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1. Introduction

A meaningful statement is an expression that comes from measurement
theory and follows the so-called Luce’s principle of dimensional analysis (also
termed as the principle of theory construction). According to this, a state-
ment (usually involving a formula or an equation) is meaningful if admissible
transformations of the input variables (the scale by which input variables
are measured) lead to admissible transformations of the output variables
(the scale by which output variables are measured). Whenever this happens,
then it is said that comparison meaningfulness is satisfied. For an account
of measurement theory, see [13] and [15].

Let Ω stand for a given nonempty set. Let R
Ω denote the set of all

real-valued functions defined on Ω, and let BΩ be the subset of RΩ, which
consists of all bounded functions. Let � be a total preorder (also known as
a preference) on BΩ. In simple terms, � is ordinal invariant if the ranking
between any two functions of BΩ does not change whenever the values of
these two functions are measured on the same ordinal scale. In formula, �
is ordinal invariant provided that f � g ⇒ φ ◦ f � φ ◦ g, for every f, g ∈ BΩ,
φ ∈ Φ, where Φ stands for the set that consists of all strictly increasing
real-valued functions of a single variable.

A real-valued function T : BΩ → R is said to be an operator (or a
functional). An operator T is said to be ordinal covariant (respectively,
negatively ordinal covariant) if T (φ◦f) = φ(T (f)) (respectively, if T (φ◦f) =
−φ(−T (f))) holds true for every f ∈ BΩ, φ ∈ Φ. Note that these two
concepts define corresponding functional equations to be satisfied by T . As
will be seen later, a key class of ordinal invariant total preorders; viz., the
continuous and representable ones, are naturally linked to these types of
operators.

Ordinal covariant operators have some interesting features. On the one
hand, they satisfy a property, mentioned above, that plays an important role
in the theory of aggregation functions; namely, comparison meaningfulness.
On the other hand, in the finite dimensional case, ordinal covariant operators
are closely related to lattice polynomial functions. Lattice polynomial func-
tions were introduced by Birkhoff [2]. Recently, they have been completely
characterized (see [17], [20]). Roughly speaking, a lattice polynomial function
on R

n is a Boolean max-min map, i.e., a real-valued function of n variables
that is obtained by computing maxima and minima according to a fixed
collection of subsets of variables. In [18], Marichal and Mesiar provide an
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excellent survey regarding meaningful aggregation functions mapping ordinal
scales into an ordinal scale. These authors study three classes of aggregation
functions defined on particular subsets of the Euclidean space, including cer-
tain interpretations of the main functional equations involving these classes
in the setting of aggregation on finite chains.

Corresponding extensions of these results in the context of BΣ
Ω have

been given by Ovchinnikov and Dukhovny (see [21] and [22]). Here, Σ is a
nonempty algebra of subsets of Ω, and BΣ

Ω ⊆ BΩ is the space of all bounded
measurable real-valued functions on Ω. In particular, in the latter articles, it
is proven that a continuous functional on BΣ

Ω is invariant (under transforma-
tions from the automorphism group of the set of all real numbers) if and only
if it can be represented as a Choquet or Sugeno (fuzzy) integral with respect
to a {0, 1}-valued capacity1. Similar results appear in [8], where the con-
tinuity assumption is replaced with a monotonicity condition. In addition,
the connection between this type of operator and the so-called probabilistic
quantiles, which are of significant prevalence in statistics, is also studied.

The main purpose of the current paper, quite different from the starting-
point of the articles just mentioned, is to offer an account of the continuous
representation problem for the class of continuous and ordinal invariant pref-
erences defined on BΩ (BΩ is equipped with the supremum norm topology).
Thus, we work in a framework more general than those mentioned above,
including the finite-dimensional case. In addition, we show the significance
of our characterization results in social sciences by introducing certain appli-
cations in measurement theory and social choice theory.

Here is a brief outline of the contents of the paper. In Section 2 we
introduce the basics regarding orders and operators on BΩ. In Section 3 our
main theorem is shown: Continuous and ordinal invariant total preorders
defined on BΩ are identified with those that admit a continuous and ordinal
covariant utility (order-preserving) function, or a continuous and negatively
ordinal covariant utility function, or are trivial. When restricted to BΣ

Ω , by
taking advantage of the results in [21] and [22], we can offer the following
finer statement: If the total preorder is also weakly Paretian, then it can be
represented as a Choquet integral with respect to a {0, 1}-valued capacity.

In Section 4, and as a consequence of our main theorem, we present some

1We are grateful to an anonymous referee for bringing our attention to references [18],
[21] and [22].
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results in the field of measurement theory. In particular, we generalize a re-
sult by Marichal and Mathonet [17] (see also [16]) about the characterization
of the class of continuous and comparison meaningful operators. Moreover,
certain monotonicity properties of these operators are also shown. The corre-
sponding results for continuous and ordinal invariant total preorders defined
on BΩ are also presented.

As a second application, we also offer a characterization of certain social
rules, called social evaluation functionals, in the setting of utility theory in
social choice. In particular, we study a slight deviation of the two most sig-
nificant approaches to the social aggregation problem, following Arrow and
Sen, respectively (see [1] and [23]). The important fact is that, in our sce-
nario, and in a similar way to what occurs in Sen’s setting, ordinal invariant
preferences allow for both intra- and inter-personal comparisons of well-being
among individuals in society. Thus, we provide a characterization of those
social evaluation functionals that satisfy social state separability, continuity,
and information invariance, with respect to a single ordinal scale, in terms
of continuous and ordinal covariant operators. For thorough accounts of the
axiomatic foundations of the various welfarist aspects in social choice the-
ory see [9], [4] and [11]. Section 5 draws the main conclusions of the paper,
including a comparison with the existing results in the literature.

2. Preliminaries

We begin by recalling some elementary concepts related to orderings.

Definition 2.1. Let U be a nonempty set. A transitive and complete (hence,
reflexive) binary relation R defined on U is said to be a total preorder.2 A
total order on U is an antisymmetric total preorder.

Associated withR the asymmetric part, also called the strict part, denoted
by Ra, is defined as the following binary relation on U : a Ra b if and only if
a R b and ¬(b R a) (or, equivalently, since R is a total preorder, a Ra b if and
only if ¬(b R a)). Similarly, its symmetric part, denoted by Rs, is defined
by: a Rs b if and only if a R b and b R a. Given two elements a, b ∈ U ,
a is said to be indifferent to b if a Rs b. The (total) preorder R is said to
be nontrivial if a Ra b for some a, b ∈ U . Otherwise, it is said to be trivial.

2In the economics literature a total preorder is also referred to as a preference, whereas
in social choice theory it is known as a social welfare ordering.
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The dual total preorder associated with R is defined as a Rd b if and only if
b R a. A real-valued map u : U −→ R is called a utility function for R if, for
every a, b ∈ U , it holds a R b ⇐⇒ u(a) ≤ u(b). (Alternatively, it is also said
that R is representable).

From now on, let Ω denote a nonempty set. Let RΩ (respectively, BΩ) be
the set of all real-valued functions (respectively, of all bounded real-valued
functions) defined on Ω. On BΩ the supremum norm topology will be con-
sidered.

Definition 2.2. The supremum norm topology on BΩ is given by the metric
induced by the supremum norm. That is, d(f, g) = ||f−g||∞ =supω∈Ω|f(ω)−
g(ω)|, (f, g ∈ BΩ). With this norm, actually, BΩ becomes a Banach space.

Throughout the paper, total preorders defined on BΩ will be considered
too. We will use the notation � to refer to such total preorders while keeping
the symbols R, S, . . . , etc. for a total preorder defined on an abstract set
U . In accordance with this notation, the symbols ≺, ∼, and �d for the
asymmetric part, the symmetric part, and the dual, respectively, will be
used in the sequel when referring to a total preorder � defined on BΩ.

Given f, g ∈ BΩ and λ ∈ R, we will use the notation f + g and λf for the
usual binary operations of addition and multiplication by scalars, pointwise
defined, respectively. The zero function in BΩ will be denoted by 0Ω. The
indicator function of a subset E ⊆ Σ will be denoted by 1E.

Definition 2.3. Given a natural number k ∈ N, a simple function s ∈ BΩ

is one of the form s =
∑k

j=1 xj1Ej
, where, for each j ∈ {1, . . . , k}, xj ∈ R,

Ej ⊆ Ω, and (Ej)
k
j=1 is a partition of Ω.

Given f, g ∈ BΩ, we write f � g whenever f(ω) < g(ω) for all ω ∈ Ω,
f < g whenever f(ω) ≤ g(ω) for all ω ∈ Ω and, for some ω̄ ∈ Ω, f(ω̄) < g(ω̄).
Finally, we write f ≤ g provided that f(ω) ≤ g(ω) for all ω ∈ Ω.

As usual, for f ∈ BΩ and g ∈ R
R, g ◦ f will be their composition. The

diagonal of BΩ will be denoted by D, and it is defined as the subset of all
constant real-valued functions defined on Ω, that is, D = {α1Ω : α ∈ R}.

An important particular case in our analysis will be the n-dimensional
Euclidean space R

n. Let n be a positive integer. Call N = {1, . . . , n}. Note
that BΩ can be identified, both algebraically and topologically, with R

n,
provided that Ω = N . A typical element of Rn will be denoted by x = (xj),
j ∈ N .
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Let A,B be two nonempty sets, and let u : A −→ B be a map. If S ⊆ A,
then the restriction of u to S will be denoted by u|S.

We now state a basic definition that collects the main properties, that
will be used from now on, about total preorders on BΩ. Let f, g ∈ BΩ and
α, λ ∈ R, with 0 ≤ λ, be arbitrarily given.

Definition 2.4. A total preorder � defined on BΩ is:

(1) translatable if f � g implies that f + α1Ω � g + α1Ω,

(2) homothetic if f � g implies that λf � λg,

(3) continuous if both the lower contour set L(f) = {g ∈ BΩ : g � f} and
the upper contour set G(f) = {g ∈ BΩ : f � g} are closed subsets of
BΩ,

(4) Paretian if f ≤ g implies that f � g,

(5) anti-Paretian if f ≤ g implies that g � f ,

(6) monotonic if it is Paretian or anti-Paretian,

(7) weakly Paretian if f � g implies that f ≺ g,

(8) strongly Paretian if f < g implies that f ≺ g.

We now introduce some concepts corresponding to real-valued functions
defined on BΩ.

Definition 2.5. An operator T : BΩ −→ R is:

(1) translative if T (f + α1Ω) = T (f) + α,

(2) homogeneous of degree one if T (λf) = λT (f),

(3) continuous if it is continuous when considering the supremum norm
topology on BΩ, and the Euclidean topology on R,

(4) idempotent if T (α1Ω) = α,

(5) negatively idempotent if T (α1Ω) = −α,

(6) increasing if f ≤ g implies that T (f) ≤ T (g),
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(7) decreasing if f ≤ g implies that T (g) ≤ T (f),

(8) monotonic if it is increasing or decreasing,

(9) strictly increasing if f � g implies that T (f) < T (g),

(10) strongly increasing if f < g implies that T (f) < T (g).

Remark 2.6. In a similar fashion the concepts of a weak anti-Paretian,
a weak monotonic, a strongly anti-Paretian, and a strongly monotonic to-
tal preorder � on BΩ are defined. Alternatively, the concepts of a strictly
decreasing, a strictly monotonic, a strongly decreasing, and a strongly mono-
tonic operator are established.

3. Comparison meaningfulness and ordinal invariance

In this section the main result of the paper is established. Basically, it
provides a characterization of the continuous and ordinal invariant prefer-
ences defined on BΩ, in terms of continuous utility functions that preserve
an ordinal invariance property. This will be the contents of Subsection 3.2.
Before, throughout Subsection 3.1, we present some basic results about com-
parison meaningful and ordinal covariant operators that will be used later.

3.1. Some facts about comparison meaningful and ordinal covariant operators

Recall that the set that consists of all strictly increasing real-valued func-
tions of a single variable will be denoted by Φ, and a typical element of this
set will be denoted by φ.

Definition 3.1. Let f, g ∈ BΩ and φ ∈ Φ be arbitrarily given. An operator
T : BΩ −→ R is said to be:

(1) ordinal covariant3 if T (φ ◦ f) = φ(T (f)),

(2) negatively ordinal covariant if T (φ ◦ f) = −φ(−T (f)),

(3) comparison meaningful if T (f) ≤ T (g) ⇐⇒ T (φ ◦ f) ≤ T (φ ◦ g).

3We follow the terminology given in [8]. Alternative names for the same concept are
those of order invariance or ordinal stability (see, e.g., [18], [21], and [19]). As already
stated in Section 1, the terminology ordinal invariance will be used here when referring
to total preorders.
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Remark 3.2. (i) Note that an ordinal covariant (respectively, a nega-
tively ordinal covariant) operator T satisfies the functional equation
T (φ ◦ f) = φ(T (f)) (respectively, T (φ ◦ f) = −φ(−T (f))) for every
f ∈ BΩ, φ ∈ Φ.

(ii) Suppose that T is an ordinal covariant operator. Then, obviously, T
cannot be constant. Moreover, for every E ⊆ Ω, α ∈ R, it holds
T (α1E) ∈ {0, α}. In particular, T (1Ω) = 1 and T (0Ω) = 0. Indeed,
assume T (α1E) = β /∈ {0, α}. Consider a strictly increasing function
φ ∈ Φ such that φ(α) = α, φ(0) = 0 and φ(β) = α+β

2
, provided that β >

0, and φ(β) = β
2
otherwise. Then T (φ◦α1E) = T (φ(α)1E) = T (α1E) =

β, and φ(T (α1E)) = φ(β) �= β. Thus, T (φ ◦ α1E) �= φ(T (α1E)), a
contradiction. Therefore, T (α1E) ∈ {0, α}.

The next lemma generalizes Theorem 2.1 in [19].

Lemma 3.3. Let T : BΩ −→ R be a comparison meaningful and idempotent
(respectively, negatively idempotent) operator. Then T is ordinal covariant
(respectively, negatively ordinal covariant).

Proof. Let us prove the lemma for the case T idempotent. The case T neg-
atively idempotent is similar. Let f ∈ BΩ and φ ∈ Φ. Then, since T is
idempotent, it holds that T (f) = T (T (f)1Ω). Now, by comparison mean-
ingfulness, we have that T (φ ◦ f) = T (φ ◦ T (f)1Ω)). That is, T (φ ◦ f) =
T (φ◦T (f)1Ω) = T (φ(T (f))1Ω) = φ(T (f)), where the last equality holds true
by idempotency again. This completes the proof.

As a part of the folklore, a density result is now stated. Let us denote by
S the subset of BΩ which consists of all simple functions.

Lemma 3.4. S is dense in BΩ.

Proof. Let f ∈ BΩ and ε > 0 be fixed. Then there are reals m,M such that
m ≤ f(w) < M , for every ω ∈ Ω.Take a positive integer n such that M−m

n
< ε.

Define, for each j = 0, . . . , n− 1, the numbers αj = m+ jM−m
n

, and consider
the subsets of Ω defined as follows: Ej = {ω ∈ Ω : αj ≤ f(ω) < αj+1}, for
every j. Note that (Ej) is a partition of Ω. Finally, define the simple function
s =

∑
j αj1Ej

. Then, d(f, s) = ||f − s||∞ =supω∈Ω|f(ω)− s(ω)| ≤ M−m
n

< ε,
which proves Lemma 3.4.
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A helpful technical result needed to prove Theorem 3.10 below is now
included. Note that, in the context of Lemma 3.5, Ω = N . In addition,
the notation 1n := (1, . . . , 1) ∈ R

n will be used, and the diagonal D will be
D = {(α, . . . , α) ∈ R

n : α ∈ R}.
Lemma 3.5. Let f : Rn −→ R be a comparison meaningful and continuous
function such that f |D = c, with c ∈ R. Then f is constant.

Proof. Let π stands for a permutation of N and consider Zπ to be the subset
of R

n defined in the following way: Zπ = {(xj) ∈ R
n : xπ(1) ≤ · · · ≤

xπ(n)}. Let us call Zπ a rank-ordered set. Let us prove that f is constant
by showing that it is constant over each rank-ordered set of Rn. For ease
of notation suppose, without loss of generality, that the rank-ordered set is
Z = Zid = {x = (xj) ∈ R

n : x1 ≤ · · · ≤ xn}. Let us denote by Z◦, the
(topological) interior of Z and notice that D ⊆ Bd(Z), where Bd(Z) stands
for the boundary of Z.

Let x, y ∈ Z◦ and suppose first that maxj∈N{xj} < minj∈N{yj}. Assume
then, by way of contradiction, that f(x) < f(y). If this occurs, then consider
the vectors x, y ∈ D defined as follows: x = max{xj}1n, y = min{xj}1n.
Then, since f is comparison meaningful, it clearly follows that there are
(open) balls Ux, Uy, centered at x and y respectively, such that the inequality
f(s) < f(t) holds true for every s ∈ S := Ux ∩ Z◦, t ∈ T := Uy ∩ Z◦. Now,
since f(x) = f(y), by using a connectedness argument it can be easily seen
that the latter inequality is possible if and only if f(s) < f(x) = f(y) < f(t),
for every s ∈ S, t ∈ T . Then, by continuity of f , we can select an element
w ∈ Z \ D such that x � w and f(x) = f(w). Consider the segment
connecting x and w, denoted by [x, w]. Then, by comparison meaningfulness
again, it follows that f |[x,w] is f(w)(= f(x)). But this contradicts the fact
that f(s) < f(x), for every s ∈ S. So, f(x) < f(y) is not possible. By
arguing as above, we can see that the case f(y) < f(x) leads to a similar
contradiction. Therefore, we arrive at f(x) = f(y). So, we have shown
that, for each x ∈ Z◦, it holds true that f(y) = f(x), for every y ∈ Z◦

such that maxj∈N{xj} < minj∈N{yj}. Since x is an arbitrary element of Z◦,
this clearly implies that f |Z◦ is a constant function. Continuity of f again,
together with the fact that f |D = c, for some c ∈ R, show that f |Z = c.
Note that the arguments above are independent of the rank-ordered set Zπ

chosen. So, f is a constant function.

Another technical and useful construction, that will be subsequently used,
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is now presented. This resource allows us first to generalize the contents of
Lemma 3.5 to include the case BΩ.

Let n ≥ 1 be a natural number and let be fixed a partition of Ω, (Ej)j∈N .
Consider the subset of BΩ defined as follows A(Ej) = {∑j xj1Ej

: (xj) ∈ R
n}.

Note that A(Ej) can be identified, both algebraically and topologically, with
R

n. Accordingly, x = (xj), x ∈ R
n, will be used to denote a typical element

of A(Ej). Moreover, for any strictly increasing real-valued function of one
variable φ ∈ Φ, and any x = (xj) ∈ A(Ej), it holds φ ◦ x =

∑
j φ(xj)1Ej

∈
A(Ej). In other words, A(Ej) is a Φ− invariant subset of BΩ.

Corollary 3.6. Let T : BΩ −→ R be a comparison meaningful and continu-
ous operator such that T |D = c, with c ∈ R. Then T is constant.

Proof. Let n ≥ 1 be a natural number and let be fixed a partition of Ω,
(Ej)j∈N . Following the notation just introduced above, let A(Ej) ⊆ BΩ.
Then, by identifying A(Ej) with R

n, T |A(Ej)
can be viewed as a continuous and

comparison meaningful real-valued function defined on R
n. So, by Lemma

3.5, T |A(Ej)
is a constant function. Moreover, since D, the diagonal of BΩ,

is contained in each subset A(Ej), it follows that T |S is a constant map (i.e.,
when restricted to the set of simple functions S ⊆ BΩ, T turns to be a
constant map). To finish the proof note that, by Lemma 3.4, S is dense in
BΩ. Hence, by continuity again, it follows that there is c ∈ R such that
T (f) = c, for all f ∈ BΩ, and the proof is complete.

Remark 3.7. (i) If an operator T is ordinal covariant, or negatively or-
dinal covariant, or constant, then it is comparison meaningful. If T is
constant then it is obviously comparison meaningful. Suppose now that
T is ordinal covariant and let f, g ∈ BΩ such that T (f) ≤ T (g). Then,
for any φ ∈ Φ, we have T (φ ◦ f) = φ(T (f)) ≤ φ(T (g)) = T (φ ◦ g). The
converse follows directly by taking the identity map φ(t) = t, (t ∈ R).
The case in which T is negatively ordinal covariant is similar.

(ii) A comparison meaningful operator T may fail to be be ordinal covari-
ant or negatively ordinal covariant. However, as proven in Lemma 3.3
above, if T is comparison meaningful and idempotent, then it is ordi-
nal covariant (similarly, if T is comparison meaningful and negatively
idempotent, then it is negatively ordinal covariant).
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3.2. Characterization of continuous ordinal invariant preferences

We recall the definition of an ordinal invariant total preorder on BΩ.

Definition 3.8. A total preorder � defined on BΩ is said to be ordinal
invariant4 if f � g then φ ◦ f � φ ◦ g, for every f, g ∈ BΩ, φ ∈ Φ5.

Remark 3.9. (i) Let � be a total preorder defined on BΩ and T a utility
function for �. Then T is comparison meaningful if and only if � is
ordinal invariant.

(ii) Let � be a total preorder defined on BΩ. If � is ordinal invariant then
so is �d. Moreover, � admits an ordinal covariant utility function if
and only if �d admits a negatively ordinal covariant utility function.
Indeed, it is easy to see that T is an ordinal covariant utility function
for � if and only if −T is a negatively ordinal covariant utility function
for �d.

So, if a total preorder � defined on BΩ admits a comparison meaningful
utility function then, as stated in Remark 3.9 (i) above, it is ordinal invari-
ant. The converse, under the continuity assumption, is discussed in the next
Theorem 3.10. Note that, actually, in its statement comparison meaning-
fulness has been replaced by the stronger property of ordinal covariance (or
negatively ordinal covariance).

Theorem 3.10. Let � be a total preorder defined on BΩ. Then the following
statements are equivalent:

(i) � admits a continuous and ordinal covariant utility function, or a con-
tinuous and negatively ordinal covariant utility function, or is trivial,

(ii) � is continuous and ordinal invariant.

4This terminology comes from the following basic fact: Suppose that R is a repre-
sentable total preorder defined on an abstract set U , u a utility function for R, and φ ∈ Φ.
Then it is easily shown that φ ◦ u is also a utility function for R. So, strictly increasing
transformations preserve ordinal properties.

5The concept of an ordinal invariant total preorder on BΩ could be given for a proper
subset of Φ. For instance, this notion can be found in the literature when restricted to
the subset of Φ which consists of continuous functions. It is a remarkable fact that if we
do so in all definitions that come later, then the corresponding results stated in the article
remain true under this more restrictive and demanding qualification.
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Proof. (i) implies (ii) is straightforward. So, we will prove (ii) implies (i).
First note that, since � is ordinal invariant, it is homothetic and translatable.
To proceed with the proof the following three cases, that are exhaustive and
mutually exclusive, should be analyzed:

(1) 0Ω ≺ 1Ω. By Theorem 3.1 in [6] (see also Remark 3.2 (iii) in [6])
there is a continuous, translative and homogeneous of degree one utility
function T that represents �. In particular, T fulfils the functional
equation T (λf + α1Ω) = λT (f) + α, for every f ∈ BΩ, and α, λ ∈ R,
with 0 ≤ λ. Let us see that, actually, T is ordinal covariant. To that
end, let f ∈ BΩ and φ ∈ Φ be arbitrarily given. Since T is idempotent,
and therefore T (f) = T (T (f)1Ω), it holds true that f ∼ T (f)1Ω. Thus,
by ordinal invariance, it follows that φ ◦ f ∼ φ ◦ T (f)1Ω. Therefore,
T (φ ◦ f) = T (φ ◦ T (f)1Ω). But, T (φ ◦ T (f)1Ω) = T (φ(T (f))1Ω) =
φ(T (f)). So, T (φ ◦ f) = φ(T (f)), and we are done.

(2) 1Ω ≺ 0Ω. In this case, let us consider the dual total preorder �d.
Then �d is a continuous and ordinal invariant total preorder on BΩ

for which 0Ω ≺d 1Ω. So, by case (1) above there is a continuous and
ordinal covariant utility function, say T , that represents �d. Therefore,
by Remark 3.9 (ii), −T is a continuous and negatively ordinal covariant
utility function for �, and we are done.

(3) 1Ω ∼ 0Ω. Let α ∈ R. If 0 ≤ α, then, by homotheticity, it follows
that α1Ω ∼ 0Ω. If α < 0, then −α1Ω ∼ 0Ω and, by translativity,
−α1Ω + α1Ω ∼ 0Ω + α1Ω. That is, 0Ω ∼ α1Ω. So, we have proven that
α1Ω ∼ 0Ω, for every α ∈ R.

Let n ≥ 1 be a natural number and consider a partition of Ω, (Ej)j∈N .
Define the following binary relation �∗ on R

n: x = (xj) �∗ y =
(yj) ⇐⇒ ∑

j xj1Ej
�

∑
j yj1Ej

. It is obvious to see that �∗, so-defined,
is actually a total preorder on R

n. Moreover since � is continuous and
ordinal invariant, so is �∗. Now, by Debreu’s theorem (see [10] or [5]),
there is a continuous utility function, say u : Rn −→ R, for �∗. By Re-
mark 3.9 (i) u is comparison meaningful since �∗ is ordinal invariant.
In addition observe that, by the argument above, u|D is a constant
function (D is the diagonal of Rn). Now, by Lemma 3.5, it follows that
u is a constant function. In other words, �∗ turns out to be the trivial
total preorder on R

n. But this means that, when restricted to the sub-
set {∑j xj1Ej

: (xj) ∈ R
n}, � is also trivial. Now, since the partition
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(Ej)j∈N is arbitrary, it follows that � is trivial over S, S being the
subset which consists of all simple functions on BΩ. Since, by Lemma
3.4, S is dense in BΩ it follows, by continuity again, that � is trivial.

So, the proof is complete6.

Remark 3.11. By Theorem 3.10 we may note that continuous and non-
trivial ordinal invariant preferences (i.e., total preorders) can be interpreted
as solutions of functional equations involving comparison meaningfulness
and/or ordinal covariance of operators (see Remark 3.2).

As a direct consequence of Theorem 3.10 we obtain the following corollary.

Corollary 3.12. Any continuous, ordinal invariant, and weakly Paretian
total preorder defined on BΩ admits a continuous and ordinal covariant utility
function.

Remark 3.13. (i) The continuity assumption cannot be dispensed with
from the statement of Theorem 3.10. Indeed, let BΩ = R

n. Consider
the lexicographic total order on R

n which, clearly, is ordinal invariant
and nontrivial. Yet, neither an ordinal covariant nor a negatively ordi-
nal covariant utility function can exist that represents it (actually, it is
not even representable (see [10])).

(ii) It can be shown that the conclusion of Theorem 3.10 remains valid if
the supremum norm topology on BΩ is replaced by the weak topology
(i.e., the topology of the pointwise convergence of real-valued functions
inherited from the product topology on R

Ω). Also, the conclusion re-
mains true if BΩ is replaced by BΣ

Ω , i.e., the subset of BΩ which consists
of all bounded measurable real-valued functions defined on Ω (here Σ

6Case (3) in the proof of Theorem 3.10 can be argued in the following alternative way:
Note that, if Ω is infinite, then BΩ is a nonseparable topological space. So, in general,
neither of the two fundamental results in topological utility theory; namely, the Debreu’s
Theorem or the Eilenberg’s Theorem (see Theorems 3.2.5 and 3.2.6 in [5]) can be used to
derive the existence of a utility function for �. Yet, since � is homothetic and continuous
(and, obviously, the zero function 0Ω belong to BΩ) we can appeal to Corollary in [3] to
conclude that there is a continuous and homogeneous of degree one utility function, say
T , for �. Since T is homogeneous of degree one and continuous, it follows that T (0Ω) = 0.
Also, by the first part of the proof of case (3), it holds that T |D is zero. Then, Corollary
3.6 applies to conclude that T is the zero operator and therefore � is trivial.
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denotes an algebra, or a σ-algebra, of subsets of Ω). These were the
function spaces considered in [21], [22], and [8]. Moreover, our proof
of Theorem 3.10 can be straightforwardly adapted to other function
spaces such as the Banach space of essentially bounded and measur-
able real-valued functions defined on a measure space (Ω,Σ, μ), usually
denoted by L∞(Ω), or the Banach space of continuous real-valued func-
tions defined on a compact topological space.

(iii) By using the results stated in [21] and [22], a finer description of Corol-
lary 3.12 can be presented7.

Let � be a continuous, ordinal invariant, and weakly Paretian total
preorder defined on BΣ

Ω . Then, there is a {0, 1}-valued capacity8 μ,
defined on Σ, such that T (f) =

∫
fdμ, f ∈ BΣ

Ω , is a continuous utility
function for �, where the integral on the right-hand side is the Choquet
integral with respect to μ9.

4. Interdisciplinary applications to measurement theory and social
choice

In this section two applications of our main result (namely, Theorem 3.10
above) are included. The first refers to measurement theory, and plays an
important role in mathematical psychology and aggregation functions (see
[13], [17], [16], [18] and [12]). The second has to do with utility theory
methods encountered in social choice (see [9], [4] and [11]).

4.1. Applications to measurement theory

In relation to the first application, and following our approach, we are
going to characterize the class of continuous and comparison meaningful op-
erators defined on BΩ. This result generalizes the one obtained in the finite-
dimensional case by Marichal and Mathonet [17] using other technical tools.
Our proof is much shorter than theirs and is based upon order-theoretical
principles.

7We are grateful to an anonymous referee for calling our attention to the precise refer-
ences that have allowed us to reach this result.

8A capacity is a set function μ : Σ −→ R such that μ(∅) = 0, μ(Ω) = 1, and A ⊂ B
implies μ(A) ≤ μ(B).

9In addition, the integral representation provided in (i) turns out to be a (generalized)
lattice polynomial (see Theorems 3 and 4 in [21]).
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Theorem 4.1. Let T : BΩ −→ R be an operator. Then the following state-
ments are equivalent:

(i) T is comparison meaningful and continuous,

(ii) Either T is constant or there are both a strictly monotonic continuous
function g : R −→ R, and a continuous and ordinal covariant operator
U such that T = g ◦ U .

Proof. (ii) implies (i) is straightforward. For the converse, consider the binary
relation, RT , on BΩ defined as follows: fRT g ⇐⇒ T (f) ≤ T (g), (f, g ∈ BΩ).
It is simple to see that RT is a continuous total preorder on BΩ. In accor-
dance with the convention of Section 2, let us denote RT by �T . Now, since
T is comparison meaningful it follows, by Remark 3.9(i), that �T is ordinal
invariant. So, by Theorem 3.10, �T admits a continuous and ordinal covari-
ant utility function, or a continuous and negatively ordinal covariant utility
function, or is trivial. If �T is trivial, then T is constant and we are done.
Suppose that �T admits a continuous and ordinal covariant utility function,
say U , that represents �T . Then, since T is also a continuous representation
of �T , it follows that there is a continuous and strictly increasing function,
say g : R −→ R, such that T = g ◦U10 and we are done. If �T admits a con-
tinuous and negatively ordinal covariant utility function, then (�T )d admits
a continuous and ordinal covariant utility function. Therefore, by the latter
argument, −T = g ◦ U , for some continuous and strictly increasing function
g : R −→ R and some continuous and ordinal covariant utility function U .
So, T = −g ◦ U and the proof is finished.

We now include some results regarding certain monotonicity properties of
operators and total preorders on BΩ. Marichal and Mathonet [17] studied, in
the finite dimensional case, the mathematical structure of the set of contin-
uous, comparison meaningful, and idempotent real-valued functions. They
showed that this set coincides with the class of the so-called lattice polynomial
functions. Roughly speaking, a lattice polynomial function defined on R

n is
a Boolean max-min map, that is, a real-valued function of n variables that is

10It is a standard result in utility theory (see e.g. [14], p.26) that if both h and p
represent a total preorder � on a set Ω, then there is an increasing function ϕ : R −→ R

such that (a) ϕ is strictly increasing on p(Ω) = {r : r = p(ω), for some ω ∈ Ω}, (b)
h = ϕ ◦ p. Notice that in our case p(Ω) = S(BΩ) = R, since S(α1Ω) = α, for every α ∈ R.
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obtained by computing maxima and minima according to a fixed collection
of subsets of variables (see also [20]). In particular, any lattice polynomial
function is nondecreasing (actually, it is strictly increasing). Based on this
fact, we prove the following result.

Theorem 4.2. Any continuous and comparison meaningful operator T :
BΩ −→ R is monotonic.

Proof. Note that, by Theorem 4.1, it is sufficient to show the statement
for ordinal covariant operators. Moreover, by the proof of Theorem 3.10 in
combination with the conclusion of Theorem 4.1 again, we may assume that
this operator is translative and homogeneous of degree one. In particular, it is
idempotent. Let then T : BΩ −→ R be a continuous, idempotent and ordinal
covariant operator. Let us prove that T |S is nondecreasing, where S ⊆ BΩ

consists of all simple functions. The result then would follow by density. Let
s, r ∈ S such that s ≤ r. Then, by changing the partitions if necessary, we
may assume without loss of generality that there are a positive integer n and a
partition of Ω, (Ej)j, such that s =

∑
j sj1Ej

, r =
∑

j rj1Ej
where sj, rj ∈ R,

for every j ∈ N . Consider the subset of BΩ, A(Ej), defined just before
Corollary 3.6. Observe that s, r ∈ A(Ej) and also that D ⊂ A(Ej), where D is
the diagonal of BΩ. Consider the restriction of T to A(Ej), i.e., T |A(Ej). Then,
T |A(Ej) is a continuous, comparison meaningful, and idempotent function on
R

n. By Theorem 3.1 in [17]11, it follows that T |A(Ej) is a lattice polynomial
function, whence a nondecreasing function. So, T (s) ≤ T (r), as desired, and
the proof is complete.

The following result is a direct consequence of Theorem 4.2.

Corollary 4.3. Any continuous and ordinal invariant total preorder on BΩ

is monotonic.

Proof. Indeed, let � a continuous and ordinal invariant total preorder on
BΩ. Then, by Theorem 3.10 and Remark 3.7(i), there is a continuous and
comparison meaningful utility function, say T , that represents �. Now, by

11Theorem 3.1 in [17] is stated for functions defined on an n-dimensional cube; i.e.,
for domains of the form [a, b]n, for some closed and bounded real interval [a, b]. Yet, the
proof can be directly extended to the whole Euclidean space Rn (for that purpose, see also
Corollary 4.1 in [16]).
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Theorem 4.2, T is monotonic, hence � is Paretian or anti-Paretian. So, � is
monotonic.

Remark 4.4. (i) As a consequence of Corollary 4.3, if a continuous and
ordinal invariant total preorder � on BΩ is such that 0Ω � 1Ω, then it is
Paretian. Nevertheless, note that � may not be weakly Paretian even
though 0Ω ≺ 1Ω. Indeed, let Ω = (0, 1) and consider the total preorder
on BΩ given by: f � g ⇐⇒ supx∈(0,1)f(x) ≤ supx∈(0,1)g(x). Then, �,
clearly, is continuous, ordinal invariant and Paretian. Moreover, 0(0,1) ≺
1(0,1). However, it is not weakly Paretian since, for all x ∈ (0, 1), f(x) =
x2 � g(x) = x and f ∼ g. Also, note that T (f) =supx∈(0,1)f(x),
f ∈ BΩ, is a continuous and ordinal covariant utility function for �.
This means that the converse to Corollary 3.12 does not hold in general.
Yet, for the case Ω = N , Corollary 3.12 is an if and only if statement
since any lattice polynomial function on R

n is strictly increasing.

(ii) As a consequence of Corollary 4.3, in combination with Remark 3.2(ii),
the following strong version of Corollary 3.12 is obtained.

Let � be a total preorder defined on BΩ. Then the following statements
are equivalent:

(i) � admits a continuous and ordinal covariant utility function,

(ii) � is continuous, ordinal invariant, nontrivial, and Paretian.

(iii) Also, the following generalization of the result presented in Remark
3.13(iii) holds.

Let � be a total preorder defined on BΣ
Ω . Then the following statements

are equivalent:

(i) There is a {0, 1}-valued capacity μ, defined on Σ, such that T (f) =∫
fdμ, f ∈ BΣ

Ω , is a continuous utility function for �, where the
integral on the right-hand side is the Choquet integral with respect
to μ,

(ii) � is continuous, ordinal invariant, nontrivial, and Paretian.

In relation to strong monotonicity we reach the following negative result.

Theorem 4.5. Suppose that Ω contains more than one point. Then no
continuous operator T : BΩ −→ R can exist that is comparison meaningful
and strongly monotonic.

17



Proof. It is sufficient to prove the corollary for a strongly increasing operator
T since for the case of a strongly decreasing operator the proof follows directly
by considering the operator −T . Let then T : BΩ −→ R be a continuous,
comparison meaningful, and strongly increasing operator. Note that T is
not a constant operator since it is strongly increasing. So, by Theorem 4.1,
there are both a strictly monotonic continuous function g : R −→ R, and
a continuous and ordinal covariant operator U such that T = g ◦ U . In
addition, note that U is strongly monotonic since U = g−1 ◦ T . Assume
that U is strongly increasing, the other case being handled similarly. We
will use once again the construction presented just before Corollary 3.6. So,
let (Ej)j, j ∈ N , be a nontrivial partition of Ω and consider the restriction
of U to A(Ej), U |A(Ej). Since U |A(Ej) can be viewed as a function from R

n

into R and, by hypothesis, the cardinality of Ω is strictly greater than one,
it follows that n > 1. Now, by Theorem 4.1 in [19] (see also Remark 3.2(ii)),
it holds that U(

∑
j xj1Ej

) ∈ {x1, . . . , xn}, for every x = (xj) ∈ R
n. But

the fulfilment of the latter condition contradicts the fact that U is strongly
increasing. Indeed, let (1, . . . , n) ∈ R

n. Then, there is i ∈ N such that
U(

∑
j j1Ej

) = i. Let p be a positive integer and consider the vector xp =

(1, . . . , xp
k = k + 1

p
, . . . , n) ∈ R

n, where k ∈ N , k �= i. Note that, for every p,

(1, . . . , n) < xp, which means that
∑

j x
p
j1Ej

<
∑

j j1Ej
. Then, by continuity,

for a large enough p it follows U(
∑

j x
p
j1Ej

) = i = U(
∑

j j1Ej
), which violates

the fact that U is strongly increasing. Therefore, whenever the cardinality
of Ω is strictly greater than one, no continuous, comparison meaningful, and
strongly increasing operator T : BΩ −→ R can exist.

Remark 4.6. If Ω is a singleton, then BΩ = R and the strongly monotonic
operators T : BΩ −→ R coincide with the set that consists of all strictly in-
creasing and all strictly decreasing real-valued functions. A similar statement
to Theorem 4.5 above, for function spaces that include bounded measurable
real-valued functions defined on Ω, such as BΣ

Ω or L∞(Ω), holds true provided
that some other assumption (stronger than the cardinality of Ω is one) on
the algebra (or σ-algebra) Σ is added. This assumption is that Σ contains,
at least, one nontrivial set. In other words, {∅,Ω} ⊂ Σ. Indeed, note that
if Σ = {∅,Ω}, then the only measurable real-valued functions on Ω are the
constant ones and, therefore, BΣ

Ω , or L
∞(Ω), equals to the reals.

Arguing as in the proof of Corollary 4.3, in combination with Theorem
4.5, the following result is obtained.
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Corollary 4.7. Suppose that Ω contains more than one point. Then no con-
tinuous total preorder on BΩ can exist that is ordinal invariant and strongly
monotonic.

4.2. An application to social choice

A second application of our approach to the context of utility theory in
the social choice framework is now developed. In the spirit of the results that
appear in the literature on utility measurability, and intra- and inter-personal
comparability (see, e.g., [4]), we provide a characterization of a class of social
rules called social evaluation functionals.

Before introducing the application some definitions and notations are still
needed.

Let X be a nonempty set, usually called in the social choice literature the
set of social outcomes (or, alternatively, the set of alternatives). Denote by Ω
the set of agents, or individuals, (that in the model is allowed to be infinite)
in society. For a given individual ω ∈ Ω, a typical function from X to R

will be denoted by uω. Actually, uω can be understood as a utility function
for the agent ω. Indeed, consider the total preorder Ruω on X defined by
x Ruω y ⇐⇒ uω(x) ≤ uω(y), (x, y ∈ X). Then, it is straightforward to see
that uω is a utility function for Ruω . For this reason we will use the term
utility function when referring to real-valued functions defined on X. Let us
denote by U the set of all real-valued functions defined on X. For technical
reasons, derived from topological considerations, we will assume from now
on that the utility functions considered are bounded. So, Ub will denote the
set of all bounded real-valued functions endowed with the supremum norm
topology. From the point of view of applications, limiting the analysis to Ub

is not a severe restriction. Indeed, it can be easily shown that for any utility
function, say u, there is a bounded utility function, say v, which represents
the same ordering as u (see footnote (4) above).

A profile of (utility) functions will be denoted by U = (uω)ω∈Ω and UΩ will
stand for the set of all possible profiles. Note that each profile U = (uω)ω∈Ω
can be interpreted as a social state where the individuals provide evaluations
of the corresponding social outcomes. For a given x ∈ X and U = (uω) ∈ UΩ,
U(x) will denote the map on Ω, U(x)(ω) = uω(x). Finally, UΩ

b ⊆ UΩ is given
by UΩ

b := {U = (uω) ∈ UΩ : supx∈X,ω∈Ω|U(x)(ω)| < ∞}. On UΩ
b we will

consider the topology that is induced by the norm supx∈X,ω∈Ω|U(x)(ω)|.
Following [6], a social evaluation functional is a rule F : UΩ

b → Ub that
assigns a real-valued function F (U) ∈ Ub, interpreted as the social utility
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function, to any profile U in the domain UΩ
b .

Definition 4.8. Let x, y ∈ X and U, V ∈ UΩ
b be arbitrarily given. A social

evaluation functional F is:

(1) Paretian if U(x) ≤ U(y) implies that F (U)(x) ≤ F (U)(y),

(2) weakly Paretian if U(x) � U(y) implies F (U)(x) < F (U)(y),

(3) strongly Paretian if U(x) < U(y) implies that F (U)(x) < F (U)(y),

(4) social state separable if U(x) = V (y) entails F (U)(x) = F (V )(y),

(5) continuous if it is continuous with respect to the topologies on Ub and
UΩ
b introduced above.

For a profile U = (uω) ∈ UΩ
b and a real-valued function of a single variable

φ, φ ◦ U stands for the following profile: φ ◦ U = (φ ◦ uω) ∈ UΩ
b .

We now translate to our context the standard concept of informational
invariance with respect to a single ordinal scale, that is usually encountered
in the social choice literature. Note that it allows for both intra and inter
personal comparability of welfare among individuals.

Definition 4.9. Let x, y ∈ X, U ∈ UΩ
b and φ ∈ Φ be arbitrarily given. A

map F : UΩ
b → Ub satisfies information invariance with respect to a single

ordinal scale if F (U)(x) ≤ F (U)(y) entails F (φ ◦ U)(x) ≤ F (φ ◦ U)(y).

By taking advantage of the results obtained earlier, we reach the following
characterization.

Theorem 4.10. For a map F : UΩ
b → Ub the following statements are equiv-

alent:

(i) F satisfies social state separability, continuity, and information invari-
ance with respect to a single ordinal scale,

(ii) Either F is constant or there are both a strictly monotonic continuous
function g : R −→ R, and a continuous and ordinal covariant operator
T : BΩ −→ R such that F (U)(x) = (g ◦ T )(U(x)), for every x ∈ X,
U ∈ UΩ

b .
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Proof. The implication (ii) =⇒ (i) is straightforward. So, we will focus on the
other implication (i) =⇒ (ii). Suppose that F is not constant. Define then
the operator T : BΩ −→ R as follows: For each f ∈ BΩ, set T (f) = F (U)(x),
where U ∈ UΩ

b is such that U(x) = f , for some x ∈ Ω. Then, since F satisfies
social state separability, it follows that T is well-defined. Moreover, since
F is continuous so is T . Furthermore, T is comparison meaningful since F
satisfies information invariance with respect to a single ordinal scale. Hence,
by a direct application of Theorem 4.1, the desired conclusion is obtained.

Remark 4.11. (i) Note that some of the most popular social evaluation
functionals in social choice theory appear within the frame of Theorem
4.10. For instance, the dictatorial rules (there is ω0 (the dictator) ∈ Ω
such that F (U)(x) = uω0(x), for every U = (uω) ∈ UΩ

b , x ∈ X), or
the Rawlsian rules (which are given by F (U)(x) = infω∈Ω{uω(x)}, for
every U = (uω) ∈ UΩ

b , x ∈ X).

(ii) If in the statement of Theorem 4.10 it is also required that F be weakly
Paretian, then g is strictly increasing. In addition, by calling at Corol-
lary 4.7, we can offer the following impossibility result: “Suppose that
Ω contains more than one individual. Then no strongly Paretian social
evaluation functional F : UΩ

b → Ub can exist that satisfies social state
separability, continuity and information invariance with respect to a
single ordinal scale”.

5. Conclusions

In this paper, we study the continuous representation problem, for the
class of ordinal invariant preferences defined on BΩ, the Banach space of all
bounded real-valued functions defined on Ω. The kind of representation ob-
tained involves the so-called ordinal covariant operators, which are naturally
linked to the concept of comparison meaningfulness. Certain interplays be-
tween these operators are established, including a monotonicity property. In
addition, two applications of our results in behavorial sciences are presented;
specifically, one in measurement theory and another in social choice theory.

In relation to the existing literature on the topic of aggregation functions,
or functionals, that preserve ordinal invariance properties, we could mention
the fundamental papers [17], [16], [18], [19], and [20] to [22]. Since we work
in a preferential context, the scope of all these papers substantially differs
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from ours. Yet, we can take advantage of certain interesting functional rep-
resentations, such as those shown in [21] and [22], to obtain some refinements
in terms of the existence of a Choquet integral representation.
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S, Hammond PJ, Seidl Ch (eds) Handbook of Utility Theory Vol(2).
Kluwer Academic Publishers, Amsterdam pp. 1099-1177.

[5] Bridges DS, Mehta GB (1995) Representations of preference orderings.
Springer-Verlag, Berlin.

[6] Candeal JC (2013) Homothetic and translatable preferences: Utility
representation and functional equations involved. J. Math. Anal. Appl.
404:373-384.

[7] Candeal JC (2015) Social evaluation functionals: a gateway to continuity
in social choice. Soc. Choice Welf. 44:369-388.

[8] Chambers CP (2007) Ordinal aggregation and quantiles. J. Econom.
Theory 137:416-431.

[9] d’Aspremont C, Gevers L (2002) Social welfare functionals and inter-
personal comparability. In: Arrow KJ, Sen A, Suzumura K (eds) Hand-
book of Social Choice and Welfare Vol(1). North-Holland, Amsterdam
pp. 459-54.

22



[10] Debreu G (1964) Continuity properties of Paretian utility. Internat.
Econom. Rev. 5:285-293.

[11] Fleurbaey M, Hammond PJ (2004) Interpersonally comparable utility.
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