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Abstract

There is a wide range of economic problems that involve the exchange of indivisible goods with no

monetary transfers, starting from the housing market model of the seminal paper by Shapley and Scarf

(1974) to problems such as the kidney exchange or the school choice problem. The classical solution to

many of these models is to apply a mechanism called Top Trading Cycles, attributed to David Gale,

which satisfies good properties for the case of strict preferences. In this paper, we propose a family of

mechanisms, called Top Trading Absorbing Sets mechanisms, which generalize the Top Trading Cycles

to the general case in which individuals are allowed to report indifferences, while preserving a maximal

possible set of its desirable properties.
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1 Introduction

Shapley and Scarf (1974) model a simple economy in which there is a set of agents, each of whom has

strict preferences over a set of indivisible goods, such as houses. In such an economy, commonly known

as a “housing market”, agents are endowed with one house each and are allowed to swap houses among

themselves, although monetary transfers are not permitted. In their seminal paper, Shapley and Scarf prove

that this economy has always a non-empty strict core by using a so-called Top Trading Cycles Algorithm

(hereafter, TTC), attributed to David Gale.

The housing market has been extensively analyzed in the literature on the domain of strict preferences.1

It has become plain that the TTC mechanism satisfies very desirable properties. Roth and Postlewaite (1977)

prove that this mechanism results in the unique assignment belonging to the strict core and, additionally,

that this assignment is the unique competitive allocation. Subsequently, Roth (1982) shows that it is a

dominant strategy for agents to reveal their true preferences in this mechanism. Bird (1984) shows that

this mechanism is also invulnerable to group manipulations of the preferences. Furthermore, Ma (1994)

shows that the TTC mechanism (also known as the strict core mechanism) is the only mechanism satisfying

individual rationality, Pareto-efficiency and strategy-proofness on this domain.

In contrast, very few papers have been written on the housing market on the full preference domain,

even though it seems quite natural for agents to be indifferent between goods. One possible reason for this

is that the consideration of weak preferences in the model introduces additional complications. First of

all, in this case, the strict core might be empty, unique or multi-valued. Moreover, although the core is

always non-empty, some of its allocations might be inefficient. Additionally, some of the properties that are

satisfied by the TTC mechanism on the restricted domain of strict preferences are incompatible on the full

preference domain. For instance, Ehlers (2002) shows that Pareto-efficiency and group strategy-proofness

are not compatible. We will additionally show that on this general domain there may be housing market

problems without Pareto-efficient competitive allocations.

As far as we know, there are two preceding papers proposing algorithms and mechanisms to solve the

housing market problem on the full preference domain.2 The first, by Quint and Wako (2004), proposes

an algorithm to determine whether or not the strict core is empty and obtain a strict core assignment if

it is non-empty. Nevertheless, this cannot be considered a mechanism, since, for housing markets with an

empty strict core, it reports that the strict core is empty but it does not give any allocation. The other,

by Yılmaz (2009), presents a random mechanism satisfying individual rationality, ex-ante efficiency and no

justified-envy. However, this is not a strict core mechanism (i.e., there are housing market problems with a

non-empty strict core in which the mechanism does not select a strict core allocation). This mechanism is

not a generalization of the TTC mechanism either, since the allocation it proposes for problems with strict

preferences may be different from the unique strict core allocation. Furthermore, this mechanism does not

satisfy strategy-proofness, although it attains higher levels of efficiency.

1For a comprehensive survey on housing market with strict preferences see Sönmez and Ünver (2009).
2Konishi et al. (2001) study the case in which goods are of different types and all individuals are indifferent only between

goods of the same type. This implies that individuals are not allowed to have different indifference classes. Consequently, they

work on a domain that is richer than the classical strict preference domain, but more restrictive than the full preference domain.
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The contribution of this paper is to present a family of mechanisms that generalize the TTC mechanism

while preserving some of their good properties when agents are allowed to report indifferences. In order

to introduce this family of mechanisms, we define an algorithm called Top Trading Absorbing Sets algo-

rithm (hereafter TTAS), which results in a strict core allocation when the strict core is non-empty and a

Pareto-efficient core allocation otherwise. Then, we prove that the family of mechanisms constructed using

this algorithm satisfy individual rationality, Pareto-efficiency and strategy-proofness. Given that the other

classical properties satisfied by the TTC on the domain of strict preferences (group strategy-proofness and

the selection of competitive allocations) are incompatible on this general domain with efficiency, what we

are presenting in this paper is a generalization of the TTC mechanism maintaining a maximal possible set

of its properties for the case of strict preferences.3

The literature also describes other problems where there are indivisible goods and monetary transfers

are not allowed. Some examples are housing allocation with existing tenants (Abdulkadiroğlu and Sönmez

(1999)), kidney exchange (Roth et al. (2004)) and school choice (Abdulkadiroğlu and Sönmez (2003)). In the

cited problems, the solution, or one of the proposed solutions for such problems, is based on an adaptation of

the TTC to the corresponding framework. However, as in the housing market problem, they only address the

case in which agents have strict preferences. Our family of mechanisms (with the same particular adaptations

needed for each framework) will generalize all these adaptations of the TTC mechanism for these particular

problems to the case in which agents are allowed to report indifferences.

The rest of the paper is organized as follows. Section 2 contains some basic preliminaries of the housing

market problem and graph theory. Section 3 revises the TTC mechanism, introduces the family of TTAS

mechanisms and studies the properties of this family of mechanisms in the housing market problem. Section

4 discusses some characteristics of the mechanisms of the family and presents some further applications of

them. Finally, the proofs of the results obtained throughout the paper are given in the appendix.

2 The housing market model

Let N be a finite set of agents and H be a finite set of houses such that |N | = |H | = n. Each individual

i ∈ N has a transitive and complete (but not necessarily antisymmetric) preference binary relation Ri over

H . As usual, Pi and Ii will be used to denote the asymmetric and symmetric parts of Ri, respectively.

Let R = (Ri)i∈N be the preference profile. Given S ⊂ N , let R−S = (Rj)j∈N\S denote the preferences

of all individuals except those in S. By abusing notation, we will use R−i instead of R−{i}. For any Ri

and any S ⊆ H , we will define the maximal elements of S according to Ri as the set maxS(Ri) = {x ∈

S | xRiy for all y ∈ S}.

An assignment (or allocation) is a bijective map µ : N −→ H . Let µ(i) denote the house assigned to

agent i under the assignment µ. By abusing notation, we will also use µi instead of µ(i). The assignment

describing the initial owners of houses is called the “initial endowment” and is denoted by ω. For any T ⊆ N ,

we define ω(T ) = {x ∈ H | x = ωi for some i ∈ T}. Then, a housing market is a list (N,H, ω,R).

3Jaramillo and Manjunath (2009) have a simultaneous and independent work to this one presenting another family of

mechanisms generalizing the TTC mechanism with similar properties.
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A deterministic mechanism f is a map that assigns for each housing market (N,H, ω,R) an assignment

f(N,H, ω,R). When the description of (N,H, ω,R) is clear, we will denote the house assigned by the

mechanism f to agent i by fi. Let F be the set of all deterministic mechanisms. A random mechanism

g is a probability distribution over F . That is, a random mechanism associates to each housing market a

probability distribution over the set of assignments. Note that any deterministic mechanism is a random

mechanism.

An assignment µ is individually rational if, for each agent i ∈ N , µiRiωi. A deterministic mechanism

f is individually rational if it always selects an individually rational assignment for each housing market.

A random mechanism is individually rational if its support contains only individually rational deterministic

mechanisms.

An assignment µ is Pareto-efficient if no other assignment ν exists such that, for all i ∈ N , νiRiµi and for

some j ∈ N , νjPjµj . A deterministic mechanism f is Pareto-efficient if it always selects a Pareto-efficient

assignment for each housing market. A random mechanism is ex-post efficient if its support contains only

Pareto-efficient deterministic mechanisms. A random mechanism g stochastically dominates another random

mechanism h if, for any possible vector of utilities U = (ui)i∈N compatible with R, the following must hold:

for all i ∈ N ,

∑
x∈H p(gi(N,H, ω,R) = x) · ui(x) ≥

∑
x∈H p(hi(N,H, ω,R) = x) · ui(x) and there is some j ∈ N for which

this inequality is strict.

Then, a random mechanism g is ex-ante efficient if it is not stochastically dominated by any other random

mechanism.

A random mechanism g is strategy-proof if truth-telling is a dominant strategy in its associated preference

revelation game. That is, for all R and for any possible vector of utility functions U = (ui)i∈N compatible

with R, the following must hold: for all i ∈ N ,

∑
x∈H p(gi(N,H, ω,R) = x) · ui(x) ≥

∑
x∈H p(gi(N,H, ω, (R−i, R

′
i)) = x) · ui(x) for all possible R′

i.

A random mechanism g is group strategy-proof if for all R and for any possible vector of utility functions

U = (ui)i∈N compatible with R, the following must hold: for all S ⊂ N , there exists i ∈ S such that

∑
x∈H p(gi(N,H, ω,R) = x) · ui(x) ≥

∑
x∈H p(gi(N,H, ω, (R−S , R

′
S)) = x) · ui(x) for all possible R′

S .

An assignment µ is competitive if a price vector p = (p1, . . . , pn) exists such that for all i ∈ N , pµi
≤

pωi
(budget constraint) and µiRiωj for all j ∈ N with pωj

≤ pµi
(utility maximization). Intuitively, an

assignment is competitive if a set of prices exists such that the assignment can be explained by a competitive

equilibrium. A deterministic mechanism f is competitive if it always selects a competitive assignment for each

housing market. A random mechanism is competitive if its support contains only competitive deterministic

mechanisms.

An assignment µ is in the core of the housing market if there is no coalition T ⊆ N and assignment ν

such that, for all i ∈ T , νi ∈ ω(T ) and νiPiµi. An assignment µ is in the strict core of the housing market

if there is no coalition T ⊆ N and assignment ν such that, for all i ∈ T , νi ∈ ω(T ) and νiRiµi and for some

j ∈ T , νjPjµj .
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Preliminaries in digraphs

A directed graph, or digraph, is a pair (V,E), where V is a non-empty set of nodes and E is a set of directed

arcs (or edges). The indegree (outdegree) of a node vi ∈ V is the number of arcs leading to (leading from)

vi. Given two nodes vi, vj ∈ V , we say that there is a path from vi to vj if there is a sequence of nodes

vi = v1, . . . , vm = vj such that for all i ∈ {1, . . . ,m − 1}, there is an arc from vi to vi+1. A chain is an

ordered set of nodes C = {v1, v2, . . . , vm} such that for all i ∈ {1, . . . ,m− 1}, there is an arc from vi to vi+1

and there is not an arc from vm to v1. A cycle is an ordered set of nodes C = {v1, v2, . . . , vm} such that for

all i ∈ {1, . . . ,m−1}, there is an arc from vi to vi+1 and there is an arc from vm to v1. Two nodes vi, vj ∈ V

constitute a symmetric pair if there is an arc from vi to vj and an arc from vj to vi. Given two digraphs

(V,E), (V ′, E′), we say that (V ′, E′) is a subgraph of (V,E) if V ′ ⊆ V and E′ ⊆ E.

An absorbing set is a set of nodes A that satisfies two conditions: (i) for any two nodes vi, vj ∈ A, there is

a path from one to the other (inside connection), and (ii) there is no path from any node vi ∈ A to any node

vj 6∈ A (no inside-outside connection). An absorbing set is paired-symmetric if each of its nodes belongs to

a symmetric pair.

3 Mechanisms

The classical framework in which the housing market problem is studied in the literature consists of individ-

uals having strict preferences. Shapley and Scarf (1974) show that, in this case, the strict core always exists

and they propose the Strict Core mechanism, which selects the unique strict core assignment for each housing

market.4 This deterministic mechanism is strategy-proof, as Roth (1982) show. Moreover, Ma (1994) shows

that this is the only mechanism that satisfies individual rationality, Pareto-efficiency and strategy-proofness

on the domain of strict preferences. Shapley and Scarf (1974) attribute to David Gale the algorithm called

Top Trading Cycles to compute the strict core assignment of a housing market.

The Top Trading Cycles mechanism

Consider a directed graph in which there are two types of nodes (agents and houses) and arcs leading from

agents to houses and from houses to agents, and all nodes have outdegree equal to 1. An interesting fact

about any directed graph with these characteristics is that it always has at least one cycle and no two

cycles intersect. This implies that the following algorithm, called Top Trading Cycles, always determines an

assignment.

Gale´s Top Trading Cycles (TTC) algorithm:

Step 1:

(1.1) Let each agent point to her maximal house and each house point to its owner. Select the cycles of

this graph.

(1.2) The agents in the cycles are removed from the algorithm by assigning to each of them the house

she is pointing to.

4Roth and Postlewaite (1977) prove that the strict core assignment is unique for housing markets with strict preferences.
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Step i:

(i.1) Let each remaining agent point to her maximal house from among the remaining ones and each

remaining house point to its owner (note that when an agent leaves, her original house also leaves, so if a

house remains in the algorithm then its owner also remains and vice versa). Select the cycles of this graph.

(i.2) The agents in the cycles are removed from the algorithm by assigning to each of them the house she

is pointing to.

The algorithm terminates when no agents and houses remain, and the outcome is the assignment formed

during its execution.

In the general case, in which indifferences are allowed, the strict core may not be unique. Indeed, it

may be multi-valued and even empty. Quint and Wako (2004) propose an algorithm, called Top Trading

Segmentation which determines whether a housing market problem has an empty strict core or not and,

in the event of having a non-empty strict core, it finds an allocation belonging to it. Given that all the

allocations of the strict core are indifferent for all individuals (i.e., if µ and ρ belong to the strict core,

µiIiρi for all i ∈ N), this algorithm provides a good solution for the case in which the strict core is non-

empty. However, no satisfactory mechanism extending the TTC exists that works for every housing market

problem, independently of having a non-empty strict core or not.5 A mechanism suggested in the literature

to generalize the TTC mechanism (see, for example, Roth (1982)) is the following: (1) Take the preferences of

those agents having indifferences and turn them into strict orders by means of (fixed or random) tie-breakers;

and (2) apply the Top Trading Cycles mechanism.

It is clear that this class of mechanisms coincide with the TTC for the case of strict preferences. However,

in the case of allowing agents to report indifferences, the application of these mechanisms does not neces-

sarily lead to efficient assignments. There are, in fact, cases where efficient assignments are never achieved,

independently of the choice of tie-breakers. We illustrate this with the following example.

Example 1 Let N = {a1, a2, a3, a4, a5} and H = {h1, h2, h3, h4, h5} be the set of agents and houses, re-

spectively. Let ω(ai) = hi for all i ∈ {1, . . . , 5} be the initial endowment. Let the preference profile be as

follows:

a1 a2 a3 a4 a5

h2 h3 h4, h5 h1 h2

h1 h2 h3 h5 h4

h3 h1 h1 h4 h5

h4 h4 h2 h2 h1

h5 h5 h3 h3

In this housing market problem, the strict core is empty and the core contains the following four alloca-

tions:

5Yılmaz (2009) proposes a mechanism, but it is not a generalization of the TTC mechanism.
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µ1 = {(a1, h2), (a2, h3), (a3, h4), (a4, h1), (a5, h5)}

µ2 = {(a1, h1), (a2, h3), (a3, h5), (a4, h4), (a5, h2)}

µ3 = {(a1, h2), (a2, h3), (a3, h5), (a4, h1), (a5, h4)}

µ4 = {(a1, h1), (a2, h3), (a3, h4), (a4, h5), (a5, h2)}

There is only one indifference binary relation in the preference profile and, then, there are two possible

results of the class of mechanisms presented above, namely µ1 and µ2. However, it is easy to see that these

allocations are Pareto dominated by µ3 and µ4, respectively.

We will next show that none of the Pareto-efficient assignment of the housing market problem in Example

1, µ3 and µ4, are competitive assignments. Notice that for µ3 being a competitive assignment, it is necessary

that pµ3(a1) = ph2
≤ ph1

and pµ3(a4) = ph1
≤ ph4

and, therefore, ph2
≤ ph4

. However, since h2P5h4 (where

h4 = µ3(a5)), then ph2
> ph4

, which is not possible. (The analysis to prove that µ4 is not a competitive

equilibrium is similar). Hence, the previous example is also useful to prove the following result:

Remark 1 There is no random mechanism that is competitive and satisfies ex-post efficiency.

We also know from Ehlers (2002) that there is no mechanism that is ex-post efficient and group strategy-

proof on the general domain of preferences.

Then, we have that, (i) the TTC mechanism performs well for the restricted domain of strict preferences,

but the application of tie-breakers is not an efficient solution for the general case; (ii) the Top Trading

Segmentation algorithm provides a solution for some cases on the general domain, but it is not a mechanism

in the sense that it provides no allocation when the strict core is empty; and (iii) efficiency is incompatible

with other properties such as group strategy-proofness and competitiveness. Our objective is to propose a

family of mechanisms, called Top Trading Absorbing Sets, for the general domain, that extend the TTC

and the TTS satisfying a maximal possible set of the properties that the TTC has. More concretely, in the

dichotomies of (iii), our family of mechanisms satisfy ex-post efficiency, and renounce the properties of group

strategy-proofness and competitiveness.

Top Trading Absorbing Sets mechanisms

To introduce the algorithm that determines the family of mechanisms presented in this paper, we use a

similar approach to the TTC algorithm. Consider a directed graph in which there are two types of nodes

(agents and houses) with arcs leading from agents to houses and from houses to agents, all nodes having

strictly positive outdegree. An interesting characteristic of these digraphs is that they always have at least

one absorbing set (see Kalai and Schmeidler (1977)).

The Top Trading Absorbing Sets (TTAS) algorithm:

Step 0: Consider a priority ranking of the houses; i.e., a complete, transitive and antisymmetric binary

relation over H .

Step 1:

(1.1) Let each agent point to her maximal houses and each house point to its owner. Select the absorbing

sets of this graph.
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(1.2) Consider the paired-symmetric absorbing sets, if any. Their agents are removed from the algorithm

by assigning to each of them her initial endowment (Obviously, their houses are also removed).

(1.3) Consider the remaining absorbing sets, if any. For each agent pointing to more than one house,

select a unique house to point to using the following criterion: she points to the maximal house with the

highest priority, different from her initial endowment.

(1.4) Then, in the subgraph formed by the absorbing sets and the arcs selected in step (1.3), there is

necessarily at least one cycle and no two cycles intersect. Assign provisionally to each agent in these cycles

the house she is pointing to, but keep them in the algorithm.

Step i:

(i.1) Let each remaining agent point to her maximal houses from among the remaining ones and each

house point to its current owner. Select the absorbing sets of this graph.

(i.2) Consider the paired-symmetric absorbing sets, if any. Their agents are removed from the algorithm

by assigning to each of them her current endowment (Obviously, their houses are also removed).

(i.3) Consider the remaining absorbing sets, if any. For each agent pointing to more than one house,

select a unique house to point to using the following criterion: she points to the maximal house with the

highest priority from among those that have not been assigned to her yet. If all maximal houses has been

assigned to her at least m times, then she points to the maximal house with the highest priority that has

not been assigned to her m+1 times yet.6

(i.4) Then, in the subgraph formed by the absorbing sets and the arcs selected in step (i.3), there is

necessarily at least one cycle and no two cycles intersect. Assign provisionally to each agent in these cycles

the house she is pointing to, but keep them in the algorithm.

The algorithm terminates when no agents and houses remain, and the outcome is the assignment formed

during its execution.

The following example illustrates how the TTAS algorithmworks for a particular housing market problem.

Example 2 Consider a housing market with N = {a1, a2, . . . , a10} and H = {h1, h2, . . . , h10} and assume

that the initial endowment of agent ai is house hi for all i ∈ {1, 2, . . . , 10}. Let the preference profile R be

as follows (we only include, for each agent, the houses that are not worse than her initial endowment):

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

h2 h3 h4, h5 h1 h6 h6, h7 h6 h5, h9 h9, h10 h9, h10

h1 h2 h3 h5 h2 h7 h8

h4 h4

h5

Consider the following priority ranking of houses:

h1 � h2 � h3 � h4 � h5 � h6 � h7 � h8 � h9 � h10.

6We understand that the initial endowment of an agent is always one of her previously assigned houses.
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We depict the directed graphs that are formed at each step of the algorithm: 7

Step 1:

·h9 ·a9

·h10
·a10

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

·

h6·a6

·
h7 ·a7

There are two absorbing sets: A∗
1 = {a9, h9, a10, h10}, which is paired-symmetric and, hence, this is

removed by assigning h9 to a9 and h10 to a10. The other absorbing set is A2 = {a7, h7, a6, h6}. In this case,

the priority ranking over houses is applied, and the cycle c = (a6, h7, a7, h6) is formed. Then, the algorithm

provisionally assigns h7 to a6 and h6 to a7.

Step 2:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

·

h6

·a7

· a6

·
h7

There is only one absorbing set: A∗
3 = {h6, a7}, which is paired-symmetric. This is removed by assigning

h6 to a7.

7There are two colors for the arcs in each digraph: black arcs are those which do not join nodes in an absorbing set; and red

arcs are those which do. Within the set of red arcs, there are two types: those drawn with a dotted line are the arrows that are

not selected by the priority criterion in step (i.3); and those drawn with a continuous line are the ones chosen by the priority

criterion.
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Step 3:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8· a6

·
h7

There is a paired-symmetric absorbing set A∗
4 = {a6, h7}, which is removed by assigning h7 to a6. There

is another absorbing set A5 = {a1, h1, a2, h2, a3, h3, a4, h4, a5, h5}. By applying the priority ranking, the

cycle c = (a1, h2, a2, h3, a3, h4, a4, h1) is formed. Then, the algorithm provisionally assigns h2 to a1, h3 to

a2, h4 to a3 and h1 to a4.

Step 4:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

There are 3 paired-symmetric absorbing sets A∗
6 = {a1, h2}, A

∗
7 = {a2, h3} and A∗

8 = {a4, h1}, which are

removed by assigning h2 to a1, h3 to a2 and h1 to a4, respectively.

Step 5:

·

a3

·

h4

·
h5

·
a5

·a8

·h8
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There is only one absorbing set A9 = {a3, h4, a5, h5}, which is not paired-symmetric. In this case, the

cycle c = (a3, h5, a5, h4) is obtained by applying the criterion of step (5.3). Then, the algorithm provisionally

assigns h5 to a3 and h4 to a5, respectively.

Step 6:

·

a3

·

h4

·
h5

·
a5

·a8

·h8

There is a paired-symmetric absorbing set A∗
10 = {a5, h4}, which is removed by assigning h4 to a5.

Step 7:

·

a3
·
h5 ·a8

·h8

There is a paired-symmetric absorbing set A∗
11 = {a3, h5}, which is removed by assigning h5 to a3.

Step 8:

·a8

·h8

There is a paired-symmetric absorbing set A∗
11 = {a8, h8}, which is removed by assigning h8 to a8.

Therefore, the allocation determined by the algorithm is

µ = {(a1, h2), (a2, h3), (a3, h5), (a4, h1), (a5, h4), (a6, h7), (a7, h6), (a8, h8), (a9, h9), (a10, h10)}.
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The following proposition shows that the TTAS always selects an assignment.

Proposition 1 The TTAS algorithm always provides an allocation.

It is easy to see that in the case in which all individuals have strict preferences, all absorbing sets that

appear at any step i of the algorithm are cycles and that, when the trading between agents in each cycle is

carried out, each agent forms a paired-symmetric absorbing set with her new house at step i+ 1 and leaves

the algorithm. As a consequence, the assignment of the TTAS coincides with the one of the TTC when the

preferences are strict.

The TTAS algorithm determines an allocation depending on the priority ranking � selected at Step

0. Then, we define a mechanism for each priority ranking as follows: a mechanism f is a Top Trading

Absorbing Sets mechanism if a priority ranking � exists such that the mechanism selects, for each housing

market problem, the assignment selected by the TTAS algorithm with this priority ranking. We will denote

this mechanism by σ�.

In what follows, we will prove some properties of our family of mechanisms. First, we show that it always

selects an assignment in the core of the housing market.

Theorem 1 Let (N,H, ω,R) be a housing market. For any priority ranking �, the mechanism σ� selects

an assignment in the core of (N,H, ω,R).

As a corollary, we can deduce that all TTAS mechanisms satisfy individual rationality.

Corollary 1 For any priority ranking �, the mechanism σ� is individually rational.

Now, we prove that the TTAS mechanism maintains, on the general domain, some of the properties

that characterize the TTC mechanism on the restricted domain of strict preferences. We start with Pareto-

efficiency.

Theorem 2 For any priority ranking �, the mechanism σ� is Pareto-efficient.

Additionally, we also prove that any mechanism belonging to our family is strategy-proof.

Theorem 3 For any priority ranking �, the mechanism σ� is strategy-proof.

Then, we have proved that, while in the restricted case of strict preferences the TTC mechanism is the

only one satisfying individual rationality, Pareto-efficiency and strategy-proofness (see Ma (1994)), in the

general case, we have at least this family of mechanisms satisfying all these properties. Additionally, we will

prove that our family of mechanisms always select a strict core assignment if the strict core is non-empty.

That is, our family of mechanisms generalize the solution of Quint and Wako (2004).

Theorem 4 Let (N,H, ω,R) be a housing market with a non-empty strict core. Then, for any priority

ranking �, the mechanism σ� selects a strict core assignment.
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4 Comments and applications

4.1 Impact and selection of the priority ranking

We have proposed a family of mechanisms for housing market problems in the general case in which individ-

uals are allowed to report indifferences. This family of mechanisms generalize the previous TTC mechanism

and the TTS algorithm, maintaining all the possible desirable properties without renouncing Pareto-efficiency

satisfied by these proposals. The mechanisms of this family differ among themselves in the priority ranking,

implemented to favor some individuals over others in the event of conflict. The impact of the chosen pri-

ority ranking on the assignment provided by a TTAS mechanism varies depending on the housing market

problem under consideration. If the problem has a non-empty strict core, all agents are indifferent between

the different assignments proposed by the mechanisms of the family, independently of the selected priority

ranking. However, when the problem has an empty strict core, the assignments proposed by the different

mechanisms can be very different for some agents, as the following example shows:

Example 3 Let N = {a1, . . . , a8} and H = {h1, . . . , h8} be the set of agents and houses. Let ω(ai) = hi for

all i ∈ {1, . . . , 8} be the initial endowment. The preference profile is the following (we only include, for each

agent, the houses that are not worse than her initial endowment):

a1 a2 a3 a4 a5 a6 a7 a8

h2 h3 h1, h4 h6 h3 h5, h7 h8 h6

h1 h2 h3 h4 h5 h6 h7 h8

In this problem, the strict core is empty and the core contains the following two Pareto-efficient allocations:

µ1 = {(a1, h2), (a2, h3), (a3, h1), (a4, h4), (a5, h5), (a6, h7), (a7, h8), (a8, h6)}

µ2 = {(a1, h1), (a2, h2), (a3, h4), (a4, h6), (a5, h3), (a6, h5), (a7, h7), (a8, h8)}

Note that agents a3 and a6 are indifferent between both assignments, agents a1, a2, a7 and a8 prefer

µ1 to µ2, while agents a4 and a5 prefer µ2 to µ1. The TTAS mechanisms select one assignment or the

other depending on the priority ranking selected at step 0: σ� = µ2 if ω4 � ω1 and ω5 � ω7; and σ� = µ1,

otherwise. Let us analyze the individual assignment obtained for each agent depending on the selected priority

ranking: Consider agents a1, a2 and a4.
8 The utility attained by agents a1 and a4 depends on the position

of their initial endowments in the priority ranking relative to each other, not on their absolute positions: If

ω1 is higher up in the ranking than ω4, the mechanism provides µ1. If, however, ω4 is higher up, then their

utility will depend on the position of ω5 and ω7 in the priority ranking relative to each other. The case of

agent a2 is more curious, her utility is not affected by the position of ω2 in the priority ranking, her fate is

totally linked to agent a1’s fate.

We have so far presented our family of mechanisms as deterministic, by assuming that the selection of

the priority ranking may be performed in terms of some characteristics of the agents (income, seniority,

. . . ). However, if there is no intuitive way of selecting a priority ranking for a particular problem, the

possibility of randomizing could be considered. In this case, independently of the probability distribution

8Observe that agents a7, a8 and a5 are in dual situations with respect to these agents, and that a3 and a6 are not affected

by the priority ranking.
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over the priority rankings, we have that the random mechanism thus obtained satisfies individual rationality,

strategy-proofness and ex-post efficiency9. Additionally, it provides a strict core assignment with probability

1 if the strict core is non-empty and, in general, it provides a core assignment with probability 1.

4.2 Applications and treatment of indifferences

Apart from the housing market problem, there are some other interesting problems in the literature that

can be seen as the exchange of indivisible goods. Some examples are house allocation with existing tenants

(Abdulkadiroğlu and Sönmez (1999)), kidney exchange (Roth et al.(2004)) and school choice (Abdulkadiroğlu

and Sönmez (2003)). In order to solve these problems, it is generally assumed that agents have strict

preferences and mechanisms adapted from the TTC have been proposed. However, in all these problems, it

is natural to think that agents may have indifferences. Therefore, it is also necessary to propose a mechanism

in which they can report them. We can easily adapt our family of TTAS mechanisms to each of the problems

mentioned above, similarly to the way in which the original TTC is adapted to incorporate the particular

characteristics of each of these frameworks.10 Therefore, there is a wide range of problems in which our

proposed family of mechanisms can be applied.

Regarding the school choice problem, other mechanisms different from the TTC have also been proposed

for the case of strict preferences. Abdulkadiroğlu and Sönmez (2003) propose a mechanism based on the

Gale-Shapley Deferred Acceptance (DA) algorithm for two-sided matching problems (see Gale and Shapley

(1962)), which is the mechanism chosen by some US city authorities to be applied. Erdil and Ergin (2008)

propose a generalization of this mechanism for the case in which schools have ties in their priority rankings.

They apply the DA algorithm with a particular tie-breaking of the school priorities, and then proceed with

the exchange of the slots in the schools in a similar way as the TTC or our TTAS do. The main difference

is that they can select any cycle in the original digraph to guarantee strategy-proofness, given that the

priorities of the schools (the side of the market that has ties in the rankings in their model) are objective.

Then, there is no possibility of manipulation in this side of the matching market. On the contrary, in our

model the ties are in agents’ preferences and, as a consequence, the selection of the cycles in the digraph

cannot be arbitrary to maintain strategy-proofness. Both the search for absorbing sets and the inclusion of

the priority ranking to select cycles are necessary to maintain strategy-proofness in our model.

4.3 Computational complexity

From a practical point of view, it is interesting to analyze the computational complexity of any mechanism.

We next discuss some details on the computational complexity of the TTAS algorithm, in which the TTAS

mechanisms are based.

Steps from (i.1) to (i.3) of the algorithm, which construct the graph, calculate the absorbing sets and

classify if they are paired-symmetric or not, can be computed in polynomial time. In fact, the analysis of

the computational complexity of these parts would be similar to the analysis of the algorithm to compute

the “partition by minimal self-mapped sets” introduced by Quint and Wako (2004), which is polynomial of

9This is a difference with respect to the mechanism proposed by Yılmaz (2009), which is ex-ante efficient, but not strategy-

proof.
10The particular details of the adaptations can be provided upon request.
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degree 3.11

Unfortunately, step (i.4) may create a computational handicap, as with the selection of cycles proposed in

this step, it could be the case that in a sequence of iterations in a non paired-symmetric absorbing set nobody

obtains a better house than the one owned at step i, in such a way that the formation of paired-symmetric

absorbing sets would be retarded during a number of steps. In case that this fact substantionally increases

the complexity of the TTAS algorithm, it would be interesting to redesign this step (i.4) in a computationally

more efficient way.

APPENDIX

The proofs for all the results of the paper are set out in the Appendix.

Proof of Proposition 1

By contradiction, suppose that this does not occur. That is, there is a maximal set of individuals S ⊆ N and

a maximal set of houses T ⊆ H that are never removed from the algorithm. Consider the algorithm from the

step immediately subsequent to the removal of any other agent and house, say step i1. Some characteristics

of this step and its relation with step i1 + 1 are the following:

• In the digraph of step i1, we know that there is at least one absorbing set, and all of them are non

paired-symmetric, because if an absorbing set is paired-symmetric, then its agents and houses would

leave the algorithm and we would have a contradiction. Therefore, a set of nodes not belonging to

symmetric pairs exists in each absorbing set. Hence, at step i1.3, the algorithm selects one house for

each agent to point to, obtaining a subgraph for each absorbing set with some cycles. Next, at step

i1.4, the algorithm proceeds to assign provisionally the houses in the cycles of the subgraph to the

agents pointing to them.

• Consider any node v of an absorbing set at step i1 and any other node v′ not belonging to this absorbing

set. Then, v and v′ cannot belong to the same absorbing set at step i1 +1. This happens because any

agent or house does not leave the market at step i1. Hence, if v is a node representing an agent, then

at step i1 + 1, v points to the same houses as at step i1. If v is a node representing a house, either v

will point at step i1 + 1 to the same agent as at step i1 if it has not entered a selected cycle at step

i1.4, or it will point to other agent belonging to the absorbing set if it has entered a selected cycle.

Therefore, no absorbing set at step i1 increases its set of nodes from this step on.

Additionally, notice that each absorbing set of any step t > i1 is a (non-necessarily strict) subset of

an absorbing set of step i1. Given that we have assumed that the nodes of these absorbing sets of step i1

always keep in the algorithm, we have that there should be a step, say i2, from which the set of nodes in

any absorbing set will never decrease. Consider each absorbing set A = SA ∪ TA ⊆ S ∪ T at this step, and

let S′
A ∪ T ′

A ⊆ A be the set of nodes not belonging to any symmetric pairs. Then, it is clear that the nodes

of A \ (S′
A ∪ T ′

A) will also belong to symmetric pairs in step i2 + 1. With respect to the nodes of S ′
A ∪ T ′

A,

each of them will belong to a symmetric pair in step i2 + 1 only if it has entered a selected cycle at step

11For example, the computation of the absorbing sets of a graph would be based in Tarjan’s (1972) algorithm, which is linear.
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i2.4. Therefore, the set of nodes of an absorbing set A at step i2 that belong to symmetric pairs is never

decreasing. Note that if for any step j > i2, there exists a step k, with k > j, such that the set of nodes of

the absorbing set A belonging to symmetric pairs at step k is bigger than at step j, then it is easy to see

that we would end up obtaining a paired-symmetric absorbing set, some agents and houses would leave the

algorithm and we would reach a contradiction. Therefore, there must be a step, say step i3, from which the

set of nodes of the absorbing set A that do not belong to any symmetric pair is stable over time. Let this

set be S̄A ∪ T̄A ⊆ S′
A ∪ T ′

A. Some characteristics of this set are the following:

• Each agent of S̄A possesses her initial endowment in all steps, because she has not previously entered

any selected cycle. Additionally, this initial endowment is not one of her maximal houses among the

ones in the set T , since she does not belong to any symmetric pair.

• After applying the priority criterion to select one house for each agent to point to in the absorbing sets

at step i3.3, the nodes in S̄A ∪ T̄A are partitioned in various chains. All these chains finish in a house

in TA \ T̄A because otherwise, the nodes in S̄A ∪ T̄A outside the chains would have formed a cycle at

step i3.4 and they would belong to some symmetric pairs at step i3 + 1. Note that these chains will

never break from this step on because the priority criterion applied at any step j.3, with j ≥ i3, will

always select the same house for each of these agents, given that they will never enter a selected cycle.

Given that the agents of S̄A belong to an absorbing set with the agents of SA \ S̄A, there exists a maximal

non-empty set of agents of SA \ S̄A, denoted by BS(T̄A) ⊆ SA \ S̄A, who point to some houses in T̄A at step

i3.1.

Next, we will show that there must exist a step, say i4, from when no nodes in BS(T̄A) will enter any

cycle selected by the algorithm. Suppose that an agent i ∈ BS(T̄A) enters selected cycles occasionally from

step i3 on without end. Then, there must be a step l in which the priority criterion selects a house belonging

to an agent in S̄A, that is, a house in T̄A. Then, this agent i will never enter a selected cycle at any step

from l on, because her entry would imply the entry of the agent in S̄A, which is a contradiction.

Then, we have that from step i4 on, the set of agents of BS(T̄A) never enter a cycle selected by the

algorithm. Let BT (T̄A) denote the set of houses that the agents in BS(T̄A) possess at step i4. Note that

after applying the priority criterion at step i4.3, the nodes in the set S̄A∪T̄A∪BS(T̄A)∪BT (T̄A) are partitioned

in various chains finishing in houses in the set TA \ (T̄A ∪BT (T̄A)), which will never break from this step on.

If BS(T̄A)∪BT (T̄A)∪ S̄A ∪ T̄A = A, we could conclude that no node enters cycles selected by the algorithm

from this step on. However, this is not possible since the algorithm always selects at least one cycle from each

absorbing set which is not paired-symmetric. Then, we have that BS(T̄A)∪BT (T̄A)∪S̄A∪T̄A 6= A. Given that

the nodes of BS(T̄A)∪BT (T̄A)∪ S̄A ∪ T̄A belongs to an absorbing set with the other nodes of A, there exists

a maximal non-empty set of agents of SA \ (S̄A ∪BS(T̄A)), denoted by BS(BT (T̄A)) ⊆ SA \ (S̄A ∪BS(T̄A)),

who point to some houses in BT (T̄A) at step i4.1. Then, by applying the same reasoning as before, we

can deduce that there exists a step i5 such that the agents in BS(BT (T̄A)) (and their current houses)

never enter selected cycles from this step on. Applying recursively this argument, and given that absorbing

sets have a finite set of nodes, we will finally conclude that there is a step im such that no node enters

selected cycles from this step on, given that all nodes of A belong to some set BS(BT (BT (. . . (BT (T̄A)))))

or BT (BS(BT (BT (. . . (BT (T̄A))))). However, this is not possible since cycles are selected in all steps of the

algorithm for each absorbing set which is not paired-symmetric. Therefore, we have reached a contradiction

and the proposition is proved.
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An important lemma

We include a lemma which will be helpful in the proof of Theorem 1. This lemma states that an agent will

be indifferent towards all the houses assigned to her provisionally by the TTAS algorithm.

Lemma 1 Let µt
i be the t-th house provisionally assigned by the TTAS algorithm to agent i. Then, µt

iIiµ
t+1
i

for all t.

Proof. Consider the step of the algorithm at which µt+1
i is assigned to agent i and let µt

i be agent i’s

previous assignment. Then, by construction of the algorithm, there is a selected cycle at substep 4 in which

µt
i points to i and i points to µt+1

i . Therefore, µt+1
i is a maximal house for i among the ones remaining in

the algorithm at this step. Given that µt
i is in the algorithm at this step, µt+1

i Riµ
t
i.

On the other hand, when previously µt
i was provisionally assigned to i by the algorithm, µt+1

i was in the

algorithm as well. Therefore, since at that step µt
i was a maximal house for i, µt

iRiµ
t+1
i .

Thus, we can conclude that µt
iIiµ

t+1
i , as desired.

From this lemma, we can deduce the following corollary which will be useful for proving subsequent

results. It says that the first house that the TTAS algorithm assigns provisionally to an agent determines

the utility that this agent will obtain from her final assignment.

Corollary 2 Let σ�(i) be the assignment that the TTAS mechanism with priority ranking � assigns to

agent i and let µ1
i (�) be the first provisional assignment (different from the initial endowment) that the

TTAS algorithm with this priority ranking assigns to agent i. Then, σ�(i)Iiµ
1
i (�).

Proof of Theorem 1

By contradiction, suppose that there is some TTAS mechanism σ� that selects for some housing market

problem (N,H, ω,R) an assignment µ which is not in the core. Then, a coalition T ⊆ N and an assignment

υ exist such that for all i ∈ T , υi ∈ ω(T ) and υiPiµi. Denote, without loss of generality, T = {1, 2, . . . , r}

such that for all i ∈ {1, . . . , r} υi = ωi+1 (subscript modulo r). Consider agent 1. Given that υ1P1µ1, we

have that υ1 has left the algorithm before agent 1. Then, ω−1(υ1) = 2 ∈ T has entered a selected cycle and

received a provisional assignment before agent 1. Moreover, since υ2P2µ2, this implies that υ2 has left the

algorithm before agent 2. Then, ω−1(υ2) = 3 ∈ T has entered a selected cycle and received a provisional

assignment before agent 2 and so on. Following this argument, we have that for all i ∈ T , υi has left the

market before agent i and that agent i+1 = ω−1(υi) (i modulo r) has entered a selected cycle and received

a provisional assignment before agent i. Then, we conclude that agent 1 has entered a selected cycle and

received a provisional assignment before agent 1, which is a contradiction. Then, the theorem is proved.

Proof of Theorem 2

By contradiction, suppose that there is some TTAS mechanism σ� that selects for some housing market

problem (N,H, ω,R) an assignment µ which is not Pareto efficient. That is, an assignment ν exists such

that, for all i ∈ N , νiRiµi and for some j ∈ N , νjPjµj . By construction of the algorithm, νj entered

a paired-symmetric absorbing set, say A∗
l , with agent µ−1(νj) and they left the algorithm before agent j

and µj . Without loss of generality, suppose that µ−1(νj) = j + 1. Then, by Pareto dominance of ν over
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µ, νj+1Rj+1νj . Now, we prove that at least one agent of A∗
l strictly prefers her assignment in ν to her

assignment in µ. If j + 1 is not this individual and νj+1Ij+1νj , then νj+1 belongs to A∗
l jointly with agent

µ−1(νj+1). Therefore, applying recursively this argument we can deduce that some agent in A∗
l must prefer

strictly her assignment in ν to her assignment in µ, because otherwise agent j would be in A∗
l and this is a

contradiction.

Then, let k be an agent in A∗
l such that νkPkµk. Then, following the same analysis as before, νk entered

a paired-symmetric absorbing set, say A∗
l−1 with agent µ−1(νk) at a previous step and there is some agent

in A∗
l−1 strictly preferring her assignment in ν to her assignment in µ. If we apply recursively the previous

analysis, given that this process is finite, we arrive at the first paired-symmetric absorbing set A∗
1 and we

will not be able to continue further. Therefore, we have a contradiction and the theorem is proved.

Proof of Theorem 3

We prove some lemmas that will help us in the proof of the theorem.

Hereafter, we will denote by σ�(R−i, Ri) the TTAS mechanism with the priority ranking � when the

reported preferences are (R−i, Ri) and the description of N , H and ω is clear.

Lemma 2 Let hk be the first house, different from the initial endowment, assigned provisionally to agent i

by the TTAS algorithm defining ϕ�(R−i, Ri) and let R′
i be any preference such that {h ∈ H |hPihk} = {h ∈

H |hP ′
ihk} and there does not exist h ∈ H \ {hk} such that hI ′ihk. Then,

(i) hk is also the first house, different from the initial endowment, assigned provisionally to agent i by the

TTAS algorithm defining ϕ�(R−i, R
′
i), and

(ii) the set of selected cycles and paired-symmetric absorbing sets preceding the cycle assigning hk to

agent i by the TTAS algorithm defining ϕ�(R−i, Ri) are also selected by the TTAS algorithm defining

ϕ�(R−i, R
′
i) before the selection of the cycle assigning hk to agent i.

Proof. Let hk and agent i enter jointly for first time a selected cycle by the algorithm defining ϕ�(R−i, Ri)

at step q.

Let t = 1 be the first step of the algorithm and let G�
1 (R−i, Ri) be the digraph associated with this step

when agent i declares Ri. Suppose that q > 1 (otherwise, the proof is finished). Notice that G�
1 (R−i, Ri)

and G�
1 (R−i, R

′
i) only differ from each other in the arcs leading from agent i and therefore every paired-

symmetric absorbing set in G�
1 (R−i, Ri) is also in G�

1 (R−i, R
′
i). Let cj = {1, h2, 2, h3, . . . , h1} be a cycle

selected by the algorithm at the end of this step. Now, consider G�
1 (R−i, R

′
i) and note that every node in

cj is in this graph pointing to the same nodes as in G�
1 (R−i, Ri) (given that i 6∈ cj).

(a) If cj is in an absorbing set in G�
1 (R−i, R

′
i), all the houses pointed by agents in cj in G�

1 (R−i, Ri) are

also in this absorbing set. Then, the same structure of priorities is used to select an arc from each agent of

cj in G�
1 (R−i, Ri) and in G�

1 (R−i, R
′
i). Hence, cj is also a selected cycle at the first step of the algorithm

for (R−i, R
′
i).

(b) Otherwise, all agents and houses in cj will enter an absorbing set (the same for all of them) for the

first time at the same step of the algorithm. Then, at this step, say step t, although the absorbing set

could be different from the one to which cj belongs in G1(R−i, Ri), the structure of priorities will give the

same result as in G�
1 (R−i, Ri) for the agents of cj . Thus, the cycle cj will be also selected in G�

t (R−i, R
′
i).
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Additionally, notice that this is also the first selected cycle where the nodes in cj enter when the preferences

are (R−i, R
′
i).

Let now t = 2 and and let G�
2 (R−i, Ri) be the digraph associated with this step when agent i declares

Ri. Suppose that q > 2 (otherwise, the proof is finished). Notice that G�
1 (R−i, Ri) and G�

1 (R−i, R
′
i) have

the same paired-symmetric absorbing sets and, then, the nodes removed at the first step of the algorithm

are the same in both graphs.

First, we will show that every paired-symmetric absorbing set in G�
2 (R−i, Ri) is also obtained by the

algorithm when preferences are (R−i, R
′
i). Consider any paired-symmetric absorbing set, A∗

i , in G�
2 (R−i, Ri).

It is clear that every arc leading from an agent in A∗
i in G�

2 (R−i, Ri) also appears in G�
2 (R−i, R

′
i) and at

subsequent steps, while this agent and the houses she is pointing to are in the algorithm.

Consider a house hm ∈ A∗
i . Suppose first that hm points to its original owner m in A∗

i . This means

that hm does not enter a selected cycle in the first step of the algorithm when the preferences are (R−i, Ri).

Then, we are going to show that it will also point to m in G�
2 (R−i, R

′
i). By contradiction, suppose that

this does not occur. Then, hm and m entered a selected cycle in the first step of the algorithm when the

preferences are (R−i, R
′
i). Then, by the same argument as before, the cycles selected in the first step of the

algorithm when the preferences are (R−i, R
′
i) will appear in some step t when the preferences are (R−i, Ri)

and this will be the first selected cycle in which these nodes enter. In particular, this will be the first selected

cycle in which hm and m enter when the preferences are (R−i, Ri). But this is a contradiction since hm

and m abandon the algorithm in the second step when the preferences are (R−i, Ri) without entering a

selected cycle. Then each house in A∗
i pointing to its original owner in G�

2 (R−i, Ri) will also point to her in

G�
2 (R−i, R

′
i) and at subsequent steps, while this house and its owner are in the algorithm.

Consider now a house hm that points in A∗
i to an agent j different from its original owner in G�

2 (R−i, Ri).

Then, hm must belong to a cycle cj selected in G�
1 (R−i, Ri). Then, by the previous reasoning, we know that

cj will also be selected in G�
t (R−i, R

′
i) for some t and, then, hm points to j in Gt+1(R−i, R

′
i).

Therefore, the paired-symmetric absorbing set A∗
i will be obtained in G�

t∗+1(R−i, R
′
i), where t∗ is the

later step at which a house in A∗
i has entered its corresponding selected cycle12. And, therefore, the sequence

of provisional assignments that has received each of these agents are the same in both cases.

Now we will show that every cycle selected from a non paired-symmetric absorbing set in G�
2 (R−i, Ri) is

also selected when the declared preference is (R−i, R
′
i). Let cj = {a1, h2, a2, h3, . . . , h1} be a selected cycle

in G�
2 (R−1, Ri). As we have mentioned before, G�

2 (R−i, Ri) and in G�
2 (R−i, R

′
i) have the same set of nodes

and, therefore, the agents of cj point to the same houses in both graphs.

Consider a house hm ∈ cj . Suppose first that hm points to its original owner m in cj . This means that

hm does not enter a selected cycle in the first step of the algorithm when the preferences are (R−i, Ri). Then,

we are going to prove that either hm points to m in G�
2 (R−i, R

′
i) or cj is a selected cycle in G�

1 (R−i, R
′
i).

In order to prove it, suppose that hm does not point to m in G�
2 (R−i, R

′
i). Then, hm and m enter together

a selected cycle for first time in G�
1 (R−i, R

′
i). By the same argument as before, the cycles selected in the

first step of the algorithm when the preferences are (R−i, R
′
i) appear for first time in some step t when

the preferences are (R−i, Ri). In this case, t = 2 by the previous assumption. Then, we have that cj is

12If all of them point to their original owner, t∗ = 1
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selected in the first step of the algorithm when the preferences are (R−i, R
′
i) and the sequence of provisional

assignments to each of the agents in cj is the same in both cases.

Consider now a house hm ∈ cj that points to an agent j different from its original owner. Then, hm

must belong to a cycle ck selected in G�
1 (R−i, Ri). Then, by the previous reasoning, we know that ck

will also be selected in G�
t (R−i, R

′
i) for some t. Let t∗ be the later step at which one of these selected

cycles is formed when the preferences are (R−i, R
′
i) (t∗ = 1 if every house points to its initial owner).

Then, G�
2 (R−i, Ri)|cj = G�

t∗+1(R−i, R
′
i)|cj

13. Then, we also have that there exists t̂ ≥ t∗ + 1 such that

G�
2 (R−i, Ri)|cj = G�

t̂
(R−i, R

′
i)|cj and cj belongs to some absorbing set in both graphs. Given that cj is

formed in G�
2 (R−i, Ri), we can deduce that the house hj provisionally assigned to each agent l in cj at this

step is the house with the highest priority between the set of maximal houses of l among the remaining

ones excluding their previous provisional assignments. It is possible that in G�
t̂
(R−i, R

′
i) the set of maximal

houses of agent l among the remaining houses is a proper subset of that in G�
2 (R−i, Ri), but hj is still present

and the sequence of provisional assignments of agent l is the same in both cases. Therefore, the priority

criterion will also select the arc from agent l to house hj in G�
t̂
(R−i, R

′
i). Then, cj is also selected in step t̂

and the sequence of provisional assignments to each of these agents is the same in both cases.

When t ∈ {3, . . . , q}, the proof can be performed with similar reasonings. Then, we have proved that the

set of selected cycles and paired-symmetric absorbing sets preceding the cycle assigning hk to agent i by the

TTAS algorithm defining ϕ�(R−i, Ri) are also selected by the TTAS algorithm defining ϕ�(R−i, R
′
i) before

the selection of the cycle assigning hk to agent i (part (ii) of the lemma).

Now, we have to prove that hk is also the first house, different from the initial endowment, assigned

provisionally to agent i by the TTAS algorithm defining ϕ�(R−i, R
′
i) (part (i) of the lemma). We know,

by part (ii), that the sequence of provisional assignments to each agent in the first q steps of the TTAS

algorithm defining ϕ�(R−i, Ri) is the same that the sequence of provisional assignments to each agent in

the first v steps of the TTAS algorithm defining ϕ�(R−i, R
′
i). Additionally, the nodes that have disappeared

from the algorithm are also the same. Then, agent i enters the same absorbing set in step q of the TTAS

algorithm defining ϕ�(R−i, Ri) and in step v of the TTAS algorithm defining ϕ�(R−i, R
′
i), and the priority

criterion obtains the same result in both cases. Then, hk is also the first house assigned provisionally to i

when the preferences are (R−i, R
′
i) and the lemma is proved.

Now, we prove that, if an agent attains a utility level declaring a preference Ri, then there exists a house

which gives this agent the same utility and the mechanism will assign it to her if she makes it her maximal

house.

Lemma 3 Let Ui(ϕ
�
i (R−i, Ri)) = k, then there exists a house hj such that Ui(hj) = k and ϕ�

i (R−i, R
′
i) = hj

for all R′
i with maxH(R′

i) = {hj}.

Proof. Let hj be the first house assigned provisionally to agent i by the TTAS algorithm for (R−i, Ri)

when the priority ranking is �. Notice that, by Corollary 2, Ui(hj) = Ui(ϕ
�
i (R−i, Ri) = k. Following the

same reasoning as in the proof of Lemma 2, we can conclude that the absorbing set of agent i in the graph

corresponding to step q of the algorithm in which hj is assigned to i when she declares Ri is the same as

13If G is a graph and c is a set of nodes of G, we denote by G|c the restricted graph that includes only the nodes of c and the

arrows leading from a node of c to another node of c.
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the absorbing set of agent i in the graph corresponding to step v of the algorithm when she declares R′
i.

Additionally, we know that each agent has passed from the same sequence of provisional assignments in both

algorithms until these steps are reached. Then, if the priority criterion has selected the cycle in which hj is

assigned to i when she declares Ri, the priority criterion has to select this cycle also when she declares R′
i.

Given that maxH(R′
i) = {hj}, we have, by Corollary 2, that ϕ�

i (R−i, R
′
i) = hj .

Now, we can prove the theorem. By Lemma 3, we have that, if there is any way of obtaining a particular

level of utility, the same level can also be obtained by declaring any preference in which the maximal house

is one of the houses (hk) that provides this utility. Let hl be the first house assigned provisionally to agent i

by the TTAS algorithm defining ϕ�(R−i, Ri). By Corollary 2, we have ϕ�
i (R−i, Ri)Iihl. Now assume that

a house hk with hkPihl can be assigned to agent i by her declaring some modified preference. Pick any

ranking R′
i such that (i) maxH(R′

i) = {hk}, (ii) {h ∈ H |hPihl} = {h ∈ H |hP ′
ihl} and there does not exist

h ∈ H \{hl} with hI ′ihl. Then, by (i) and Lemma 3, we have ϕ�
i (Ri, R

′
i) = hk. On the other hand, from (ii),

Corollary 2 and Lemma 2, we have ϕ�
i (R−i, R

′
i)Iihl. However, this is impossible, since hkPihl. Therefore,

the theorem is proved.

Proof of Theorem 4

Consider a housing market problem (N,H, ω,R) with a non-empty strict core. We need to introduce an

algorithm, called Top Trading Segmentation originally proposed by Quint and Wako (2004), which provides

a partition of the set of agents and houses which is useful to determine if the strict-core is non-empty, and

in that case, to provide an assignment in the strict core of the problem.

The Top Trading Segmentation (TTS) algorithm

Step 1: Let each agent point to her maximal houses and each house point to its owner. Select the

absorbing sets of this digraph. Each absorbing set constitutes a set of the partition.

Step i: Let each agent point to her maximal houses among the remaining ones and each remaining house

point to its owner. Select the absorbing sets of this digraph. Each absorbing set constitutes a set of the

partition.

With the partition obtained with the algorithm, Quint and Wako (2004) prove that the following state-

ments are equivalent:

• In each set of the partition, it is possible to find a sub-allocation that assigns to each agent one of her

maximal houses in this set.

• The strict core of the problem is non-empty and one of its allocations consists of the union of all these

sub-allocations.

Now, we will prove the following lemma.

Lemma 4 Consider a digraph (V,E) such that V is an absorbing set. Then, we can partition V into a set

of disjoint cycles if and only if there exists a subset E ′ ⊆ E such that in the subgraph (V,E ′) all nodes have

indegree and outdegree equal to 1.
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Proof. (⇒) Assume that we can partition V into a set of disjoint cycles, {ci = (hi
1, a

i
1, h

i
2, a

i
2, . . . , h

i
mi

, aimi
)}i∈{1,...,k}.

Then, construct E′ as follows: (x, y) ∈ E′ if and only if [x = aij and y = hi
j+1] (subscript modulo mi) or

[x = hi
j and y = aij ] for some i ∈ {1, . . . , k} and j ∈ {1, . . . ,mi}. It is easy to see that in the subgraph

(V,E′) all nodes have indegree and outdegree equal to 1.

(⇐) Assume now that there exists a subset E ′ ⊆ E such that in the subgraph (V,E ′) all nodes have

indegree and outdegree equal to 1. Take any node of this subgraph and follow the path of edges leading from

this node (this path is unique since the outdegree of all nodes is 1). Given that the indegree of all nodes is

equal to 1, this path will terminate at some point at the initial node and it is the first cycle of the partition.

Take another node not belonging to the previous cycle and construct another cycle as before. Given that V

is finite, following this procedure we will finally have a partition of V into a set of disjoint cycles.

Then, consider the absorbing sets from the first step of the TTAS algorithm. Note that each of these

absorbing sets is also one of the sets of the partition determined by the TTS algorithm. Then, given the

result of Quint and Wako (2004), we have that in a housing market problem with a non-empty strict core,

these absorbing sets can be partitioned into disjoint cycles, which represent strict core sub-allocations. Or,

equivalently, using Lemma 4, for each absorbing set Ai at step 1 and the associated graph (Ai, EAi
), there

is a subgraph (Ai, E
′
Ai
), such that E′

Ai
⊆ EAi

and every node in Ai has indegree and outdegree equal to 1.

Let Ai be an absorbing set at step 1 of the TTAS algorithm. There are two cases:

Case 1: If Ai is paired-symmetric, there is a set of disjoint cycles assigning to each agent one of her maximal

houses: each cycle is formed by each agent and her house. Given that in this case the TTAS algorithm

assigns to each agent her current house, the assignment obtained matches a strict-core sub-allocation.

Case 2: If Ai is not paired-symmetric, by using a priority ranking � the algorithm selects one edge for each

node in Ai at step 1.3. Then, some cycles are formed and the agents in these cycles provisionally exchange

their houses at step 1.4. There are two possibilities:

(2.1) If the cycles selected determine a partition of Ai, then all nodes of Ai will form symmetric pairs in the

next step and they will leave the algorithm with the houses obtained in these cycles at this next step or at

subsequent steps.14 Then, this assignment matches a strict core sub-allocation.

(2.2) If the cycles selected, however, do not determine a partition of Ai, the TTAS algorithm does not provide

a provisional assignment that matches a strict core sub-allocation in the first step, but we are going to prove

that it will do in the next ones.

On the one hand, the nodes of Ai that have entered a selected cycle in step 1 will belong to symmetric

pairs in the next step. On the other hand, the remaining nodes of Ai will belong to some absorbing sets in

the next steps such that all of them are subsets of Ai. Consider one of these absorbing sets, Ai+1, such that

Ai+1 ⊆ Ai. Consider the subgraph (Ai+1, E
′
Ai+1

) of the digraph (Ai+1, EAi+1
) such that E′

Ai+1
is simply the

restriction of E′
Ai

to the nodes of Ai+1. It is easy to see that in this subgraph, all nodes have indegree and

outdegree equal to 1. Then, the same analysis performed for (Ai, E
′
Ai
) can be used with (Ai+1, E

′
Ai+1

) to

prove that the agents of Ai+1 will form symmetric pairs in subsequent steps with one of her maximal houses

of the original absorbing set.

14Notice that, although all nodes of Ai form symmetric pairs at step 2, they do not necessarily belong to an absorbing set

at this step. Therefore, it may occur that they do not leave the algorithm at the same time. See for instance steps 1 and 2 of

Example 2.
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By repeating this process for all absorbing sets, we can deduce that the TTAS algorithm assigns, in each

absorbing set of the partition determined by Quint and Wako (2004), a sub-allocation such that each agent

has one of her maximal houses in this set. Then, applying the result of Quint and Wako (2004), we have that

the TTAS algorithm always selects an allocation contained in the strict core when this set is non-empty.
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[16] Sönmez, T. and Ünver, M. U., (2009). Matching, Allocation, and Exchange of Discrete Resources.

Handbook of social economics. Elsevier.

23



[17] Tarjan, R., (1972). Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing 2,

146-160.
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