Research Article Models for Gaze Tracking Systems

Arantxa Villanueva and Rafael Cabeza
Electronic and Electrical Engineering Department, Public University of Navarra, Arrosadia Campus, 31006 Pamplona, Spain

Received 2 January 2007; Revised 2 May 2007; Accepted 23 August 2007
Recommended by Dimitrios Tzovaras

Abstract

One of the most confusing aspects that one meets when introducing oneself into gaze tracking technology is the wide variety, in terms of hardware equipment, of available systems that provide solutions to the same matter, that is, determining the point the subject is looking at. The calibration process permits generally adjusting nonintrusive trackers based on quite different hardware and image features to the subject. The negative aspect of this simple procedure is that it permits the system to work properly but at the expense of a lack of control over the intrinsic behavior of the tracker. The objective of the presented article is to overcome this obstacle to explore more deeply the elements of a video-oculographic system, that is, eye, camera, lighting, and so forth, from a purely mathematical and geometrical point of view. The main contribution is to find out the minimum number of hardware elements and image features that are needed to determine the point the subject is looking at. A model has been constructed based on pupil contour and multiple lighting, and successfully tested with real subjects. On the other hand, theoretical aspects of videooculographic systems have been thoroughly reviewed in order to build a theoretical basis for further studies.

Copyright © 2007 A. Villanueva and R. Cabeza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The increasing capabilities of gaze tracking systems have made the idea of controlling a computer by means of the eye more and more realistic. Research in gaze tracking systems development and applications has attracted much attention lately. Recent advancements in gaze tracking technology and the availability of more accurate gaze trackers have joined the efforts of many researchers working in a broad spectrum of disciplines.

The interactive nature of some gaze tracking applications offers, on the one hand, an alternative human computer interaction technique for activities where hands can barely be employed and, on the other, a solution for disabled people who maintain eye movement control [1-3] The most extreme case would be those people who can only move the eyes-with their gaze being their only way of communication-such as some subjects with amyotrophic lateral sclerosis (ALS) or cerebral palsy (CP) among others.

Among the existing tracking technologies, the systems incorporating video-oculography (VOG) use a camera or a number of cameras and try to determine the movement of the eye using the information obtained after studying the images captured. Normally, they include infrared lighting to
produce specific effects in the obtained images. The nonintrusive nature of the trackers employing video-oculography renders it as an attractive technique. Among the existing video-oculographic gaze tracking techniques, we find systems that determine the eye movement inside its orbit and systems that find out the gaze direction in 3D, that is, line of sight (LoS). If the gazing area position is known, the observed point can be deduced as the intersection between LoS and the specific area, that is, point of regard (PoR). In the paper, the term gaze is used for both PoR and LoS, since both are the consequence of the eyeball 3D determination.

Focusing our attention on minimal invasion systems, we find in the very beginning the work by Merchant et al. [4] in 1974 employing a single camera, a collection of mirrors, and a single illumination source to produce the desired effect. Several systems base their technology on one camera and one infrared light such as the trackers from LC [5] or ASL [6]. Some systems incorporate a second lighting, as the one from Eyetech, [7] or more in order to create specific reflection patterns on the cornea as in the case of Tobii [8]. Tomono et al. [9] used a system composed of three cameras and two sources of differently polarized light. Yoo and Chung [10] employ five infrared lights and two cameras. Shih and Liu [11] use two cameras and three light sources to build
their system. The mathematical rigor of this work makes it the one that most closely resembles the work dealt with in this paper. Zhu and Ji [12] propose a two-camera-based system and a dynamic model for head movement compensation. Beymer and Flickner [13] present a system based on four cameras and two lighting points to differentiate head detection and gaze tracking. Later, and largely based on this work, Brolly and Mulligan [14] reduce the system to three cameras. A similar solution as the one by Beymer et al. is proposed by Ohno and Mukawa [15]. Some interesting attempts have been carried out to reduce the system hardware such as the one by Hansen and Pece [16] using just one camera based on the iris detection or the work by Wang et al. [17].

It is surprising to find the wide variety of gaze tracking systems which are used with the same purpose, that is, to detect the point the subject is looking at or gaze direction. However, their basis seems to be the same; the image of the eye captured by the camera will change when the eye rotates or translates in 3D space. The objective of any gaze estimation system is clear; a system is desired that permits determining the PoR from captured images in free head movement situation. Consequently, the question that arises is evident: "what are the features of the image and the minimum hardware that permit computing unequivocally the gazed point or gaze direction?"

This study tries to analyze in depth the mathematical connection between the image and the gaze. Analyzing this connection leads to the establishment of a set of guidelines and premises that constitute a theoretical basis from which useful conclusions are extracted. The study carried out shows that, assuming that the camera is calibrated and the position of screen and lighting are known with respect to the camera, two LEDs and a single camera are enough to estimate PoR. On the other hand, the position of the glints in the image and the pupil contour are the needed features to solve gaze position. The paper tries to reduce some cumbersome mathematical details and focus the reader's attention on the obtained conclusions that are the main contribution of the work [18]. Several referenced works deal with geometrical theory of gaze tracking systems. The works by Shih and Liu [11], Beymer and Flickner [13], and Ohno and Mukawa [15] are the most remarkable ones. Recently, new studies have been introduced such as the one by Hennessey et al. [19] or Guestrin and Eizenman [20]. These are based on a single camera and multiple glints. The calibration process proposed by Hennessey et al. [19] is not based on any system geometry. The system proposed by Guestrin and Eizenman [20] proposes a rough approximation when dealing with refraction. Both use multiple points calibration processes that compensate for the considered approximations.

An exhaustive study of a tracker requires an analysis of the alternative elements involved in the equipment of which the eyeball represents the most complex. A brief study of its most relevant characteristics is proposed in Section 2. Subsequently, in Section 3, alternative solutions are proposed and evaluated to deduce the most simple system. Section 4 tries to validate the model experimentally and finally the conclusions obtained are set out in Section 5.

Figure 1: Top view of the right eye.

2. THE EYEBALL

Building up a model relating the obtained image with gaze direction requires a deeper study of the elements involved in the system. The optical axis of the eye is normally considered as the symmetry axis of the individual eye. Consequently, the center of the pupil can be considered to be contained in the optical axis of the eyeball. The visual axis of the eye is normally considered as an acceptable approximation of the LoS. When looking at some point, the eye is oriented in such a way that the observed object projects itself on the fovea, a small area with a diameter of about 1.2° in the retina with a high density of cones that are responsible for high visual detail discrimination (see Figure 1). The line joining the fovea to the object we are looking at, crossing the nodal points (close to the cornea), can be approximated as the visual axis of the eye. This is considered to be the line going out from the fovea through the corneal sphere center. The fovea is slightly displaced from the eyeball back pole. Consequently, there is an angle of $5 \pm 1^{\circ}$ between both axes, that is, optical and visual axes, horizontally in the nasal direction. A lower angle $2-3^{\circ}$ can be specified vertically too, although there is a considerable personal variation [21]. In this first approach, the horizontal offset is considered since it is widely accepted by the eye tracking community. The vertical deviation is obviated since it is smaller and the most simplified version of the eye is desired.

Normally, gaze estimation systems find out first the 3D position of the optical line of the eye to deduce the visual one. To this end, not only the angular offset between axes is necessary, but also the direction in which this angle must be applied. In other words, we know that optical and visual axes present an angular offset in a certain plane, but the position of this plane when the user looks at a specific point is needed. In Figure 2, the optical axis is shown using a dotted line. The solid lines around it present the same specific angular offset with respect to the dotted line and all of them are possible visual axes if no additional information is introduced.

To find out this plane, that is, eyeball 3D orientation, some knowledge about eyeball kinematics is needed. The arising difficulties lead to eyeball kinematics being frequently avoided by many tracker designers. The position of the optical axis 3D line is normally modeled by means of consecutive rotations about the world coordinate system, that is, vertical

Figure 2: The dotted line represents the optical axis of the eye. The solid lines are 3D lines presenting the same angular offset with respect to the optical line and consequently possible visual axis candidates.

Figure 3: The natural rotation of the eyeball would be to move from 1-2 in one step following the continuous line path. The same position can be arrived by making successive rotations, that is, 1-4-2 or 1-3-2; however, the final orientations are different from the correct ones (1-2).
and horizontal or horizontal and vertical. However, the eye does not rotate from one point to the other by making consecutive rotations. The movement is achieved in just one step as is summarized in Listing's Law [21]. The alternative ways to model optical axis movement can lead to inconsistencies in the final eye orientation.

Let us analyze the next example sketched in Figure 3. Let us consider the cross as the orientation of the eye; that is, the horizontal line of the cross would be contained in the optical and visual axes plane for position 1 . The intrinsic nature of the eyeball will accomplish the rotation from point 1 to point 2 in just one movement following the path shown with the solid line. The orientation of the cross achieved in this manner does not agree with the ones obtained employing the alternative ways 1-3-2, that is, horizontal rotation plus vertical rotation, or 1-4-2, that is, vertical rotation plus horizontal rotation. This situation disagrees with Donder's law which states that the orientation and the degree of torsion of the eyeball only depend on the point the subject is looking at and are independent of the route taken to reach it [21]. From the example, it is concluded that the visual axis position would depend on the path selected since the plane in which the angular offset should be applied is different for the three cases.

Fry et al. [22] solve the disagreement introducing the concept of false torsion in their eye kinematics theory which states that if eye rotations are modeled by means of consecutive vertical and horizontal movements or vice versa, once the vertical and horizontal rotations are accomplished an ad-
ditional torsion is required to locate the eyeball accordingly with the orientation claimed by the Listing's law. This supplementary rotation depends on the previously rotated angles and is called false torsion and it can be approximated by

$$
\begin{equation*}
\tan \left(\frac{\alpha}{2}\right)=\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\varphi}{2}\right) \tag{1}
\end{equation*}
$$

where θ, φ are the vertical and horizontal rotation angles performed by the eye with respect to a known reference system and α is the torsion angle around itself.

3. MODEL CONSTRUCTION

Gaze estimation process should establish a connection between the features provided by the technology, that is, image analysis results, and gaze. The solution to this matter presented by most systems is to express this connection via general purpose expressions such as linear or quadratic equations based on unknown coefficients [23], $\mathbf{P}=\boldsymbol{\Omega}^{\mathrm{T}} \mathbf{F}$, where Prepresents $\operatorname{PoR}, \boldsymbol{\Omega}$ is the unknown coefficients vector, and F is the vector containing the image features and their possible combinations in linear, quadratic, or cubic expressions. The coefficients vector $\boldsymbol{\Omega}$ is derived after the calibration of the equipment that consists in asking the subject to look at several known points on a screen, normally a grid of 3×3 or 4×4 marks uniformly distributed over the gazing area. The calibration procedure permits systems with fully different hardware and image features to work acceptably, but on the other hand prevents researchers from determining the minimal system requirements.

Our objective is to overcome this problem in order to determine the minimum hardware and image features for a gaze tracking system that permits an acceptable gaze estimation by means of geometrical modeling. The initial system is sketched in Figure 4. The optical axis of the eye contains three principal points of the eyeball since it is approximated as its symmetry axis, that is, A, eyeball center, C, corneal center, and \mathbf{E}, pupil center. The distance between pupil and corneal centers is named as h and the corneal radius as r_{c}. In addition, the angular offset between optical and visual axes is defined as β. The pupil center and glint in the image are denoted as \mathbf{p} and \mathbf{g}, respectively. All the features are referenced to the camera projection center \mathbf{O}.

We consider a model as a connection between the fixated point or gaze direction, expressed as a function of subject and hardware parameters describing the gaze tracking system setup, and alternative features extracted from the image. The study proposes alternative models based on known features and on possible combinations and makes an evaluation of its performance for a gaze tracking system. The evaluation consists of a geometrical analysis in which mathematical connection between the image features and 3D entities is analyzed. From this point of view, the proposed model should be able to determine the optical axis in order to estimate gaze direction univocally and permit head free movement from a purely geometrical point of view. Secondly, corneal refraction is considered, which is one of the most challenging aspects of the analysis to be introduced into the model. Lastly, a further step is accomplished by analyzing the sensitivity of

Figure 4: The gaze tracking system.
the constructed model with respect to possible system indetermination such as noise.

The procedure selected to accomplish the work in the simplest manner is to analyze separately the alternative features that can be extracted from the image. In this manner, a review of the most commonly used features employed by alternative gaze tracking systems is carried out. The models so constructed are categorized in three groups: models based on points, models based on shapes, and hybrid models combining points and shapes. The systems of the first group are based on extracting features of the image which consist of single points of the image and combine them in different ways. We consider a point as a specific pixel described by its row and column in the image. In this manner, we find in this group the following models: the model based on the center of the pupil, the model based on the glint, the model based on multiple glints, the model based on the center of the pupil and the glint, and the model based on the center of the pupil and multiple glints. On the other hand, the models based on shapes involve more image information; basically these types of systems take into account the geometrical form of the shape of the pupil in the image. One model is defined in this group, that is, the model based on the pupil ellipse. It is straightforward to deduce that the models of the third group combine both, that is, points and shapes, to sketch the system. In this manner, we have the model based on the pupil ellipse and the glint and the model based on the pupil ellipse and multiple glints. Figure 5 shows a classification of the constructed models.

3.1. Geometrical analysis

The geometrical analysis evaluates the ability of the model to compute the 3D position of the optical axis of the eye with respect to the camera ${ }^{1}$ in a free head movement scenario. Re-

[^0]ferring to the optical axis, if two points among the three, that is, \mathbf{A}, \mathbf{C}, and \mathbf{E}, are determined with respect to the camera, the optical axis is calculated as the line joining both points.

3.1.1. Models based on points

The center of the pupil in the image is a consequence of the pupil 3D position. If affine projection is not assumed, the center of the pupil in the image is not the projection of \mathbf{E} due to perspective distortion, but it is evident that it is geometrically connected to it. On the other hand, the glint is the consequence of the reflection of the lighting source on the corneal surface. Consequently, the position of the glint or glints in the image depends on the corneal sphere position, that is, C. The models based on these features separately, that is, \mathbf{p} and \mathbf{g}, are related to single points of the optical axis and, consequently, cannot allow for optical axis estimation in a free head movement scenario. Consequently, just the possible combinations of points will be studied.

(a) Pupil center and glint

Usually it is accepted that the pupil center corneal reflection (PCCR) vector sensitivity with respect to the head position is reduced. From the geometrical point of view of this work, this approximation is not valid and creates a dependence between this vector value and the head position. Alternative approaches have been proposed based on these image features using general purpose expressions; a thorough review of this technique can be found in Morimoto and Mimica [24]. On the other hand, an analytical head movement compensation method based on the PCCR technique is suggested by Zhu and Ji [12] in their gaze estimation model.

Our topic of discussion is to check if this two-feature combination, not necessarily as a difference vector, can solve the head constraint. So far, we know that the glint in the image is directly related to corneal center \mathbf{C} in the image plane. On the other hand, the 3D position of the center of the pupil is related to the location of the center of the pupil image. In order to simplify the analysis, let us propose a rough approximation of both features. If affine projection is assumed, the center of the pupil in the image can be considered as the projection of \mathbf{E}. In addition, if a coaxial location of the LED with respect to the camera is given, the glint position can be approximated by the projection of \mathbf{C}. One could back project the center of the pupil and the glint from the image plane into 3D space, generating two lines and assuring that close approximations of points \mathbf{E} and \mathbf{C} are contained within the lines. One of them joins the center of the pupil \mathbf{p} and the projection center of the camera, that is, r_{m}, and r_{r} connects the glint \mathbf{g} and the projection center of the camera (see Figure 6). This hypothesis facilitates considerably the analysis and the obtained conclusions are preserved for the real features.

As shown in the figure, knowing the distance between \mathbf{C} and \mathbf{E} points, that is, h, does not solve the indetermination, since more than one combination of points in r_{m} and r_{r} can be found having the same distance. Therefore, there is no unique solution and we have an indetermination (see

Figure 5: Models classification according to image features.

Figure 6: Back-projected lines.

Figure 6). Therefore, once again the 3D optical position is not determined.

(b) Pupil center and multiple glints

Following the law of reflection, it can be stated that, given an illumination source \mathbf{L}_{1}, the incident and reflected rays and the normal vector on the surface of reflection at the point of incidence are coplanar in a plane denoted as Π_{1}. It is straightforward to deduce that the center of the cornea C is contained in the same plane since the normal line contained by the plane crosses it. In addition, following the same reasoning, the camera projection center \mathbf{O} and the glint \mathbf{g} will be also contained in the same plane. If another lighting source \mathbf{L}_{2} is introduced, a second plane Π_{2} can be calculated containing C.

If \mathbf{C} is contained in the planes Π_{1} and Π_{2}, for the case under study for which $\mathbf{O}=(0,0,0)$, we have

$$
\begin{equation*}
\mathbf{C} \cdot\left(\mathbf{L}_{1} \times \mathbf{g}_{1}\right)=\mathbf{C} \cdot\left(\mathbf{L}_{2} \times \mathbf{g}_{2}\right)=0 \tag{2}
\end{equation*}
$$

Considering the cornea as a specular surface and the reflection points on the cornea as \mathbf{C}_{i} for each $\mathbf{L}_{i}(i=1,2)$, the following vector equations can be stated from the law of reflection:

$$
\begin{equation*}
\mathbf{r}_{i}=2\left(\mathbf{n}_{i} \cdot \mathbf{l}_{i}\right) \mathbf{n}_{i}-\mathbf{l}_{i} \tag{3}
\end{equation*}
$$

where \mathbf{r}_{i} is the unit vector in \mathbf{g}_{i} direction, \mathbf{l}_{i} is the unit vector in $\left(\mathbf{L}_{i}-\mathbf{C}_{i}\right)$ direction, and \mathbf{n}_{i} is the normal vector at the point of incidence in $\left(\mathbf{C}_{i}-\mathbf{C}\right)$ direction.

Assuming that the corneal radius r_{c} is known or can be calibrated as will be shown later, C_{i} can be expressed as a function of \mathbf{C} since the distance between them is known:

$$
\begin{equation*}
d\left(\mathbf{C}_{i}, \mathbf{C}\right)=r_{c} . \tag{4}
\end{equation*}
$$

The solution for these equations (2)-(4) will be the corneal center \mathbf{C} as described in the works by Shih and Liu [11] and Guestrin and Eizenman [20]. Consequently, using two glints breaks the indetermination arising from the preceding model based on the center of the pupil and one glint. In other words, once \mathbf{C} is found, the center of the pupil can be easily found knowing r_{m} and if the distance between pupil and corneal centers, that is, h, is known or calibrated. Affine projection is assumed for \mathbf{E}; therefore, an error must be considered for the pupil center since \mathbf{E} is not exactly contained in r_{m}. However, no approximations have been considered for the glints and \mathbf{C} estimation.

3.1.2. Models based on shapes

It is already known that the projection of the pupil results in a shape that can be approximated to an ellipse. Since in this stage refraction is omitted, the pupil is considered to be a circle and its projection is considered as an ellipse. The size, position, orientation, and eccentricity of the obtained elliptical shape are related to the position, size, and orientation of the pupil in 3D space. The projected pupil ellipse is geometrically connected to the pupil 3D position and consequently provides information about E position but not for \mathbf{C}. Therefore, the model based on the pupil ellipse does not allow for the estimation of the optical axis of the eye.

3.1.3. Hybrid models

The last task to accomplish in the geometrical analysis of the gaze tracking system would be to evaluate the performance

Figure 7: (a) Multiple solutions collected in two possible orientations; (b) each plane intersects the cone in a circle resulting in an optical axis crossing its center \mathbf{E}.
of the models based on collections of features consisting of points and shapes. Among the features consisting of a point, it is of no great interest to select the center of the pupil since considering the pupil ellipse as a working feature already introduces this feature in the model.

(a) The pupil ellipse and glint

Once again and in order to simplify the analysis, we can deduce a 3D line, that is, r_{r}, by means of the back projection of the glint in the image, that is, \mathbf{g}, which is supposed to contain an approximation of \mathbf{C}. The back projection of the pupil ellipse would be a cone, that is, back projection cone, and it could be assured that there is at least one plane that intersects the cone in a circular section containing the pupil. The matter to answer is actually the number of possible circular section planes and consequently the number of possible solutions that can be obtained from a single ellipse in the image. The theory about conics claims that parallel intersections of a quadric result in equivalent conic sections. In the case under study, considering the back projection cone as a quadric, it is clear that if we find a plane with a circular section for the specific quadric, that is, back projection cone, an infinite number of pupils of different sizes could be defined employing intersecting parallel planes. Moreover for the case under analysis, that is, back projection cone of the pupil, the analysis carried out provides two possible solutions, or more specifically two possible orientations for planes resulting in circular sections of the cone. In summary, two groups of an infinite number of planes can be calculated, each of
them intersecting the back projection cone in a circular shape and containing a suitable solution for the gaze estimation problem (see Figure 7(a)). The theory used to arrive at the conclusion can be found in the work by Hartley and Zisserman [25] and more specifically in the book by Montesdeoca [26] and is summarized in the appendix. Each possible intersection plane of the cone determines a pupil center E and an optical axis that is calculated as the 3D line perpendicular to the pupil plane that crosses its center \mathbf{E} (see Figure 7(b)). It can be verified that the resulting pupil centers for alternative parallel planes belong to the same 3D line [26].

Given r_{r}, the solution is deduced if the distance between the center of the pupil \mathbf{E} and the corneal center \mathbf{C} is known or calibrated as will be explained later. The pupil plane for which the optical axis meets the r_{r} line at the known distance from \mathbf{E} will be selected as a solution. In addition, the intersection between the optical axis and the r_{r} line will be the corneal center C.

The preceding reasoning solves the selection of a certain plane from a collection of parallel planes, but as already mentioned, two possible orientations of planes were found as possible solutions. Therefore, the introduction of the glint permits the selection of one of the planes for each one of the two possible orientations. However, a more careful analysis of the geometry of the planes leads one to conclude that just one solution is possible and consequently represents a valid model, as the second one requires the assumption that the center of the cornea, \mathbf{C}, remains closer to the camera than the center of the pupil \mathbf{E}, and it is assumed that the subject is

Figure 8: One of the solutions assumes that the cornea is closer to the camera than the pupil center, which represents a nonvalid solution.
looking at the screen [18]. Figure 8 shows the inconsistency of the second solution $\left(\mathbf{C}_{2}-\mathbf{E}_{2}\right)$ in its planar version.

(b) The pupil ellipse and multiple glints

It is already known that the combination of two glints and the center of the pupil provides a solution to the tracking problem (see Section 3.1.1(b)). Therefore, at least the same result is expected if the pupil ellipse is considered since it contains the value of the center. In addition, the preceding section showed that the ellipse and one glint were enough to sketch the gaze, so only a system performance improvement can be expected if more glints are employed. The most outstanding difference amongst models with one or multiple glints is the fact that employing the information provided exclusively by the glints, the corneal center can be accurately determined. The known point \mathbf{C} must be located in one of the optical axes calculated from the circular sections and crossing the corresponding center \mathbf{E}, and consequently the data about the distance between \mathbf{C} and \mathbf{E}, that is, h, can be ignored.

3.2. Refraction analysis

The models selected in Section 3.1 are the model based on the pupil center and two glints, the model based on the pupil shape and one glint, and the model based on the pupil shape and two glints. The refraction is going to modify the obtained results and add new limitations to the model. For a practical setup, a subject located at 500 mm from the camera with standard eyeball dimensions, looking at the origin of the screen $\left(17^{\prime \prime}\right)$, that is, $(0,0)$ point, the difference in screen

Figure 9: The cornea produces a deviation in the direction of the light reflected back in the retina due to refraction. The consequence is that the obtained image is not the simple projection of the real pupil but the projection of a virtual shape. Each dotted shape in the projection cone produces the same pupil image and can be considered as a virtual pupil.
coordinates whether considering refraction or not, that is, thinking of the image as a plain projection of the pupil in the image plane, is $\sim 26.52 \mathrm{~mm}$, which represents a considerable error $\left(>1^{\circ}\right)$. Obviating refraction can result in non acceptable errors for a gaze tracking system and consequently its effects must be introduced in the model.

It must be assumed that a ray of light coming from the back part of the eye suffers a refraction and consequently a deviation in its direction when it crosses the corneal surface due to the fact that the refraction indices inside the cornea and the air are different. The obtained pupil image can be considered as the projection of a virtual pupil and any parallel shape in the projection can be considered as a possible virtual pupil as it is not physically located in 3D space. In fact, there is an infinite number of virtual pupils. Figure 9 illustrates the deviation of the rays coming from the back part of the eye and the so-called virtual pupil.

The opposite path could be studied; a point belonging to the pupil contour in the image could be back projected by means of the projection center of the camera. It is assumed that the back-projection ray will intersect the cornea at a certain point and employing the refraction law, the path of the ray coming into the cornea could be deduced. That should intersect a point of the real pupil contour. The refraction affects each ray differently. After refraction, the collection of lines does not have a common intersection point or vertex and the cone loses its reason to exist when refraction is considered.

Before any other consideration, the first conclusion derived up to now is that the center of the cornea needs to be known to apply refraction. Otherwise, the analysis from
the preceding paragraph could be applied at any point of r_{r}. Consequently, the model based on the pupil shape and the glint fails this analysis since it does not accomplish a previous determination of the corneal center. Contrary to this model, the one based on the pupil center and two glints makes a prior computation of the corneal center; however, it can no longer be assumed that the center of the real pupil is the one contained in r_{m}, but it is the center of the virtual pupil. One could expect that \mathbf{E} will be contained in a 3D line obtained as a consequence of the refraction of r_{m} when crossing the cornea. This statement is unfortunately not true, since refraction through a spherical surface is not a linear transformation. The paper by Guestrin and Eizenman [20] implicitly assumes this approximation as correct; that is, it assumes that the image of the point \mathbf{E} is the center of the pupil image. This is strictly not correct since the distances between points before and after refraction through a spherical surface are not proportional. Moreover, if this approximation is considered, that is, the image of the center is the center of the image, the errors for the tracking system are $>1^{\circ}$ at some points. This error, as expected, depends strongly on the setup values of the gaze tracking session and can be compensated by means of calibration, but considering our objective of a geometrical description of the gaze estimation problem, this error is not acceptable in a theoretical stage for our model requirements.

The model based on two glints and the shape of the pupil provides the most accurate solution to the matter. The model deduces the value of \mathbf{C} employing exclusively the two glints of the image. Considering refraction, it is already known that the back-projected shape suffers a deformation at the corneal surface. The center of the pupil should be a point at a known distance $d(\mathbf{C}, \mathbf{E})=h$ from \mathbf{C} that represents the center of a circle whose perimeter is fully contained in the refracted lines of the pupil, and perpendicular to the line connecting pupil and corneal centers. Mathematically, this can be described as follows. First, the corneal center C is estimated assuming that r_{c} is known (see Section 3.1.1(b)).
(i) The pupil contour in the image is sampled to obtain the set of points $\mathbf{p}_{k} k=0, \ldots, N$. Each point can be back projected through the camera projection center \mathbf{O} and the intersection with the corneal sphere calculated as $\mathbf{I}\left(\mathbf{p}_{k}\right)$. From Snell's Law, it is known that $n a \sin \delta_{i}=n b \sin \delta_{f}$, where $n a$ and $n b$ are the refractive indices of air and the aqueous humour in contact with the back surface of the cornea (1.34), meanwhile δ_{i} and δ_{f} are the angles of the incident and the refracted rays, respectively, with respect to the normal vector of the surface. Considering this equation for a point of incidence in the corneal surface, the refraction can be calculated as (see [27])

$$
\begin{equation*}
\mathbf{f}_{\mathbf{p}_{k}}=\frac{n a}{n b}\left\{\mathbf{i}_{\mathbf{p}_{k}}-\left\{\left(\mathbf{i}_{\mathbf{p}_{k}} \cdot \mathbf{n}_{\mathbf{p}_{k}}\right)+\sqrt{\left(\frac{n a}{n b}\right)^{2}-1+\left(\mathbf{i}_{\mathbf{p}_{k}} \cdot \mathbf{n}_{\mathbf{p}_{k}}\right)^{2}}\right\} \mathbf{n}_{\mathbf{p}_{k}}\right\} \tag{5}
\end{equation*}
$$

where $\mathbf{f}_{\mathbf{p}_{k}}$ is the unit vector of the refracted ray at the point of incidence $\mathbf{I}\left(\mathbf{p}_{k}\right)$, $\mathbf{i}_{\mathbf{p}_{k}}$ represents the unit vector of the incident ray from the camera pointing to

Figure 10: Cornea and pupil after refraction. \mathbf{E} is the center of a circumference formed by the intersections of the plane Π with the refracted rays. The plane Π is perpendicular to $(\mathbf{C}-\mathbf{E})$ and the distance between pupil and corneal centers is h.
$\mathbf{I}\left(\mathbf{p}_{k}\right)$, and $\mathbf{n}_{\mathbf{p}_{k}}$ is the normal vector at that certain point on the cornea. In this manner, for each point \mathbf{p}_{k} of the image, the corresponding refracted line with direction $\mathbf{f}_{\mathbf{p}_{k}}$ containing point $\mathbf{I}\left(\mathbf{p}_{k}\right)$ is calculated, where $k=0, \ldots, N$.
(ii) The pupil will be contained in a planethat has ($\mathbf{C}-$ $\mathbf{E})$ as normal vector having a distance of $d(\mathbf{C}, \mathbf{E})=h$ with respect to \mathbf{C}. Given a 3 D point $\mathbf{x}=(x, y, z)$ with respect to the camera, the plane Π can be defined as

$$
\begin{equation*}
\frac{(\mathbf{C}-\mathbf{E})}{h} .(\mathbf{x}-\mathbf{C})+\mathbf{h}=0 \tag{6}
\end{equation*}
$$

(iii) Once is defined, the intersection of the refracted lines $\mathbf{f}_{\mathbf{p}_{k}}$ can be calculated, using (5) and (6), and a set of points can be determined as $\mathbf{P}_{k}, k=0, \ldots, N$. The obtained shape fitted to the points must be a circumference with its center in \mathbf{E} :

$$
\begin{equation*}
d\left(\mathbf{P}_{1}, \mathbf{E}\right)=d\left(\mathbf{P}_{2}, \mathbf{E}\right)=\cdots=d\left(\mathbf{P}_{k}, \mathbf{E}\right) \tag{7}
\end{equation*}
$$

The pupil center \mathbf{E} is solved numerically using equations like (7) to find out the constrained global optima (see Figure 10). The nonlinear equations are given as constraints of a minimization algorithm employing the iterative NelderMead (simplex) method. The objective function is the distance of the \mathbf{P}_{k} points to the best fitted circumference. The initial value for the point \mathbf{E} is the corneal center \mathbf{C}. Theoretically, three lines are enough in order to solve the problem since three points are enough to determine a circle. But in practice, more lines (about 20) are considered in order to make the process more robust.

Once \mathbf{C} and \mathbf{E} are deduced, the optical axis estimation is straightforward. Optical axis estimation permits us to calculate the Euclidean transformation, that is, translation (C) and rotation (θ and φ), performed by the eye from its primary position to the new position with respect to the camera. Knowing the rotation angles, the additional torsion α is calculated by means of1. Defining visual axis direction (for the left eye) with respect to \mathbf{C} as $\mathbf{v}=(-\sin \beta, 0, \cos \beta)$ permits
us to calculate LoS direction with respect to the camera by means of the Euclidean coordinate transformation:

$$
\begin{equation*}
\mathbf{C}+\mathbf{R}_{\alpha} \mathbf{R}_{\theta \varphi} * \mathbf{v}^{\mathrm{T}} \tag{8}
\end{equation*}
$$

where $\mathbf{R}_{\theta \varphi}$ is the rotation matrix calculated as a function of the vertical and horizontal rotations of vector $(\mathbf{C}-\mathbf{E})$ with respect to the camera coordinate system and \mathbf{R}_{α} represents the rotation matrix of the needed torsion around the optical axis to deduce final eye orientation. The computation of the PoR as the intersection of the gaze line with the screen plane is straightforward.

3.3. Sensitivity analysis

From the prior analysis, the model based on two glints and the shape of the pupil appears as the only potential model for the gaze tracking system. In order to evaluate it experimentally, the influence of some effects that appear when a real gaze tracking system is considered such as certain intrinsic tolerances and noise of the elements composing the eye tracker needs to be introduced.

Firstly, effects influencing the shape of the pupil such as noise and pixelization have been studied. The pixelization effect has been measured using synthetic images. Starting from elliptical shapes, images of size 200×200 have been assumed. A pixel size of $13 \times 13 \mu \mathrm{~m}$ is selected to discretize the ellipse according to the image acquisition device to be used in the experimental test (Hamamatsu C5999). The noise has been estimated as Gaussian from alternative images captured by the camera employing well-known noise estimation techniques [28]. This noise has been introduced in previously discretized images. The obtained PoR is compared before and after pixelization and before and after noise introduction. The conclusion shows that a deviation in the PoR appears, but the system can easily assume it since in the worst case and taking into account both contributions, it remains under acceptable limits for gaze estimation ($\leq 0.05^{\circ}$).

The reduced size of the glint in the image introduces certain indetermination in the position of the corneal reflection and consequently in the corneal center computation. The glint can be found with alternative shapes in the captured images. The way to proceed is to select a collection of real glints, extracted from real images acquired with the already known camera. The position of the glint center is calculated employing two completely different analysis methods. The first method extracts a thresholded contour of the glint and estimates its center as the center obtained after fitting such a border to an ellipse [13]. The second method binarizes the image with a proper threshold and calculates the gravity center of the obtained area. Images from different users and sessions have been considered for the analysis and the differences between the glint values employing the two alternative methods have been computed to extract consistent results about the indetermination of the glint. The obtained results show that, on average, an indetermination of ~ 0.1 pixel can be expected for the center of the glint in eye images for distances below 400 mm from the user to the camera, but it rises to ~ 0.2 pixel when the distance increases, leading the model to nonacceptable errors $\left(>1^{\circ}\right)$.

Figure 11: Test sheet.

To reduce the sensitivity to glint indetermination, larger illumination sources can be employed, by means of arrays of illuminators. One interesting solution to explore, which has been adopted by this study, is to increase the number of illumination sources to obtain an average value for the point \mathbf{C}. It is already known that two glints can determine the center of the cornea, when the locations of the illumination sources are known. In this manner, if more than two illuminators are employed, alternative pairs can be used to estimate the pursued point and the calculated average. An increase in the number of LEDs is supposed to reduce the sensitivity of the model.

4. EXPERIMENTAL RESULTS

Ten users were selected for the test. The working distance was selected in the range of $400-500 \mathrm{~mm}$ from the camera. They had little or no experience with the system. They were asked to fixate each test point for a time. Figure 11 shows the selected fixation marks uniformly distributed in the gazing area whose position is known (in mm) with respect to the camera. The position in mm for each point is shown. The obtained errors will be compared to the common value of 1° of visual angle as system performance indicator (a fixation is normally considered as a quasistable position of gaze in 1° area). During this time, ten consecutive images were acquired and grabbed for each fixation. The users selected the eye they felt more comfortable with. They were allowed to move the head between fixation points and they could take breaks during the experiment. However, they were asked to maintain their head fixed during each test point (ten images).

Figure 12: The LEDs are attached to the inferior and lateral borders of the test area.

Figure 13: Analysis carried out.

The constructed model presents the following requirements.
(i) The camera must be calibrated [29].
(ii) Light source and screen positions must be known with respect to the camera [18].
(iii) The subject eyeball parameters r_{c}, β, and h must be known or calibrated.

The images have been captured with a calibrated Hamamatsu C5999 camera and digitalized by a Matrox Meteor card with a resolution of 640×480 (RS-170). The LEDs used for lighting have a spectrum centered at 850 nm . The whole system is controlled by a dual processor Pentium at 1.7 GHz with 256 MB of RAM. Four LEDs were selected to produce the needed multiple glints. They were located in the lower part and its positions with respect to the camera calculated $((-189.07,-165.5) \mathrm{mm},(-77.91,-187.67) \mathrm{mm}$, ($98.59,-191.33) \mathrm{mm}$, and $(202.48,-152.78) \mathrm{mm})$, which reduces considerably the misleading possibility of partial occlusions of the glints by eyelids when looking at different points of the screen because in this way the glints in the image appear in the lower pupil half. Figure 12 shows a frontal view of the LEDs area.

The images present a dark pupil and four bright glints as shown in Figure 13. The next step was to process each image separately to extract the glints coordinates [30] and the
contour of the pupil. It is not the aim of this paper to discuss the image processing algorithms used, distracting the reader from the main contribution of the work, that is, the mathematical model. The objective of the experimental tests was to confirm the validity of the constructed model. To this end, the analysis of the images was supervised to minimize the influence of the results of possible errors due to the image processing algorithms used. The glints were supervised by checking the standard deviation of each glint center position among the ten images for each subject's fixation, and exploring more carefully those cases for which the deviation exceeded a certain threshold. For the pupil, deviations on the ellipse parameters were checked in order to find inconsistencies among the images. The errors were due to badly focused images, subject's large movement, or partially occluded eyes. These images were eliminated from the analysis to obtain reliable conclusions.

Once the hardware was defined and in order to apply the constructed model based on the shape of the pupil and glints positions, some individual subject eyeball characteristics need to be calculated, that is, r_{c}, β, and h. To this end, a calibration was performed. The constructed model based on multiple glints and pupil shape permits, theoretically, determining this data by means of a single calibration mark and applying the model already described in Section 3. Giving the PoR as the intersection of the screen and LoS, model equations, that is, (2)-(4) and (6)-(8), can be applied to find the global optima for the parameters that minimize the difference between model output and real mark position. Together with the parameter values, the positions of \mathbf{C} and \mathbf{E} will be estimated for the calibration point. In Figure 14, the steps for the subject calibration are shown.

In practice and to increase confidence in the obtained values, three fixations were selected for each subject to estimate a mean value for eye parameters. For each subject, the three points with lower variances in the extracted glint positions were selected for calibration. Each point among the three permits estimating values for h, β, and r_{c}. The personal eyeball parameters for each subject are given as the average of the values obtained for the selected three points. The personal values obtained for the ten users are shown in Tables 1 and 2. It is evident that the sign of the angular offset was directly related to the eye used for the test. Since the model was constructed for the left eye, it is clear that a negative sign indicates that the subject used the right eye to conduct the experiment.

Once the system and the subject were calibrated, the performance of the model was tested for two, three, and four LEDs. Figure 15 shows the results obtained for users $1-5$. For each subject, black dots represent the real values for the fixations. The darkest points show results obtained with four LEDs. The lightest ones are the estimations by means of three LEDs. The rest show the estimations of the model using two LEDs. Figure 16 exhibits the same results for users 6-10.

Corneal refraction effects are more important as eye rotation increases. The spherical corneal model presents problems in the limit between the cornea and the eyeball. The distribution of the used test points forces lower eye rotations compared to other settings in which the camera is located

Figure 14: The personal calibration permits us to extract the physical parameters of the subject's eyeball using one calibration point, the captured image, and gaze estimation model information.

Table 1: Values for eyeball parameters obtained for subjects $1-5$ by means of calibration, using three calibration points.

Subject	1	2	3	4	5
r_{c}	9.334 ± 0.83	9.103 ± 0.97	9.544 ± 0.88	9.875 ± 0.79	9.673 ± 1.03
h	5.034 ± 0.83	4.730 ± 0.68	5.270 ± 0.41	5.565 ± 0.20	4.581 ± 0.97
β	6.25 ± 0.76	4.15 ± 0.65	-4.49 ± 0.54	-3.36 ± 0.31	-5.16 ± 0.92

under the monitor. When the camera is located under the monitor, the eye rotation increases and the refraction points move toward the peripheral area of the cornea. In these cases, system accuracy may decrease. A simulation is made with a standard eyeball to evaluate the influence of refraction for the points selected by using the model without refraction. The average error for the points selected is $\sim 3^{\circ}$, which exceeds the limit of 1°, and the highest error $\sim 5^{\circ}$ appears for the most extreme points in the corners for which the refraction effects increase. Consequently, it is necessary to consider refraction for the selected distribution of points in the model. It is clear that the errors due to refraction would increase for cases in which larger eye rotations were accomplished, for example, when the camera is located under the monitor (error for the corner points is $\sim 8^{\circ}$). In Figures 15 and 16, we cannot find significant differences between the error for corner points and the rest; in other words, if the model could not take into account refraction adequately, higher errors should be expected for the corners. In conclusion, the accuracy does not depend on eye rotation and the model is not affected by an increase of refraction effect since it is compensated.

The aim of Table 3 is to show a quantitative evaluation of the model competence for two, three, and four LEDs. For each subject, the average error for the 17 fixation marks was calculated in visual degrees since this is the most significative measurement of the model performance.

It is clear that the model with four LEDs presents the lowest errors. On average, the model with two LEDs presents an error of 1.08°, the model with three LEDs presents 0.89°, and the model with four LEDs presents 0.75°. Therefore, it can be said that, on average, the models with three and four LEDs render acceptable accuracy values. As expected, an increase in the number of illumination sources results in an improvement of the system tracking capacity.

5. CONCLUSIONS

The intrinsic connection between the captured image from the eye and gazed point has been explored. A model for a video-oculographic gaze tracking system has been con-
structed. A model is understood as a mathematical connection between the point on a screen the subject is looking at and the variables describing the elements of the system together with the data extracted from the image. The objective was not to find the most robust system but to find out the minimal features of the image that are necessary to solve the gaze tracking problem in an acceptable way. It has been demonstrated that the model based on the pupil shape and multiple glints allows for a competent tracking and matches the pursued requirements, that is, permits free head movement, has minimal calibration requirement, and presents an accuracy in the range of the already existing systems with longer calibrations and more restrictions for the head. Theoretically, once the hardware has been calibrated, one point is enough for personal calibration. In addition, the minimal hardware needed by the system is also determined, that is, one camera and multiple infrared light sources.

The objective has been mainly to give some enlightenment to this aspect of gaze tracking technology. The accomplished work has reviewed the alternative mathematical aspects of these systems in depth, providing a basis that can allow technologists to carry out theoretical studies on gaze tracking systems behavior. The obtained conclusions provide valid guidelines to construct more robust trackers, to increase its possibilities, or to reduce calibration processes. Regarding eye tracking technology, developing new image processing techniques to reduce systems sensitivity to light variations and increase system robustness is one of the most important working areas. However, together with this, exploring the mathematical and geometrical connections involved in video-oculographic systems appears as a promising and attractive research line to improve their performance from the root.

APPENDIX

The most simple definition for a quadric would be that it can be considered as a geometric place (curve or surface) in $P_{3}(\mathbb{R})$ with an equation of second degree. Employing homogeneous coordinates $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ (see [31]),

Figure 15: Results obtained by the final model for users 1-5.

(e)

Figure 16: Results obtained by the final model for users 6-10.

Table 2: Values for eyeball parameters obtained for subjects 6-10 by means of calibration, using three calibration points.

Subject	6	7	8	9	10
r_{c}	9.123 ± 0.82	9.567 ± 1.10	9.765 ± 1.22	9.842 ± 0.87	9.665 ± 0.98
h	5.887 ± 0.67	4.003 ± 1.02	4.743 ± 0.55	5.342 ± 0.66	4.557 ± 0.71
β	-4.33 ± 0.42	-5.63 ± 0.70	6.89 ± 0.43	5.65 ± 0.65	-4.78 ± 0.83

Table 3: Error quantification (degree) of the final model using two, three, and four LEDs for ten users.

Subject	1	2	3	4	5	6	7	8	9	10
2 LEDs	1.47	0.85	1.46	0.90	0.92	0.97	1.24	0.78	1.19	1.06
3 LEDs	1.06	0.80	1.35	0.58	0.75	0.78	1.20	0.79	0.74	0.86
4 LEDs	1.04	0.76	1.01	0.62	0.72	0.71	0.62	0.65	0.59	0.80

the theory points out that a quadric can be expressed as $f\left(\left(x^{0}, x^{1}, x^{2}, x^{3}\right)\right)=\sum_{i, j=0}^{3} a_{i j} x^{i} x^{j}=0, a_{i j}=a_{j i}$.

The definition of the absolute conic lying on the plane at infinity is $x^{0}=0 ; \sum_{i=0}^{3}\left(x^{i}\right)^{2}=0$ and is the place of all the cyclic sections of the planes in space, where a cyclic section of a quadric is defined as a planar section of the quadric that is a circumference. Consequently, the intersection of a quadric with the absolute conic is a circumference. From this point of view, the mathematical solution of this intersection finds out the direction of the parallel planes or sets of parallel planes that intersect the quadric with a circular shape since these must match the same orientations found for the resulting conic at infinity. In summary, to find out the planes of circular section of a quadric, the following equation must be solved:

$$
\begin{equation*}
\sum_{i, j=0}^{3} a_{i j} x^{i} x^{j}=\lambda \sum_{i=0}^{3}\left(x^{i}\right)^{2}=0, \quad x^{0}=0 \tag{A.1}
\end{equation*}
$$

For the specific case of the imaged pupil in the gaze tracking system, the corresponding quadric is a cone defined as

$$
\begin{equation*}
\frac{1}{m_{z}^{2}}\left(-z^{2}+\frac{\vartheta_{1}}{b^{2}}+\frac{\vartheta_{2}}{a^{2}}\right)=0 \tag{A.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \vartheta_{1}=\left(\left(m_{z} y-m_{y} z\right) \cos \sigma+\left(-m_{z} x+m_{x} z\right) \sin \sigma\right)^{2} \\
& \vartheta_{2}=\left(\left(m_{z} x-m_{x} z\right) \cos \sigma+\left(m_{z} y+m_{y} z\right) \sin \sigma\right)^{2} \tag{A.3}
\end{align*}
$$

This is the equation of a cone whose vertex is located in the origin of the system of coordinates (x, y, z) in the camera projection center, with an elliptical basis, rotated with respect to the image plane axes. In the preceding equation, (m_{x}, m_{y}, m_{z}) represents the center of the ellipse in the image with respect to the camera projection center. It is clear that $m_{z}=-f$, that is, the focal distance of the camera. On the other hand, it is already known that a and b represent the semimajor and semiminor axes lengths, respectively. Finally, σ describes the orientation of the ellipse with respect to the image plane axes.

Therefore, the objective would be to find out the values of λ that result in a plane matching the equation [26]

$$
\begin{equation*}
\frac{1}{m_{z}^{2}}\left(-z^{2}+\frac{\vartheta_{1}}{b_{2}}+\frac{\vartheta_{2}}{a_{2}}\right)=\lambda\left(x^{2}+y^{2}+z^{2}\right) \tag{A.4}
\end{equation*}
$$

A solution in form of a plane or collection of planes is pursued. If y is extracted, two possible solutions are found:

$$
\begin{equation*}
y=\frac{\chi_{1} \pm \sqrt{\chi_{3}}}{\chi_{2}} \tag{A.5}
\end{equation*}
$$

where

$$
\begin{align*}
\chi_{1}= & \left(a^{2}+b^{2}\right) m_{y} m_{z} z+(a-b)(a+b) m_{z} \\
& \times\left(m_{y} z \cos 2 \sigma+\left(m_{z} x-m_{x} z\right) \sin 2 \sigma\right), \\
\chi_{2}= & 2 m_{z}^{2}\left(a^{2} \cos ^{2} \sigma+b^{2}\left(-a^{2} \lambda+\sin ^{2} \sigma\right)\right), \\
\chi_{3}= & b_{0} x^{2}+b_{1} z^{2}+b_{2} x z \\
b_{0}= & -4 a^{2} b^{2} m_{z}^{2}\left(-1+a^{2} \lambda\right)\left(-1+a^{2} \lambda\right) \\
b_{1}= & 2 a^{2} b^{2}\left(a^{2}+b^{2}-2 m_{x}^{2}-2 a^{2} b^{2} \lambda\right. \\
& +a^{2} m_{x}^{2} \lambda+b^{2} m_{x}^{2} \lambda+a^{2} m_{y}^{2} \lambda+b^{2} m_{y}^{2} \lambda \\
& +a^{2} m_{z}^{2} \lambda+b^{2} m_{z}^{2} \lambda-2 a^{2} b^{2} m_{z}^{2} \lambda^{2} \\
& -\left(a^{2}-b^{2}\right)\left(-1+m_{x}^{2} \lambda-m_{y}^{2} \lambda-m_{z}^{2} \lambda\right) \\
& \left.\times \cos 2 \sigma-2\left(a^{2}-b^{2}\right) m_{x} m_{y} \lambda \sin 2 \sigma\right) \\
& \left.+2(a-b)(a+b) m_{z} \lambda\left(m_{x} \cos 2 \sigma+m_{y} \sin 2 \sigma\right)\right) .
\end{align*}
$$

In order to have a plane of the form $P_{x} x+P_{y} y+P_{z} z+p_{o}, \chi_{3}$ should have the form $\left(\sqrt{b_{0}} x+\sqrt{b_{1}} z\right)^{2}$ or $\left(\sqrt{b_{0}} x-\sqrt{b_{1}} z\right)^{2}$.

If $\chi_{3}=\left(\sqrt{b_{0}} x+\sqrt{b_{1}} z\right)^{2}$, we have

$$
\begin{equation*}
\left(\sqrt{b_{0}} x+\sqrt{b_{1}} z\right)^{2}=b_{0} x^{2}+b_{1} z^{2}+2 \sqrt{b_{0} b_{1}} x z \tag{A.7}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
2 \sqrt{b_{0} b_{1}}=b_{2} \tag{A.8}
\end{equation*}
$$

On the other hand, if $\chi_{3}=\left(\sqrt{b_{0}} x+\sqrt{b_{1}} z\right)^{2}$, we arrive at the result

$$
\begin{equation*}
2 \sqrt{b_{0} b_{1}}=-b_{2} \tag{A.9}
\end{equation*}
$$

Depending on the setup of the system, (5) or (6) need to be solved in order to obtain the corresponding values for λ. Each equation renders four possible values for the unknown. However, as expected, just one provides nonimaginary solutions. This value for λ arises in two possible planes as shown in (4), or more specifically in two possible orientations for planes resulting in circular sections of the cone. Once (P_{x}, P_{y}, P_{z}) have been calculated as the normal vector for a particular orientation of a plane, additional solutions could be found, varying P_{o} in order to determine parallel planes with equivalent solutions.

REFERENCES

[1] R. Jacob, "The use of eye movements in human-computer interaction techniques: what you look at is what you get," $A C M$ Transactions on Information Systems, vol. 9, no. 2, pp. 152-169, 1991.
[2] K. Kohzuki, T. Nishiki, A. Tsubokura, M. Ueno, S. Harima, and K. Tsushima, "Man-machine interaction using eye movement," in Proceedings of the 8th International Conference on Human-Computer Interaction: Ergonomics and User Interfaces (HCI '99), vol. 1, pp. 407-411, Munich, Germany, August 1999.
[3] W. Teiwes, M. Bachofer, G. W. Edwards, S. Marshall, E. Schmidt, and W. Teiwes, "The use of eye tracking for human-computer interaction research and usability testing," in Proceedings of the 8th International Conference on Human-Computer Interaction: Ergonomics and User Interfaces (HCI '99), vol. 1, pp. 1119-1122, Munich, Germany, August 1999.
[4] J. Merchant, R. Morrissette, and J. L. Porterfield, "Remote measurement of eye direction allowing subject motion over one cubic foot of space," IEEE Transactions on Biomedical Engineering, vol. 21, no. 4, pp. 309-317, 1974.
[5] LC Technologies, "Eyegaze Systems," McLean, Va, USA, http:// www.eyegaze.com/.
[6] Applied Science Laboratories, Bedford, Mass, USA, http:// www.a-s-l.com/.
[7] Eyetech Digital Systems, Mesa, Ariz, USA, http://www .eyetechds.com/.
[8] Tobii Technology, Stockholm, Sweden, http://www.tobii.se/.
[9] A. Tomono, M. Iida, and Y. Kobayashi, "A TV camera system which extracts feature points for noncontact eye-movements detection," in Optics, Illumination and Image Sensing for Machine Vision IV, vol. 1194 of Proceedings of SPIE, pp. 2-12, Philadelphia, Pa, USA, November 1989.
[10] D. H. Yoo and M. J. Chung, "Non-intrusive eye gaze estimation without knowledge of eye pose," in Proceedings of the 6 th IEEE International Conference on Automatic Face and Gesture Recognition (FGR '04), pp. 785-790, Seoul, Korea, May 2004.
[11] S.-W. Shih and J. Liu, "A novel approach to 3-D gaze tracking using stereo cameras," IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 234-245, 2004.
[12] Z. Zhu and Q. Ji, "Eye gaze tracking under natural head movements," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 918-923, Diego, Calif, USA, June 2005.
[13] D. Beymer and M. Flickner, "Eye gaze tracking using an active stereo head," in Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR '03), vol. 2, pp. 451-458, Madison, Wis, USA, June 2003.
[14] X. L. C. Brolly and J. B. Mulligan, "Implicit calibration of a remote gaze tracker," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR '04), p. 134, Washington, DC, USA, JuneJuly 2004.
[15] T. Ohno and N. Mukawa, "A free-head, simple calibration, gaze tracking system that enables gaze-based interaction," in Proceedings of the Symposium on Eye Tracking Research \& Applications (ETRA '04), pp. 115-122, San Antonio, Tex, USA, March 2004.
[16] D. W. Hansen and A. E. C. Pece, "Eye tracking in the wild," Computer Vision \& Image Understanding, vol. 98, no. 1, pp. 155-181, 2005.
[17] J.-G. Wang, E. Sung, and R. Venkateswarlu, "Eye gaze estimation from a single image of one eye," in Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV '03), vol. 1, pp. 136-143, Nice, France, October 2003.
[18] A. Villanueva, Mathematical models for video oculography, Ph.D. thesis, Public University of Navarra, Pamplona, Spain, 2005.
[19] C. Hennessey, B. Noureddin, and P. Lawrence, "A single camera eye-gaze tracking system with free head motion," in Proceedings of the Symposium on Eye Tracking Research \& Applications (ETRA '05), pp. 87-94, San Diego, Calif, USA, March 2005.
[20] E. D. Guestrin and M. Eizenman, "General theory of remote gaze estimation using the pupil center and corneal reflections," IEEE Transactions on Biomedical Engineering, vol. 53, no. 6, pp. 1124-1133, 2006.
[21] R. H. S. Carpenter, Movements of the Eyes, Pion, London, UK, 1988.
[22] G. Fry, C. Treleaven, R. Walsh, E. Higgins, and C. Radde, "Deifinition and measurement of torsion," American Journal of Optometry and Archives of American Academy of Optometry, vol. 24, pp. 329-334, 1947.
[23] M. R. M. Mimica and C. H. Morimoto, "A computer vision framework for eye gaze tracking," in Proceedings of XVI Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI '03), pp. 406-412, São Carlos, Brazil, October 2003.
[24] C. H. Morimoto and M. R. M. Mimica, "Eye gaze tracking techniques for interactive applications," Computer Vision and Image Understanding, vol. 98, no. 1, pp. 4-24, 2005.
[25] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, UK, 2nd edition, 2004.
[26] A. Montesdeoca, Geometría Proyectiva Cónicas y Cuádricas, Dirección General de Universidades e Investigación. Consejería de Educación Cultura y Deportes, Gobierno de Canarias, Spain, 2001.
[27] T. Ohno, N. Mukawa, and A. Yoshikawa, "FreeGaze: a gaze tracking system for everyday gaze interaction," in Proceedings of the Symposium on Eye Tracking Research \& Applications (ETRA '02), pp. 125-132, New Orleans, La, USA, March 2002.
[28] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[29] J. Boughet, "Camera calibration toolbox for Matlab," http://www.vision.caltech.edu/bouguetj/calib_doc/, October 2004.
[30] S. Goñi, J. Echeto, A. Villanueva, and R. Cabeza, "Robust algorithm for pupil-glint vector detection in a video-oculography eyetracking system," in Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), vol. 4, pp. 941944, Cambridge, UK, August 2004.
[31] W. Boehm and H. Prautzsch, Geometric Concepts for Geometric Design, A K Peters, Wellesley, Mass, USA, 1994.

[^0]: ${ }^{1}$ If the gazwd point exact location is desired in screen coordinates, the screen position with respect to the camera is supposed to be detrmined.

