then, by DOM

and transitivity, we have that ~a ∼ (~a, w1, . . . , wt−k). On the other

hand, consider γ(~b) = (γ1(~b), . . . , γm(~b)). By Lemma ??, we can ap-

ply REO to obtain that γ(~b) � ~b. Now, by the richness assumption,

consider v1, . . . , vm−t ∈ X such that γ1(~b)Pv1P . . . Pvm−tPγt+1(~b). Suc-

cessive applications of DOM and transitivity leads to (~a, w1, . . . , wt−k) �
(~a, w1, . . . , wt−k, v1, . . . , vm−t). Note that (~a, w1, . . . , wt−k, v1, . . . , vm−t)

and γ(~b) have the same cardinality and, therefore, Theorem ?? can be

applied to obtain that (~a, w1, . . . , wt−k, v1, . . . , vm−t) � γ(~b). Transitiv-

ity concludes that ~a � ~b.

7. aiIbj for all ai ∈ ~a and bj ∈ ~b. By Theorem ??, we know that (b1, . . . , bk) ∼
~a. Now, by successive applications of DOM and transitivity, ~b ∼ (b1, . . . ,

bk). Transitivity concludes that ~a ∼ ~b.

8. It is not difficult to check that the remaining comparisons are not uni-

vocally determined by our axioms.

Therefore, %∈%eLL.

Proof of Theorem ??

We have that IND, NEU, WLS1 and HOS imply the result for all comparisons

of sets having the same cardinality (see Theorem ??). For the remaining

comparisons, take ~a ∈ Qk and ~b ∈ Qm, with k < m. We have to prove the

following cases:

1. γ1(~b)Pγ1(~a). Then, making use of the richness assumption, take x1, . . . ,

xm−k ∈ X such that γ1(~b)Pxm−kP . . . Px1Pγ1(~a). Application of DOM

shows that (~a, x1) � ~a. Repeated application of DOM, as in the proof of

Theorem ??, shows that (~a, x1, . . . , xm−k) � ~a. Note that (~a, x1, . . . , xm−k)

and ~b have the same cardinality. Then, by the result of Theorem ??, we

know that ~b � (~a, x1, . . . , xm−k), and by transitivity, ~b � ~a.

2. β1(~b)Iγ1(~a)Pβ1(~a). If γ1(~b)Pβ1(~b), case 1 applies. Then, we only have

to prove the case in which γ1(~b)Iβ1(~b) and, therefore, biIbj for all i, j ∈
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{1, . . . ,m}. By Theorem ??, we know that (b1, . . . , bk) � ~a. By suc-

cessive applications of DOM and transitivity, ~b ∼ (b1, . . . , bk). Finally,

transitivity concludes that ~b � ~a.

3. there is j ≤ k such that for all i < j,
[
γi(~a)Iγi(~b) and L(γi(~a)) =

L(γi(~b))
]

and
[
γ∗j (~a)Pγj(~b) or

(
γj(~a)Iγj(~b) and L(γj(~a)) < L(γj(~b))

)]
.

Then, by the richness assumption, consider y1, . . . , ym−k ∈ X such that

β1(~a)Py1P . . . Pym−k. Successive applications of DOM and transitivity,

as in item 1, shows that ~a � (~a, y1, . . . , ym−k). Again, (~a, y1, . . . , ym−k)

and ~b have the same cardinality and, therefore, Theorem ?? can be

applied to obtain that (~a, y1, . . . , ym−k) � ~b. Transitivity allows us to

conclude that ~a � ~b.

4. aiIbi for all i ≤ k and β1(~a)Pγk+1(~b). Then, by the richness assump-

tion, consider z1, . . . , zm−k ∈ X such that β1(~a)Pz1P . . . Pzm−kPγk+1(~b).

Successive applications of DOM and transitivity, as in item 1, shows

that ~a � (~a, z1, . . . , zm−k). Again, (~a, z1, . . . , zm−k) and ~b have the same

cardinality and, therefore, Theorem ?? can be applied to show that

(~a, z1, . . . , zm−k) � ~b. Transitivity allows us to conclude that ~a � ~b.

5. aiIbi for all i ≤ k and γ1(~a)Iβ1(~a)Iγ1(~b)Pβ1(~b). If β1(~a)Pγk+1(~b),

then case 4 applies. Otherwise, let t be the highest integer such that

γ1(~b)Iγt(~b). Now, consider v1, . . . , vt−k ∈ (X \ ~a) such that viIγ1(~b),

whose existence is guaranteed by the definition of t. Now, by DOM and

transitivity, we can conclude that ~a ∼ (~a, v1, . . . , vt−k). Then, by the

richness assumption, consider w1, . . . , wm−t ∈ X such that γ1(~b)Pw1P

. . . Pwm−tPγt+1(~b). Successive applications of DOM and transitivity

leads to (~a, v1, . . . , vt−k) � (~a, v1, . . . , vt−k, w1, . . . , wm−t). Note that

(~a, v1, . . . , vt−k, w1, . . . , wm−t and ~b have the same cardinality and, there-

fore, Theorem ?? can be applied to obtain that (~a, v1, . . . , vt−k, w1, . . . ,

wm−k) � ~b. Transitivity concludes that ~a � ~b.

6. aiIbj for all ai ∈ ~a and bj ∈ ~b. By Theorem ??, we know that (b1, . . . , bk) ∼
~a. Now, by successive applications of DOM and transitivity, ~b ∼ (b1, . . . ,

bk). Transitivity concludes that ~a ∼ ~b.

7. It is not difficult to check that the remaining comparisons are not uni-

vocally determined by our axioms.

32



Therefore, %∈%eLD

Proof of Theorem ??

We have that IND, NEU, WLS2 and LOS imply the result for all comparisons

of sets having the same cardinality (see Theorem ??). For the remaining

comparisons, take ~a ∈ Qk and ~b ∈ Qm, with k < m. We have to prove the

following cases:

1. β1(~a)Pβ1(~b). Then, by the richness assumption, we can select x1, . . . ,

xm−k ∈ X such that β1(~a)Px1P . . . Pxm−kPβ1(~b). By successive appli-

cations of DOM and transitivity, we have that ~a � (~a, x1, . . . , xm−k).

Now, Theorem ?? can be applied to obtain (~a, x1, . . . , xm−k) � ~b. Tran-

sitivity allows us to conclude that ~a � ~b.

2. γ1(~a)Pβ1(~a)Iγ1(~b). If γ1(~b)Pβ1(~b), case 1 applies. Then, we only have

to prove the case in which γ1(~b)Iβ1(~b) and, therefore, biIbj for all i, j ∈
{1, . . . ,m}. By Theorem ??, we know that ~a � (b1, . . . , bk). By suc-

cessive applications of DOM and transitivity, ~b ∼ (b1, . . . , bk). Finally,

transitivity concludes that ~a � ~b.

3. there is j ≤ k such that for all i < j,
[
βi(~b)Iβi(~a) and L(βi(~b)) =

L(βi(~a))
]

and
[
βj(~b)Pβj(~a) or

(
βj(~b)Iβj(~a) and L(βj(~b)) > L(βj(~a))

)]
.

Then, by the richness assumption, consider x1, . . . , xm−k ∈ X such that

xm−kP . . . Px1Pγ1(~a). As before, the successive application of DOM

and transitivity lead to (~a, x1, . . . , xm−k) � ~a. Now, by Theorem ??,
~b � (~a, x1, . . . , xm−k). Transitivity allows us to conclude that ~b � ~a.

4. If aiIbi for all i ≤ k and βk+1(~b)Pγ1(~a). Then, by the richness assump-

tion, consider z1, . . . , zm−k ∈ X such that βk+1(~b)Pzm−kP . . . Pz1Pγ1(~a).

Successive applications of DOM and transitivity shows that (~a, z1, . . . ,

zm−k) � ~a. Again, (~a, z1, . . . , zm−k) and ~b have the same cardinality and,

therefore, Theorem ?? can be applied to show that ~b � (~a, z1, . . . , zm−k).

Transitivity allows us to conclude that ~b � ~a.

5. aiIbi for all i ≤ k and γ1(~b)Pβ1(~b)Iγ1(~a)Iβ1(~a). If bjPbi for all j > k

and i ≤ k, case 4 applies. Otherwise, let t be the highest integer

such that β1(~b)Iβt(~b). Now, consider v1, . . . , vt−k ∈ (X \ ~a) such that
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viIβ1(~b), whose existence is guaranteed by the definition of t. Now,

by DOM and transitivity, we can conclude that ~a ∼ (~a, v1, . . . , vt−k).

Then, consider, by the richness assumption, w1, . . . , wm−t ∈ X such that

βt+1(~b)Pwm−tP . . . Pw1Pβ1(~b). Successive applications of DOM and

transitivity leads to (~a, v1, . . . , vt−k, w1, . . . , wm−t) � (~a, v1, . . . , vt−k).

Note that (~a, v1, . . . , vt−k, w1, . . . , wm−t) and ~b have the same cardinality

and, therefore, Theorem ?? can be applied to obtain that ~b � (~a, v1, . . . ,

vt−k, w1, . . . , wm−t). Transitivity concludes that ~b � ~a.

6. aiIbj for all ai ∈ ~a and bj ∈ ~b. By Theorem ??, we know that (b1, . . . , bk) ∼
~a. Now, by successive applications of DOM and transitivity, ~b ∼ (b1, . . . ,

bk). Transitivity concludes that ~a ∼ ~b.

7. It is not difficult to check that the remaining comparisons are not uni-

vocally determined by our axioms.

Therefore, %∈%eld.

Proof of Theorem ??

Let us assume that % satisfies RES, REO, RO, EU and DOM. First, we are

going to prove that actions with the same cardinality must be compared using

a weighted average of the utilities of their possible results. This proof can

be carried out following the same steps as described in the proof of Theorem

4.5 in Hammond [?], which, in turn, is a development of the proof provided

by Anscombe and Aumann [?]. It is only necessary to note that we can

assimilate the states of nature in his model with the likelihood positions in

our model. Taking this into account, the parallelisms between Hammond’s

axiom structure and ours are the following: (i) his axiom Ordering (O) is

equivalent to our assumption that % is a complete preorder; (ii) his axioms of

Independence (I) and Continuity (C) are implied by EU; (iii) our RO axiom is

an exact transfer to our domain of Hammond’s axiom of the same name; (iv)

his axiom of State Independence (SI) ensures that the individual preference is

the same across all states of nature, while RES implies the same thing in our

domain, except that it refers to positions instead of states of nature; and (v)

his axiom of Sure Thing Principle (STP) is implied, as proved in Lemma 4.1

in Hammond [?], by O, RO and Strong Independence (I*), a property implied

by EU.
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Then, taking into account our assumption that all indifference classes on

X are infinite, we can apply the reasoning presented in the proof of Theorem

4.5 in Hammond [?]. Thus, we find that there exists u : X → R and for

each k ∈ N, there exists ωk = (ωk1 , . . . , ω
k
k) ∈ Rk

++ such that for all ~a,~b ∈ Qk,

~a % ~b⇔
k∑
i=1

ωki · u(ai) ≥
k∑
i=1

ωki · u(bi).

We find that REO implies that ωki > ωki+1 for all k ∈ N and all i ∈
{1, . . . , k − 1} (condition (i) in the statement of the theorem). We now need

to prove that the weights also satisfy conditions (ii) and (iii). On the one

hand, by DOM we have that any pair of actions having different cardinality are

indifferent if all their outcomes are indifferent. Then, the sum of the weights

must be the same for different cardinality values. Therefore, condition (ii)

is satisfied, given that we can normalize this sum to 1. As for condition

(iii), let us suppose that it is not true and, therefore, that the corresponding

restrictions on the weights do not hold. Then, consider the weights associated

with dimension k, a subset T ⊆ {1, . . . , k} and a value s violating condition

(iii). Consider, by the assumption of richness and the assumption that all

indifference classes are infinite, two actions ~a ∈ Qk, ~b ∈ Qk+1 such that: (a) ~b

consists of the insertion of outcome x into position s ∈ {1, . . . , k} of action ~a,

(b) the utility values of the outcomes occupying the positions in T of action ~a

are of a specific exact value ū, (c) the utilities of the remaining outcomes of ~a

are of a specific exact value û, with ū > û, and (d) u(x) = ū + ε, with ε > 0

arbitrarily small.

Then, by DOM and REO, we should have that ~b � ~a. On the other hand,

by construction,
k∑
i=1

ωki ·u(ai) = (
∑
i∈T

ωki )·ū+(1−
∑
i∈T

ωki )·û and
k+1∑
i=1

ωk+1
i ·u(bi) is

arbitrarily close to (
∑

i∈T−s∪T ∗+s∪{s}
ωk+1
i )·ū+(1−

∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i )·û. However,

if
∑
i∈T

ωki >
∑

i∈T−s∪T ∗+s∪{s}
ωk+1
i , it is possible that

k∑
i=1

ωki · u(ai) ≥
k+1∑
i=1

ωk+1
i · u(bi)

and, therefore, ~a % ~b, which leads to a contradiction.

Let us now assume that % is a weighted likelihood criteria with the re-

striction on the weights stated in the theorem. First, it is easy to see that

% satisfies RES and REO. In order to check that it also satisfies DOM, con-

sider any action ~a ∈ Qk for any k ∈ N and an outcome x 6∈ ~a such that

u(x) > u(γ1(~a)). Consider a new action ~b that consists of the insertion of x in
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position s ∈ {1, . . . , k} of action ~a. We have to prove that ~b � ~a.

We will start by proving that the following equation holds for any set of

positions T = {L(γ1(~a)), . . . , L(γt(~a))} for all t ∈ {1, . . . , k}:∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i ·u(bi)−

∑
i∈T

ωki ·u(ai) > u(γt(~a))·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)
.

(1)

We will proceed inductively on t. Take t = 1. Then, T = {L(γ1(~a))}.
First, we have that

u(γ1(~a))·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −ωkL(γ1(~a))

)
=

∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i ·u(γ1(~a))−ωkL(γ1(~a))·u(γ1(~a)).

On the other hand, given that u(x) > u(γ1(~a)), we have that∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i · u(bi) >

∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i · u(γ1(~a)).

Then, (??) holds for t = 1.

Now suppose we have proved (??) for a value p. Let us denote T =

{L(γ1(~a)), . . . , L(γp(~a))} and S = (T ∪ {L(γp+1(~a))}). In this case, the left-

hand side of Equation ??∑
i∈S−s∪S∗+s∪{s}

ωk+1
i · u(bi)−

∑
i∈S

ωki · u(ai)

can be broken down into the addition of the following two terms:∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i ·u(bi)−

∑
i∈T

ωki ·u(ai) and u(γp+1(~a))·
(
ωk+1
L(γp+1(~a))

−ωkL(γp+1(~a))

)
.

Given the induction hypothesis, we know that the first term satisfies:∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i ·u(bi)−

∑
i∈T

ωki ·u(ai) > u(γp(~a))·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)
.

Then, we have that ∑
i∈S−s∪S∗+s∪{s}

ωk+1
i · u(bi)−

∑
i∈S

ωki · u(ai) >
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u(γp(~a)) ·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)

+ u(γp+1(~a)) ·
(
ωk+1
L(γp+1(~a))

− ωkL(γp+1(~a))

)
.

We also know by the condition on the weights assumed in the theorem

that (
∑

i∈T−s∪T ∗+s∪{s}
ωk+1
i −

∑
i∈T

ωki ) ≥ 0. Then, given that u(γp(~a)) > u(γp+1(~a)),

u(γp(~a))·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)
≥ u(γp+1(~a))·

( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)
.

Therefore, ∑
i∈S−s∪S∗+s∪{s}

ωk+1
i · u(bi)−

∑
i∈S

ωki · u(ai) >

u(γp+1(~a))·
( ∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i −

∑
i∈T

ωki
)
+u(γp+1(~a))·

(
ωk+1
L(γp+1(~a))

−ωkL(γp+1(~a))

)
=

u(γp+1(~a)) ·
( ∑
i∈S−s∪S∗+s∪{s}

ωk+1
i −

∑
i∈S

ωki
)
.

Then, (??) holds for every t ∈ {1, . . . , k}. In particular, when t = k,∑
i∈T−s∪T ∗+s∪{s}

ωk+1
i =

k+1∑
i=1

ωk+1
i =

∑
i∈T

ωki =
k∑
i=1

ωki = 1. Then, the right-hand side

of (??) equals to 0. Therefore,
∑

i∈T−s∪T ∗+s∪{s}
ωk+1
i · u(bi) =

k+1∑
i=1

ωk+1
i · u(bi) >

∑
i∈T

ωki · u(ai) =
k∑
i=1

ωki · u(ai). Thus, ~b � ~a.

The proof that when u(x) < u(β1(~a)), then ~a � ~b is analogous. Finally,

the proof that when u(x) = u(γ1(~a)) = u(β1(~a)), then ~a ∼ ~b is straightforward

given condition (ii) on the weights. Then, the proof is finished.

Examples of rules in the extended families

We provide four rules that belong to each of the extended families character-

ized in Theorems ??, ??, ?? and ??. For that purpose we define Q∗ as the set

of all possible non-empty vectors that can be constructed with the elements

of X. (Note that the difference between Q∗ and Q is that the former domain

allows to repeat elements of X).

• Theorem ??: Consider %1∈%eLL, which compares any two actions ~a,~b ∈
Q such that |~a| < |~b| as follows:
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~a %1
~b⇔ (~a)∗|~b| %

∗
LL
~b,

where (~a)∗|~b| = (~a, β1(~a), |
~b|−|~a|. . . , β1(~a)) and %∗LL compares the elements of

Q∗ in the same way as %LL compares the elements of Q.

• Theorem ??: Consider %2∈%eLD, which compares any two actions ~a,~b ∈
Q such that |~a| < |~b| as follows:

~a %2
~b⇔ (~a)∗|~b| %

∗
LD

~b,

where (~a)∗|~b| = (~a, β1(~a), |
~b|−|~a|. . . , β1(~a)) and %∗LD compares the elements of

Q∗ in the same way as %LD compares the elements of Q.

• Theorem ??:

Consider %3∈%eld, which compares any two actions ~a,~b ∈ Q such that

|~a| < |~b| as follows:

~a %3
~b⇔ (~a)∗|~b| %

∗
ld
~b,

where (~a)∗|~b| = (~a, γ1(~a), |
~b|−|~a|. . . , γ1(~a)) and %∗ld compares the elements of

Q∗ in the same way as %ld compares the elements of Q.

• Theorem ??: We denote by bxc the lowest integer part of x. Then,

consider the criterion %4∈ Ω associated with an arbitrarily high positive

number M such that ωki = 1
k

+ (bk
2
c − i+ 1) · εk, when i < k+1

2
; ωki = 1

k
,

when i = k+1
2

; and ωki = 1
k
− (i − bk+1

2
c) · εk, when i > k+1

2
, with

εk = 1
M ·k·b k+1

2
c .
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[6] Barberà, S., W. Bossert and P. K. Pattanaik, “Ranking sets of objects,”
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