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bDepartamento de Automática y Computación. Universidad Pública de Navarra, Campus
de Arrosad́ıa, 31006 Pamplona, Spain.

Abstract

The main goal of the paper is the study of the L-fuzzy Concept Analysis when
the L-fuzzy context (L,X, Y,R,Q) uses two L-fuzzy relations to represent the
relationship between the objects X and the attributes Y . This generalization
will be called L-fuzzy bicontext. This situation is very usual in different
disciplines of social sciences.

We study the L-fuzzy concepts of these L-fuzzy bicontexts and we obtain
some interesting results. Specifically, we will be able to classify the biconcepts
of the L-fuzzy bicontext.

Finally, a practical case is developed using this new tool.

Keywords: Formal concept analysis, L-fuzzy concept analysis, knowledge
acquisition

1. Introduction

This paper presents a generalization of the L-fuzzy Concept Analysis
when the L-fuzzy context (L,X, Y,R,Q) uses two relations R ∈ LX×Y and
Q ∈ LY×X to set up the relation between the set of objects X and the set of
attributes Y.

This situation is very common in social sciences, to analyze the human
behavior, or in philosophy. Also in economy, to make studies of preference
relations (when X = Y ).
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We will see that the process of obtaining the L-fuzzy concepts is more
complex in this situation than in the usual L-fuzzy concept analysis but
we will use the results of P. and R. Cousot to present new algorithms of
calculation.

We also propose a new method that allows to classify the L-fuzzy concepts
of this new L-fuzzy context and to establish similarity relations between the
objects and the attributes.

The idea of defining an L-fuzzy context from other two given contexts
has previously been treated in other papers such as [14], where the authors
defined the L-bonds and the direct product of two L-fuzzy contexts, or in
[1] where the composition of L-fuzzy contexts was analyzed. However, the
problem presented in this work is noticeably different because the relation-
ship between two elements will depend on the point of view of the considered
element.

We will complete the section with the main results about this subject.

1.1. The Formal Concept Analysis

R. Wille in his Formal Concept Analysis [21] proposes a new theory based
on the three basic ideas of the conceptual knowledge: the objects, the at-
tributes and the concepts. These ideas are joined through three basic rela-
tions: one object has an attribute, one object belongs to a concept and one
concept is a subconcept of another one. With this analysis a new model to
represent the concepts and to set up hierarchies among them is defined.

The Formal Concept Analysis of R. Wille [21, 12] extracts information
from a binary table that represents a formal context (X, Y,R) where X and
Y are two finite sets of objects and attributes respectively and R ⊆ X×Y is
a binary relation defined between them. The hidden information is obtained
by means of the formal concepts which are pairs (A,B) with A ⊆ X, B ⊆ Y
verifying A⋆ = B and B⋆ = A, where ⋆ is the derivation operator that
associates the attributes related to the elements of A to every object set A,
and the objects related to the attributes of B to every attribute set B. These
formal concepts can be interpreted as a group of objects A that shares the
attributes of B.
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1.2. L-fuzzy concept analysis

In previous papers [7, 9] we have defined the L-fuzzy contexts (L,X, Y,R),
with L a complete lattice, X and Y sets of objects and attributes respectively
and R ∈ LX×Y an L-fuzzy relation between the objects and the attributes.
This is an extension of the Wille’s formal contexts to the fuzzy case when the
relationship between the objects and the attributes takes values in a complete
lattice L, instead of being binary values.

In our case, the new L-fuzzy concepts (A,B) ∈ LX×LY are pairs obtained
as follows:

First, we defined the derivation operators (·)1 and (·)2 given by means of
the following expressions, to work with these L-fuzzy contexts:

For any A ∈ LX and B ∈ LY ,

A1(y) = inf
x∈X

{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the lattice (L,≤) and where
A1 represents the attributes related to the objects of A in a fuzzy way, and
B2 represents the objects related to all the attributes of B.

The defined L-fuzzy subsets A1 and B2 are said to be the fuzzy extension
and the fuzzy intension respectively, and can be expressed by means of the
triangle operator ⊳ [13] associated with the implication operator I as:

A1 = A ⊳ R, B2 = B ⊳ Rop,

where Rop ∈ LY×X is the opposite relation of R.
The information stored in the context is visualized by means of the L-

fuzzy concepts that are pairs (A,A1) ∈ LX × LY where A is a fixed point of
the operator ϕ, which is defined from the derivation operators (·)1 and (·)2
as ϕ(A) = (A1)2 = A12. These pairs, whose first and second components are
said to be the fuzzy extension and intension respectively, represent a set of
objects that share a set of attributes in a fuzzy way.

The set L = {(A,A1)/A ∈ fix(ϕ)}, where fix(ϕ) represents the set of fixed
points of the operator ϕ, with the order relation ≤ defined as:

(A,A1) ≤ (C,C1) if A ≤ C( orA1 ≥ C1)

is a complete lattice that is said to be the L-fuzzy concept lattice [7, 9].
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On the other hand, considering A ∈ LX , (or B ∈ LY ) we can obtain the
associated L-fuzzy concept. In the case of using a residuated implication,
the associated L-fuzzy concept is (A12, A1) (or (B2, B21)).

Other important papers that generalize the Formal Concepts Analysis
using residuated implication operators are due to R. Belohlavek [3, 4, 5] and
S. Pollandt [18]. Moreover, extensions of the Formal Concept Analysis to
the interval-valued case are in [2, 11] and to the fuzzy property-oriented and
multi-adjoint concept lattices framework in [16, 15, 17].

The rest of the paper is organized as follows: Section 2 tackles a general
study of the L-fuzzy bicontexts and the definition of the L-fuzzy biconcept.
Section 3 studies the construction of the L-fuzzy biconcept lattice. In Section
4 the problem of the classification of the L-fuzzy biconcepts is analyzed. Fi-
nally, the conclusions and future work are detailed in Section 5. Furthermore,
interesting examples can be found throughout the paper.

2. L-fuzzy Bicontexts

Let (L,≤) be a complete lattice with cardinality |L| ≥ 2. Consider X
and Y two non empty sets.

Definition 1. The tuple (L,X, Y,R,Q) with R ∈ LX×Y and Q ∈ LY×X , is
said to be an L-fuzzy bicontext where X and Y are the object and attribute
sets respectively, and R and Q represent the relationship between the elements
of X and Y.

Let us see an example to introduce these new contexts:

Example 1. Consider the L-fuzzy bicontext (L,X, Y,R,Q) where X and Y
are two groups of people. The lattice is L = {0, 0.5, 1}, and the relations
R ∈ LX×Y and Q ∈ LY×X represent the opinion of the people of X about Y
and the people of Y about X respectively (see Table 1). The value 1 means
“like” and the value 0 means “don’t like” or “dislike”.

In order to study the L-fuzzy concepts of these new L-fuzzy bicontexts,
we will define the derivation operator associated with an L-fuzzy relation as
follows:
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Table 1: Opinion of the people of each of the groups about the other one

R y1 y2 y3 y4 y5
x1 1 0 0.5 0.5 0
x2 0 1 1 0 0
x3 0.5 0 0 1 1
x4 1 0 0 0.5 1

Q x1 x2 x3 x4
y1 1 0 0.5 1
y2 0 1 0 0
y3 0 1 1 0
y4 1 0 0.5 1
y5 0 0 0 1

Definition 2. Let X1 and X2 be two finite sets and let us consider S ∈
LX1×X2 an L-fuzzy relation between them. The derivation operator associated
with the relation S,(·)S , is defined as:

For every A ∈ LX1 and z ∈ X2, AS(z) = inf
t∈X1

{I(A(t), S(t, z))}

where I : L× L −→ L is an L-fuzzy implication operator.
The L-fuzzy set AS represents, in a fuzzy way, the set of elements of X2

related by S to all the elements of A.

Hence, in the L-fuzzy bicontext (L,X, Y,R,Q), we can consider two
derivation operators which expressions are:

For any A ∈ LX and B ∈ LY ,

AR(y) = inf
x∈X

{I(A(x), R(x, y))}

BQ(x) = inf
y∈Y

{I(B(y), Q(y, x))}

with I : L× L −→ L an L-fuzzy implication operator.
AR represents the set of attributes related to all the objects of A in R, in

a fuzzy way, and BQ, the objects related to all the attributes of B in Q.

Remark 1.

a) If Q = Rop then the L-fuzzy bicontext (L,X, Y,R,Q) and the L-fuzzy
context (L,X, Y,R) are coincident. In this case, the derivation op-
erators defined on the L-fuzzy context are such that (·)1 = (·)R and
(·)2 = (·)Rop .
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b) If R is a symmetrical relation and Q = R, then the L-fuzzy bicontext
(L,X, Y,R,Q) and the L-fuzzy context (L,X, Y,R) are coincident.

¿From this point forward, in order to simplify the notation, we are going
to denote the iterative application of derivation operators ((·)S)T ... by (·)ST ....

These derivation operators verify the following properties.

Proposition 1.

a) The derivation operators (·)R and (·)Q are decreasing:

For every A,C ∈ LX and B,D ∈ LY ,

A ≤ C =⇒ AR ≥ CR

B ≤ D =⇒ BQ ≥ DQ

b) Consider A ∈ LX . In general, A � ARQ and ARQR 6= AR.

In the same way, if B ∈ LY , in general, B � BQR and BQRQ 6= BQ.

c) For any family of L-fuzzy subsets {Aj ∈ LX | j ∈ J} it is verified that
(

∨

j∈J

Aj

)

R

≤
∧

j∈J

(Aj)R

Analogously, for any {Bk ∈ LY | k ∈ K},
(

∨

k∈K

Bk

)

Q

≤
∧

k∈K

(Bk)Q

d) If the implication I verifies that for any M ⊆ L and β ∈ L,

I(
∨

α∈M

α, β) =
∧

α∈M

I(α, β)

then,
(

∨

j∈J

Aj

)

R

=
∧

j∈J

(Aj)R

(

∨

k∈K

Bk

)

Q

=
∧

k∈K

(Bk)Q
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Proof.

a) It is obvious taking into account that the implication operator is de-
creasing in the first argument.

b) We can go back to Example 1 and take the following counterexample:

Let A = {x1/1, x2/0, x3/0, x4/0} be an L-fuzzy subset of X. Then,
using the Lukasiewicz implication operator I for the definition of the
derivation operator,

AR = {y1/1, y2/0, y3/0.5, y4/0.5, y5/0}

ARQ = {x1/0.5, x2/0, x3/0.5, x4/0.5}

ARQR = {y1/1, y2/0.5, y3/0.5, y4/1, y5/0.5}

Hence, A � ARQ and ARQR 6= AR.

We can also find a counterexample taking as a starting point B =
{y1/0, y2/0, y3/1, y4/0, y5/0} ∈ LY .

c) For every j0 ∈ J, it is verified that Aj0 ≥
∧

j∈J

Aj.

Applying the derivation operator: (Aj0)R ≤ (
∧

j∈J

Aj)R, then (
∧

j∈J

Aj)R

is an upper bound of the set {(Aj)R, j ∈ J}. As the supremum is the
least upper bound, then

∨

j∈J

(Aj)R ≤ (
∧

j∈J

Aj)R.

The other inequality is proved in the same way.

d) For any y ∈ Y , (
∨

j∈J

Aj)R(y) = inf
x∈X

{I(
∨

j∈J

Aj(x), R(x, y))}

Applying the hypothesis

inf
x∈X

{I(
∨

j∈J

Aj(x), R(x, y))} = inf
x∈X

{
∧

j∈J

(I(Aj(x), R(x, y)))}

and, as L is a complete lattice,

inf
x∈X

{
∧

j∈J

(I (Aj(x), R(x, y)))} =
∧

j∈J

{ inf
x∈X

(I (Aj(x), R(x, y)))} =
∧

j∈J

(Aj)R

The proof for Bk ∈ LY is similar to this one.

�
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Corollary 1. The maps ϕ : LX −→ LX and ψ : LY −→ LY defined for any
A ∈ LX and B ∈ LY as:

ϕ(A) = ARQ

ψ(B) = BQR

are increasing.
Therefore, by the Theorem of Tarski [19], the fixed point sets:

fix(ϕ) = {A ∈ LX/ϕ(A) = A}

fix(ψ) = {B ∈ LY /ψ(B) = B}

endowed with the usual orders in LX and LY are complete lattices, which will
be denoted by Ω = (fix(ϕ),≤, 0Ω, 1Ω,∨Ω,∧Ω) and Σ = (fix(ψ),≥, 0Σ, 1Σ,∨Σ,∧Σ).

Definition 3. The operators ϕ and ψ defined above are called constructor
operators.

Remark 2. In general, by Proposition 1.b), the constructor operators ϕ and
ψ are not closure operators.

Using the derivation operator, we introduce the following definition.

Definition 4. The pair (A,B) ∈ LX × LY such that AR = B and BQ = A
is said to be an L-fuzzy biconcept of the L-fuzzy bicontext (L,X, Y,R,Q).

Example 2. In Example 1 the pair:

({x1/0.5, x2/0, x3/0.5, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/0.5})

is an L-fuzzy biconcept.
In this case, we can interpret the meaning of this concept saying that x4

and y1 like each other. And with a lower exigence level, we can also say that
everybody in {x1, x3, x4} likes y1, y4 and y5, and vice versa.

The next property establishes the relationship between these L-fuzzy bi-
concepts and the fixed point sets of ϕ and ψ.

Proposition 2. The following statements are equivalent:

a) The pair (A,B) ∈ LX × LY is an L-fuzzy biconcept of the L-fuzzy
bicontext (L,X, Y,R,Q).
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b) ϕ(A) = A and B = AR.

c) ψ(B) = B and A = BQ.

Proof. It is an immediate consequence of the definition of L-fuzzy bicon-
cept.

�

Remark 3. In L-fuzzy Concept Analysis, when the used implication opera-
tor I is residuated, the obtained constructor operators are closure operators.
However, this property is not fulfilled in the case of working with L-fuzzy
biconcepts. As a consequence, the process of obtaining the fixed point sets
starting from L-fuzzy sets A needs the application of derivation operators a
non fixed number of times.

In general, it is not determined how many times is needed to derive in
order to find the fixed point. For instance, in the next example we can see
that the use of operators (·)RQ is needed five times to find this fixed point.

Example 3. Consider the L-fuzzy bicontext (L,X, Y,R,Q) where the lat-
tice L = {0, 0.1, 0.2, . . . , 1}, and the relations R ∈ LX×Y , Q ∈ LY×X are
represented in Table 2.

Table 2: Relations of the L-fuzzy bicontex of Example 3

R y1 y2 y3
x1 0.3 0.9 0.2
x2 1 0.5 0.2
x3 0.4 0.8 1

Q x1 x2 x3
y1 0.8 0.3 0.9
y2 0.2 0 1
y3 0.8 0 0.3

Let A = {x1/0.8, x2/1, x3/0.5} be an L-fuzzy subset of X. Then, using
the Lukasiewicz implication operator I for the definition of the derivation
operator,

ARQ = {x1/0.7, x2/0.5, x3/1}

ARQRQ = {x1/0.4, x2/0.2, x3/0.8}

ARQRQRQ = {x1/0.2, x2/0, x3/0.5}

ARQRQRQRQ = {x1/0.2, x2/0, x3/0.3}

ARQRQRQRQRQ = {x1/0.2, x2/0, x3/0.3}
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Therefore, ARQRQRQRQRQ = ARQRQRQRQ.

3. The L-fuzzy biconcept lattice

We will begin this section with the analysis of the existing hierarchy
among the L-fuzzy biconcepts of the L-fuzzy bicontext.

Theorem 1. Let L(L,X, Y,R,Q) be the L-fuzzy biconcept set endowed with
the order relation � defined as:

(A,B) � (C,D) ⇐⇒ A ≤ C (orB ≥ D)

Then, (L(L,X, Y,R,Q),�) is a complete lattice.

Proof. Consider F = {(Aj, (Aj)R) | Aj ∈ fix(ϕ), j ∈ J} ⊆ L(L,X, Y,R,Q)
a family of L-fuzzy biconcepts. Let us prove that the supremum of F exists.

As Ω = (fix(ϕ),≤) is a complete lattice, then
∨

Ω
j∈J

Aj ∈ fix(ϕ) and hence,

for any j ∈ J , (Aj, (Aj)R) � (
∨

Ω
j∈J

Aj, (
∨

Ω
j∈J

Aj)R).

Moreover (
∨

Ω
j∈J

Aj, (
∨

Ω
j∈J

Aj)R) is the least upper bound:

If (M,MR) is another upper bound then, for any j ∈ J , M ≥ Aj. So,
M ≥

∨

Ω
j∈J

Aj and therefore, (
∨

Ω
j∈J

Aj, (
∨

Ω
j∈J

Aj)R) � (M,MR).

Analogously, it can be proved that the L-fuzzy biconcept (
∧

Ω
j∈J

Aj, (
∧

Ω
j∈J

Aj)R)

is the infimum of F .
This theorem can be proved in a similar way using the fixed points of the

operator ψ. Thus, if the family F is represented as F = {((Bj)Q, Bj) | Bj ∈
fix(ψ), j ∈ J}, the obtained expressions for the supremum and the infimum
elements of F are:

∨

L
F = ((

∧

Σ Bj)Q,
∧

Σ Bj)
∧

L
F = ((

∨

Σ Bj)Q,
∨

Σ Bj)

�

Definition 5. The lattice (L(L,X, Y,R,Q),�) is said to be the L-fuzzy bi-
concept lattice of the L-fuzzy bicontext (L,X, Y,R,Q).
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Proposition 3. The minimum and maximum elements of the lattice of L-
fuzzy biconcepts (L(L,X, Y,R,Q),�) are 0L = (0Ω, 1Σ) and 1L = (1Ω, 0Σ).

Proof. Consider A ∈ fix(ϕ). Then 0Ω ≤ A ≤ 1Ω. Applying the derivation
operator, (0Ω)R ≥ AR ≥ (1Ω)R.

As fix(ψ) = {AR/A ∈ fix(ϕ)}, we can conclude that (0Ω)R = 1Σ and
(1Ω)R = 0Σ.

Then, the minimum element in L has the expression 0L = (0Ω, (0Ω)R) =
(0Ω, 1Σ) and the maximum 1L = (1Ω, (1Ω)R) = (1Ω, 0Σ).

�

Example 4. Returning to Example 1, the obtained L-fuzzy biconcept lattice
is formed by the following L-fuzzy biconcepts:

(A1, B1) = ({x1/0, x2/0, x3/0, x4/0}, {y1/1, y2/1, y3/1, y4/1, y5/1})

(A2, B2) = ({x1/0, x2/0.5, x3/0, x4/0}, {y1/0.5, y2/1, y3/1, y4/0.5, y5/0.5})

(A3, B3) = ({x1/0, x2/0, x3/0, x4/0.5}, {y1/1, y2/0.5, y3/0.5, y4/1, y5/1})

(A4, B4) = ({x1/0.5, x2/0, x3/0.5, x4/0.5}, {y1/1, y2/0.5, y3/0.5, y4/1, y5/0.5})

(A5, B5) = ({x1/0, x2/1, x3/0, x4/0}, {y1/0, y2/1, y3/1, y4/0, y5/0})

(A6, B6) = ({x1/0.5, x2/0.5, x3/0.5, x4/0.5}, {y1/0.5, y2/0.5, y3/0.5, y4/0.5, y5/0.5})

(A7, B7) = ({x1/0, x2/0, x3/0, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/1})

(A8, B8) = ({x1/0.5, x2/0, x3/0.5, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/0.5})

(A9, B9) = ({x1/0.5, x2/1, x3/0.5, x4/0.5}, {y1/0, y2/0.5, y3/0.5, y4/0, y5/0})

(A10, B10) = ({x1/0.5, x2/0.5, x3/0.5, x4/1}, {y1/0.5, y2/0, y3/0, y4/0.5, y5/0.5})

(A11, B11) = ({x1/1, x2/0, x3/0.5, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/0})

(A12, B12) = ({x1/1, x2/0.5, x3/1, x4/1}, {y1/0.5, y2/0, y3/0, y4/0.5, y5/0})

(A13, B13) = ({x1/1, x2/1, x3/1, x4/1}, {y1/0, y2/0, y3/0, y4/0, y5/0})

This lattice can be graphically represented by Figure 1.

The supremum and the infimum of the lattice (L(L,X, Y,R,Q),�) can
also be expressed by means of the supremum and infimum in the lattices Ω
and Σ as follows:

Theorem 2. Let I be an implication operator verifying I(
∨

α∈M

α, β) =
∧

α∈M

I(α, β),

for any M ⊆ L and β ∈ L.
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( )A ,B5 5

( )A ,B6 6

( )A ,B3 3

( )A ,B1 1

( )A ,B2 2

( )A ,B13 13

( )A ,B9 9

( )A ,B11 11

( )A ,B7 7

( )A ,B10 10

( )A ,B12 12

( )A ,B8 8

( )A ,B4 4

Figure 1: L-fuzzy biconcept lattice of Example 4.

Consider F = {(Aj, (Aj)R), Aj ∈ fix(ϕ), j ∈ J} = {((Bj)Q, Bj)), Bj ∈
fix(ψ), j ∈ J} ⊆ L.

The supremum and the infimum of F are:

∨

L
(Aj, (Aj)R) = (

∨

ΩAj,
∧

Σ(Aj)R)
∧

L
((Bj)Q, Bj) = (

∧

Ω(Bj)Q,
∨

Σ Bj)

Proof. Immediate taking into account Theorem 1 and Proposition 1.

�

In order to obtain the L-fuzzy biconcepts of the lattice L(L,X, Y,R,Q),
that is, the fixed points of the constructor operators ϕ and ψ, we will ap-
peal to the work developed by P. Cousot and R. Cousot [10] that provides a
constructive version of Tarski’s theorem which is able to calculate them by
means of limits of stationary transfinite iteration sequences.
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P. Cousot and R. Cousot [10] define a transfinite iteration sequence as
the one obtained by the iterative application of a monotone operator F to a
starting element D:

(D,F (D), F 2(D), F 3(D), . . . )

If F is an increasing operator, the iterative sequence is said to be an upper
iteration sequence, and it is a lower iteration sequence when the operator is
decreasing.

The sequence (X1, X2, . . . ) is stationary if and only if ∃k such that for
any i > k, Xi = Xk. In this case the limit of the sequence is Xk.

We denote by luis(F )(D) the limit of a stationary upper iteration se-
quence for F starting with D (dually llis(F )(D) the limit of a lower iteration
sequence).

With these definitions P. Cousot and R. Cousot [10] prove some results
among which we find the constructive version of Tarki’s lattice theoretical
fixed point theorem:

Theorem 3. The set of fixed points of F is a nonempty complete lattice
with ordering ⊆, infimum luis(F )(0), supremum llis(F )(1), least upper bound
luis(F )(∪Si) and greatest lower bound llis(F )(∪Si).

Applying this theorem to our case, we have:

0Ω = luis(ϕ)(0) 0Σ = luis(ψ)(0)

1Ω = llis(ϕ)(1) 1Σ = llis(ψ)(1)

Where by “0” we are representing the L-fuzzy subset in which all the
elements have membership value 0 (that is, the subset ∅). The symbol “1”
represents the L-fuzzy subset with all the membership values equal to 1 (the
set X or , respectively, Y ).

In addition, for any subset of fixed points {Aj, j ∈ J} ⊂ fix(ϕ) and
{Bj, j ∈ J} ⊂ fix(ψ),

∨

ΩAj = luis(ϕ) (
∨

Aj)
∨

ΣBj = luis(ψ) (
∨

Bj)
∧

ΩAj = llis(ϕ) (
∧

Aj)
∧

ΣBj = llis(ψ) (
∧

Bj)

where in general, luis(f)(A) with f a function that preserves the order, is
the limit of a stationary upper iteration sequence for f starting from A :

luis(f)(A) = lim sup(A, f(A), f 2(A), f 3(A) . . . )
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and llis(f)(A), the limit of a stationary lower iteration sequence for f starting
from A :

llis(f)(A) = lim inf(A, f(A), f 2(A), f 3(A) . . . )

Example 5. In the lattice of the example, consider the elements of fix(ϕ)
A = {x1/0.5, x2/1, x3/0.5, x4/0.5} and C = {x1/1, x2/0.5, x3/1, x4/1}.

In this case, the supremum in the lattice LX × LY is

A ∨ C = {x1/0.5, x2/1, x3/0.5, x4/1} /∈ fix(ϕ)

However, by the previous theorem, in the lattice of the fixed points the
supremum is

A
∨

ΩC = luis(ϕ)(A ∨ C) = {x1/1, x2/1, x3/1, x4/1}

Other important result to obtain the L-fuzzy concepts starting from A ∈
LX or B ∈ LY is the following [10]:

Theorem 4. For every A ∈ LX , the L-Fuzzy sets luis(ϕ) ◦ llis(f2)(A) and
llis(ϕ)◦luis(f1)(A) are fixed points of ϕ verifying luis(ϕ)◦llis(f2)(A) ≤ llis(ϕ)◦
luis(f1)(A), where

f1(A) = A ∨ ϕ(A) and f2(A) = A ∧ ϕ(A)

Moreover, these fixed points are greater than or equal to any fixed point
of ϕ less than or equal to A, and less than or equal to any fixed point of ϕ
greater than or equal to A.

These fixed points are respectively denoted by A∧ and A∨.
A similar result can be obtained starting from B ∈ LY and using the

operator ψ.

Example 6. If we come back to Example 1 and take as a starting set A =
{x1/0, x2/0, x3/0, x4/1}, then by the Cousot and Cousot operators we obtain,
using the Lukasiewicz implication operator, an only fixed point A∧ = A∨ =
{x1/0, x2/0, x3/0, x4/1} and so, an only L-fuzzy biconcept:

({x1/0, x2/0, x3/0, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/1})

14



However, if we take A = {x1/1, x2/0, x3/0, x4/0}, then the obtained fixed
points areA∧ = {x1/0, x2/0, x3/0, x4/0} andA

∨ = {x1/0.5, x2/0, x3/0.5, x4/0.5},
and the L-fuzzy biconcepts:

({x1/0, x2/0, x3/0, x4/0}, {y1/1, y2/1, y3/1, y4/1, y5/1})

({x1/0.5, x2/0, x3/0.5, x4/0.5}, {y1/1, y2/0.5, y3/0.5, y4/1, y5/0.5})

This last L-fuzzy biconcept is the one obtained taking the set A and
applying successively the derivation operators.

Remark 4. We can also extend these results to pairs of relations (R,Q) ∈
LW×X×LW×Y in the labeled L-fuzzy bicontext (L,W,X, Y,R,Q) [8]. In this
case, the set of labels W is used to represent some important aspects of the
study and is related to the object and attribute sets.

At this point, it can be interesting the study of the relationship be-
tween the L-fuzzy biconcepts of (L,X, Y,R,Q) and the L-fuzzy concepts
of (L,X, Y,R) and (L, Y,X,Q). Let us start establishing the following nota-
tion:
Notation. Given the L-fuzzy contexts (L,X, Y,R) and (L, Y,X,Q), we will
denote:

L∩

RQ = {(A,B) ∈ LX × LY | (A,B) ∈ L(L,X, Y,R) and (B,A) ∈ L(L, Y,X,Q)}

L∪

RQ = {(A,B) ∈ LX × LY | (A,B) ∈ L(L,X, Y,R) or (B,A) ∈ L(L, Y,X,Q)}

Theorem 5. It is verified that:

a) L∩
RQ ⊆ L(L,X, Y,R,Q).

b) L(L,X, Y,R,Q) is not necessarily a subset of L∪
RQ.

Proof.

a) If (A,B) ∈ L∩
RQ, then B = AR, A = BRop and A = BQ, B = AQop .

So, by B = AR and A = BQ, we can say that (A,B) ∈ L(L,X, Y,R,Q).

b) If we return to the lattice of Example 1, we see that

({x1/0, x2/0, x3/0, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/1}) ∈ L(L,X, Y,R,Q).
However we can prove that it does not belong to L(L,X, Y,R) neither
to L(L, Y,X,Q).

�
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Moreover, we can set up a relation between the L-fuzzy concepts using
R and Q and using the opposite Rop and Qop. It is obvious that if R and Q
are symmetrical relations, then for every pair (A,B) ∈ LX × LY ,

(A,B) ∈ L(L,X, Y,R,Q) ⇐⇒ (B,A) ∈ L(L, Y,X,Rop, Qop)

In general, the following proposition is verified.

Proposition 4.

a) If (A,B) ∈ L∩
RQ ⊆ L(L,X, Y,R,Q) then (B,A) ∈ L∩

RopQop ⊆ L(L, Y,X,Rop, Qop).

b) There exists (C,D) ∈ L(L,X, Y,R,Q) such that (D,C) /∈ L(L, Y,X,Rop, Qop).

Proof.

a) If (A,B) ∈ L∩
RQ we have to prove that (B,A) ∈ L∩

RopQop .

Since BRop = (AR)Rop = ARRop = A and ARop = (BR)Rop = BRRop = B,
hence (B,A) ∈ L(L, Y,X,Rop). In the same way, we can prove that
(B,A) ∈ L(L,X, Y,Qop).

b) For instance, returning to Example 1 we can consider the element
(C,D) ∈ L(L,X, Y,R,Q) such that:

(C,D) = ({x1/0.5, x2/0.5, x3/0.5, x4/1}, {y1/0.5, y2/0, y3/0, y4/0.5, y5/0.5})

In this case, (D,C) /∈ L(L, Y,X,Rop, Qop).

�

4. Classification of the L-fuzzy biconcepts

In many occasions, the large cardinality of the L-fuzzy biconcept lattice
hinders the analysis of the contained information. In these situations, as in
the case of working in an L-fuzzy concept lattice, it is very important to find a
method to organize the information: we could classify the L-fuzzy biconcepts
taking into account the membership degree of the objects (a similar process
might be done from the point of view of the attributes).

We will try to adapt to this case the idea we proposed in [6] for L-fuzzy
concept lattices.

Let us begin by defining a new relation ≡:

16



Definition 6. Consider the L-fuzzy biconcept lattice L.
For every (A,B), (C,D) ∈ L, we can define the relation ≡ as:

(A,B) ≡ (C,D) ⇐⇒ A−1{(min
x∈X

A(x), 1]} = C−1{(min
x∈X

C(x), 1]}

where A−1{(α, 1]} = {x ∈ X/A(x) > α}, α ∈ L.

Proposition 5. ≡ is an equivalence relation.

Proof. It is obvious taking into account the definition of relation ≡.

�

Then, we can establish a partition in L such that L =
⋃

j∈J

Cj.

Associated with each class Cj = {(Aj,h, Bj,h), h ∈ {1, . . . , kj}}, and fixed
h0 ∈ {1, . . . , kj}, we can obtain the set Ej = A−1

j,h0
{(min

x∈X
Aj,h0

(x), 1]} to rep-

resent this class. Observe that, due to the equivalence between the elements
of Cj , the obtained set Ej is the same independently of the chosen h0.

These sets Ej are the sets of objects that stand out from the others in
class Cj looking at the membership degrees.

Example 7. The relation given in Definition 6 establish a classification for
the L-fuzzy biconcept lattice represented in Figure 1 in order to organize its
L-fuzzy biconcepts.

If we apply this equivalence relation ≡ to the L-fuzzy bicontext defined
in Example 1, the obtained different classes are (see Figure 2):

• Class C1 : E1 = ∅

(A1,1, B1,1) = ({x1/0, x2/0, x3/0, x4/0}, {y1/1, y2/1, y3/1, y4/1, y5/1})

(A1,2, B1,2) = ({x1/0.5, x2/0.5, x3/0.5, x4/0.5}, {y1/0.5, y2/0.5, y3/0.5, y4/0.5, y5/0.5})

(A1,3, B1,3) = ({x1/1, x2/1, x3/1, x4/1}, {y1/0, y2/0, y3/0, y4/0, y5/0})

These L-fuzzy biconcepts do not provide information.

• Class C2 : E2 = {x2}

(A2,1, B2,1) = ({x1/0, x2/0.5, x3/0, x4/0}, {y1/0.5, y2/1, y3/1, y4/0.5, y5/0.5})

(A2,2, B2,2) = ({x1/0, x2/1, x3/0, x4/0}, {y1/0, y2/1, y3/1, y4/0, y5/0})

(A2,3, B2,3) = ({x1/0.5, x2/1, x3/0.5, x4/0.5}, {y1/0, y2/0.5, y3/0.5, y4/0, y5/0})
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x2 likes y2 and y3, and vice versa.

• Class C3 : E3 = {x4}

(A3,1, B3,1) = ({x1/0.5, x2/0.5, x3/0.5, x4/1}, {y1/0.5, y2/0, y3/0, y4/0.5, y5/0.5})

(A3,2, B3,2) = ({x1/0, x2/0, x3/0, x4/0.5}, {y1/1, y2/0.5, y3/0.5, y4/1, y5/1})

(A3,3, B3,3) = ({x1/0, x2/0, x3/0, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/1})

x4 likes y1 and y5, and less y4.

• Class C4 : E4 = {x1, x3, x4}

(A4,1, B4,1) = ({x1/0.5, x2/0, x3/0.5, x4/0.5}, {y1/1, y2/0.5, y3/0.5, y4/1, y5/0.5})

(A4,2, B4,2) = ({x1/0.5, x2/0, x3/0.5, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/0.5})

(A4,3, B4,3) = ({x1/1, x2/0.5, x3/1, x4/1}, {y1/0.5, y2/0, y3/0, y4/0.5, y5/0})

Everybody in {x1, x3, x4} likes y1 and vice versa. And with a lower exi-
gence level, also holds for y4.

• Class C5 : E5 = {x1, x4}

(A5,1, B5,1) = ({x1/1, x2/0, x3/0.5, x4/1}, {y1/1, y2/0, y3/0, y4/0.5, y5/0})

x1 and y1 like each other. The same information is obtained for x4 and y1.
If we lower the demand level, a similar result holds for y4.

This classification provides an useful tool to analyze the behavior of each
one of the objects studying only those classes in which it appears.

In order to farther deepen the study, we want to set up similarity relations
for the object and attribute sets. This similarity relations will provide us
information about the relation among the different objects and attributes.

With this purpose, we will consider some results of L. Valverde [20],
who defined an F -indistinguishability operator on a set X as a reflexive,
symmetric and F -transitive binary relation (being F a continuous t-norm).
He also proved that this operator can be generated by a family of fuzzy
subsets of X.

If we consider representative elements of the equivalence classes, using
the following theorem of L. Valverde [20], we can obtain similarity relations
for the object set (analogously for the attribute set). These relations allow
to classify, in a fuzzy way, the set of objects (or the set of attributes).
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( )A ,B2,2 2,2

( )A ,B1,2 1,2

( )A ,B3,2 3,2

( )A ,B1,1 1,1

( )A ,B2,1 2,1

( )A ,B1,3 1,3

( )A ,B2,3 2,3 ( )A ,B5,1 5,1

( )A ,B3,3 3,3

( )A ,B3,1 3,1

( )A ,B4,3 4,3

( )A ,B4,2 4,2

( )A ,B4,1 4,1

C2

C1

C3

C4

C5

Figure 2: Classification of the L-fuzzy biconcepts.

Theorem 6. (Representation Theorem). Consider S a map from X×X in
[0, 1] and consider F a continuous t-norm. Then, S is a F -indistinguishability
if and only if exists a family of fuzzy sets of X, {hj}, j ∈ J such that for every
x, y ∈ X,

S(x, y) = inf
j∈J

~F (max(hj(x), hj(y))|min(hj(x), hj(y)))

where ~F (x|y) = sup{α ∈ [0, 1] | F (α, x) ≤ y} is the residuation of the
t-norm F .

If F (x, y) =Min(x, y), then the F -indistinguishability operator (similar-
ity relation) can be expressed [20] in this way:
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S(x, y) =







inf
j∈Jxy

(min(hj(x), hj(y)) if Jxy 6= ∅

1 otherwise

where Jxy = {j ∈ J/hj(x) 6= hj(y)}.

As representative element of each class we choose the extension of the
supremum of its L-fuzzy concepts (or, respectively, the intension of the min-
imum of the L-fuzzy concepts of the class for the attributes). Since the
L-fuzzy biconcepts gathered in a class share a common meaning, the choice
of a different representative element may change the obtained similarity re-
lation but does not provide a result contradicting the here proposed one.

Example 8. If we come back to our example, we can take the family {hj}, j ∈
J of the concepts extensions representative of the different classes Cj (the
supremum of each class):

h1 = {x1/1, x2/1, x3/1, x4/1}

h2 = {x1/0.5, x2/1, x3/0.5, x4/0.5}

h3 = {x1/0.5, x2/0.5, x3/0.5, x4/1}

h4 = {x1/1, x2/0.5, x3/1, x4/1}

h5 = {x1/1, x2/0, x3/0.5, x4/1}

and obtain the similarity relation S (see Table 3).

Table 3: Similarity relation

S x1 x2 x3 x4
x1 1 0 0.5 0.5
x2 0 1 0 0
x3 0.5 0 1 0.5
x4 0.5 0 0.5 1

Since three different values appear in the similarity relation, hence we
have three different α−cuts S1, S0.5 and S0 :

S1 : x1 x2 x3 x4 S0.5 : x1x3x4 x2 S0 : x1x2x3x4
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For example, the α−cut S0.5 could be interpreted saying that the existing
relationship between x1, x3 and x4 is stronger than the one they have with
x2.

These similarity relations allow to establish fuzzy classifications in the
object set.

This process could also be done from the point of view of the attributes,
establishing different classes among them.

5. Conclusions and future work

The modeling of the use of two relations in an L-fuzzy context is the main
goal of this work. We have defined the L-fuzzy bicontexts and study their
associated L-fuzzy biconcepts.

Some interesting properties have been proved to set up a relationship
between the L-fuzzy biconcepts and the L-fuzzy concepts obtained from the
L-fuzzy contexts associated with each one of the relations. Moreover, in
order to interpret the L-fuzzy biconcepts, we have defined a classification
and similarity relations among the objects and attributes.

Finally, these results have been illustrated by means of an example about
the relationship between two groups of people.

As future lines, we are interested in the study of the L-fuzzy bicontexts
when X = Y. In the practical case, they can model the study of the opinion
of a group of people about themselves or preference studies.
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