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Chapter 1

Introduction

1.1 Optoacoustic Imaging of Radiofrequency Ab-

lation

Radio-frequency (RF) ablation is a treatment that deliberately destroys (ablates)

unwanted tissue by heating the target area with high frequency alternating current

(350-500 kHz). During RF ablation a catheter electrode is inserted into the target

tissue region under imaging guidance. Another electrode is placed outside the

body so that a tissue volume surrounding the catheter is destroyed by heating

via RF electric current. One of the main applications of this procedure is RF

ablation of the heart, where the objective is to destroy abnormal pathways that

are contributing to cardiac arrhythmias. RF is preferred over previously used low

frequency AC or pulses of DC because it does not directly stimulate nerves or heart

muscle and therefore can often be used without the need for general anesthetic.

Also, RF ablation is very specific for treating the diseased tissue without significant

collateral damage in adjacent areas.[Kim et al., 1994]

Optoacoustic (OA) imaging is a promising tool to provide real-time feedback on

lesion formation during cardiac RF ablation. This hybrid modality combines the

high-contrast and specificity of optical imaging with the high spatial resolution of

ultrasound (US) imaging. OA images can be regarded as an US images in which

1



Chapter 1. Introduction 2

the contrast is provided by the optical properties of the tissue, specifically optical

absorption, instead of mechanical or elastic properties.[Wang and Wu, 2007]

OA images are generated by exciting the tissue with time-varying laser light (typ-

ically short pulses). Part of the energy is absorbed by the chromophores and

converted into heat by vibrational and collisional relaxation, which in turn pro-

duces an initial pressure increase that propagates to the surface and is eventually

detected with an ultrasound transducer. Assuming that stress-confinement condi-

tions are verified (it is the case when using nanosecond optical pulses), the contrast

or initial pressure of the OA image can be taken to be proportional to the absorbed

optical energy distribution (H (r) = µa (r)F (z) where; µa (r) = absorption coeffi-

cient and F (z) = fluence distribution) and the Grüneisen coefficient (Γ = βc2/Cp,

where β is the volume thermal expansivity, c the sound speed and Cp the specific

heat capacity at constant pressure). The Grüneisen coefficient changes with the

temperature of the tissue, and hence the initial pressure p0 (r) = Γµa (r)F (z) is

also dependent on temperature in the range of interest 10-60 ◦C.[Beard, 2011]

Optical imaging can provide greater tissue differentiation and specificity than US

as differences in optical absorption between different tissue types can be much

larger than those in acoustic impedance. The OA signal is expected to change in

areas where tissue has been damaged, coagulated tissue, or heated but still undam-

aged. Indeed, the OA signal speed significantly changes with the temperature of

the tissue. When the temperature of the tissue during RF ablation is higher than

50 ◦C, irreversible changes that affect electrical tissue’s properties take place. The

irreversible changes, as coagulation, are mainly due to changes at the cellular level

of cell membrane properties and dehydration resulting in a permanent increase in

electrical conductivity.

OA signals (p0(r)) from the treated tissue area provide feedback on the tissue

properties related to the tissue coagulation level (which results in changes in opti-

cal absorption) and temperature. Decoupling these parameters, optical absorption

and temperature, requires developing an accurate thermal heating model of the ab-

lation process. By coupling the latter thermal model to a temperature-dependent
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OA model we expect to be able to predict the temperature of the tissue from

the OA signal given by an OA imaging system. Accurate measurement of the

temperature may also help improving the reconstructed images by accounting for

heterogeneities in the speed of sound. Moreover, knowing the temperature of the

tissue is important in an ablation process to predict unwanted damage. Even if

damage can be noticed with image guidance, feedback is only provided once dam-

age is done. The purpose of this project is to be able to predict and keep track

of temperature of the tissue to avoid damage in undesired areas. Furthermore,

the temperature model and optoacoustic model is expected to help calibrating

optoacoustic measurements.

1.2 Objectives, Motivation and Approach

The global objective of this thesis is to develop and validate a thermal model to

predict the temperature of the tissue from an OA signal during thermal heating

by radiofrequency ablation. In this way, we expect to demonstrate capabilities of

OA imaging in temperature monitoring during RF ablation so that temperature

maps of the tissue can be obtained during future ablation experiments.

To get to the long term goal of developing a thermal-optoacoustic model, we

will first aim to develop and validate a thermal model based on transient heat

transfer theory. We aim to compare different analytical and numerical approaches

to model the temperature in order to be able to choose the most accurate method.

We further intend to validate the developed model in phantoms experiments and

check whether it can be accurate for higher temperatures.



Chapter 2

Background

This chapter provides a description of the basic principles of radio-frequency abla-

tion and optoacoustic imaging in order to contextualize the methodology developed

in this work.

2.1 Radio-frequency Ablation

Radio-frequency ablation (RFA) of the heart is a mediccal procedure that is per-

formed in order to correct disturbances in the heart rhythm. Herein we describe

the normal behavior of the heart rhythm along with problems that we can find in

heart muscle and how to treat them with RFA.

2.1.1 Cardiac Arrhythmia

Heart muscle cells are stimulated by electrical impulses that cause them to con-

tract in a uniform way and with a regular rate. These contractions produce the

heartbeat, which causes blood to be pumped out of the heart into arteries and

then to the rest of the body.

In a normal heart, electrical impulses arise from an area of specialized cells called

the sinus node, which represents the normal pacemaker of the heart. The sinus

4
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node is located in the right atrium, the upper right chamber of the heart. In some

cases, the electrical impulses ”short circuit” the normal pathway and travel across

the heart in an abnormal way. Abnormal pathways or routes for the impulses can

develop, causing irregularities in the heartbeat, or arrhythmias. In other cases,

arrhythmias arise when areas other than the sinus node become active and begin

to send out impulses that either compete with or take over the pacemaker function

of the sinus node. Typically, the result of these abnormalities is a heartbeat that

is too fast or too low. This may develop in any location within the atria, or

ventricles. When the fast rhythm involves tissue from the upper part of the heart,

it is known as supraventricular tachycardia. When it involves tissue from the lower

chambers only, it is known as ventricular tachycardia.

Cardiac arrhythmia is any of a group of conditions in which the electrical activity

of the heart is irregular, faster or slower than normal. The heartbeat may in fact

be too fast or too slow or may follow an irregular rhythm. A heart beat that

is too fast, by convention above 100 beats per minute in human adults, is called

tachycardia, and a heart beat that is too slow, conventionally below 60 beats per

minute, is called bradycardia. [Mandel, 1995]

2.1.2 RFA as Cardiac Arrhythmia Treatment

Treatment of cardiac arrhythmias consists in the removal of undesired tissues,

which can be performed by several methods with various degrees of sophistication

such as conventional surgery, electrosurgery, cryosurgery, laser and even high-

intensity acoustic waves. These techniques offer advantages and disadvantages in

terms of safety, controllability and side-effects. The choice of the surgeon is there-

fore a trade-off between the nature of the intervention, the risks and complications

and the equipment availability and personal experience.

In some cases, the treatment of arrhythmias consists in destroying (ablating) in-

ternal heart tissues. These procedures, also called catheter techniques present

interesting advantages because they eliminate the need for open chest surgery.
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Radio-frequency ablation involves the generation of heat by the flow of an alterna-

tive current through the tissue to be ablated. In current practice, high frequency

alternating current (350-500 kHz) RF ablation is used. This is preferred over pre-

viously used low frequency AC or DC pulses, as no directly stimulation of the

heart muscle is produced, and therefore general anesthesia is not required.

Figure 2.1: Pulmonary Radio-frequency ablation procedure. c©Cleveland
Clinic Journal of Medicine, 2009. 76(9):545.

2.2 Radio-frequency Ablation Temperature Mod-

eling

As mentioned before, RFA of tissue is becoming more frequently used for therapy

of several types of cardiac arrhythmia. RF catheter ablation is a technique whereby

currents with frequencies between 300 kHz and 500 kHz are applied through elec-

trodes to tissue. Tissue in the immediate vicinity of the electrode is heated based

upon the Joule effect, whereas at farther locations its temperature is increased

mainly by thermal conduction. The region heated above ≈ 50 ◦C C becomes

irreversible damaged and defines the lesion volume.
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Figure 2.2: Positioning of the ablation catheter in a heart chamber. The
ablation electrode, carried at the distal tip of the catheter, is connected to
an RF generator that delivers the energy required by the particular therapy.

[Panescu et al., 1995]

To be therapeutically effective, the ablation must be performed in a volume con-

fined to the targeted region so that undesired tissue damage is avoided. This is a

difficult goal to achieve since the optimal lesion geometries vary with the disease.

In order to avoid charring and tissue micro-explosions, it is of necessity to control

the tissue temperature not to exceed 100 ◦C. We have also to take into account

that, due to temperature gradients, the temperature sensors incorporated in ab-

lation catheters usually do not measure precisely the highest temperature of the

tissue. Therefore, it is useful to study how the current density and the temperature

are distributed around the ablation electrodes.

2.2.1 Radio-frequency Heating Process

The change in temperature during ablation at any point in the tissue is given by

the heat transfer equation called ’Modified Pennes Bioheat Equation’ [Panescu

et al., 1995]
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ρc
∂T

∂t
= ∇·k∇T + JE− hbl(T − Tbl)−Qel (2.1)

hbl = ρblcblwbl ,

where ρ is the mass density, c is the heat capacity, k is the thermal conductivity,

J is the current density, E is the intensity of the electric field, ρbl is the blood

density, cbl is the blood heat capacity, wbl is the blood perfusion, Tbl is the blood

temperature, and Qel accounts for the heat exchanged between the tissue and the

ablation electrode. Qel is usually is negligible. However, it becomes an important

parameter in the design of actively cooled ablation electrodes.

RFA probes operate between 350-550 kHz. At these frequencies, the wavelength

of the electromagnetic energy is several orders of magnitude larger than the size

of the ablation electrodes. Thus, the primary mode of energy transfer is through

electrical conduction and can be modeled as a coupled quasi-static electrical con-

duction and heat conduction problem. The current density and the electric field

intensity can be computed from the Laplace equation as [Chang and Nguyen, 2004]

∇·σ(T )∇V = 0 , (2.2)

where ∇ is the gradient operator, σ(T ) is the temperature-dependent conductivity

(Siemens/meter), and V is the electric potential (Volts).

2.3 Optoacoustic Imaging

Optoacoustic (OA) imaging, also called photoacoustic imaging, has emerged in

the last decade as a new biomedical imaging modality based on laser-generated

ultrasound. This technique presents important advantages derived from the com-

bination of the high-contrast of optical imaging and the high spatial resolution of

ultrasound (US) imaging. An OA image can be regarded as an ultrasound image
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in which the contrast is given by the optical properties of tissues, specifically op-

tical absorption. This leads to higher contrast specificity than in conventional US

imaging and to greater penetration depth than in purely optical imaging based

on ballistic photons. Another difference with respect to US imaging is that US

scanners produce focal peaks pressures that exceed 1 MPa, whereas OA ampli-

tudes are typically lower than 10 kPa. Thereby, considering that light exposure

is non-ionizing and the excited ultrasound waves are very weak, there are not

major concerns regarding the safety of OA imaging. These attributes lend OA

imaging to a wide variety of applications in clinical medicine, preclinical research

and basic biology for studying cancer, cardiovascular diseases, abnormalities of the

microcirculation and other conditions.

OA imaging works with the formation of ultrasound waves by irradiating tissue

with electromagnetic radiation. Typically, optical wavelengths in the near-infrared

(NIR) range (650-900 nm) are used in order to minimize optical absorption in tis-

sue chromophores, which leads to a higher penetration depth. Thermoacoustic

imaging can even reach deeper locations by employing longer wavelengths (fre-

quencies of 300MHz-3GHz) in the elctromagnetic spectrum. OA imaging provides

high-contrast imaging o fvascular structures, which can be hard to visualize with

pulse-echo US. However, this comes at the expense of a lower penetration depth,

which is mainly determined by the attenuation of light. The strong spectral dis-

crimination of OA imaging also allows to identify specific absorbing substances

such as oxygenated and deoxygenated hemoglobin as well as a large variety of

extrinsically-administered contrast agents. Thereby, OA is also promising for func-

tional and molecular imaging applications.

For short-pulse excitation, the optoacoustically-generated acoustic pressure p(~r, t)

in an acoustically homogeneous inviscid medium is given by [Cox and Beard, 2004]

∇2p(~r, t)− 1

c2
s

∂2

∂t2
p(~r, t) = − β

Cp

∂

∂t
Θ(~r, t) , (2.3)
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where cs is the speed of sound in medium, β is the thermal expansion coefficient,

and Cp is the specific heat capacity at constant pressure. Θ is the heating function,

representing the amount of energy absorbed in the tissue per unit volume and unit

time. Eq.2.3 is valid under thermal confinement conditions, which ensure that heat

conduction is negligible during the laser pulse excitation. Thermal confinement is

guaranteed when the duration of the laser pulse is much shorter than the thermal

relaxation time. The forward solution to Eq. 2.3 is given by [Cox and Beard, 2004]

p(~r, t) =
β

4πCp

∫
d~r′

|~r − ~r′|
∂Θ(~r′, t′)

∂t′

∣∣∣∣∣
t′=t−|~r−~r′|/cs

. (2.4)

In case the temporal variation of the light source can be modeled as a Dirac’s

delta, Eq. 2.4 can be further simplify to

p(~r, t) =
1

4πc2
s

∂

∂t

[
1

cst

∫
d~r′p0(~r′)δ

(
t− |~r −

~r′|
cs

)]
. (2.5)

2.3.1 Optoacoustic Image Contrast

When the surface of the tissue is illuminated with a laser pulse, light undergoes two

different types of phenomena, namely scattering and absorption. Absorption takes

place at specific molecules called chromophores. The absorbed electromagnetic

energy is then converted into heat by vibrational and collisional relaxation, which

in turn induces acoustic pressure due to an increase in the volume of the tissue.

The contrast mechanism is then given by an optically induced initial pressure p0.

The initial pressure distribution p0 is encoded onto a propagating acoustic wave

which, upon detection by an ultrasound transducer, is converted to a time-resolved

electrical signal. Since the OA image is formed from a set of such OA signals

detected at different spatial points, it follows that the OA image is a representation

of p0. p0 is related to the heating produced by the deposited laser energy. If

impulsive heating is assumed, the acoustic propagation time is small compared

with the length scale of the heated volume. Then, by simple thermodynamic

considerations it can be shown that p0 at point r is proportion is proportional to
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the Grüneisen parameter Γ and the absorbed optical energy per unit volume H(r)

[Cox and Beard, 2005]

p0 (r) = ΓH (r) , (2.6)

where

Γ = βc2
s/Cp , (2.7)

and H(r) is the absorbed energy per unit volume given by

H (r) = µa(r)φ(r, µa, µs, g) . (2.8)

Therefore, p0(r) is proportional to the product of µa(r) and the fluence φ which is

itself dependent on µa(r). p0 thus depends nonlinearly on µa(r) as

p0(r) = Γµaφ(r, µa, µs, g) . (2.9)

p0(r) depends upon a variety of mechanical, thermodynamic and optical parame-

ters. However, the changes in mechanical and thermodynamic properties for dif-

ferent tissue types are usually considered to be significant as compared to changes

in optical absorption, and then they are typically regarded as being spatially in-

variant. There are inevitably some limits to this assumption and in some cases

that image contrast provided by certain tissues may in part originate from the

heterogeneities in the Grüneisen coefficient. However, generally image contrast

can be assumed to be dominated by the optical absorption of the tissue.
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Figure 2.3: Absorption coefficient spectra of endogenous tissue chro-
mophores.Absorption coefficient spectra of endogenous tissue chromophores.
Oxyhaemoglobin (HbO2), red line. Deoxyhaemoglobin (Hb), blue line. Wa-
ter, blackline(80 % by volume in tissue). Lipid, brown line(20 % by volume in
tissue). Lipid, pink line. Melanin, black dashed line, µa corresponds to that in

skin). Collagen, green line and Elastin, yellow line [Beard, 2011]

The dominance of optical absorption as the primary source of OA image contrast

implies that OA imaging is suitable for the visualization of anatomical features

that contain an abundance of chromophores such as hemoglobin, lipids and water.

Of these, hemoglobin is the most important for wavelengths below 1000 nm. As

Figure 2.3 shows, between 650 and 900 nm the absorption coefficients of both the

oxygenated (HbO2) and deoxygenated (Hb) states of hemoglobin at physiologi-

cally realistic concentrations are at least an order of magnitude higher than the

other major chromophores, such as water, lipids and elastin that are present in

connective tissues, blood vessels and other organ constituents. At shorter wave-

lengths corresponding to the visible part of the spectrum, hemoglobin absorption is

even higher and can exceed that of other chromophores by more than two orders

of magnitude. It is the very strong preferential absorption of hemoglobin that

enables the vasculature to be visualized with such high contrast in OA images.
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Furthermore, the differences in the absorption spectra of HbO2 and Hb shown in

Figure 2.3 can be exploited to measure blood oxygenation by acquiring images

at multiple wavelengths and applying spectroscopic analysis. In this way, the

absorption-based contrast of OA imaging allows functional as well as structural

images of the vasculature to be obtained.

Although melanin has a higher absorption coefficient than blood, it tends to be

highly localized in regions such as the skin or the retina rather than being a major

constituent of most tissues. It does not therefore tend to dominate OA image con-

trast in the way that hemoglobin does. Nevertheless, it forms an important source

of contrast for visualizing melanin-rich structures such as certain pigmented lesions

in the skin and the retinal-pigmented epithelium (RPE). Absorption by lipids is

significantly lower than that of hemoglobin over the visible and NIR range up

until around 1100 nm when blood absorption is dominated by water rather than

hemoglobin and the strong lipid absorption peak at 1210 nm becomes predomi-

nant. This peak can be exploited to image localized lipid deposits. Chromophores

such as hemoglobin and melanin absorb much more strongly than other tissue

chromophores and thus provide an obvious source of primary contrast. However,

although the more weakly absorbing chromophores such as water and lipids which

may not be obviously visible on an OA image, they can still be detected by ex-

ploiting their characteristic spectral signatures. [Beard, 2011]

2.3.2 Penetration Depth

Penetration depth is ultimately limited by optical and acoustic attenuation. In

general, for most soft tissues and at standard ultrasound frequencies, although

acoustic attenuation can be significant, it is optical attenuation that dominates.

Optical attenuation depends on both the absorption and scattering coefficients

and is strongly wavelength-dependent. [Tsai et al., 2001]
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In optically scattering media such as tissues, the optical penetration depth is best

characterized by the effective attenuation coefficient µeff derived from diffusion

theory, where

µeff = (3µa(µa + µs))
1/2 . (2.10)

In a homogeneous scattering media, light becomes diffusive for depths beyond

several transport mean free paths (approx. 1mm) and the irradiance decays ex-

ponentially with depth with µeff the exponential constant. 1/µeff therefore rep-

resents the depth at which the irradiance has decreased by 1/e and regarded as

the penetration depth. Beyond the first millimeter in tissue, light is attenuated by

approximately an order of magnitude for each additional centimeter of penetration

depth. [Beard, 2011]. This represents one of the major challenges in OA imag-

ing as imaging for several centimeters within tissue implies a signal attenuation

of several orders of magnitude, so that extremely weak (undetectable) ultrasound

signals are excited. Despite this fact, through careful choice of wavelength, opti-

mization of the light delivery, transducer design parameters and signal processing,

it has been demonstrated that penetration depths of several centimeters are at-

tainable. A penetration depth of 4 cm has been achieved in vivo in the human

breast [Kruger et al., 2010] using an excitation wavelength of 800 nm. Other

studies using tissue phantoms and ex vivo tissues have suggested that depths of

5-6 cm may be achievable with the use of contrast agents [Ku and Wang, 2005].

With regard to the optimum wavelength range, it has been suggested that longer

wavelengths, such as 1064 nm, at which blood absorption is low, might provide a

penetration depth advantage if contrast agents that absorb at this wavelength are

used [Homan et al., 2010].

2.3.3 Spatial Resolution

In common with pulse-echo US imaging, spatial resolution depends ultimately

on the frequency content of the acoustic wave arriving at the detector. In OA
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imaging, nanosecond excitation laser pulses are most often used and can result in

extremely broadband acoustic waves with a frequency content extending to several

tens or even hundreds of Megahertz, depending on the length scale of the optical

absorbers. Under these conditions, the bandwidth of the OA signal and thus the

spatial resolution is not usually limited by the generation process itself. Instead,

it is the band-limiting acoustic attenuation OA waves that limits the maximum

frequency content of the OA wave and thus defines the ultimate practically achiev-

able spatial resolution limit. Under these circumstances, spatial resolution scales

with depth. Acoustic attenuation strongly depends upon tissue type but an ap-

proximate rule of thumb is that for centimeter penetration depths, sub-millimeter

spatial resolution is possible, decreasing to sub-100µm for millimeter penetration

depth and sub-10µm spatial resolution for depths of a few hundred micrometers.

Although acoustic attenuation defines the ultimate spatial resolution limit, other

factors such as detector bandwidth, element size and the area over which the OA

signals are recorded — the detection aperture — can be limiting factors in prac-

tice. This factors are particularly relevant when imaging superficial features that

lie within a few millimeters of the surface. The bandwidth of the OA signal can

then extend to several tens of megahertz presenting significant challenges in terms

of meeting the detection bandwidth and spatial sampling requirements. For very

small penetration depths (less than 1 mm), the focused light beam is still not sig-

nificantly distorted by optical scattering and, the lateral resolution is limited by

optical diffraction. Optical diffraction depends on the optical wavelength and the

numerical aperture (NA) of the focusing lens and can be as small as few microme-

ters. Vertical resolution, however, remains limited by acoustic attenuation.[Beard,

2011]
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2.4 Monitoring of Tissue Temperature Depen-

dence

Non-invasive real-time measurement of temperature during ablation is necessary

for the safe and efficient thermal destruction of tumors or other abnormal tis-

sues.[Lehmann 1990, Welch and van Gemert 1995].

One of the potential applications of OA imaging is to be used for non-invasive,

real-time temperature monitoring during ablation. In this way, OA imaging can

potentially be used to improve the safety and efficacy of thermal therapy by pre-

dicting unwanted damage. For this, accurate temperature maps should provide

the necessary control to minimize thermal tissue damage.

The thermal expansion of an absorbing medium heated by a short laser pulse with

an incident laser fluence, φ0, induces a pressure rise, P (z), in the irradiated volume

upon stress-confined irradiation conditions [Gusev and Karabutov, 1993a].

It is known that the Grüneisen parameter of water is temperature dependent (Fig.

2.4). This study demonstrated the linear dependence of the OA pressure amplitude

on temperature in water and, thus, can be expressed by an empirical equation.

For biological tissues, the Grüneisen parameter is also temperature-dependent and

can be empirically approximated as [Wang and Wu, 2007]

Γw (T0) = 0.0043 + 0.0053T0 , (2.11)

where T0 is the temperature in degrees Celsius.
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Figure 2.4: Theoretically calculated water Grüneisen coefficient and optoa-
coustic pressure amplitude induced in aqueous solution as a function of temper-

ature. [Larina et al., 2005]

On the other hand, the optical absorption and scattering coefficients and hence

the optical attenuation may also have a temperature dependence, particularly if

heating leads to chemical transformation in the tissue.

Therefore, by recording and analyzing the OA pressure profile in time, it is ex-

pected that one can reconstruct the temperature distribution during hyperthermia

occurred in ablation processes.



Chapter 3

Thermal Modeling

To demonstrate the OA imaging capabilities in temperature monitoring during ab-

lation, we first studied how the OA signal behaves under temperature changes. OA

signals change in areas where the tissue has been damaged, coagulated, or heated

but still undamaged. Indeed, the Grüneisen parameter increases significantly with

temperature. Moreover, the speed of sound also increases with temperature. When

the tissue temperature during RFA goes beyond 50◦C, irreversible changes that

affect electrical tissue properties take place. These irreversible changes, such as

coagulation, are mainly due to changes at the cellular level of cell membrane prop-

erties and dehydration resulting in a permanent increase in electrical conductivity.

Therefore, OA signals from the treated tissue area provide a very valuable feedback

on the tissue properties. These properties are related to the tissue coagulation level

(which is associated to its optical absorption) and temperature. Decoupling these

parameters, optical absorption and temperature, such that both can be measured

during the heating process requires developing an accurate thermal heating model

of the ablation process. Coupling the latter thermal model to a temperature-

dependent OA model will enable to predict the tissue temperature from the OA

signal.

Accurate measurement of the temperature is important in an ablation process to

predict unwanted damage. Even if we may be able to notice damage with image

18
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guidance methods, these visual methods give feedback of the damage once it is

done. Keeping track of tissue temperature we could avoid damage in undesired

areas. Moreover, knowing the temperature allows properly correcting for speed of

sound variations and thus make better images reconstructions.

The strategy followed in this work, as this chapter is structured, was first to develop

a thermal model for a general transient heating process, and secondly model the

radio-frequency heating process case.

3.1 Modeling Conductive Heating

The problem of solving a conductive-convective heating process case, such as

agarose solution phantoms being heated by an air heat flux, is addressed in this

section. We introduce the existing heat transfer theories and explain which one

will be used in our studies and why.

3.1.1 Conduction Model Solution Approaches

3.1.1.1 Steady State Heating Processes

Heat transfer due to convection involves the energy exchange between a surface

and an adjacent fluid. A distinction must be made between forced convection,

wherein a fluid is made to flow past a solid surface by an external agent such as

a fan or pump, and free or natural convection wherein a warmer (or cooler) fluid

next to the solid boundary causes circulation because of a difference in density

resulting from the temperature variation throughout a region of the fluid.

The rate equation for convective heat transfer was first expressed by Newton in

1701, and is referred to as the Newton rate equation.

q

A
= h·∆T , (3.1)
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where q is the rate of convective heat transfer, in W or Btu/h. A is the area

normal to the heat flux direction in m2 or ft2. ∆T is the temperature difference

between surface and fluid in ◦K and h is the convective heat transfer coefficient,

in W/(m2·◦K) or Btu/(h·ft2·◦K).

Steady-state heat conduction implies that temperature and heat flow at each point

do not change with time. Fig. 3.1 depicts an example of steady-state conduction

through a plane wall with its surfaces held at constant temperatures T1 and T2.

Figure 3.1: Steady-state conduction through a plane wall.[Welty et al., 2007]

The Fourier rate equation, derivative form of Newtons Eq. 3.1, for the x direction

is given by
qx
A

= −kdT
dx

. (3.2)

Solving Eq.3.2 for qx subject to the boundary conditions T = T1 at x = 0 and

T = T2 at x = L it results

qx
A

∫ L

0

dx = −k
∫ T2

T1

dT = k

∫ T1

T2

dT . (3.3)

Then the net heat flux going into the slab, this is, the incoming heat flux less the

outgoing heat flux, is calculated as

qx =
kA

L
(T1 − T2) . (3.4)
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If the heating process were steady-state, the procedure to solve the thermal profile

would be as follows

qin(t)− qout(t) = q0(t) =
kA

L
(TS(t)− T0(t)) . (3.5)

Thereby if we adjust the heat flux so q0(t) is constant and we have thermocouples

to measure Ts(t) and T0(t), then from Eq.3.5 we could compute the value of q0(t).

The thermal profile described across the phantom will have a certain temperature

depending on the distance from the heated wall (x) and time (t), that is, T (x, t).

T (x, t) = TS(t)−
[
kA
L

(TS(t)− T0(t))
]
·x

k·A
. (3.6)

3.1.1.2 Transient Heating Processes: Analytical Method

Transient conduction occurs when the temperature within an object changes as a

function of time. Analysis of transient systems is more complex and often requires

the application of approximation theories(Analytical Methods) or numerical analy-

sis by computer(Numerical Methods). In this subsection we present the analytical

solution approximation that is described in Çengel’s book [A.Çengel, 2006].

A semi-infinite solid is an idealized body that has a single plane surface and extends

to infinity in all directions, as shown in Fig.3.2

Figure 3.2: Schematic of a semi-infinite body.[A.Çengel, 2006]
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This idealized body is used to indicate that the temperature change in the part

of the body in which we are interested is due to thermal conditions on a single

surface.

For shorts periods of time, most bodies can be modeled as semi-infinite solids

since heat does not have sufficient time to penetrate deep into the body, and the

thickness of the body does not enter into the heat transfer analysis. For example,

a body whose surface is heated by a laser pulse can be treated as semi-infinite

solid.

We assume a semi-infinite solid with constant thermophysical properties, no in-

ternal heat generation, uniform thermal conditions on its exposed surface, and an

initial uniform temperature of Ti throughout the surface. Heat transfer in this

case occurs only in the direction normal to the surface (the x direction), and thus

it represents a one-dimensional problem. Differential equations are independent

of the boundary or initial conditions, and thus one-dimensional transient conduc-

tion in Cartesian coordinates applies. The depth of the solid is large (x→∞)

compared to the depth that heat can penetrate, and these phenomena can be

expressed mathematically as a boundary condition as T (x→∞, t) = Ti.

Heat conduction in a semi-infinite solid is governed by the thermal conditions

imposed on the exposed surface, and thus the solution depends strongly on the

boundary condition at x = 0.

The governing equations of transient conduction are:

Differential equation
∂2T

∂x2
=

1

x

∂T

∂t
(3.7)

Boundary conditions T (0, t) = TS and T (x→∞, t) = Ti (3.8)

Initial Condition T (x, 0) = Ti . (3.9)

An approach converts the partial differential equation into an ordinary differential

equation by combining the two independent variables x and t into a single variable
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η called similarity variable.

Similarity variable η =
x√
4αt

. (3.10)

Assuming T = T (η) and using the chain rule, all derivatives in the heat conduction

equation can be transformed into the new variable as

∂2T

∂x2
=

1

α

∂T

∂t
and η =

x√
4αt

(3.11)

∂T

∂t
=
dT

dη

∂η

∂t
=

x

2t
√

4αt

dT

dη
(3.12)

∂T

∂x
=
dT

dη

∂η

∂x
=

1√
4αt

dT

dη
(3.13)

∂2T

∂x2
=

d

dη

(
∂T

∂x

)
∂η

∂x
=

1

4αt

∂2T

∂η2
, (3.14)

where η = 0 at x = 0 and η→∞, as well as in t = 0, then:

∂2T

∂η2
= −2η

dT

dη
(3.15)

T (0) = TS and T (η→∞, t) = Ti . (3.16)

The second boundary condition and the initial condition result in the same bound-

ary condition. Both the transformed equation and the boundary conditions de-

pend on η only and are independent of x and t. Therefore, the transformation is

successful, and η is indeed a similarity variable.

To solve the second order ordinary differential Eq.3.15 a new variable w = dT/dη

needs to be defined. This reduces the equation into a first order differential equa-

tion than can be solved by separating variables as

∂w

∂η
= −2ηdη → ln(w) = −η2 + C0 → w = C1e

−η2 , (3.17)



Chapter 3. Thermal Modeling 24

where C1 = lnC0. Back substituting w = dT/dη and integrating again:

T = C1

∫ η

0

e−u
2

du+ C2 , (3.18)

where u is an integration variable. The boundary condition at η = 0 gives C2 = TS,

and for the one at η → ∞ gives:

Ti = C1

∫ ∞
0

e−u
2

du+ C2 = C1

√
π

2
+ TS → C1 =

2(Ti − TS)√
π

. (3.19)

Substituting the C1 and C2 expressions into Eq.3.18 and rearranging, the variation

of temperature is then given by

T − TS
Ti − TS

=
2√
π

∫ η

0

e−u
2

du = erf(η) = 1− erfc(η) , (3.20)

where the mathematical functions erf(η) and erfc(η) are called the error function

and the complementary error function, respectively, of argument η (Fig.3.3).

Figure 3.3: Error function is a standard mathematical function, just like the
sinus and tangent functions, whose value varies between 0 and 1.

Despite the simple appearance, the integral in the definition of the error function

cannot be performed analytically. Therefore, the function erfc(η) is evaluated

numerically for different values of η, and the results are listed in Table 3.4:
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Figure 3.4: Complementary error function.

Knowing the temperature of the surface as a function of time will allows deter-

mining the heat flux at the surface using Fourier law, i.e

q̇S = −k∂T
∂x

∣∣∣
x=0

= −kdT
dη

∂η

∂x

∣∣∣
η=0

= −kC1e
−η2 1√

4αt

∣∣∣
η=0

=
k(TS − Ti)√

παt
. (3.21)

Solutions of Eq. 3.21 correspond to the case when the temperature of the exposed

surface of the medium is suddenly raised to Tx at t = 0 and is maintained at that

value at all times. Using a similar approach or the Laplace transform technique,

analytical solutions can be obtained for other boundary conditions. The approach

used in [A.Çengel, 2006] to obtain an analytical solution was considering a specified

surface heat flux, q̇S =constant. To use this method thus we must calculate the

heat flux on the surface and take the average of its value in time (during the

heating process). Once we have q̇S(x = 0), we can apply the given analytical

formula [A.Çengel, 2006]:

T (x, t)− Ti =
q̇S
k

[√
4αt

π
exp

(
x2

4αt

)
− xerc

(
x

2
√
αt

)]
. (3.22)
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3.1.1.3 Transient Heating Processes: Numerical Method

Finite-difference methods (FDM) are numerical methods for estimating the so-

lutions to differential equations using finite difference equations to approximate

derivatives. The governing differential equation for the conduction heating pro-

cess presented is given by

Differential equation
∂2T

∂x2
=

1

α

∂T

∂t
(3.23)

Boundary conditions T (0, t) = TS(t) and T (L, t) = Ti (3.24)

Initial Condition T (x, 0) = Ti . (3.25)

To use a finite difference method to approximate the solution to a problem, one

must first discretize the problem’s domain. This is usually done by dividing the do-

main into a uniform grid (Fig. 3.5). Therefore, finite-difference methods produce

sets of discrete numerical approximations to the derivative in a ”time-stepping”

manner.

Figure 3.5: The finite difference method relies on discretizing a function on a
grid. Retrieved from http://en.wikipedia.org/wiki/Finite difference method

There are several FDM methods depending of which stencil is used. Stencils

represent the basic unit of the FDM. They correspond to the nodes of the grid that
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is dicretized the domain in. The different methods to solve the heat conduction

problem are:

Figure 3.6: For-
ward in Time,
Centered in Space

(FTCS)

Figure 3.7: Back-
ward in Time,
Centered in Space

(BTCS)

Figure 3.8:
Crank-Nicolson

The FTCS method is the only one that has the possibility of becoming unsta-

ble and thus will have a stability condition(explained in section 3.1.4), whereas

BTCS and Crank-Nicolson are always stable and thus will not have any stability

condition. However, FTCS is less complex to implement in Matlab. BTCS and

Crank-Nicolson FDM have more computational cost, being possibly necessary the

implementation of LU factorization to the coefficients matrix in order to minimize

the computational cost of the procedure.

3.1.1.4 Matlab Partial Differential Equation Tool

As a verification method for the analytical and the FDM methods solutions, we

used Matlab partial differential (PDE) equation solver. Matlab PDE solver solves

systems of parabolic and elliptic PDEs in one spatial variable x and time t.

Matlab PDE solver implemented in a function called pdepe, which calls other 3

functions; pdex1pde, pdex1ic and pdex1bc. Pdex1pde defines the coefficients of

the PDE problem to solve in the syntax that Matlab requires. One must fit the

formula into Matlab’s form and write the adequate parameters for Matlab, in the

following form

c

(
x, t, u,

δu

δx

)
δu

δt
= x−m

δ

δx

(
xmf

(
x, t, u,

δu

δt

))
+ s

(
x, t, u,

δu

δx

)
, (3.26)
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where f
(
x, t, u, δu

δt

)
is a flux term and s

(
x, t, u, δu

δx

)
is a source term. The flux term

must depend on δu/δx. The coupling of the partial derivatives with respect to

time is restricted to multiplication by a diagonal matrix c
(
x, t, u, δu

δx

)
. The diagonal

elements of this matrix are either identically zero or positive. An element that is

identically zero corresponds to an elliptic equation and otherwise to a parabolic

equation.

The second function called by pdepe function, pdex1ic, defines the initial condi-

tions of our diffusion process to solve. At the initial time t = t0, for all x the

solution components satisfy initial conditions of the form:

u (x, t0) = u0 (x) . (3.27)

The last function called by pdepe function, pdex1bc, defines the boundary condi-

tions of the system as

p (x, t, u) + q (x, t) f

(
x, t, u,

δu

δx

)
= 0 , (3.28)

where q (x, t) is a diagonal matrix with elements that are either identically zero or

never zero. The boundary conditions are expressed in terms of the f rather than

partial derivative of u with respect to x δu
δx

. Also, only coefficient p can depend on

u.

3.1.2 Experimental Conductive Thermal Profile

In this subsection experimental thermal profiles to the conduction heating process

are presented. In a second part, a description of these experimental data and a

discussion of which approach should be taken is also treated.

We implemented several set-ups with phantoms of different sizes. For temperature

measurements, we used 4 type-T thermocouples ordered to Physitemp Instruments

Inc.(Clifton, New Jersey, USA). The set-up was made by putting the phantoms in
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vertical position in front of the heat gun that was fixed to the table, at a distance

of 30 cm. See Fig. 3.9.

Figure 3.9: Broad view of the set-up including both, heat gun and phantom
dispositions.

The first thermocouple (T1) and the last thermocouple (T4) were in contact with

the heated surface and the back surface respectively using electrical tape, as shown

in Fig.3.10. Whereas the thermocouples in the middle, T2 and T3, were introduced

with needles inside to reach the center of the phantom, so the thermocouples’ tips

were describing a perpendicular line to phantoms’ vertical surfaces.

The Data Acquisition System (DAQ) used in the experiments(Fig.3.10) is ’Ther-

mes Usb’. It transforms the voltage coming form the thermocouples, due to their

tip’s temperature, into temperature values.
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Figure 3.10: Thermocouples connected to DAQ ’Thermes Usb’ (Physitemp)

Figure 3.11: Phantom and placement of thermocouples scheme

Experiment Details

• The heat flux power of the heat gun was adjustable and it was fixed to level

9 during the entire heating process(1200seconds).,
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• Neither the phantom or the heat gun moved their positions while the study

was done.,

• Phantom’s dimensions: Height=70mm,Width=18mm,Length=90mm.The phan-

tom was created using 200 ml of de-ionized water and 2.860 g of agar. No

Intralipid and no ink were added for this experiment because optical prop-

erties were not under study.,

• Thermocouples where positioned evenly within the thickness of the phantom

describing a straight line, spaced 6mm from each other.(See Fig.3.11)

Figure 3.12: Conductive experimental Thermal Profile.

Experiment Conclusions

In order to simplify the thermal profile calculation, one may be to model it as a

steady-state heating process. However the results shown in Fig. 3.12 clearly show

that this is not possible.
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It may be possible to approach a steady-state heat transfer by modifying the set-

up to match the steady-state heat transfer conditions. However to approach a real

process as an ideal process we should first review the properties and conditions of

steady-state heat transfer processes.

The term steady implies no change with time at any position within the medium,

while transient implies variation with time or time dependence. Therefore, the

temperature or heat flux remains unchanged with time during steady heat transfer

through a medium at any position of the heated medium, although both quantities

may vary from one point to another.

During transient heat transfer, the temperature normally varies with time as well

as position. In the special case of variation with time but no with position, the

temperature of the medium changes uniformly with time for all points. Such

heat transfer systems are called lumped systems. Most of heat transfer problems

encountered in practice are transient in nature, but they are tried to be analyzed

under steady conditions due to their simplicity. ([A.Çengel, 2006]). However, the

conduction problem corresponding to a phantom being heated with a heat gun

must be modelled as a transient heating processes.

The possibility of recreating a steady-state heating process modifying the set-up

was discarded as. It might be highly time consuming and it would not have real

applications due to the complex set-up that requires.

3.1.3 Conduction Heating Analytical Solution

From section 3.1.1.2 we have the analytical solving equation 3.22:

T (x, t)− Ti =
q̇S
k

[√
4αt

π
exp

(
x2

4αt

)
− xerc

(
x

2
√
αt

)]
. (3.22 revisited)

In an ablation process, the ablation catheter is the only instrument in contact with

the tumor. Therefore, a thermocouple can be coupled to the tip of the catheter so

that the tumor’s surface temperature can be read in real time.
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In the experiment of heating a phantom with the heat gun, the equivalent to the

thermocouple placed in the catheter tip is the thermocouple on phantom’s surface

in the heat gun side (T1). Therefore, T1 reading was used as the input for the

thermal model.

T1 is measured on the surface of the phantom. This means that x(T1) = 0m. For

x = 0m equation 3.22 is reduced to:

T (0, t)− Ti =
q̇S
k

[√
4αt

π

]
. (3.29)

Having T1 temperature readings at different times we solved for the heat flux

qS by establishing T (0, t) = T1(t) at every measurement instant. Measurements

were taken every 10 seconds for a total of 1200 seconds, as shown in Figure 3.12.

Therefore, the heat flux can be solved from the following equation:

(T (0, t)− Ti)k√
4αt
π

= q̇S =
(T1(t)− T1(0))k√

4αt
π

. (3.30)

Considering Eq.3.22 and taking the heat flux as the average of the heat flux during

the heating process (in time), the analytical model predicted much higher tem-

peratures in the positions of the thermocouples which could happen if extra heat

is added into the phantoms. In the same way, on can interpret that the actual

temperature results are lower than the theoretical ones because the heat absorbed

by the phantoms was much lower than the one calculated for the model. In fact,

the heat flux calculated for the model was the heat flux received by the surface

of the phantom (it is based on T1 readings). However, not all the heat heat was

absorbed at the surface of the phantom, which would contribute to an increase in

the phantom’s temperature.

The amount of constant heat flux in time that gives the expected temperature

predictions for all thermocouples in every phantom was 800W/m2. The latter

amount represents 35% of the heat flux heating the surface of the phantom, which

on average was 2500W/m2), so that only this percentage was absorbed.
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Correcting for the heat flux absorbed by the phantom, T2, T3 and T4 temperatures

were modeled analytically. Thermocouples 2, 3 an 4 where positioned evenly

within each phantom thickness. The analytical solution is plotted in Fig. 3.13.

Figure 3.13: Analytical Solution Thermal Profile.

Comparing the experimental thermal profile shown in Fig.3.12 with the analytical

solution shown in Fig. 3.13 one can appreciate that there is a good correlation

between both thermal profiles.

In order to show the order of magnitude that we are working with, using this

analytical solution, modeled temperatures for each thermocouple are compared in

the next plots with their experimental values.
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Figure 3.14: Modeled and measured values for T2 in time.

Figure 3.15: Modeled and measured values for T3 in time.
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Figure 3.16: Modeled and measured values for T4 in time.

As figures 3.14, 3.15 and 3.16 show the analytical solution approaches the expected

values with an accuracy of ±1◦C in the worst case that is for T4(Fig. 3.16).

3.1.4 Matlab Finite Difference Method

Solving the transient heat transfer case using the finite difference method (FDM)

implemented in Matlab is a useful tool to be easily coupled with the already

existing images reconstruction algorithms, correct their speed of sound value and

thus improve the contrast of the images.

As every finite difference method we should start analyzing the governing equation

and the initial and boundary conditions that are going to define our model.

Differential equation
∂2T

∂x2
=

1

α

∂T

∂t
(3.23 revisited)

Boundary conditions T (0, t) = TS(t) and T (L, t) = Ti (3.24)

Initial Condition T (x, 0) = Ti . (3.25)
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where α is the thermal diffusivity in m2/s, physical property of the medium. The

starting point of the FDM method is our initial temperature condition T (x, 0) = Ti

for every point of our discretized grid (Fig.3.17). For the rest of the time domain

the FDM is constricted by the front and back surfaces. The temperature of the

front surface is the reading of the thermocouple T (0, t). Also, since during the

ablation procedure there is only physical contact with the surface of the tissue,

the back surface temperature is expected not to change and thus fixed to the initial

value T (L, t).

Figure 3.17: Initial temperature distribution T (x, 0) = Ti.

The first step in the finite difference method is to construct a grid with the points

of interest. Generally the discretization has a constant time step and is equally

spaced as represented in Fig.3.18.
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Figure 3.18: FDM grid discretization and nodes notation.

The next step is to replace the continuous derivatives of Eq.3.23 with their fi-

nite difference approximations. The implementation used was forward in time

and centered in space (FTCS) because as it uses information from known nodes

directly and thus has less computational cost. Using other methods, BTCS or

Crank-Nickolson, the implementation of coefficient matrices and probably a LU

factorization would be required to reduce computational cost.

The derivative of temperature versus time δT/δt can be approximated with a

FTCS scheme as:

δT

δt
≈ T n+1

i − T ni
tn + 1− tn

=
T n+1
i − T ni

∆t
=
T newi − T currenti

∆t
, (3.31)

where n is the index for the temperature at the current time, n+ 1 the index for

the temperature of the next time step. The subscript i refers to the location of

the point in the discretized grid. Being n and i integers. The spatial derivative of

Eq.3.23 is replaced by a central finite difference approximation:
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δ2T

δx2
=

δ

δx

(
δT

δx

)
≈

Tn
i+1−Tn

i

∆x
− Tn

i −Tn
i−1

∆x

∆x
=
T ni+1 − 2T ni + T ni−1

(∆x)2 . (3.32)

Substituting equations 3.31 and 3.32 into Eq.3.23 and rearranging so all known

quantities are on the right hand side of the equation(properties at n time step)

we can compute the new temperature. Temperature at time n known form the

thermocouple, therefore we can use Eq. 3.33 to compute the new temperature

without solving any additional equations.

T n+1
i = T ni + α∆t

(
T ni+1 − 2T ni + T ni−1

(∆x)2

)
. (3.33)

Eq. 3.33 can be rearranged defining ′r′ stability factor:

T n+1
i = T ni +

α∆t

(∆x)2

(
T ni+1 − 2T ni + T ni−1

)
(3.34)

r =
α∆t

(∆x)2 (3.35)

T n+1
i = rT nn+1 + (1− 2r)T ni + rT ni−1 . (3.36)

The FTCS scheme is easy to implement because the values of T n+1
i can be updated

independently of each other n+1 time point unknown. The entire solution is done

in two loops: an outer loop for time steps, and an inner loop for the nodes of the

grid at every time step. It is remarkable that, for the FTCS scheme, the value

of T n+1
i does not depend on T n+1

i−1 or T n+1
i+1 as they do in the BTCS and Crank-

Nicolson schemes. Therefore, FTCS scheme behaves more like the solution to a

hyperbolic differential equation than a parabolic differential equation.

The solutions to Eq.3.23 subject to the initial and boundary conditions are all

bounded, decaying functions. In other words, the magnitude of the solution will

decrease from the initial condition to a constant. The FTCS can yield unstable

solutions that oscillate and grow if ∆t is relatively big or ∆x relatively small.
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Stable solutions with the FTCS scheme are only obtained if [Morton and Mayers,

1994]:

r =
α∆t

(∆x)2 . (3.37)

Figure 3.19: FDM of transient thermal profile.Taking α = 1.43x10−8m2/s
[Quispe et al., 2011] and nx = 10 grid points, the stability factor is r = 0.4414 <

1
2 meeting the stability criteria.

Contrasting figures 3.19 and 3.12, the FDM predicts accurately how the temper-

ature distributes within the phantom during the heating process. A plot showing

the heating process in time is also explanatory (Fig. 3.20).
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Figure 3.20: Plot of transient thermal profile in time.

3.1.5 Transient Heating Matlab PDE Solver

Using the PDE solver of Matlab we found also accuracy between the analytical

solution, the FDM method and the experimental data.
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Figure 3.21: PDE solver thermal profile solution.

Figure 3.22: PDE solver thermal profile solution during the heating process.
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This implementation has the advantage that is conditionally stable, in the graphs

shown above the solution was refined with 20 grid points, instead of taking 10 grid

points as in the previous finite difference method due to stability limitations.

3.2 Modeling Radio-frequency Ablation Heating

The problem of solving a radio-frequency (RF) heating process of agarose solutions

phantoms is addressed in this section. Experimental data and results introduce

the different modeling methods approached.

3.2.1 Experimental Radio-frequency Thermal Profile

Agarose solution phantoms were made to recreate the thermal and electrical con-

ductivities of cardiac tissue in an ablation procedure. For this, a phantom with

saline water and agar was built. Saline water is water and sodium chloride, which

mimics electrical properties of real tissue in the phantom. The agar gel was made

with 1.3-1.5 g of agar powder per every 100 ml of water. An electrode of 2.90 mm

was used to induce electric current into the phantom. The tip of the electrode

was cleaned with a file to ensure a proper coupling and a good electric current

transmission to the phantom. Then, a thermocouple was coupled to the tip of

the electrode (Fig. 3.23), by attaching the thermocouple to its side and fixing the

thermocouple with adhesive tape so both tips concur at the same point (contact

point).
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Figure 3.23: Diagram of the initial setup of the RF electrode.

The method to introduce the thermocouples in the phantom used in the experiment

consisted on slicing the phantom evenly every 5mm. Each slide was checked for

bumps or irregularities to be aware of the error that we could be working with

the position of the thermocouples. Once cut, the thicker part was placed in the

bottom of the water tank over foil paper that will come out of the recipient to

make the electrical contact point, so the current flows through (Fig. 3.24). Then

we placed a thermocouple in the center of the surface of the layer, and we covered

it with the next phantom’s layer. The latter process continues until we put the

last and top layer that is in contact with the electrode and its thermocouple. All

thermocouples were aligned in the vertical axis of the electrode.
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Figure 3.24: Diagram of the initial setup of the RF electrode.

For the electrical setup, see Fig. 3.25, we used a wave form generator providing a

voltage peak to peak of Vpkpk = 10V with a frequency of f = 10kHz. The generated

signal was amplified and induced into the phantom by the electrode. The phantom

behaves as a resistance for the electric current and thus the temperature of the

phantom is increased due to current flow. To measure the current flowing within

the phantom we set the multimeter so the current went through it in a series circuit.

The voltage drop was measured by a second multimeter electrically conected in

parallel to the phantom.
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Figure 3.25: Diagram of the electrical setup for the RF heating process.

The temperature profile obtained in the RF heating process previously described

is shown in Fig. 3.26. Measurements were made every ∆t = 10s.
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Figure 3.26: Radiofrequency heated phantom thermal profile, plot until deep-
est thermocouple depth (0.015 m).

By looking to Fig. 3.26 one can notice that the second half of the thermal profile

could be approached by a transient heating process. On the other hand, the

temperature distribution differs from the conductive heating process in a region

close to the electrode. This most likely indicates that most of the electrical energy

is deposited in the proximity of the electrode while the heating of the rest of the

phantom is mainly to conductive heat transfer.

3.2.2 Radio-frequency Model Approaches

The change in temperature during ablation at any point in the tissue is given by

the heat transfer equation called ’Modified Pennes Bioheat Equation’ [Panescu

et al., 1995]
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ρc
∂T

∂t
= ∇·k∇T + JE− hbl(T − Tbl)−Qel (2.1 revisited)

hbl = ρblcblwbl ,

where ρ is the mass density, c is the heat capacity, k is the thermal conductivity,

J is the current density, E is the intensity of the electric field, ρbl is the blood

density, cbl is the blood heat capacity, wbl is the blood perfusion, Tbl is the blood

temperature, and Qel accounts for the heat exchanged between the tissue and the

ablation electrode. Qel will be considered negligible. Our studies are made on

agarose solution phantoms in a static water tank and thus blood perfusion factors

will be considered negligible as well.

RFA probes operate between 350-550 kHz. At these frequencies, the wavelength

of the electromagnetic energy is several orders of magnitude larger than the size

of the ablation electrodes. Thus, the primary mode of energy transfer is through

electrical conduction and can be modeled as a coupled quasi-static electrical con-

duction and heat conduction problem. The current density and the electric field

intensity can be computed from the Laplace equation as [Chang and Nguyen, 2004]

∇·σ(T )∇V = 0 , (2.2 revisited)

where ∇ is the gradient operator, σ(T ) is the temperature-dependent conductivity

(Siemens/meter), and V is the electric potential (Volts).

The modifed Pennes Bioheat Equation can be seen as the conductive heating gov-

erning equation but also accounting for the electrical energy input (JE). Using

the Matlab code for the conductive heating transfer case was the first strategy

followed. However, the term JE will be different depending of which electric field

distribution is considered within the phantom. Different FDM implementations

using Matlab for RF heating were made considering different electric field distri-

butions, such as spherical or spherical shelled. The FTCS scheme implemented in
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Matlab was giving unstable solutions for the RF heating case. The FDM stability

condition was meeting the conductive FDM stability criteria but it might have

changed now that we were accounting for RF energy.

3.2.2.1 Spherical coordinates

Finite element method software (FEM) COMSOL is used to model the electric

field distribution within the phantom. COMSOL results are presented in Fig.

3.27. We are going to work with symmetry in both poloidal and azimuthal angles

for the electric field distribution.

Figure 3.27: Electric field distribution of a spherical electrode.

Taking Pennes equation, assuming that blood perfusion and metabolic heat are

negligible, follows

ρc
δT

δt
= k∇2T + JE , (3.38)

where ∇2 is the Laplacian operator. The Laplacian operator for Cartesian coor-

dinates is

ρc
δT

δt
= k

δ2T

δx2
+ k

δ2T

δy2
+ k

δ2T

δz2
+ JE . (3.39)
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Figure 3.28: Reference system for spherical coordinates.

Considering the Laplacian operator for spherical coordinates (Fig. 3.28), we obtain

the bio-heat equation for this coordinate systems

ρc
δT

δt
=

1

r2
· δ
δr

(
k · r2 δT

δr

)
+

1

r2sin2θ
· δ
δϕ

(
k
δT

δϕ

)
+

1

r2sinθ
· δ
δθ

(
k · sinθδT

δθ

)
+JE ,

(3.40)

where the temperature distribution of each point in space depends on its position

and on the quantity of electrical energy input in that point. Having a Poloidal

symmetry δT
δθ

= 0 and an azimuthal symmetry δT
δϕ

= 0 it follows

ρc
δT

δt
=

1

r2
· δ
δr

(
k · r2 δT

δr

)
+ JE , (3.41)

and rearranging
δT

δt
=
α

r

(
2
δT

δr
+ r

δ2T

δr2

)
+

JE

ρc
. (3.42)

Applying the FDM to δT
δt

and δT
δr

δT

δt
=
T ti − T t−∆t

i

∆t
;
δT

δr
=
T t−∆t
i − T t−∆t

i−1

∆r
;
δ2T

δr2
=
T t−∆t
i+1 − 2T t−∆t

i + T t−∆t
i−1

(∆r)2 ,

(3.43)
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where rearranging the temperature of the next time step can be calculated as

T ti =
∆t · α
ri ·∆r

·
(( ri

∆r

)
T t−∆t
i+1 + 2

(
1− ri

∆r

)
T t−∆t
i +

( ri
∆r
− 2
)
T t−∆t
i−1

)
+

∆t

ρc
JE+T t−∆t

i .

(3.44)

This solution is not stable for the FDM using the FTCS scheme. Changing the

stencil of the FDM, i.e. using a Crank-Nicolson stencil instead of using a Forward

in Time Centered in Space method, the solution has been shown to be more stable

[Warming and Hyett, 1974]. One of the main factors that makes the Crank-

Nicolson scheme more stable is that it uses more information, up to 6 points to

calculate the next step against only 3 for the FTCS method implemented.

3.2.2.2 COMSOL Finite Element Method

The implementation of FEM using COMSOL software was made in order to have

a model of the RF heating case. Same dimensions as for the voltage prediction

shown in Fig. 3.27 were used. A temperature model was implemented and solved

in COMSOL.

Figure 3.29: COMSOL temperature distribution. Results show axisymmetric
symmetry.
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The thermal profile distribution within the hypothetical location of the thermo-

couples is given by

Figure 3.30: COMSOL Thermal Profile in the hypothetical location of the
thermocouples.

COMSOL has a high computational cost but it reaches an accurate prediction

of how a real process would behave. There are differences between COMSOL

simulation and the experimental data (Fig. 3.26). Potential factors accounting

for the difference between COMSOL model and our experimental data are the

following

• Implementing a model in COMSOL has its own assumptions, such us the

spherical shape of the electrode, the isotropic properties of the phantom, and

also the accuracy of the physical properties used and those of the phantom.

• The RF energy input is a constant in COMSOL. While in the experiment

the power was adjusted low at the first 100 s, and higher the last 500 s
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controlling the temperature to be under 50◦C in order not to have into

account coagulation effects.

• The steady beginning in Fig. 3.26 in the RF experiment could be due to

the insertion of the catheter inside the first agar layer without taking it into

account.



Chapter 4

Optoacoustic Modeling

Non-invasive real-time measurement of temperature distribution in tissues during

thermotherapy is necessary for the safe and efficient thermal destruction of tumors

or other abnormal tissues.[Lehmann 1990, Welch and van Gemert 1995]. A wide

variety of thermotherapy applications present associated to the lack of temperature

control over the heated volume. Safe and efficient thermotherapy requires real-

time temperature measurements with 1 mm spatial resolution and 1◦C or better

accuracy.

Infrared thermography is capable of real-time temperature measurements with an

accuracy of 0.1◦C. However, this technique can only measure the temperature

at superficial tissue layers. On the other hand, ultrasound methods can provide

real-time images with good resolution and depth of penetration, but they lack suf-

ficient accuracy for temperature measurements [Seip and Ebbini, 1995]. Finally,

MRI requires a long acquisition time to provide temperature mapping with high

resolution and accuracy [Graham et al., 1998]. OA imaging has been developed

and applied in many areas of biomedicine. It has been shown that time-resolved

detection and analysis of the laser-induced pressure profiles allow for reconstruc-

tion of OA images and calculations of tissue temperature with an accuracy of

about 17%. [Larina et al., 2005]

54
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4.1 OA Pressure Temperature Dependence

The thermal expansion of an absorbing medium heated by a short laser pulse with

an incident lase fluence F0, induces a pressure rise P0, in the irradiated volume

upon stress confined irradiation conditions. [Gusev and Karabutov, 1993b]

P0 =

(
βc2

s

Cp

)
µaF (z) = ΓµaF (z) = ΓµaF0e

(−µeffZ) , (4.1)

where β [1◦C−1] is the thermal expansion coefficient, cs the speed of sound, Cp[
Jg−1◦C−1

]
the heat capacity at constant pressure, F (z) [Jcm−2] the laser fluence

and µa [cm−1] the absorption coefficient of the medium. The expression βc2
s/Cp

represents the Grüneisen parameter, Γ(dimensionless). The factor e(−µeffZ) rep-

resents exponential attenuation of the optical radiation in the medium. Therefore,

the OA pressure is dependent on Γ, the fluence, and the optical properties of the

medium. Equation 4.1 is valid under the condition of stress-confinement, when

pressure relaxation is negligible during the heat deposition, achieved by using

nanosecond optical pulses.

OA images are formed from the initial pressure rise P (z) (Eq. 4.1). P (z) is

dependent on the grüneisen parameter Γ, the absorption coefficient µa and the

fluence F (z) which is dependent on µa itself. In this section, temperature effects

on the different factors of the OA signal are studied.

4.2 Absorption Coefficient Temperature Depen-

dence

Studying how the absorption coefficient µa is affected by temperature changes is

relevant to know how much the OA signal P0 changes due to temperature varia-

tions. In an ablation procedure, light is absorbed mainly by blood. In order to

study the optical properties dependence on temperature we used a spectrometer.
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The spectrometer measures optical density (OD), where for a non-scattering sam-

ple µa = 2.3 · OD. Light can be either absorbed, scattered or can go through the

substance. Therefore, changes in OD detected by the spectrometer can be due to

variations in the absorption coefficient µa or the scattering coefficient µs of the

substance measured. The latter variations could take place at the same time and

change the OD in the same direction or not.

In order to study the potential temperature variations of the absorption coefficient,

several substances were used. Black India ink was used in the first place as an

example of non-scattering medium. For a more practical applicability of the study,

we also used haemoglobin and bovine blood.

4.2.0.3 Ink

An ink solution was first measured in the spectrometer because it has no scattering.

Therefore changes in OD are proportional to changes in µa. We used an ink

solution with an optical density of 1 OD, which was heated in a hot water bath.

Several readings of the spectrometer were taken during the process of cooling

down.
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Figure 4.1: µa temperature dependence of 1 OD ink. 2% maximum variation.

The absorption coefficient of ink is shown for the temperature (25 − 50◦C) and

wavelength (750nm) ranges of interest (Fig. 4.1). The experimental data show

a maximum variation of 2% in OD with an increase of 20◦C, which is significant

considering potential errors in the measurement.

4.2.0.4 Haemoglobin

As a substance similar to blood with no scattering effects, we used the absorption

molecule of blood haemoglobin. Deoxyhaemoglobin (Hb) has no scattering. How-

ever, since oxygen gets instantly bounded to haemoglobin with its contact with

air, it becomes oxygenated. Blood also contains other substances whose potential

effects on optical properties are avoided by using oxyhaemoglobin (HbO2).

The normal concentrations of haemoglobin in blood for adult males is 14 to 18g/dL

or 0.14 to 0.18g/mL [Perkins and Hussong, 2001]. The solution with normal con-

centrations had presence of lumps that could affect the absorption of haemoglobin.
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We studied the temperature dependence of the absorption coefficient using 25%

of the normal concentration for adult males.

Figure 4.2: µa temperature dependence of Hb. 2% maximum variation.

OD readings of haemoglobin for T = 34◦C and T = 36◦C are not shown in the

graph because those underwent coagulation when reaching temperatures above

50◦C in the water bath.(Fig. 4.2)

4.2.0.5 Bovine Blood

Real blood has also optical scattering that can affect the OD measurement. The

temperature variations in the scattering could be affecting the OD measurement

in the same direction as the temperature changes of the absorption coefficient or

in the opposite direction (balancing the change).
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Figure 4.3: µa temperature dependence of bobine blood. 2% maximum vari-
ation.

In the same way as in the haemoglobin case, OD readings for T = 28◦C and

T = 31◦C are not shown in the graph because those proves underwent coagulation

reaching temperatures above 50◦C in the water bath. However, T = 31◦C is

shown, they were different proves. Coagulated probes were removed.(Fig. 4.3)

An increase from 26 to 30◦C doesn’t change significantly the OD of Blood. As

blood has scattering, this can change the OD measurement. The absorption coef-

ficient of blood could change in one direction the OD signal while the scattering

would act in the opposite direction balancing and making invisible the variation

in the absorption coefficient with temperature. However, from the results for sub-

stances that lack scattering as ink and haemoglobin, we can conclude that the

absorption coefficient doesn’t change significantly with temperature.

The conclusion of this experiment will reduce modeling complexity. If the absorp-

tion coefficient µa doesn’t change with temperature, the dominant factor of the
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OA signal changes with temperature is the Grüneisen parameter Γ.

4.3 OA signal change with temperature

We have shown in the previous section that the absorption coefficient doesn’t

increase significantly with temperature. The OA signal response to temperature

is studied in this section.

We performed experiments in a commercial multispectral optoacoustic tomogra-

phy (MSOT). MSOT is a new imaging modality that utilizes generation of ultra-

sonic waves by exciting the sample at multiple wavelength with ultrashort pulses

of light in the imaged targets. [Razansky, 2012]. In our case, the laser wave-

length was set to 750 nm. The MSOT scanner contains a water tank that needs

to be filled to guarantee acoustic coupling between the sample and the ultrasound

transducer.

The experiment was made with a cylindrical phantom with a polyethylene tubing

embedded along its axis. We poured hot ≈1.2 OD ink through the tubing while

OA images where being acquired. The phantom was made of agar and de-ionized

water. The ink solution was heated in a water bath and poured through the

phantom using a syringe. The temperature of the water was 34◦C while the hot

ink solution was about 40◦C.

Before inserting the ink solution, as there were no absorbing molecules in the

phantom, the OA image contains only noise (Fig. 4.4).
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Figure 4.4: MSOT frame showing no specific absorption zone.

When the ink was being injected, the OA image started to focus in the tubing

position.

Figure 4.5: MSOT ink injection frame time, OA signal gets absorbed by ink.

Once the ink was flowing through the tube it stabilized the OA signal. OA signal

changes in the tubing are due to temperature differentials.
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Figure 4.6: MSOT OA signal once ink is running through the phantom.

The figures depicted above are 3 frames that describe 3 phases of the injection of

the ink. Studying all the frames and taking the pixel with the maximum value of

the signal for every frame and plotting the value of this pixel, we get the maximum

value of the OA signal in time.

Figure 4.7: Maximum value of MSOT OA signal in time.

The OA response to temperature is observed in Fig. 4.7. The OA signal is around

zero before injection(Fig. 4.4). When ink is injected the OA signal spiked until
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a value that is lower than the maximum of the graph in Fig.4.7. The ink was

poured in the tubing with a syringe previously heated in a hot water bath.The

lower OA amplitude at the beginning of the acquisition sequence corresponds to

the tip of the syringe, which cools down toroom temperature before the rest of

the syringe while inserting it in the tubing. Then the OA signal rises until the

highest peak. Then the phantom starts to absorb more heat from the tubing and

the temperature inside such tubing decreases. Form the shift in the OA signal we

can observe that at least it changes 14.3% in amplitude with only 6◦C temperature

increment. On the other hand, the absorption coefficient shift with temperature

was less than 2% for a 20◦C temperature increment.

We can conclude that OA signal significantly increases with temperature while

the absorption coefficient does not change significantly even with a considerable

increase in temperature. The Grüneisen parameter is the dominant factor in the

OA signal changes with temperature.

IAn additional experiment was performed to corroborate these findings in a more

controlled manner. For this, we studied how the OA signal measured with a single

element transducer changes with temperature. The experimental setup consistedof

a 15 MHz transducer and a tubing located at a distance of approximately 35mm.

Both the transducer and the tubing were inmersed in a water tank. The laser

wavelength was set to a 720nm laser and a pulse repetition frequency of 100 Hz

was used. Each signal was averaged 1000 times. Black India ink was poured

through the tubing while modifying the temperature of the water bath with ice.
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Figure 4.8: OA pressure amplitude with temperature.

The measured OA signal amplitude as a function of temperature is shown in

Fig.4.8. The change in the OA signal is approximately linear with temperature

(Fig. ??) as the Grüneisen does. Furthermore, experiments have shown a very

strong OA signal increase with an ∆T = 10◦C while the absorption coefficient

µa changed less than 2% with an ∆T = 20◦C. We can then conclude that the

Grüneisen parameter is the dominant factor governing OA signal changes with

temperature.
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Conclusions and Future Research

5.1 Conclusions

The main purpose of this thesis was to demonstrate capabilities of OA imaging

in temperature monitoring during RF ablation, giving feedback so that tempera-

ture maps of the tissue can be obtained during future ablation experiments. The

results obtained show that indeed OA signals are strongly affected by tempera-

ture due to the temperature dependence of the Grüneisen parameter. Thereby,

an efficient design of an optoacoustic imaging system to be incorporated in RF

ablation interventions as well as the development of accurate thermal models to

estimate the temperature distribution from the optoacoustic readings can allow

significantly improving the outcome of these medical procedures.

Accurate thermal models based on transient heat transfer theory were developed

analytically. Numerical methods based on finite difference and finite element meth-

ods were also analyzed. It was shown that numerical methods can be used for

accurate modeling of the experimental distribution of temperature as they match

the analytical solutions forspecific cases. Experimental results further validated

the thermal models employed.

On the other hand, it was shown that the OA signals increase with temperature

is not significantly influenced by the absorption coefficient. Indeed, the Grüneisen

65



Chapter 5. Conclusions and Future Work 66

parameter is the dominant factor in the temperature dependence of the OA signals.

Then, the OA signals provide a means to monitor temperature through variation

in the Grüneisen parameter.

Overall, we expect that the results shown in this work have impact in the in-

vestigation of RF ablation monitoring procedures, which represent an unsolved

problem in different types of medical interventions, particularly in the treatment

of arrhythmias of the heart.

5.2 Future Research

Future research is required to develop a temperature-dependent OA model which

considers the effects of temperature on Grüneisen parameter. The coupled model

can be used to calibrate optoacoustic images and reconstruction algorithms to

achieve accurate optoacoustic images for controlled temperature changes less than

50 ◦C,so the change in absorption coefficient due to tissue damage does not have

to be considered.

More accurate modeling for RF heating implies considering other parameters sub-

stantially dependent on temperature, e.g. conductivity σ(T ). Further experimen-

tal validation with more advance optoacoustic monitoring system is also a future

step of the work presented in this thesis.
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