
Fakultät Ingenieurwissenschaften und

Informatik

Masterarbeit

über das Thema

Motion Monitoring of Robots and
PLC Controlled Assembly Systems

using Process Simulate

vorgelegt durch

Sergio Sóñora Mariño

02 June 2015

Fakultät Ingenieurwissenschaften und Informatik

Mechatronic Systems Engineering

Masterarbeit

Motion Monitoring of Robots and PLC
Controlled Assembly Systems using Process

Simulate

Erstprüfer: Herr Prof. Dr. Dirk Rokossa
Zweitprüfer: Herr Dipl.-Ing. Martin Nardmann

Bearbeiter: Sergio Sóñora Mariño
Matrikelnummer: 651395

Geboren am 20.01.1988
In: Boiro (Spanien)

Ausgabedatum: 02.02.2015
Abgabedatum: 02.06.2015

Erstprüfer

Master

Zweitprüfer

__

Eingereicht am:

Verlängerung genehmigt bis:

Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;

die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als

solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher

Form keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht

veröffentlicht.

Ferner stimme ich zu, dass eine Software-Kopie meiner Arbeit für einen Plagiat-

Test benutzt wird.

Ort, Datum:

(Unterschrift) (Unterschrift)

i

Abstract

This Master Thesis, carry out at the University of Applied Sciences of

Osnabrück, is framed in the Industrial Robotics area, The main objective consist of

real-time motion data monitoring of different robots and conveyor systems of an

industrial process.

The monitoring application is programmed with the help of the API

(Application Programming Interface) Tecnomatix, Process Simulate software from

Siemens. This API provides classes and methods needed to program a dynamic

library that can represent, in the 3D model Process Simulate, the motion data of

the industrial process.

For that, the software PLC (Programmable Logic Controller) is

programmed on the server side, which is responsible for capture the different data

and transfer through the network, using the TCP/IP protocol. After that, each

client can run the monitoring application and connect to the server, visualizing

movements in the 3D model.

Thereby, it’s possible to monitoring and control an industrial process in

real-time, thousands of kilometers away, provided they have a connection to the

Internet. Offering the chance to detect faults immediately and track along the

whole process.

Resumen

El presente Proyecto Fin de Carrera (PFC), realizado en la Universidad de

Ciencias Aplicadas de Osnabrück, está enmarcado en el área de Robótica

Industrial, el objetivo principal consiste en poder monitorizar en tiempo real los

datos de movimiento de los diferentes robots y sistemas de transporte de un

proceso industrial.

La aplicación de monitorización está programada con la ayuda de la API

(Interfaz de Programación de Aplicaciones) Tecnomatix, del software Process

Simulate de Siemens. Esta API provee las clases y métodos necesarios para

programar una librería dinámica que pueda representar, en el modelo 3D de

Process Simulate, los datos de movimiento del proceso industrial.

ii

Para ello, se programa el software PLC (Controlador Lógico Programable)

en el lado del servidor, que se encarga de capturar los diferentes datos y

transferirlos a través de la red mediante el protocolo TCP/IP. Posteriormente,

cada cliente puede ejecutar la aplicación de monitorización y conectarse al

servidor, visualizando los movimientos en el modelo 3D.

De este modo, es posible monitorizar y controlar un proceso industrial en

tiempo real a miles de kilómetros, siempre y cuando se disponga de una conexión a

internet. Ofreciendo la posibilidad de detectar posibles fallos de forma inmediata y

llevar un seguimiento a lo largo de todo el proceso.

Zusammenfassung

Diese Masterarbeit wurde an der Hochschule Osnabrück angefertigt. Das Hauptziel

dieser Arbeit besteht darin, die Bewegungsdaten von verschiedenen Robotern

sowie eines Transportsystems in industriellen Prozessen in Echtzeit zu überwachen.

Die Überwachungsapplikation wurde mithilfe einer Programmierschnittstelle

(Application Programming Interface), Tecnomatix und Process Simulate Software

von Siemens programmiert.

Diese Programmierschnittstelle (API) gewährt alle erforderlichen Klassen und

Methoden für die Programmierung einer dynamischen Bibliothek, in der alle

gemessenen Bewegungsdaten des industriellen Prozesses in 3D dargestellt werden.

Die Software PLC (Programmable Logic Controller) wird auf der Server-Seite, die

für die verschiedenartige Datenerfassung zuständig ist, programmiert.

Anschließend übermittelt sie über das Netzwerk mit der TCP/IP-Protokoll.

Deshalb kann jeder Kunde später die Überwachungsapplikation verwenden.

Erforderlich dafür ist die Anmeldung am Server, auf dem die Bewegungsdaten im

3D-Modell dargestellt werden.

Somit kann die Überwachung der industriellen Prozesse in Echtzeit auch bei einer

Entfernung von tausenden Kilometern gesteuert werden, d.h. dass eine

Internetverbindung dafür ausreichend ist. Es bietet sich gleichzeitig die

Möglichkeit Fehler sofort zu erkennen sowie über den gesamten Prozess zu

verfolgen.

iii

Table of Contents

Abstract i

Table of Contents iii

List of Figures v

List of Tables vii

1. Introduction 1

1.1. Objectives . 1

1.2. Outline . 1

2. The Assembly System 3

2.1. Robots . 3

2.1.1. Stäubli RX 130 . 4

2.1.2. Kawasaki RS05L . 5

2.1.3. KUKA KR 30 . 7

2.1.4. FANUC M-20iA . 8

2.2. Conveyor System . 10

2.2.1. Work-piece pallet . 10

2.2.2. Lift-transfer unit . 11

2.3. Programmable Logic Controller . 12

2.3.1. Hardware PLC . 13

2.3.2. Software PLC . 14

2.3.3. OpenMHS . 15

2.3.3.1. Overview . 15

2.3.3.2. Structure . 16

2.3.3.3. Main elements . 19

2.3.3.4. Operations Modes . 21

2.4. Process Simulate . 23

2.4.1. Overview . 23

3. Possible solutions for monitoring systems 25

3.1. IP Camera or CCTV system . 25

iv

3.2. Commercial software and hardware for motion capture 26

3.3. Development a plug-in for Process Simulate and use a Soft-PLC . . 26

4. Real-Time Motion Monitoring Application for Process Simulate 28

4.1. Client-Server communication . 28

4.1.1. The TCP/IP protocol . 29

4.2. Programming the server side . 31

4.2.1. Monitoring the conveyor system 31

4.2.1.1. Possible solutions . 32

4.2.1.2. Modelling the conveyor system into OpenMHS . . 34

4.2.2. Process Image Addresses . 41

4.3. Programming the client side . 42

4.3.1. The TCP Socket . 43

4.3.2. Representation of motion data from the robots 44

4.3.3. Representation of motion data from the conveyor 45

4.3.4. Simple Button Command . 46

4.3.5. The Graphic User Interface . 46

5. Test scenarios 48

5.1. Test one robot from local server . 48

5.2. Test one robot in real world . 48

5.3. Test conveyor system with one carrier 49

5.4. Test conveyor system with several carriers 50

5.5. Test conveyor system and robots . 51

6. Conclusion and possible improvements 52

7. References 54

v

List of Figures

2.1. Layout of the Assembly System . 3

2.2. Stäubli RX 130 . 4

2.3. Kawasaki RS05L . 5

2.4. KUKA KR 30 . 7

2.5. FANUC M-20iA . 8

2.6. Conveyor system . 10

2.7. Work-piece pallet . 11

2.8. Lift-Transfer Unit . 11

2.9. PLC main parts . 12

2.10. Basic layout of a typical PLC . 14

2.11. Main window panel . 17

2.12. Communications window . 18

2.13. Simulation controls . 18

2.14. Create element . 19

2.15. Destroy element . 19

2.16. Conveyor element . 20

2.17. Conveyor separator element . 20

2.18. TCP Server element . 20

2.19. Data for Visu element . 21

2.20. Work cycle of a Soft-PLC . 22

2.21. Tecnomatix architecture . 23

2.22. Tecnomatix data structure . 24

4.1. Network structure . 28

4.2. A TCP/IP network . 29

4.3. Protocol operation . 31

4.4. Segments diagram . 32

4.5. Solution three diagram . 33

4.6. Segments layout . 35

4.7. Blocks diagram segment 2 . 36

4.8. Blocks diagram segment 1 . 36

vi

4.9. Blocks diagram segment 6 . 37

4.10. Blocks diagram segment 14 . 38

4.11. Blocks diagram segment 8 . 39

4.12. Conveyor system model . 40

4.13. The flowchart shows an overview of how application works 42

4.14. Flowchart for sockets communication using TCP 43

4.15. Flowchart for moves robots . 44

4.16. Flowchart for moves carriers . 45

4.17. Command button MotionMonitoring . 46

4.18. The GUI for setting the connection data . 47

5.1. Monitoring one robot from local server . 48

5.2. Monitoring one robot from real world . 49

5.3. Monitoring the conveyor system with one carrier 50

5.4. Monitoring the conveyor system with several carriers 50

5.5. Monitoring the conveyor system and robots 51

vii

List of Tables

2.1. Stäubli RX130 specifications . 5

2.2. Kawasaki RS05L specifications . 6

2.3. KUKA KR 30 specifications . 8

2.4. FANUC M-20iA specifications . 9

4.1. Process Image Addresses . 41

1

1. Introduction

After factory automation (XX century) is starting a new phase that

could be called Fourth Industrial Revolution or Industry 4.0, is characterized by

the inter-connection of machines and systems on the production site itself, and

also, a fluid exchange of information to the outside via the Internet.

This thesis focuses particularly on the exchange of information on

production systems to the outside. The application allows monitoring the status

and position in real time of the machines involved in the manufacturing process.

Additionally, process simulation software of Siemens which are added

new functionality is used, thereby taking advantage of existing laboratory

resources.

1.1. Objectives

Following the topic of the introduction, the purpose of this project is:

 Study the technical bases of industrial robots and conveyors systems.

 Understand the structure of Process Simulate and how to retrieve and

manipulate information regarding locations for resources using the

Tecnomatix .NET API.

 Create a plug-in with a GUI and a TCP connection to monitoring the

motion data of the whole system.

This raises the level of abstraction since the simulation software is a tool

already used in industry. To achieve this objective, a virtual model in Process

Simulate is used for motion data monitoring.

1.2. Outline

The rest of the thesis is structured as follows: Chapter 2 discusses the

assembly system installed into the lab and all technical bases. Specifications of

robots and conveyor system, PLCs and OpenMHS software, Process Simulate

2

and Tecnomatix are introduced. Chapter 3 reviews the possible solutions for

monitoring the assembly system. Advantages and disadvantages of each possible

solution are discussed, and why the selected solution is chosen.

Chapter 4 presents the implementation of a model of the conveyor

system in Soft-PLC OpenMHS in the server-side, and the development of plug-

in for Process Simulate in the client side. It explains the different alternatives to

model the conveyor system, also the concepts of client-server communication

and TCP protocol. Finally, the operation of monitoring application and its GUI

is explained.

Chapter 5 shows the results in different test scenarios. Several monitoring

tests are performed and the results of each are discussed. The final chapter

presents a short summary along with the conclusions. It also provides

recommendations for future enhancements of this research.

3

2. The Assembly System

The Assembly System consists of five robots (2 Stäubli, 1 Kawasaki, 1

KUKA and 1 Fanuc) and a conveyor system, all controlled by a PLC Software

(OpenMHS), created by own University. In this chapter will explain each of

parts that form, hardware and software, as well as software used to simulate

assembly processes (Siemens Process Simulate).

Figure 2.1: Layout of the Assembly System

2.1. Robots

In the following subchapters the robots installed into the Assembly

System of Robotics Lab at the University Of Applied Sciences Of Osnabrück

will be described. Later, these robots will be monitored with the application

developed in this thesis.

All robots have their own controller. These controllers are connected to a

central computer where OpenMHS Soft-PLC resides. The central computer

works as a client of the robot controllers, and at the same time, as a server for

the monitoring application.

4

2.1.1. Stäubli RX 130

Stäubli is an international mechatronics company, primarily known for

its textile machinery, connectors and robotics products. Stäubli Robotics is

Stäubli’s automation and robotics related division, it produces SCARA and 6-

axis robots for industrial automation, including controllers and software.

Figure 2.2: Stäubli RX 130

The assembly system has two robots Stäubli RX130. These robots series

feature unique benefits to fit in all environments providing the best possible

process quality and increased productivity. In the table 2.1 you can see the

specifications of Stäubli RX 130 robot.

Stäubli RX 130 Specifications

Type Articulated

Degrees of Freedom 6 axes

Maximum load 10 kg

Maximum reach 2185 mm

Repeatability ±0.05 mm

Maximum speed at

load gravity center
18.9 m/s

Work Envelope

(degrees) &

Maximum Speed

(degrees/s)

Axis Motion Range Maximum Speed

JT1 ±160° 278°/s

JT2 ±137.5° 278°/s

JT3 ±150° 356°/s

JT4 ±270° 409°/s

JT5 +120°/-105° 480°/s

5

JT6 ±270° 1125°/s

Wrist Load Capacity

Axis Maximum inertias

JT5 1.2 kg·m2

JT6 0.3 kg·m2

Brakes All axes

Weight 245 kg

Installation Floor/Ceiling

Table 2.1: Stäubli RX130 specifications

The RX130 robots use the Adept V+ programming language. To

monitoring the motion data is necessary to create first a small V+ program that

reads the current position of each robot and sends it over the network to the

central computer.

2.1.2. Kawasaki RS05L

Kawasaki Heavy Industries, Limited (KHI) is an international

corporation based in Japan. Kawasaki develops and builds a vast array of

industrial plants and equipment, including industrial robots.

This robot is included inside the R-Series. The new R-Series Robots are

setting the benchmark for all small to medium duty industrial robots. The

compact design, along with industry leading speed, reach and work range make

the R-Series Robots ideal for a wide range of applications throughout a

multitude of diverse industries.

Figure 2.3: Kawasaki RS05L

6

The new lightweight arm along with high-output high-revolution motors

provide industry leading acceleration and high-speed operation. The acceleration

rate automatically adjusts to suit the payload and robot posture to deliver

optimum performance and the shortest cycle times. The slim arm design

requires very little floor space. Multiple robots can be installed in high-density

applications without impeding performance. Specifications could be found in

table 2.2.

Kawasaki RS05L Specifications

Type Articulated

Degrees of Freedom 6 axes

Payload 5 kg

Horizontal Reach 903 mm

Vertical Reach 1.484 mm

Repeatability ±0.03 mm

Maximum Speed 9.300 mm/s

Work Envelope

(degrees) &

Maximum Speed

(degrees/s)

Axis Motion Range Maximum Speed

JT1 ±180° 300°/s

JT2 ±135° / -80° 300°/s

JT3 ±118° / -172° 300°/s

JT4 ±360° 460°/s

JT5 ±145° 460°/s

JT6 ±360° 740°/s

Wrist Load Capacity

Axis Maximum Torque Moment of Inertia

JT4 12.3 Nm 0.4 kg·m2

JT5 12.3 Nm 0.4 kg·m2

JT6 7.0 Nm 0.12 kg·m2

Motors Brushless AC Servomotor

Brakes All axes

Mass 37 kg (excluding options)

Installation Floor, wall, ceiling

Built-in Harness Sensor harness 12 inputs, 24DC, GND

Built-in Utilities Pneumatic piping (Ø6 x 2 lines)

Table 2.2: Kawasaki RS05L specifications

7

2.1.3. KUKA KR 30

KUKA is a German manufacturer of industrial robots and solutions for

factory automation. The company name, KUKA, is an acronym for Keller und

Knappich Augsburg. Today, KUKA concentrates on solutions for the

automation of industrial manufacturing processes. Most robots are finished in

“KUKA Orange” (the official corporate color) or black.

Figure 2.4: KUKA KR 30

The optimally adapted motor/gear unit of the KR 30 gives high

performance in terms of cycle time and accuracy. The process forces generated

are perfectly compensated for by the high stiffness of the FEM-optimized

design. The small footprint enables problem-free implementation even in

confined cell layouts. In the table 2.3 you can see the specifications of KUKA

KR 30 robot.

KUKA KR 30 Specifications

Type Articulated

Degrees of Freedom 6 axes

Rated payload 30 kg

Maximum Reach 2033 mm

Repeatability ±0.15 mm

Work Envelope

(degrees) &

Axis Motion Range Speed (rated payload)

JT1 ±185° 140°/s

8

Maximum Speed

(degrees/s)

JT2 +35° / -135° 126°/s

JT3 +158° / -120° 140°/s

JT4 ±350° 260°/s

JT5 ±119° 245°/s

JT6 ±350° 322°/s

Weight 665 kg (excluding controller)

Installation Floor, ceiling

Robot footprint 850 mm x 950 mm

Connection 7.3 kVA

Noise level < 75 dB

Table 2.3: KUKA KR 30 specifications

2.1.4. FANUC M-20iA

FANUC is a group of companies that provide automation products and

services such as robotics and computer numerical control systems. FANUC is

one of the largest makers of industrial robots in the world, had its beginnings as

part of Fujitsu developing early numerical control and servo systems. The

company name is an acronym for Factory Automation Numerical Control.

Figure 2.5: FANUC M-20iA

9

This robot is mounted on a beam providing a further degree of freedom.

The evolutionary design solves two of the oldest problems for industrial robots.

The first issue is the time it takes to engineer the robot dressout and the second

is the down-time caused when the dressout is disrupted by contact with plant

equipment. The innovative M-20iA solves these issues with a hollow upper arm

and wrist. This unique design permits the utilities to be neatly contained within

the arm, eliminating dress out issues like snagging, tearing and rubbing. The

hollow arm and wrist together with the shelf greatly simplifies the integration

engineer’s job. In the table 2.4 you can see the specifications of FANUC M-20iA

robot.

FANUC M-20iA Specifications

Type Articulated

Degrees of Freedom 6 axes

Payload 20 kg

Reach 1811 mm

Repeatability ±0.08 mm

Work Envelope

(degrees) &

Maximum Speed

(degrees/s)

Axis Motion Range Motion Speed

JT1 340°/370° 195°/s

JT2 260 175°/s

JT3 458° 180°/s

JT4 400° 360°/s

JT5 360° 360°/s

JT6 900° 550°/s

Wrist Load Capacity

Axis Maximum Torque Moment of Inertia

JT4 44 Nm 1.04 kg·m2

JT5 44 Nm 1.04 kg·m2

JT6 22 Nm 0.28 kg·m2

Mechanical brakes All axes

Mechanical weight 250 kg

Installation Floor, wall, ceiling and angle

Table 2.4: FANUC M-20iA specifications

10

2.2. Conveyor System

The Assembly System of Robotics Lab at the University of Applied

Sciences of Osnabrück has a conveyor system from Bosch Rexroth, specifically

the model TS2. It is a modular system formed by a conveyor belt, lift-transfer

units, stoppers, inductive sensors and work-piece pallets on which the parts are

placed.

Figure 2.6: Conveyor system

The TS2 assembly conveyor is part of the larger family of TS (Transfer

Systems) which include TS1 and TS4plus. TS2 is a work-piece pallet based,

non-synchronous, conveyor designed to improve manufacturing productivity and

product quality while allowing for maximum assembly flexibility.

2.2.1. Work-piece pallet

The workpiece pallet acts as a carrier for workpieces through the

conveyor system. With fixturing, it serves to hold the workpiece for processing

at a workstation. Positioning bushings allow the pallet to be located in a station

with an accuracy of ±0.05 mm when used with a lift-position unit.

11

Figure 2.7: Work-piece pallet

The carriers used in the conveyor system of the laboratory have

dimensions of 320 mm wide by 320 mm long. They can support a maximum

load up to 32 kg. The frame modules are made from electrically conductive

polyamide and have built in exciter plates to indicate relative positioning when

used in conjunction with proximity switches.

2.2.2. Lift-transfer unit

The Lift-Transfer Unit (LTU) is used to transfer carriers perpendicularly

off the conveyor. It is used primarily at corners and intersections, but can also

be used for carrier routing changes.

Figure 2.8: Lift-Transfer Unit

12

The lift plate is powered up and down by a single lift cylinder. In the

center, or rest position, the LTU belts are located 1 mm below the bottom of

the pallet. A stop bar mounted to the lift plate may be used to stop pallets on

the LTU, or inverted so pallets pass through freely.

The LTU is raised by applying air pressure to the bottom of the cylinder.

This lifts the LTU to a position 10 mm above the nominal conveyor height. As

the LTU rises, the LTU belts engage the pallet and directs (or accepts) the

pallet.

2.3. Programmable Logic Controller

A programmable logic controller, PLC, or programmable controller is an

industrial computer control system that continuously monitors the state of

input devices and makes decisions based upon a custom program, to control the

state of devices connected as outputs.

PLCs are designed for multiple arrangements of digital and analog inputs

and outputs (see Figure 2.9). Almost any production line, machine function or

process can be automated using a PLC. The speed and accuracy of the

operation can be greatly enhanced using this type of control system. But the

biggest benefit in using a PLC is the ability to change and replicate the

operation or process while collecting and communicating vital information.

Figure 2.9: PLC main parts

The term logic is used because programming is primarily concerned with

implementing logic and switching operations. Input devices (that is, sensors

13

such as switches) and output devices (motors, valves, etc.) in the system being

controlled are connected to the PLC. The operator then enters a sequence of

instructions, a program, into the memory of the PLC. The controller then

monitors the inputs and outputs according to this program and carries out the

control rules for which it has been programmed.

PLCs are now widely used and extend from small, self-contained units for

use with perhaps 20 digital inputs/outputs to modular systems that can be used

for large numbers of inputs/outputs, handle digital or analog inputs/outputs,

and carry out proportional-integral-derivative control modes.

2.3.1. Hardware PLC

Commonly, a PLC system has the basic functional components of

Central Processing Unit (CPU), memory, input/output module,

communications interface, power supply and the programming device. Figure

2.10 shows the basic layout.

 The Central Processing Unit (CPU) is the unit containing the

microprocessor. This unit interprets the input signals and carries out the

control actions according to the program stored in its memory,

communicating the decisions as action signals to the outputs.

 The memory unit is where the program containing the control actions

to be exercised by the microprocessor is stored and where the data is

stored from the input for processing and for the output.

 The input/output modules are where the processor receives

information from external devices and communicates information to

external devices. The inputs might thus be from switches or other sensor

such as photoelectric cells, temperature sensors, induction sensors, or the

like. The outputs might be to motor starter coils, solenoid valves, lamps,

or similar things. Input and output devices can classified as giving signals

that are discrete, digital or analog.

14

Figure 2.10: Basic layout of a typical PLC

 The communications interface is used to receive and transmit data on

communication networks from or to other remote PLCs. It is concerned

with such actions as device verification, data acquisition, synchronization

between user applications and connection management.

 The power supply unit is needed to convert the main AC voltage to

the low DC voltage (5V or 3.3V) necessary for the processor and the

circuits in the input and output interfaces modules.

 The programming device is used to enter the required program into

the memory of the processor. The program is developed in the device and

then transferred to the memory unit of the PLC.

2.3.2. Software PLC

On the other hand, the second type of programmable logic controllers is

known as “Soft-PLC”. Soft-PLC is a software product, which enabled the

industry to build PLC’s from standard computer and PLC hardware

components. By using this Soft-PLC, users have the flexibility to select

hardware according to their priorities: reliability, features, cost, performance, or

15

vendor relationships. And it could be done independently for CPU and I/O, on

a component basis. Soft-PLC was a liberating force for users of proprietary

PLC’s.

In contrast to a conventional hardware-based control, a Soft-PLC does

not have its own hardware. It always has to be integrated in an existing

computer system with an Operation System, for example Microsoft Windows.

The size of a Soft-PLC load memory can be changed flexibly (up to the

maximum available memory size of the PC), in contrast to a hardware PLC

memory.

Since there are physical differences between a hardware PLC and a

Desktop computer, it is not possible to implement every feature of a hardware

PLC in a Soft-PLC. However, existing programs could be executable on a Soft-

PLC with small changes.

2.3.3. OpenMHS

2.3.3.1. Overview

OpenMHS is a Soft-PLC with integrated simulator. It was developed in

the laboratory for handling technology and robotics at the Hochschule

Osnabrück (Labor für Handhabungstechnik und Robotik) by Dipl.-Ing. Martin

Nardmann.

OpenMHS offers all the functions of a conventional industrial PLC.

OpenMHS is even able to operate as a conventional PLC. Through the use of

modern computers, it is possible to achieve very short cycle times. In addition,

OpenMHS offers the possibility of using interfaces and creating simulation

studies.

This Soft-PLC is used to control the assembly system and the industrial

robots in the laboratory for handling technology and robotics.

16

2.3.3.2. Structure

OpenMHS, the PLC control program of the assembly system is divided

on some windows. The main window shows one diagram of the whole system

(see Figure 2.11). Each work station is represented by a grey and orange block,

the rest of sectors are represented by a green and orange block as it can be seen

in Figure 2.11.

By clicking in each figure, a new window opens where all the

programming of each sectors located. Inside the grey rectangle titled

“Allgemeine Bausteine zur Bearbeitung” there are four orange blocks. The first

orange block titled “IO_Bausteine” there are the submodel for the

communications (see Figure 2.12).

In this window are all the communications blocks of the assembly system,

USB cards for inputs and outputs, RFID readers and connections with PLC

controllers of Kawasaki and Stäubli robots. Each module is assigned a separate

memory area. For example, USB cards are offset between 0 and 400, the RFID

between 2000 and 2200, etc. In this way, it possible to access any bit from the

assigned offset.

The fourth block is for conveyor system model created in this work. In

Chapter 4.2.1 "Modeling the conveyor system" is explained more in detail.

Going back to the main window shown in Figure 2.11, it contains two

round buttons with the name “EIN”. By clicking the first button (Band-

motore), the main motors of the assembly line will turn on moving the conveyor

belt. The second button is used to put in automatic mode the assembly system.

Below the two buttons “EIN”, a green rectangle titled “Manuelle

Einstellung RFID” is found. By clicking here, a new window opens. From this

new window it is possible to change the initial data written into the RFID

system.

17

Figure 2.11: Main window panel

18

Figure 2.12: Communications window

Finally, Figure 2.13 shows the menu from where the simulation is

executed and stopped. This menu is located on the left side of the window and

if the program is wanted to be executed the button circled in green must be

clicked. On the other hand, if the program is running and it is wanted to stop,

the button circled in red must be clicked.

Figure 2.13: Simulation controls

19

2.3.3.3. Main elements

Create

This element can create parts according to an input signal. The input

signal is connected to the first symbol on the left of the element (see Figure

2.14), when a positive pulse arrives a new part is created and then, can be used

in the Conveyor element.

Figure 2.14: Create element

Destroy

The function of this element is to remove the parts that arrive. Once the

part arrives at element Destroy, this part is removed from the model. Moreover,

it allows register how many parts have been removed.

Figure 2.15: Destroy element

Conveyor

The Conveyor element simulates a queue of parts that crossing a

conveyor. Works as a FIFO system (First Input, First Output) where can be

define the length of the conveyor and the speed of the parts. In addition, can be

used a condition at the beginning or at the end to stop the part and keep it on

hold. Another possibility is to connect to the “stop” symbol a signal to stop the

conveyor while the signal is active.

20

Figure 2.16: Conveyor element

Conveyor separator

This element allows distribute parts through different outputs depending

on a condition. The parts can be distributed up to three outputs.

Figure 2.17: Conveyor separator element

TCP Server

The TCP Server element lets configure a TCP server to allow other

applications connected to the network communicate with OpenMHS. It is a

TCP socket and uses the Process Image Output of OpenMHS to send

information over the network.

Figure 2.18: TCP Server element

21

Data for Visu

This element is the manager for collect all the parts information that are

moving into the Conveyor elements. It captures the position, the number of

conveyor, an ID and a value for each part. All information captured is sent

through the element TCP Server to network. In this way, it is possible to use a

client application to read the received data.

Figure 2.19: Data for Visu element

2.3.3.4. Operations Modes

OpenMHS supports the creation of models for different time-dependent

problems. Thereby, by using OpenMHS it is possible to solve task of simulation,

data acquisition, control and regulation. For this purpose, there are different

approaches for calculating the models stored in this software. The calculation of

the models is based on time increments.

These time steps would be as:

 Discrete simulation, based on events, generated.

 Continuous simulation, at constant intervals, generated.

 Continuous simulation, in “real-time” pulses, generated.

These different types of calculation can be mixed to some extent application.

The variable calculation models allow it to be used by OpenMHS for:

 Simulation of material flows (frequently event).

 Data acquisition (always real-time, combined with an event-driven).

 Data analysis, offline (constant time steps).

 Soft-PLC (real-time ever, combined with an event-driven).

22

 PLC simulation (constant time steps, combined with an event-driven).

 Simulation of a contract manufacturing often (frequently event-driven).

Real-time mode

The calculation in this mode is realized at equidistant points in time. The

PLC waits between these points the required time until the next cycle. Each

calculation involves always the next three steps:

 At first, inputs of the PLC can be queried and written into memory. This

memory is called the process input image.

 The second step is the processing of the program. The program picks

there exclusively the input values in memory. In this way it is ensured

that the input values remain constant during the program run. The

calculated output values are written to the process image output table.

 In the third step, the hardware outputs are assigned the values from

memory.

Figure 2.20 clarifies the work field.

Figure 2.20: Work cycle of a Soft-PLC

23

2.4. Process Simulate

2.4.1. Overview

Process Simulate is part of Tecnomatix application suites owned by

Siemens Product Lifecycle Management Software Inc. It enables process

planning, resource planning, part planning and simulation of a manufacturing

process in a virtual environment. In order to use Process Simulate for

monitoring an industrial process using the Tecnomatix .NET API, it is

important to study the structure of the software. The basic configuration of the

applications in Tecnomatix is given in Figure 2.21. The software is organized in

three layers consisting of a database, a server and clients.

The first layer consists of an Oracle Database Server whose main task is

to manage data and ensure the data update is handled correctly. The database

is sub-divided into schemas. The eMServer is in the next layer and this is the

core element in the configuration. Services are provided by the eMServer to

applications/clients, e.g. requests for data from clients are sent forward to the

database. The eMServer handles the communication between the clients and the

database. The last layer contains the different clients which can represent the

applications in the Tecnomatix environment, e.g. Process Simulate.

Figure 2.21: Tecnomatix architecture

The data structure of the Tecnomatix clients is displayed in Figure 2.22.

As mentioned previously, the database is divided into schemas. These consist of

projects which are each made up of objects/nodes structured in tress. These

nodes are products, operations, resources and manufacturing features that

24

together define the manufacturing process. A tree can only contain a group of

the same nodes, e.g. resources. Finally, attributes can be attached to the nodes,

e.g. files with 3D data or CATIA files.

Figure 2.22: Tecnomatix data structure

The environment of Process Simulate is modular and allows creating

plug-ins according to Tecnomatix .NET API. Using this API enables the

possibility to function as a client for the real-time monitoring proposed in this

thesis.

25

3. Possible solutions for monitoring

systems

To achieve the objectives in this work have been proposed several

solutions. Two different solutions with their advantages and disadvantages are

discussed below, and then, the selected solution is explained.

3.1. IP Camera or CCTV system

One or more IP cameras can be placed into the lab to monitor the whole

manufacturing process. Furthermore, the necessary hardware and software will

be installed in the client-side, allowing to observing the real-time motion of

robots and conveyor system. Otherwise, besides the cost of the equipment, also

is required much bandwidth to be acceptable quality. The advantages and

disadvantages are listed below.

Advantages

 Easy to implement

 Remote accessibility

Disadvantages

 Need to buy new hardware

 High cost

 High network bandwidth requirements

 Poor process control

 Unable to set alerts to events

 Possibility of blind spots or low visibility areas

26

3.2. Commercial software and hardware for motion capture

Another alternative solution is to use motion sensors and position in each

robot and conveyor. These sensors have their own software that represents the

motion captured and allows real-time monitoring of the manufacturing process.

One problem, besides the cost, is the difficulty to place the sensors in each of

the elements to be monitored.

Advantages

 Remote accessibility

 High control

Disadvantages

 Hard to implement

 High cost

 Need to buy new hardware

 Need to modify the assembly system

 Little flexibility, commercial software.

3.3. Development a plug-in for Process Simulate and use a

Soft-PLC

The third alternative consists of developing a plug-in for Process

Simulate and use virtual model for monitoring the assembly process. All robots

provide real-time joints data, so only are needed obtain this data and represent

them over a 3D model.

The conveyor system case is a bit more complicated because this

information can't obtain directly. But it can be simulated through PLC

software from the own university and then, use this motion data for monitoring.

27

The advantage of this solution, in addition to the low cost of material,

since licenses are available for use Process Simulate, is high customization

offered. For example, the application can be programmed to display on-screen

alerts based on certain events.

Advantages

 Remote accessibility

 High control

 Low cost

 High flexibility

 Ability for improvements and updates

 Ability to schedule alerts to events

Disadvantages

 Require Tecnomatix software

 Need to know programming

 Trouble to monitoring the conveyor system

 Potential errors or faults, it is not a mature software

28

4. Real-Time Motion Monitoring

Application for Process Simulate

4.1. Client-Server communication

First, it will be explained how to do the communication between the

application to be developed and the assembly system. All robots are

communicated using the TCP/IP protocol with the PLC software OpenMHS,

the conveyor is also controlled from this software via USB cards that allow you

to interact with the elements of the conveyor.

Figure 4.1: Network structure

In the Figure 4.1 it can be seen a diagram where the logical distribution

of the various elements of the system is shown. Robots and conveyor

communicate with the Soft PLC OpenMHS, and this in turn, works as a server

to transmit information to clients with Process Simulate. The communication

between client and server is done under the TCP/IP explained in the next

chapter, the monitoring application must use a socket programmed in C# to

connect to the server and receive the data. This is discussed in more detail in

Chapter 4.3.

29

4.1.1. The TCP/IP protocol

TCP/IP (Transmission Control Protocol/Internet Protocol) is the basic

communication language or protocol of the Internet. It can also be used as a

communications protocol in a private network (either an intranet or an

extranet).

TCP/IP is a two-layer program. The higher layer, Transmission Control

Protocol, manages the assembling of a message or file into smaller packets that

are transmitted over the Internet and received by a TCP layer that reassembles

the packets into the original message. The lower layer, Internet Protocol,

handles the address part of each packet so that it gets to the right destination.

Each gateway computer on the network checks this address to see where to

forward the message.

Figure 4.2 shows the relationships among the protocols, applications, and

sockets API in the client-server, as well as the flow of data from one application

(using TCP) to another. The boxes labeled TCP and IP represent

implementations of those protocols. Such implementations typically reside in the

operating system of a host. Applications access the services provided by TCP

through the sockets API. The arrow depicts the flow of data from the

OpenMHS application, through the TCP and IP implementations, through the

network, and back up through the IP and TCP implementations at the other

end.

Figure 4.2: A TCP/IP network

30

TCP is designed to detect and recover from the losses, duplications, and

other errors that may occur in the client-server channel provided by IP. TCP

provides a reliable byte-stream channel, so that applications don’t have to deal

with these problems. It is a connection-oriented protocol: Before using it to

communicate, two programs must first establish a TCP connection, which

involves completing an exchange of handshake messages between the TCP

implementations on the two communicating computers. Using TCP is similar to

file input/output (I/O). In fact, a file that is written by one program and read

by another is a reasonable mode of communication over a TCP connection.

TCP provides reliability by doing the following:

 The application data is broken into what TCP considers the best sized

chunks to send. The unit of information passed by TCP to IP is called

segment.

 When TCP sends a segment it maintains a timer, waiting for the other

end to acknowledge reception of the segment. If an acknowledgment is

not received in time, the segment is retransmitted.

 When TCP receives data from the other end of the connection, it sends

an acknowledgment (see Figure 4.3). This acknowledgment is not sent

immediately, but normally delayed a fraction of second.

 TCP maintains a checksum on its header and data. This is an end-to-end

checksum whose purpose is to detect any modification of the data in

transit. If a segment arrives with an invalid checksum, TCP discards it

and does not acknowledge receiving it (it expects the sender to time out

and retransmits).

 Since TCP segments are transmitted as IP datagrams, and since IP

datagrams can arrive out of order, TCP segments can arrive out of order.

A receiving TCP re-sequences the data if necessary, passing the received

data in the correct order to the application.

31

 TCP also provides flow control. Each end of a TCP connection has a

finite amount of buffer space. A receiving TCP only allows the other end

to send as much data as the receiver has buffers for. This prevents a fast

host from taking all the buffers on a slower host.

Figure 4.3: Protocol operation

4.2. Programming the server side

4.2.1. Monitoring the conveyor system

To monitoring conveyor state is necessary to know the position of each

tray at each instant of time. The conveyor does not provide this information,

because for the correct working is not necessary. To control it, the PLC uses

different inductive sensors located throughout the conveyor system. This system

is divided into 12 sectors. At the beginning of each sector it has a stopper to

stop the trays when the PLC program decides. Through these sensors and the

stoppers, Soft-PLC can control the whole transport process.

After analyzing the conveyor working, three possible solutions to

monitoring the position of each tray at each instant of time are reached. Then,

each solution with its advantages and disadvantages are described.

32

4.2.1.1. Possible solutions

1. Implement the conveyor logic into the monitoring application

Reading the status of each sensor at the beginning of each sector

is possible to determine if a tray enters that sector. As the speed is

constant, the position can be calculated once the tray is detected. This

makes it possible to program the logic states reading sensors and

calculate the approximate position of the tray over the conveyor.

This solution has a disadvantage. It needs instantly to know the

change of state of each sensor. Due to the small delay between request

and response data to the server, not always the status change is detected

in the sensors, triggering errors in the visualization.

2. Collect all data of the whole conveyor system into OpenMHS

Another possible solution is to model the trays motion inside the

software PLC. Each sector is divided into segments the size of each tray,

and a list is generated with the information of all segments that will be

sent to the monitoring application (see Figure 4.4).

Figure 4.4: Segments diagram

This list contains a segment identifier and the information of if

have or not tray at that time. In the case of have a tray, is displayed on

the 3D model by the monitoring application.

This solution permitted real-time motion monitoring of all trays,

because all the logic is in the PLC software on the server.

33

A disadvantage of this method is the large amount of information

transmitted per unit time, because the information is being sent to all

segments in which it has divided the conveyor. In addition, the

movement of the trays on the 3D model is not continuous, jumps to

switch segment appears (see Figure 4.4).

3. Collect only the data of each tray into OpenMHS

The third solution is a mixture of the other two. On one hand, all

the motion logic of the trays is modeled in the Soft-PLC from server. On

the other hand, a list is generated with the information of each tray

moving (the ID, position, sector number) and is sent to the monitoring

application.

In the Figure 4.5 can be seen one of the sectors, once the tray

comes in into the sector its position can be determinate, because the

movement speed is constant. At the end of the sector another sensor

detects the tray, if the tray stops at the stopper the sensor continue

active, indicating that the tray remains in that position. In this way if

another tray enters in the sector, it will stop just behind the first tray,

following the methodology of a FIFO system (First Input, First Output).

Figure 4.5: Solution three diagram

This solution permits work in real-time, because logic is

implemented from the server side, and allows to use a smaller size buffer

than solution 2, since only each moving tray sends data. Therefore,

this is the selected solution to monitoring the conveyor system.

34

4.2.1.2. Modelling the conveyor system into OpenMHS

After analyzing the possible solutions and select the best one,

implementation begins. First, it needed divide the conveyor system in sectors or

segments. In Figure 4.6 can be seen the layout of different segments.

Each segment is modeled in OpenMHS, and is composed at least of the

following blocks:

 Creator block: It is responsible for generating a carrier each time it

receives the input signal from the sector.

 Conveyor block: it is a model from conveyor with a specified length,

with this block is possible to model the carrier motion as if was an object

of a queuing system.

 Destroy block: at the end of segment, the carrier is removed in this

block.

 Switch block y logic block OR: these blocks are used only for testing,

during normal operation are not necessary.

35

Figure 4.6: Segments layout

Se
gm

en
t

1

Se
gm

en
t

2

Se
gm

en
t

3

Se
gm

en
t

4

Se
gm

en
t

5

Se
gm

en
t

6

Se
gm

en
t

7

Se
gm

en
t

8
 Se

gm
en

t
9

Se

gm
en

t
1

0

Se
gm

en
t

1
1

 Se
gm

en
t

1
2

Se

gm
en

t
1

3

Se
gm

en
t

1
4

Le
ge

n
d

 I

n
d

u
ct

iv
e

se
n

so
rs

 a
n

d
 s

to
p

p
er

Tr
ay

 li
ft

W
o

rk
 s

ta
ti

o
n

36

Figure 4.7 corresponds to the segments 2, 3, 4, 7, 10 and 13. These

segments are modeled in the same way, a Creator block, two blocks Conveyor

and a Destroy block. Each Conveyor block has a stop condition at the end, and

it is activated depending on the status of the sensors of that segment.

Figure 4.7: Blocks diagram segment 2

The corners for the segment 1 and 5 are modeled according to Figure 4.7.

In this case only a creator block, a conveyor block and a destroy block are

needed. When the carrier is placed over the lift, is necessary to pause for a few

seconds therefore, the conveyor block receives a signal that allows stopping the

carrier while the lift is working.

Figure 4.8: Blocks diagram segment 1

37

The corner for segment 6 is a special case, because the carriers can follow

two paths. To model this situation is necessary to use a new block called

conveyor separator. With this block the carrier path can be chosen. This

decision is based on the position of the first lift, whether it is in the “down”

position the outside line is taken, if it is in the “up” position the inside line is

taken. In Figure 4.9 can be seen this configuration.

Figure 4.9: Blocks diagram segment 6

In this case, a signal is also used to wait the time it takes the lift to

change position. A logic gate is included to determine the position of the

elevator, because it only has information of the “up” and “center” position.

Therefore, when no signal, it means that the lift is in the “down” position.

Last corner, segment 14 (see Figure 4.10), is a different case. It is the

opposite case of segment 6. It is necessary that the carriers that come from the

inside or outside line come out to single output. To model this operation mode

two creator blocks and two conveyor blocks are used. This makes it possible to

model the two situations, since the path length of each conveyor block is

different. Elevators signal is also used to pause the movement during operation.

38

Figure 4.10: Blocks diagram segment 14

Then the segments 8, 9, 11 and 12 are modeled. In these segments the

carriers can change the direction from the inside to the outside line and back

again. Conveyor Separator blocks and conditions of the position of the

respective lifts are used to model this situation. If the lift is in the “down”

position, carrier continuous into the same line, else if it is in the “up” position,

carrier must change line. Due to lack of information directly from the “lower”

state, is also used a logic gate AND. It is very similar to the case of segment 6.

In Figure 4.11 can see the segment 8, the same design method can be applied to

9, 11 and 12.

39

Figure 4.11: Blocks diagram segment 8

Finally, in Figure 4.12 the whole conveyor system model in OpenMHS

shown, with all segments explained above.

40

Figure 4.12: Conveyor system model

41

4.2.2. Process Image Addresses

All information collected from OpenMHS is organized in different

directions of the Process Image, which is then sent to the network. To read the

information from the monitoring application is necessary to know the position of

each data. Each data assigning with its corresponding direction is shown in

Table 4.1.

OpenMHS Process Image

Offset Data Comment

0 to 499 Conveyor System ID, position, conveyor and value

500 Stäubli 1 State 1 Overall state

501 Stäubli 1 State 5 Mode Selected

502 Stäubli 1 Joint 1

Joints compressed

(+120/3)

503 Stäubli 1 Joint 2

504 Stäubli 1 Joint 3

505 Stäubli 1 Joint 4

506 Stäubli 1 Joint 5

507 Stäubli 1 Joint 6

508 to 511 NC Not use

512 Stäubli 2 State 1 Overall state

513 Stäubli 2 State 5 Mode Selected

514 Stäubli 2 Joint 1

Joints compressed

(+120/3)

515 Stäubli 2 Joint 2

516 Stäubli 2 Joint 3

517 Stäubli 2 Joint 4

518 Stäubli 2 Joint 5

519 Stäubli 2 Joint 6

520 to 523 NC Not use

524 Kawasaki State 1

525 Kawasaki State 2

526 Kawasaki Joint 1

Joints compressed

(+120/3)

527 Kawasaki Joint 2

528 Kawasaki Joint 3

529 Kawasaki Joint 4

530 Kawasaki Joint 5

531 Kawasaki Joint 6

532 to 535 NC Not use

Table 4.1: Process Image Addresses

42

4.3. Programming the client side

When studying the documentation of the Tecnomatix.NET API, a class

was found that enabled the creation of a command button integrated into

Process Simulate. The general steps used for creating a plug-in can be described

using a flowchart diagram, see Figure 4.13. The first step is to connect to the

server; if connection fails, it is attempting again. When connected to the server,

the next step is to read and write all data in a buffer. Once the data are

obtained, conveyor trays and robots move. This sequence is repeated every 50

milliseconds.

Figure 4.13: The flowchart shows an overview of how the application works

In the following sections the monitoring application will be described in

more detail. For development the monitoring application has used the

programming language C# object-oriented, because the Tecnomatix .NET API

is ready for this programming language.

43

4.3.1. The TCP Socket

To connect to the server and receive the data is necessary to open a TCP

socket, which provides methods to manage the connection, sending and

receiving through the network. To create the TCP socket is needed to know the

IP address of the server, the port used and also memory space to store the

received data in the buffer. In Figure 4.14 the operation of this object is

described using a flowchart.

Figure 4.14: Flowchart for sockets communication using TCP

44

After creating the socket (the IP address of the server and port is

required), it tries to connect to the server, once connected it sends a message

requesting data from the server Process Image. The server responds by sending

the data to the client, and then the socket writes data to the buffer. If the

connection is still active the procedure is repeated again, updating the

information in the buffer. If the connection is terminated, it informs the server

to close the communication with the client.

4.3.2. Representation of motion data from the robots

First, collect the information of robot objects in the virtual model in

Process Simulate is needed. Using TxApplication.ActiveDocument.PhysicalRoot.

GetAllDescendants it is possible to access all physical objects in the virtual cell

in Process Simulate. In order to retrieve the nodes displayed in the folder

Resources in the Object Tree, all objects are filtered using a class TxTypeFilter.

If TxRobot is used as a filter, the resulting objects are robots and are saved for

later use.

The flowchart in Figure 4.15 shows the sequence to move all robots from

virtual model.

Figure 4.15: Flowchart for move robots

45

After obtaining the objects “robot” from virtual model into Process

Simulate, the data of the six joints are read from the buffer. Joints values are

compressed to use less bytes in the data transfer. Then, it calls the

DecompressJoints method, which subtract 120 and multiply by 3 each joint,

thus turns to obtain the real value of the joint. Finally the MoveRobot[i]

method updates the values of the joints in the “robot” object. Once values are

updated, TxApplication.RefreshDisplay method is called to update the graphical

view.

4.3.3. Representation of motion data from the conveyor

First, collect the information of carrier objects in the virtual model in

Process Simulate is needed. Using TxApplication.ActiveDocument.PhysicalRoot.

GetAllDescendants it is possible to access all physical objects. In order to

retrieve the conveyor object, all objects are filtered using a class TxTypeFilter

with TxDevice as filter. Then using the method GetAllDescendants again over

the conveyor object it is possible to access to the carriers. If

Tx2Or3DimensionalGeometry is used as a filter, the resulting objects are the

carriers.

Figure 4.16: Flowchart for move carriers

46

Once obtained all the carrier objects, they hide from the 3D model using

the method Blank. When the server connection is established, the ID, segment

number and position of each carrier moving read from the buffer.

With this data is called MoveCarrier method. With the ID number is

checked if the current carrier is already in motion, if it is not assigned a new

carrier. If the carrier is already in motion, the location vector with the new

position is updated in the object “carrier”. After upgrading the position data,

the graphic view is refreshed by the method TxApplication.RefreshDisplay.

In the event that a carrier is removed from the conveyor system, its ID

does not reappear. In that case the object "carrier" used the ID that is hidden,

and is released for use in a new carrier.

This process is repeated every 50 ms while the connection to the server is

maintained. Because the high refresh rate, the sensation of movement in objects

that change position is produced.

4.3.4. Simple Button Command

The simple button command to execute de application was named

MotionMonitoring and was placed in the tool bar of Process Simulate, see

Figure 4.17. Once the user clicked on the button the GUI displayed in Figure

4.18 appeared.

Figure 4.17: Command button MotionMonitoring

4.3.5. The Graphic User Interface

A simple GUI was developed in C# to make it easy for a Process

Simulate user to connect to a server. The steps previously mentioned in Section

4.3.1, 4.3.2 and 4.3.3 have been covered in the GUI in Figure 4.18. This is the

main window for the plug-in and is named MotionMonitoring. If the checkbox

47

“Try to connect” is checked the application try to connect to the server with

the IP address and Port assigned. Once connected, if data movement and has

loaded the 3D model will start monitoring.

Figure 4.18: The GUI for setting the connection data

48

5. Test scenarios

5.1. Test one robot from local server

The first test is done by simulating the motion data of a robot from the

same computer, server and client on the same computer. Adjustments are made

in the application to get a good response. All joints are tested and satisfactory

results are obtained. Figure 5.1 shows a screenshot of the test.

Figure 5.1: Monitoring one robot from local server

5.2. Test one robot in real world

The above test is repeated in a completely different scenario. Now the

communication with the lab server is tested, the speed of response is also

checked with the real robot. The results are very good and the refresh rate

improved from the previous test. In Figure 5.2 a screenshot of real robot

monitoring can be seen.

49

Figure 5.2: Monitoring one robot from real world

5.3. Test conveyor system with one carrier

This test is operated conveyor system with a single carrier. It tests the

model implemented in OpenMHS and the first attempts an error is discovered.

After correcting small errors in the block model starts again the monitoring

application.

As seen in Figure 5.3, the carrier moves through the transport system.

The position is not exact, there are small differences. This is due to the

approximate calculation is made of the position when the carrier enters a sector.

After adjusting well the lengths of each segment, position gets closer to

reality.

50

Figure 5.3: Monitoring the conveyor system with one carrier

5.4. Test conveyor system with several carriers

After testing the transport system with one carrier and calibrate the

position, is necessary to monitor more carriers at the same time. In early tests

are discovered a small programming error that caused to stop some carriers.

After solving the problem everything is working properly and the same results

of one carrier are obtained.

Figure 5.4: Monitoring the conveyor system with several carriers

51

5.5. Test conveyor system and robots

In the last test, the conveyor system and a robot are operated in the

same time. Robots and carriers are monitored simultaneously; it is obtained

refresh times of the order of tenths of a second. The tests of monitoring

application are finished. In Figure 5.5 a screenshot of the test is shown.

Figure 5.5: Monitoring the conveyor system and robots

52

6. Conclusion and possible improvements

During implementation of this master thesis I used many different

technologies. First, I learned a lot about the simulation tool Process Simulate. It

is a very comprehensive tool to simulate complex industrial processes and allows

creating new features.

To develop the monitoring application, I had to investigate many

different areas. Learn more about industrial robots, operation and programming,

also conveyors systems and especially the PLC-Software OpenMHS by Dipl.-

Ing. Martin Nardmann.

Monitoring the conveyor system was a challenge due to the complexity of

the system and the lack of information in order to implement it. It was

necessary to develop a model inside the software PLC.

To develop the plug-in for Process Simulate had to learn more about

object-oriented programming. The entire application was developed in C# with

the help of the Tecnomatix .NET API supplied by Siemens.

Also deepen knowledge network sockets and protocols to understand the

operation of the client-server communication. Once defined the concepts was

possible to implement the proposed solution.

Now is possible from any computer with Internet connection and Process

Simulate, visualize real-time motions of robots and carriers that are being

monitored.

After observing the result has been very rewarding, as they have fulfilled

all the objectives set at the beginning and the application is fully functional to

monitoring the robotics lab at the university.

Besides, some improvements Could Be Performed in order to include a

larger number of robots, since at the time of writing this thesis could only be

monitor three robots, the two Stäubli and Kawasaki.

53

The monitoring of the conveyor system can also be improved. At the

moment it is not possible to distinguish between carriers, but the conveyor

system has RFID readers that could be used to read and identify carriers.

Finally, this work has been very exciting because of the challenge posed

do that with new technologies that were never used. I think it's a very

important complement to my studies in Electronics and Automation

Engineering, since in most of the topics discussed in this paper has not tried

during the bachelor.

54

7. References

 [1] D. Makofske, M. Donahoo, K. Calvert. TCP/IP Sockets in C#:

Practical Guide for Programmers. May, 2004

 [2] 2015 Microsoft Corporation. MSDN Library. http://msdn.microsoft.com

/en-us/library/ms123401(v=MSDN).aspx. 2015-03-02

 [3] Siemens PLM. Tecnomatix.NET Manual.

 [4] Siemens PLM. eMServer Data Importing Student Guide, January 2008.

 [5] Siemens PLM. Process Simulate Basic Student Guide, January 2008.

 [6] Soft PLC corporation. www.softplc.com. Texas. 2015.04.12

 [7] Kawasaki robotics, INC (Web). www.kawasakirobotics.com. USA.

2015.05.12

 [8] FANUC robotics, (Web). www.fanucrobotics.com. 2015.04.21

 [9] Boschrexroth, (Web). www.boschrextoth-us.com. USA. 2015.05.12

 [10] Adept Technology (Web). www.adept.com 2015.04.18

http://www.softplc.com/
http://www.kawasakirobotics.com/
http://www.boschrextoth-us.com/
http://www.adept.com/

