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BACULOVIRUSES
Structure and infection cycle

The family Baculoviridae is a group of arthropod-specific viruses with double-

stranded, circular, supercoiled DNA genomes, with sizes varying from about 80 

to over 180 kb encoding between 90 and 180 genes (Rohrmann, 2013b; Van Oers 

& Vlak, 2007). Baculovirus infections have been reported in more than 600 insect 

species, including members of the orders Lepidoptera, Hymenoptera and Diptera 

(Herniou et al., 2003). Based on phylogenetic studies, genome composition and 

morphological characteristics, the family Baculoviridae is divided in four genera: 

Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses), Betabaculovirus 

(lepidopteran-specific granuloviruses), Gammabaculovirus (hymenopteran-

specific nucleopolyhedroviruses) and Deltabaculovirus (dipteran-specific 

nucleopolyhedroviruses) (Jehle et al., 2006) (Fig. 1).

The genome of baculoviruses is packaged in rod-shaped nucleocapsids varying in 

Figure 1. Neighbour-joining tree of the amino acid alignment of 29 baculovirus core genes of 29 sequenced 
baculovirus genomes. (Adapted from Jehle et al. 2006).
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length (230–385 nm) and diameter (40–60 nm) (Ackermann & Smirnoff, 1983; Federici, 

1986). For most baculoviruses, two types of virions are commonly produced in 

infected cells or tissues: occlusion derived virions (ODVs) and budded virions (BVs). 

Those two types of virions differ in the origin and composition of their envelopes 

and their roles in the virus life cycle, but have identical genomes (Rohrmann, 2013a). 

ODVs are occluded in a paracrystalline proteinaceous matrix, forming so-called 

occlusion bodies (OBs), and they are in charge of initiating the infection in insects, 

more specifically the midgut epithelium cells (Jehle et al., 2006). OBs are responsible 

for the horizontal spread of the virus in insect populations. The BVs are produced 

after initial infection of cells and they are in charge of cell-to-cell systemic spread to 

other tissues of the larvae. BVs consist of single-enveloped nucleocapsids that bud 

from the membrane of infected cells. ODVs may contain single (SNPV) or multiple 

(MNPV) nucleocapsids depending on the species, and acquire their envelopes in 

the nucleus by de novo assembly. The OBs vary in size from 0.5 to 2 µm (Adams 

& McClintock, 1991), the protein matrix is made of polyhedrin for the genera 

Alphabaculovirus, Gammabaculovirus and Deltabaculovirus and granulin for the genus 

Betabaculovirus (Fig. 2). OBs are highly stable and can resist extreme environmental 

conditions, allowing the ODVs to remain infectious for long periods of time. 

The group Alphabaculovirus can be divided in two phylogenetic clades, group I and 

group II NPVs (Herniou & Jehle, 2007) (Fig. 1). Group I NPVs use the GP64 protein 

as BV envelope fusion protein, whereas group II NPVs, as well as the beta- and 

deltabaculoviruses, use the F protein as the envelope fusion protein (Rohrmann, 

2013b).
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Transmission

Baculoviruses are transmitted to insects via the oral route mediated by OBs. When 

insects ingest OB-contaminated food, the OBs reach the midgut. The alkaline pH of 

the insect midgut dissolves the OBs and releases the ODVs. ODVs fuse with midgut 

epithelial cells and release the nucleocapsids into the cytosol (Adams & McClintock, 

1991; Haas-Stapleton et al., 2004). In this primary infection the nucleocapsids travel 

to the nucleus, where the viral DNA is released and DNA replication starts. After 

assembly of the BVs at the basolateral side of the midgut epithelial cells, they 

are released either directly or via the trachea into the hemocele cavity infecting 

susceptible tissues and organs of the caterpillar to establish a secondary infection. 

Infected insect midgut cells are sloughed off regularly (Engelhard & Volkman, 1995) 

and the midgut is regenerated. In the last stage of the secondary infection, ODVs 

are produced in the nucleus of the infected cells, where they are occluded into OBs, 

which are then released into the environment from the host by virus-induced tissue 

Figure 2. Major occlusion-derived virions (ODVs) forms. Nucleopolyhedroviruses (NPV) are divided into 
multiple nucleopolyhedroviruses (MNPV) and single nucleopolyhedroviruses (SNPV). The granulovirus 
(GV) ODV is represented as partially encapsulated (Adapted from Slack & Arif, 2006).
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liquefaction and cuticle rupture after death (Slack & Arif, 2006).

Baculoviruses can be transmitted horizontally, from one insect to another, as well 

as vertically, from parents to offspring. Horizontal transmission is an effective 

mechanism of virus persistence, when the host density is high. However, 

baculovirus persistence is difficult to explain when the host density is low or when 

the insects are highly mobile (Burden et al., 2003) or spatially separated. The role 

of vertical transmission is more complex. The existence of persistent baculovirus 

infections were reported after spontaneous outbreaks of baculovirus infections 

in laboratory-controlled insect rearing (Rohrmann, 2013a), or also after induction 

with stress factors such as high temperature (Khurad et al., 2004) or irradiation 

(Jurkovíčová, 1979). Those spontaneous outbreaks occur more commonly in fourth 

and fifth instar larvae, although they can happen in all instar stages (Khurad et al., 

2004). Molecular evidence indicates that baculovirus can persist in adult insects that 

were sublethally infected as larvae (Burden et al., 2002; Cabodevilla et al., 2011a), 

and are hence capable of transmitting the infection to their progeny (Kukan, 1999). 

Vertical transmission includes transovum transmission with viruses on the egg 

surface, transovarian transmission from within the eggs, either as virus or DNA, 

to passage as a latent infection (Cory & Myers, 2003). The sublethal infection of the 

host can lead to diverse effects like reduction in fecundity and fertility, altered host 

development time, lower pupal and adult body weight, and altered pre-oviposition 

period (Burden et al., 2002; Myers et al., 2000; Vilaplana et al., 2010). The benefit for 

the virus is the availability for long periods of time and many generations in the 

environment (Cabodevilla et al., 2011b). Persistent baculovirus infections have been 

reported in a large number of lepidopteran species, and it has been proposed as a 

strategy for the viral survival in the host, even when the host density is low (Cory & 

Myers, 2003). However, little is known about the molecular mechanism that allows 

the establishment of a persistent baculovirus infection in the host.
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BACULOVIRUS APPLICATIONS
Pest control

Baculoviruses play an important role in controlling the size of insect populations. 

These viruses have been widely applied for the last six decades as biocontrol agents 

against forest and agricultural pests due to their efficacy, high specifity and safety 

for non-target organisms (Moscardi, 1999). The interest in developing baculovirus 

as biocontrol agents is growing due to the development of insect resistance to most 

common insecticides (Moulton et al., 2002), to the overcoming of (engineered) insect 

resistance in crops and the presence of less toxic chemical residues in food and water 

(Garrido et al., 2004). However, there are also several drawbacks that limit the use of 

baculovirus, like their slow speed of action relative to chemicals and the limitations 

on large scale production. These factors made the engineering of baculoviruses an 

important field of research for the last 25 years. 

The speed of action of baculoviruses is relatively slow (days or weeks) compared 

with most chemical insecticides (<day). Reducing the time to kill is a major research 

area and it has involved the expression of foreign genes such as insect-specific toxins 

derived from the scorpion Androctonus australis (Maeda et al., 1991). The deletion 

of some genes has also been proven to affect the time to kill. The ecdystroid UDP-

glucosyltransferase (egt) gene from Autographa californica MNPV (AcMNPV), for 

example, prevents infected insect from moulting, and its deletion reduces the speed 

of kill with respect to wild-type (wt) viruses (O’Reilly & Miller, 1991). Spodoptera 

exigua MNPV (SeMNPV), a baculovirus with a narrow host range, kills larvae faster 

than AcMNPV, which has a wider host range. Identification of genes responsible for 

the increased virulence may also help reducing the speed of kill.

Heterologous gene expression

Baculoviruses are widely applied in biotechnology as vectors to produce recombinant 

proteins in insect cells due to the high level of very late gene expression (Van Oers, 
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2011). The advantage of using insect cells is that they provide the proper post-

translational modifications, e.g. glycosylation or phosphorylation that make them 

suitable for vaccine production, and the inherent safety of the production process. 

The majority of the commercially available baculovirus insect cell expression systems 

are based on the baculovirus type species, Autographa californica MNPV (AcMNPV). 

The very late polyhedrin and p10 genes have an extremely high transcriptional activity 

(about 25% total mRNA of infected cells) and are not required for BV production 

which make their promoters available for baculovirus-mediated high level foreign 

gene expression (Condreay & Kost, 2007). In the baculovirus insect cell expression 

system, the polyhedrin or p10 gene-coding sequence is replaced by the gene of interest 

and the expression of this foreign gene is driven by the very late polyhedrin or p10 

promoter. However, there are other expression vectors available using promoters 

that are less transcriptionally active or are active earlier in the infection process 

(Condreay & Kost, 2007).  

Upscaling

A limiting factor for the use of baculoviruses for biocontrol is the large-scale 

production of OBs. Currently, this is being done in vivo, in insects reared on artificial 

diets or under field conditions (Moscardi, 1999). This process is labour intensive 

and very low cost-competitive with chemical insecticides (Fuxa, 1991). Production 

of baculovirus in insect cells bioreactors would facilitate the selection of baculovirus 

clonal isolates with improved insecticidal properties (Moscardi, 1999). The in vitro 

production of baculoviruses for biocontrol, however, has some drawbacks as well. 

Baculovirus replication in cell culture leads to generation of genetic alterations 

after few passages (Krell, 1996). Upon SeMNPV replication in cell culture, deletion 

mutants that have lost the ability to liquefy infected larvae (Dai et al., 2000), or even 

completely lack oral infectivity in vivo (Heldens et al., 1996), are generated. Another 

problem is the generation of defective interfering particles (DIPs) and few polyhedra 
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(FP) mutants. DIPs are viral deletion mutants that arise during serial passage of viral 

replication in cells and interfere with the growth of virus with complete genomes 

(Bangham & Kirkwood, 1990). DIPs are often enriched in oris (origins of replication) 

and have a smaller size, which leads to faster replication in cell culture at the expense 

of the intact virus (Lee & Krell, 1994). DIPs need the assistance of a helper virus 

for the supply of replication factors such as DNA polymerases and helicases, and 

thus will lose their replication advantage in low MOI infections. FP mutants are 

defective in a 25-KDa protein, due to an insertion of a host transposable element into 

the fp25 gene (Bull et al., 2003). FP mutants produce low yields of occlusion bodies 

in cell culture, however, they are being selected because a favoured production of 

BV (Harrison & Summers, 1995). Together, these phenomena are a major concern 

regarding the large-scale production of baculovirus in insect cell bioreactors.

Gene therapy

The baculovirus-expression system is also being used as a vector for gene delivery 

into mammalian cells. Although baculoviruses cannot replicate in mammalian cells, 

they can enter the nucleus of a broad spectrum of mammalian cell types (Condreay 

& Kost, 2007). By using a mammalian promoter in a baculovirus vector, transient 

expression of several foreign gene products has been observed in different human 

cell lines (Condreay et al., 1999). 

GENOTYPIC DIVERSITY OF BACULOVIRUSES
Baculoviruses display interesting differences in host range. Some of them are host 

mono-specific, like S. exigua MNPV (SeMNPV), but others have a broader host 

spectrum, e.g. AcMNPV can infect at least 39 lepidopteran species belonging to 15 

different families (Gröner, 1986). A high heterogeneity within a single baculovirus 

species can exist, indicated by the presence of different genotypic variants within a 

single NPV field isolate (Lee & Miller, 1978; Muñoz et al., 1998; Simón et al., 2004a). 
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The existence of genotypic variants within an isolate is usually indicated by the 

presence of submolar bands in restriction endonuclease digestion analysis of viral 

DNA. Those genotypic variants can have different modifications like deletions, 

insertions, or duplications in the viral genome (Caballero & Muñoz, 2001; Muñoz 

et al., 1998). 

The genotypes present in a single baculovirus isolate can be purified in vitro, i.e. 

by plaque purification in cell culture (Croizier & Ribeiro, 1992; Maruniak et al., 

1994; Simón et al., 2004a), or in vivo, using larvae (Muñoz et al., 1999; Muñoz et al., 

1998; Smith & Crook, 1988). The isolation of individual genotypes has facilitated 

the evaluation of their biological activity and has revealed marked differences in 

pathogenicity (indicated by different lethal concentrations), and in virulence (with 

differences in time to death) (Lynn et al., 1993; Simón et al., 2004a).

A Nicaraguan isolate of Spodoptera frugiperda MNPV (SfMNPV-NIC) is composed 

of nine distinct genotypes (Fig. 3) of which eight contain a deletion. Three of them 

are not infectious per os, and the remaining genotypes present a higher mean lethal 

concentration (LC50) compared to the complete genotype, as well as differences in 

their speed of kill (Simón et al., 2004a). 

Plaque purified genotypes from Lymantria dispar MNPV (LdMNPV) show great 

differences in lethal concentrations, ranging from 2.2x104 OBs/ml to 6.5x105, and 

in virulence, with mean time to death values ranging from 9.8 to 18.7 days post-

inoculation (Lynn et al., 1993). The study of the different genotypes may help select 

baculovirus strains with improved insecticidal properties. 

The analysis of genotypes with different genomic deletions has led to the identification 

of important genes for virus transmission. For instance, some deletion genotypes 

were unable to infect insects per os, although they were as pathogenic as the wild-

type virus by injection (Kikhno et al., 2002; Pijlman et al., 2003a). These genotypes 

lacked a specific gene(s) called per os infectivity factor (pif), which are ODV-specific 

structural proteins required for initiation of infection in the midgut epithelial cells. 



Chapter 1

10

Also, analysis of fast-killing deletion genotypes present in SfMNPV populations 

has identified the ecdystroid UDP-glucosyltransferase (egt) gene, whose deletion is 

responsible for the fast-killing phenotype of this genotype (Harrison et al., 2008).

Maintenance of such deletion genotypes, which may lack genes essential for 

virus replication or transmission, in the population, is due to co-occlusion with 

complete genotypes, which provide the essential infection factors upon host cell co-

infection (López-Ferber et al., 2003). Co-infection of an insect cell by two different 

genotypes in vivo occurs at a high frequency (Bull et al., 2001). The packaging of 

multiple genomes within an OB allows the exchange of genetic material, via viral 

Figure 3. Physical map of SfNIC isolate and nine genotypic variants. (Adapted from Simón et al., 2004a).
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recombination, leading to a high genotypic heterogeneity. The mechanism for 

generating and maintaining such genotypic diversity is still not clear, a reason why 

additional studies are needed.  

The cloning of genotypes present in a single isolate of baculovirus can be difficult 

to achieve. In vivo cloning methods do not allow selection of genotypes that lack 

pif genes (essential for oral infectivity), and in vitro cloning methods may select 

genotypes with a better replication efficiency in cell culture. Also, passage in cell 

culture may lead to the generation of deleted genotypes that are not present in the 

natural baculovirus isolate. Another method for cloning genotypes is by direct cloning 

of full length baculovirus genomes in E. coli. The entire baculovirus genome can be 

cloned into an 8.5 kb bacterial element with a mini-F replicon, a Tn7 transposition 

site and an antibiotic selection marker (bacmid). The bacmid is maintained in E. coli 

as a single-copy plasmid and the infectious virus can be generated in insect cell lines 

after transfection with bacmid DNA. The advantage of the bacmid systems is that 

it is possible to clone all genotypes present in the wild-type population, including 

those lacking essential genes for replication, since replication is driven by the 

mini-F replicon. Understanding the generation and maintenance of such genotypic 

variability, which is important for virus transmission, gives clues on the ecology and 

evolution of baculoviruses.

Spodoptera exigua
S. exigua, also known as the beet armyworm (Hübner) (Insecta: Lepidoptera: 

Noctuidae), originates from Southeast Asia. It was first discovered in North 

America in 1876, but now it is found in all tropical and subtropical areas of the world 

(Capinera, 2001) (Fig. 4).

It is an important agricultural and horticultural insect pest since it has an extremely 
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wide host range of more than 200 plant species belonging to over 40 different plant 

families (Brown & Dewhurst, 1975). It affects plants such as tomato, sweet pepper, 

asparagus, cabbage, wheat, and chrysanthemum. Generally, S. exigua undergoes 

five larval instars, although sometimes a sixth instar has been reported (Fig. 5A). 

The metamorphosis, the pupal stage, takes six to seven days in warm weather, and 

pupation usually occurs in the soil (Belda, 1994). Moths are usually mottled grey 

and brown, and they may live 10-20 days (Smits et al., 1987) (Fig 5B). Female moths 

produce on average 500-600 eggs, in batches of 150 eggs maximum, which they 

usually overlay with hairs and scales (Belda, 1994; Smits et al., 1987). 

S. exigua is considered one of the major crop pests of greenhouses in The Netherlands 

and southern Spain. Larvae of S. exigua feed on leaves and fruits and are considered 

serious defoliators, causing extensive economical loses. Under the optimal 

temperature conditions of greenhouses, complete development of a generation can 

take as few as 20 days (Belda, 1994), and it can rapidly colonize the entire greenhouse 

given the highly mobility of this species.

Control of the beet armyworm has mainly been accomplished with the intensive use 

of chemical insecticides (Belda, 1994). However, S. exigua has developed tolerance and 

resistance to most commonly used chemical insecticides, like pyrethroids (Moulton 

Figure 4. Geographic distribution of S. exigua (gray background in the map) in the world. Adapted from 
(Zheng et al., 2011).
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et al., 2002). Additionally, the repeated use of chemical insecticides does not allow 

implementation of biological control programs that target other major greenhouses 

pests, for which effective biocontrol agents have been implemented (Caballero et 

al., 2009). For that reason the development of safe and effective biological control 

methods for S. exigua larvae meets a growing interest.

Spodoptera exigua MULTIPLE NUCLEOPOLYHEDROVIRUS 
(SeMNPV)
SeMNPV constitutes an appealing bioinsecticide given its monospecificity for 

S. exigua larvae and the high insecticidal performance for its homologous host in 

comparison to other baculoviruses (Smits & Vlak, 1988). SeMNPV belongs to group 

II alphabaculoviruses, its genome size is 135 kbp and it encodes 139 open reading 

frames (ORFs) (Fig. 6).

SeMNPV has been isolated from many different geographical regions of the world 

like California, Florida, The Netherlands, Japan, Thailand and Spain (Caballero et 

al., 1992a; Gelernter & Federici, 1986a; Hara et al., 1995; Kondo et al., 1994; Muñoz 

et al., 1998; Murillo et al., 2001; Vlak et al., 1981). Three SeMNPV isolates have been 

developed as commercial bioinsecticides. The SeMNPV-US1 isolate from California 

A

Figure 5. (A) S. exigua fifth instar larvae; (B) Moth of S. exigua (photo credit: Ian Kimber, www.ukmoths.
org.uk).

B
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(USA) has been commercialized as Spexit® by Andermatt Biocontrol (Grossdietwil, 

Switzerland). The SeMNPV-US2 isolate from Florida (USA) has been commercialized 

as Spod-X® by Certis (Columbia, USA) and used in The Netherlands and Thailand. 

The SeMPNV-SP2 isolate from southern Spain has been commercialized as a 

product containing a mixture of genotypes with the name of Virex® by Biocolor 

Ltd. (Almería, Spain), and it is extensively being used in the greenhouses of Spain. 

Figure 6. Circular map of the SeMNPV genomic organization. Sites for restriction enzyme XbaI are 
shown. The positions of the 139 ORFs identified are indicated by arrows that also represent the direction 
of transcription. The scale on the inner circle is in map units. (Adapted from IJkel et al., 1999).
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SeMNPV isolates frequently comprise mixtures of different genotypes, identified 

by the presence of submolar bands on restriction endonuclease digestion profiles of 

the viral DNA (Muñoz et al., 1999). An SeMNPV hypervariable genomic region has 

been located between ORFs 17 to 39, in the XbaI-A fragment (Fig. 5). Most genotypic 

variations occur in this region. Isolation of individual genotypes by in vivo and in 

vitro cloning methods has allowed the study of different insecticidal properties of the 

genotypic variants (Dai et al., 2000; Muñoz et al., 1998 and 1999). The SeMNPV-US2 

isolate, the active ingredient of the Spod-X®, comprises a mixture of genotypes, one 

of which is considered a parasitic genotype, since it reduces the insecticidal activity 

of the product (Muñoz et al., 1998). A detailed study on the genotypic composition of 

the different SeMNPV isolates seems to be necessary to understand the maintenance 

of such “defective” genotypes, which appear to remain stable in the viral population.

SCOPE OF THE THESIS
Baculoviruses are natural mortality factors of insect populations and in the last 

decades, they have been used as agents for the control of insect pests in agricultural 

crops and forest trees. Along with the main use of baculovirus as biological control 

agents, they have been widely used in the applied biomedical industry as vectors 

Figure 7. S. exigua larvae dead by SeMNPV. 
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to produce recombinant proteins, and as gene delivery vectors in mammalian cells. 

Wild-type baculovirus populations are composed of a mixture of different genotypes 

that appear to play an important role in the biological performance of the virus. 

Detailed understanding of the genetic and phenotypic diversity within and between 

baculovirus populations can facilitate the selection of highly insecticidal strains for 

their development as commercial products. The main objective of this thesis is to 

determine the genomic factors that determine the insecticidal properties of the S. 

exigua MNPV baculovirus, namely, pathogenicity, virulence and transmission of this 

virus in S. exigua populations. This is of crucial importance to design more efficient 

active compounds in order to both, reduce costs and enhance the sustainability of 

SeMNPV-based control programs. 

DNA sequencing technologies have facilitated the identification of virus genes that 

may play an important role in the insecticidal performance of SeMNPV. In a previous 

study, sequencing and comparison of seven different SeMNPV genotypes with 

different insecticidal properties, identified several ORFs as genes likely involved 

in such insecticidal traits: Se004, Se005, Se028, Se076, Se087 and Se129 (Thézé et al., 

2014). In Chapter 2 a bacmid-based recombination system was developed to delete 

the individual ORFs previously identified. Their individual role in the insecticidal 

properties of the SeMNPV was studied by bioassays in S. exigua larvae. 

Studies on the ecology of SeMNPV have revealed that some genotypes are 

specifically associated with covert infections of the virus that survive based on 

vertical transmission, whereas others are associated with horizontal transmission of 

the virus. By comparison of horizontal and vertically transmitted isolates, Thézé et al., 

(2014) identified three ORFs that may be involved in the vertical transmission of the 

virus: Se005, Se096 and Se099. In Chapter 3 the bacmid-based recombination system 

was used to delete the respective ORFs and test their role in vertical transmission. 

S. exigua larvae were sublethally infected and covert infections of SeMNPV were 

detected (or not) in moths by quantitative-PCR.



General introduction and thesis outline

17

Different isolates of SeMNPV and SfMNPV have similar population structures, 

with the presence of different genotypes with deletions in the same genomic region 

encoding several ORFs. Since the SeMNPV population structure is stable upon 

passaging in S. exigua, the questions is what the role of these deleted genotypes 

is. In Chapter 4 the genotypic structure of SeUS2, SeUS1, and SfNIC isolates 

was compared to determine the evolutionary or ecological mechanisms of these 

genotypically similar population structures. The isolation of a deleted genotype 

and functional complementation studies with different mixtures of a deleted and 

a complete genotype, demonstrated the interaction between genotypes in a natural 

viral population. 

The SeMNPV-US1 isolate, which is also composed of several genotypes, contains 

a genotype with a large deletion of up to ~25 kb, in a hypervariable region of the 

SeMNPV genome. This genotype was selected for in insect cell culture and enabled 

the virus to replicate in these cultured cells. In Chapter 5 the sequencing of a natural 

deletion genotype from the SeUS1 population, SeBac72, led to the identification of 

ORFs affected by this deletion. By differential deletion of individual ORFs from the 

complete genome of SeUS1, isolated as the bacmid SeBac10, the responsible gene 

that prevents successful viral spread of SeMNPV in cell culture was identified.

Finally in Chapter 6, the overall results of the previous experimental chapters were 

discussed, and different recommendations and future research will be discussed as 

well.
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Abstract

Genome sequence analysis of seven different Spodoptera exigua multiple 

nucleopolyhedrovirus (SeMNPV) isolates that differed in insecticidal phenotype 

permitted the identification of genes likely to be involved in pathogenicity of 

occlusion bodies (OBs) and speed of kill (virulence) of this virus: se4 (hoar), se5 

(unknown function), se28 (unknown function), se76 (cg30), se87 (p26) and se129 (p26). 

To study the role these genes experimentally on insecticidal phenotype, a bacmid-

based recombination system was constructed to delete selected genes from a 

SeMNPV isolate, VT-SeAL1, designated as SeBacAL1. None of the knockout viruses 

were lethal and the repair viruses behaved like the wild-type control, vSeBacAL1. 

Deletion of se4, se5, se76 and se129 resulted in decreased OB pathogenicity compared 

to vSeBacAL1 OBs. In contrast, deletion of se87 did not significantly affect OB 

pathogenicity, whereas deletion of se28 resulted in significantly increased OB 

pathogenicity. Deletion of se4, se28, se76, se87 and se129 did not affect speed of 

kill compared to the bacmid vSeBacAL1, whereas speed of kill was significantly 

extended following deletion of se5 and in the wild-type isolate (SeAL1), compared 

to that of the bacmid. Therefore, biological assays confirmed that several genes had 

effects on virus insecticidal phenotype. Se5 is an attractive candidate gene for further 

studies, as it affects both biological parameters of this important biocontrol virus.
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Introduction
Baculoviruses are a large group of arthropod-specific DNA viruses (van Oers & 

Vlak, 2007) with a double-stranded, circular genome varying in size from 80 to 

over 180 kb and encoding 90-180 open reading frames (ORFs) (Rohrmann, 2013b). 

Baculoviruses are used as biological control agents of insect pests (Eberle et al., 

2012), as protein expression systems of foreign genes in insect cells (Condreay & 

Kost, 2007), and more recently as potential viral vectors for gene delivery (Hitchman 

et al., 2011). The family Baculoviridae is divided into four genera: Alphabaculovirus 

(lepidopteran nucleopolyhedroviruses), Betabaculovirus (lepidopteran 

granuloviruses), Gammabaculovirus (hymenopteran nucleopolyhedroviruses) and 

Deltabaculovirus (dipteran nucleopolyhedroviruses) (Herniou & Jehle, 2007; Jehle et 

al., 2006). Comparison of all baculovirus genomes sequenced to date has resulted in 

the identification of 37 core genes (Garavaglia et al., 2012), which seems to encode 

key factors for crucial processes such as infection, viral DNA replication and virion 

assembly. 

Baculovirus isolates show a high degree of genetic heterogeneity. The genotypic 

variation in baculovirus populations has been associated with differences in 

phenotypic traits such as pathogenicity, virulence and occlusion body (OB) 

productivity (Erlandson, 2009). A comparison of the genomes of phenotypically 

distinct virus strains can be used to identify genes involved in these traits (Allen 

& Little, 2009), and guide the selection of strains or development of recombinant 

viruses with improved insecticidal properties as compared to the wild-type parental 

viruses.

To this end, Thézé et al. (2014), sequenced and compared the whole genome sequence 

of seven biologically distinct Spodoptera exigua multiple nucleopolyhedrovirus 

(SeMNPV) isolates from Europe (named VT-SeAL1, VT-SeAL2, VT-SeOx4, HT-

SeG24, HT-SeG25, HT-SeG26 and HT-SeSP2) that differed in transmission strategy 

and in related phenotypic traits. Two of these strains, HT-SeG25 and HT-SeG26, 
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were associated with horizontally transmitted infections, having been isolated from 

individuals infected during epizootics in natural field populations of S. exigua. 

These strains were the most pathogenic, in terms of concentration-mortality metrics, 

and their genomes shared a 6 bp deletion in p26 (ac136). A unique characteristic of 

the SeMNPV genome, in contrast with those of all the other baculoviruses already 

sequenced, is that SeMNPV carries two copies of p26, named se87 and se129. The 

function of P26 is presently unknown, but its conserved sequence, in almost all 

Alphabaculovirus genomes analyzed to date suggests an important role in baculovirus 

biology (Simón et al., 2008). The single-nucleotide polymorphism (SNP) differences 

detected between HT-SeG25 and HT-SeG26 pointed out another gene, se5, as a 

correlate in OB pathogenicity. Se5, of unknown function, has an early promoter with 

a TATA sequence and a CAKT start site 20-40 nt downstream (IJkel et al., 1999). 

Another isolate, SeOx4, was the fastest killing isolate and had a 4 bp deletion in se28, 

which encodes a putative protein of 190 amino acids of unknown function. An early 

promoter element TATA was identified 74 nt upstream the start codon followed by 

a CAKT element 31 nt downstream the TATA box (IJkel et al., 1999). Furthermore, a 

SNP mutation was detected at position 75006 in the RING finger of cg30 (se76). SE76 

encodes for a protein of 468 amino acids with two functional motifs, a RING finger 

and a leucine zipper (Ishihara et al., 2013; Passarelli & Miller, 1994). Mutants lacking 

cg30 in Bombyx mori NPV produced fewer budded viruses and released lower 

number of occlusion bodies into the hemolymph of infected larvae, and reduced the 

speed of kill (Ishihara et al., 2013). 

In the present study we developed a bacmid-based recombination system to 

examine the influence of the genes identified by Thézé et al. (2014) on aspects of the 

insecticidal phenotype of SeMNPV. The results provide the basis for the development 

of improved biological insecticides based on novel recombinant baculoviruses. 

Materials and methods
Insects, cell lines and viruses. S. exigua larvae were obtained from a laboratory 
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colony, maintained at constant environmental conditions (25 ± 1° C, 50% ± 5% 

RH and a photoperiod of 16:8 h light: dark) and reared on a wheat germ-based 

semisynthetic diet (Greene et al., 1976). S. exigua Se301 cells, kindly provided by 

S. Herrero (Universidad de Valencia, Spain), were maintained at 28ºC in HyClone 

Insect Cell Culture Media CCM3 supplemented with 5% fetal bovine serum (Thermo 

Scientific). The SeMNPV isolate used in this study was VT-SeAL1, one of the isolates 

sequenced by Thézé et al. (2014), which originated from the progeny of field-collected 

moths that produced progeny that subsequently died from virus infection during 

laboratory rearing. The isolate, which was associated with a vertically-transmitted 

infection, was amplified by inoculating S. exigua fourth instars from the laboratory 

colony using the droplet feeding method (Hughes et al., 1986).

Construction of SeMNPV bacmid. Empirical analysis of VT-SeAL1 DNA with 

restriction enzymes identified a single MauBI site. The bacmid cloning vector BAC-

Bsu36I (Pijlman et al., 2002) was modified by adding a MauBI restriction site using a 

oligonucleotide linker and was designated as BAC-Bsu-MauBI. VT-SeAL1 DNA for 

direct cloning was purified by CsCl gradient centrifugation (King & Possee, 1992). 

A 2 μg sample of viral SeAL1 DNA was linearized by digestion with 10 U MauBI 

(Thermo Scientific) for 16 h at 37ºC. The restriction enzyme was heat inactivated for 

20 min at 65ºC. Then, 1 μg of bacmid cloning vector BAC-Bsu-MauBI was digested 

with 10 U of MauBI for 3 h at 37ºC. The vector was dephosphorylated using 1 U 

alkaline phosphatase (Promega) for 1 h at 37ºC and gel purified with GFX Gel Band 

Purification Kit (GE Healthcare). Ligation was performed overnight at 4ºC with 

approximately 500 ng linearized SeAL1 DNA and 25 ng linearized vector DNA 

using T4 DNA ligase (Promega). Electrocompetent E. coli DH10β cells (Invitrogen) 

were transformed with 3 µl ligation mix at 1.8 kV using a Bio-Rad Gene Pulser. The 

transformed cells were recovered in SOC medium for 1 h at 37º C and spread on agar 

plates containing kanamycin. A SeMNPV bacmid with the correct restriction profile 
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was selected and designated as SeBacAL1.

Generation of knockout bacmids. For deletion mutagenesis of genes se4, se5, 

se28, se76, se87 and se129 from SeBacAL1, 68- to 70-bp primers were designed 

with 50-bp 5´ends within the deletion target region on the SeMNPV genome 

(Table 1). The 3’ ends of the primers anneal to the chloramphenicol gene flanked 

by mutant LoxP sites (Suzuki et al., 2005) using a mutant lox sequence, which was 

amplified from pCRTopo-lox-cat-lox (Marek et al., 2011). PCR on pCRTopo-lox-

cat-lox was performed using Phusion Polymerase (Thermo Scientific) according to 

the manufacturer, giving a product of 1170 bp. SeBacAL1 DNA was cloned into 

electrocompetent MW003 cells (Westenberg et al., 2010), and selected on LB-plates 

with streptomycin and kanamycin for 2 d at 32°C. Single colonies were picked and 

used to inoculate 1 ml SOB-medium at 32°C. This culture was used to inoculate 10 

ml SOB-medium, incubated at 32°C and cells were harvested when the OD600 value 

reached 0.6. The culture was then split in two and 5 ml were induced for 10 min 

at 42°C. After incubation, the cells were washed twice with ice-cold 10% glycerol. 

Finally, the cells were suspended in 100 µl of 10% glycerol and stored at -80°C. The 

next day cells were electroporated with 150 ng of the PCR product from pCRTopo-

lox-cat-lox. The cells were recovered in 1ml SOB-medium and incubated for 3 hours 

at 32°C. Subsequently, both induced and non-induced cells were plated out on LB 

plates, supplemented with 50 µg/ml kanamycin and 50 µg/ml chloramphenicol. 

The plates were incubated for 48 h at 32°C. Finally, single colonies were picked to 

analyze if recombination had occurred (Dolphin & Hope, 2006). To confirm the 

deletion of the ORFs, restriction endonuclease analysis of the bacmid DNA and PCR 

amplifications were performed. Once the correct knockout was selected, bacmid 

DNA extraction was performed and electroporated into DH10β (Invitrogen).

Generation of repair bacmids. The ORF coding regions were amplified using 
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Phusion Polymerase (Thermo Scientific) with primers including their own promoter 

and containing XbaI and KpnI restriction sites (Table 1). The resulting fragments were 

cloned into a CloneJET PCR Cloning Kit (Thermo Scientific), sequenced and cloned 

as XbaI/KpnI fragments into a pFastBac∆AcPpol. The protocol from the Bac-to-Bac 

manual (Invitrogen) was followed to transpose the ORFs from pFastBacORF into 

the attTn7 transposon integration site of SeBacAL1 to generate the repair bacmids. 

To confirm the correct transposition into the attTn7 site, PCR amplifications were 

performed.

Transfection of SeMNPV bacmids. Se301 cells were seeded in a six-well tissue 

culture plate (Greiner Bio-One) at a confluency of 5x105 cells/well. Transfection was 

performed with 1 µg SeBacAL1∆ORF or SeBacAL1∆ORFrepair using 10 µl lipofectin 

(Invitrogen). As a positive control, 1 µg SeMNPV-AL1 DNA was transfected. At 7 

d post-transfection, OBs were formed by cells transfected with SeMNPV-AL1 and 

the bacmids. Cells were harvested at 14 d post-transfection. For OB amplification, 

fourth-instar S. exigua from the laboratory colony were inoculated by the droplet 

feeding method.

Bioassays. Bioassays with OBs from the knockout and the repair viruses were 

performed using the droplet feeding method. For this, groups of 24 S. exigua 

second instars were starved overnight and then allowed to drink from an aqueous 

suspension containing 10% sucrose, 0.001% Fluorella blue, and OBs at one of five 

different concentrations (2.45 x 105, 8.1 x 104, 2.7 x 104, 9 x 103, 3 x 103 OBs/ml). 

Control larvae drank a solution of sucrose and Fluorella blue without OBs. Larvae 

that ingested the suspension within 10 min were transferred individually to 24-well 

tissue culture plates with semi-synthetic diet. Each bioassay was performed three 

times. Inoculated insects were incubated at 25 ºC and mortality was recorded daily 

until larvae died from polyhedrosis disease or pupated. Virus-induced mortality 
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was subjected to probit analysis using the Polo-PC program (LeOra Software, 1987).

Mean time to death (MTD) was calculated using groups of 24 S. exigua second instars, 

that had been inoculated with the LC90 concentration of each virus (1.71 x 105 OBs/

ml for SeBacAL1, 1.11 x 105 OBs/ml for SeAL1, 5.73 x 105 OBs/ml for SeBacAL1Δ4, 

1.31 x 106 OBs/ml for SeBacAL1Δ5, 7.75 x 104 OBs/ml for SeBacAL1Δ28, 2.78 x 105 

OBs/ml for SeBacAL1Δ76, 1.61 x 105 OBs/ml for SeBacAL1Δ87, 2.27 x 105 OBs/

ml for SeBacAL1Δ129, 2.03 x 105 OBs/ml for SeBacAL1Δ4repair, 2.49 x 105 for 

SeBacAL1Δ5repair,  2.35 x 105 OBs/ml for SeBacAL1Δ28repair, 1.57 x 105 OBs/ml 

for SeBacAL1Δ76repair, 1.95 x 105 OBs/ml for SeBacAL1Δ87repair, and 1.07 x 105 

OBs/ml for SeBacAL1Δ129repair), as estimated in the previous bioassay. Inoculated 

larvae were reared individually at 25ºC and mortality was recorded at 8 h intervals 

until death or pupation. The whole experiment was performed three times. Time 

mortality data were subjected to Weibull survival analysis using the Generalized 

Linear Interactive Modeling (GLIM) program (Crawley, 1993). 

Infectivity of ODVs. The infectivity of ODVs isolated from SeBacAL1, SeBacAL1Δ5 

and SeBacAL1Δ5repair OBs was determined by end point dilution assays using Se301 

insect cells. For this, ODVs were released from samples of 5x108 OBs in a volume 

of 500 µl by incubation with 0.1 M Na2CO3 at 28°C for 30 minutes. The resulting 

suspension was passed through a 0.45 µm filter and serially diluted 1:5 in CCM3 

medium + 5% FBS. Se301 infected cells were titrated in a 60-well microtiter-dish. 

Titers were analyzed using the Spearman-Karber method to estimate 50% tissue 

culture infectious dose (TCID50). The TCID50 values were converted to infectious 

units per 5x108 OBs. The results were normalized by logarithmic transformation and 

compared by one-way ANOVA in SPSS v21 (IBM SPSS Version 21.0. Armonk, NY: 

IBM Corp). The experiment was performed three times.

Electron microscopy. Scanning electron microscopy (SEM) was used to determine 
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OB diameter of SeBacAL1, SeBacAL1Δ5 and SeBacAL1Δ5repair. OBs were 

fixed in 12.5% glutaraldehyde in 0.1 M Sörenson phosphate buffer, pH 7.2, and 

dehydrated in series of ethanol solutions. A total of 30 OBs were analyzed for each 

virus. The numbers of ODVs occluded within OBs of SeBacAL1, SeBacAL1Δ5 and 

SeBacAL1Δ5repair was determined by examination of OB sections by transmission 

electron microscopy (TEM) as described by Hikke et al. (2014) and analyzed via a 

JEOL JEM 1011 (JEOL, MA, USA). The numbers of ODVs was counted for 30 cross-

sections of randomly selected OBs. The mean size of OBs and mean numbers of 

ODVs were normally distributed and were compared by one-way ANOVA in SPSS 

v21 (IBM SPSS Version 21.0. Armonk, NY: IBM Corp). 

Gene and protein sequence analysis. DNA and protein homologs of se5 were 

searched in the updated GenBank/EMBL databases using BLAST (Altschul et al., 

1990). PSIPRED was used to predict protein secondary structure (McGuffin et al., 

2000) and PROSITE was used to search for protein domains (Hulo et al., 2008). 

Cellular location was predicted with TargetP 1.1 (Emanuelsson et al., 2000) and 

transmembrane domains were detected with TMHMM v2.0 (Jones, 2007).

Results
Generation of SeBacAL1 and knockout mutants. To determine the effects of 

removing genes se4, se5, se28, se76, se87 and se129 individually on OB pathogenicity 

and speed of kill of SeMNPV, a SeMNPV bacmid using the VT-SeAL1 isolate genome 

was constructed (SeBacAL1) (Fig. 1A). This genotype was picked up from a colony 

collapse of a laboratory rearing of S. exigua. A BAC-Bsu36I vector was inserted at 

position 28454 nt within the VT-SeAL1 genome, an intergenic region located between 

se27 (egt) and se28. Both genes have been previously found to be non-essential 

for virus replication in vivo and in cell culture (Muñoz et al., 1998; Serrano et al., 

2013). SeBacAL1Δ4, SeBacAL1Δ5, SeBacAL1Δ28, SeBacAL1Δ76, SeBacAL1Δ87 and 

SeBacAL1Δ129 knockout bacmids were then constructed by deleting se4, se5, se28, 
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se76, se87 and se129, respectively, via lambda Red recombination (Westenberg et al., 

2010). A chloramphenicol acetyltransferase (cat) gene was inserted in replacement 

of these genes to facilitate antibiotic selection in E. coli. As controls, knockout-

repair bacmids were constructed by re-inserting each gene under the control of 

their native promoters into the mini-attTn7 attachment site within the bacmid. 

The resulting repair-knockouts viruses were designated as SeBacAL1Δ4repair, 

SeBacAL1Δ5repair, SeBacAL1Δ28repair, SeBacAL1Δ76repair, SeBacAL1Δ87repair 

Figure 1. (A) Schematic overview of the SeBacAL1 (not to scale) and position of the bacterial insert and 
the relevant SeMNPV ORFs. (B) Restriction endonuclease profiles for BglII of the DNAs of SeBacAL1 and 
the knockout viruses, vSeBacAL1Δ4, vSeBacAL1Δ5, vSeBacAL1Δ28, vSeBacAL1Δ76, vSeBacAL1Δ87, and 
vSeBacAL1Δ129. Lane M contains a λ BamHI/HindIII/EcoRI DNA size marker. The asterisks indicate the 
restriction polymorphisms of each knockout.
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and SeBacAL1Δ129repair. To check the identity of the knockouts viruses and their 

repairs, restriction endonuclease analysis (Fig. 1B) and PCR analysis (data not shown) 

were performed. OB production was achieved in Se301, which were transfected 

with bacmid DNA from the different SeMNPV constructs. OBs were subsequently 

amplified in vivo by feeding S. exigua fourth instars via the droplet feeding method.

Pathogenicity of gene knockout viruses. Mean lethal concentrations (LC50) values 

of each of the knockout and repair bacmids were estimated in S. exigua second 

instars by droplet feeding method (Table 2). The wild-type isolate VT-SeAL1 was 

Virus LC50(OBs/ml) Relative Potency
95% confidence limits

Lower Upper

SeBacAL1 1.63x104 1 - -

SeAL1 1.12x104 1.45 0.99 2.12

SeBacAL1∆4 6.09x104 0.26 0.18 0.38

SeBacAL1∆5 1.60x105 0.10 0.06 0.16

SeBacAL1∆28 1.09x104 1.48 1.05 2.10

SeBacAL1∆76 3.68x104 0.44 0.31 0.62

SeBacAL1∆87 2.14x104 0.76 0.54 1.07

SeBacAL1∆129 2.96x104 0.55 0.39 0.77

SeBacAL1∆4repair 2.30x104 0.71 0.49 1.01

SeBacAL1∆5repair 2.38x104 0.68 0.46 1.09

SeBacAL1∆28repair 1.97x104 0.83 0.57 1.21

SeBacAL1∆76repair 1.91x104 0.85 0.60 1.22

SeBacAL1∆87repair 2.31x104 0.71 0.49 1.01

SeBacAL1∆129repair 1.55x104 1.05 0.74 1.48

Probit analysis was performed using the PoloPlus program. A test for non-parallelism was not significant 
(χ2=9.40, df=13, P=0.742). Regressions were fitted with a common slope (±SE) of 1.289 ± 0.308

Table 2. 50% lethal concentration (LC50) values of vSeBacAL1 and the different 
knockout and repair bacmids in Spodoptera exigua second instars.
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as pathogenic as the vSeBacAL1, as indicated by the overlap of the 95% confidence 

limits. The recombinant virus vSeBacAL1Δ28 was significantly more pathogenic 

than the reference vSeBacAL1, as judged by the relative potency 95% confidence 

limits. 

In contrast, most of the recombinant viruses were significantly less pathogenic 

than vSeBacAL1, namely: vSeBacALΔ4 by 3.8-fold, vSeBacAL1Δ5 by 10-fold, 

vSeBacAL1Δ76 by 2.3-fold and vSeBacAL1Δ129 by 1.8-fold. vSeBacAL1Δ87 was the 

only recombinant with an LC50 value statistically similar to that of control virus OBs 

(Table 2). OBs of all repair viruses were as pathogenic as the parental vSeBacAL1 

OBs, as indicated by the overlap of the 95% fiducial limits of the relative potency 

values.

Figure 2. Mean-time-to-death (MTD) values of vSeBacAL1 and the different gene knockout and repair 
viruses in second instar S. exigua. MTD values were estimated by Weibull survival analysis. Bars labelled 
with the same letter did not differ significantly (p>0.05).
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Mean-time-to-death of gene knockout viruses. Mean-time-to-death (MTD) values 

of the different viruses in second instars ranged between 91.3 and 99.8 hours 

post-inoculation (hpi). All different viruses tested could be classified into three 

groups according to their speed of kill (Fig. 2). vSeBacAL1Δ4, vSeBacAL1Δ28, 

vSeBacAL1Δ76, vSeBacAL1Δ87, vSeBacAL1Δ129, and all six repair viruses were as 

virulent as vSeBacAL1, and their MTDs ranged, from 91.3 to 94.4 hpi (group a). The 

wild type virus, VT-SeAL1, ranked second (group b) and the slowest killing isolate 

was vSeBacAL1Δ5, with MTD 99.8 hpi (group c). 

ODV infectivity. To investigate whether the specific infectivity of ODVs was 

affected by the deletion of se5, the infectivity of vSeBacAL1, vSeBacAL1Δ5 and 

vSeBacAL1Δ5repair ODVs was compared via an end-point dilution assay. ODVs 

Figure 3. ODV content in 5x108 OBs of vSeBacAL1, vSeBacAL1Δ5 and vSeBacAL1Δ5repair. ODV titers 
were calculated by end-point dilution. Error bars indicate standard error of the mean. Bars labelled with 
the same letter did not differ significantly (p>0.05).
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were isolated from 5x108 OBs of each virus and were titrated on Se301 cells. The 

titer of infectious units of ODVs released from vSeBacAL1Δ5 OBs was markedly 

lower than those of the vSeBacAL1 or vSeBacAL1Δ5repair viruses (p< 0.05) (Fig. 3). 

Scanning electron microscopy (SEM) pictures showed OBs diameters between 0.88 

to 1.04 µm, values were statistically similar between vSeBacAL1, vSeBacAL1Δ5 and 

vSeBacAL1Δ5repair (p>0.05) (Fig. 4A) (Fig. 4B). Transmission electron microscopy 

(TEM) observations revealed that the number of ODVs were statistically similar for 

vSeBacAL1, vSeBacAL1Δ5 and vSeBacAL1Δ5repair OBs (p>0.05) (Fig. 5A) (Fig. 5B).

Figure 4. (A) Mean OBs size of SeBacAL1, SeBacAL1Δ5 and SeBacAL1Δ5repair as determined by 
scanning electron microscopy (SEM). Error bars indicate standard error of the mean. Bars labelled with 
the same letter did not differ significantly (p>0.05). (B) SEM pictures of SeBacAL1, SeBacAL1Δ5 and 
SeBacAL1Δ5repair
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 Sequence analysis of se5. Sequence analysis revealed that se5 was located between 

nucleotides 6164 and 7694 in the positive strand of VT-SeAL1. SE5 is a protein of 

513 amino acids (aa) with a predicted molecular weight of 59.24 kDa present in all 

sequenced SeMNPV genotypes. The se5 gene is a homologue of S. litura MNPV 

ORF6, an ORF of unknown function. Secondary structure prediction with PSIPRED 

revealed 15 helices and 6 β-sheets. The PROSITE predicted some functional motifs 

in SE5 such as a tyrosine kinase phosphorylation site (aa 57-64), a cAMP- and 

cGMP-dependent protein kinase phosphorylation site (aa 95-98), five protein kinase 

Figure 5. (A) Mean ODVs content within OBs of vSeBacAL1, vSeBacAL1Δ5 and vSeBacAL1Δ5repair as 
determined by transmission electron microscopy (TEM) analysis. Error bars indicate standard error of 
the mean. Bars labelled with the same letter did not differ significantly (p>0.05). (B) TEM pictures of 
vSeBacAL1, vSeBacAL1Δ5 and vSeBacAL1Δ5repair.
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C phosphorylation sites (aa 114-116, 152-154, 363-365, 480-482 and 491-493), nine 

casein kinase II phosphorylated sites (aa 162-165, 239-242, 255-258, 257-260, 268-271, 

377-380, 502-505, 503-506 and 509-512) and two N-myristoylation sites (aa 330-335 

and 409-414). No signal peptide or transmembrane domains were detected in the 

putative protein.

Discussion

After a genomic comparison of SeMNPV isolates displaying a distinct pathogenicity 

and virulence pattern (Thézé et al., 2014), six genes, se4, se5, se28, se76, se87 and se129, 

were selected for further investigation. This was done by constructing individual 

gene knockout mutant and repair viruses, and studying two main aspects of their 

insecticidal phenotype: OB pathogenicity and speed of kill. These six genes are 

not part of the set of 37 baculovirus core genes shared by all known members of 

the Baculoviridae family sequenced to date (Garavaglia et al., 2012). Core genes are 

thought to be involved in fundamental processes such as DNA replication, gene 

transcription, nucleocapsid assembly or virion formation (van Oers & Vlak, 2007). 

Despite the high number of conserved genes, the total number of genes present in 

baculoviruses collectively is remarkable (>1000). Some of these genes are unique 

to a virus species and are believed to contribute to the specific phenotype of each 

baculovirus. Others may be involved in pathogenicity and virulence, or to biological 

traits to be involved. Viruses undergo evolution by gene loss or gain, gene exchange 

and by accumulation of point mutations that can lead to specialization in gene 

function (Garavaglia et al., 2012). Evolutionary variation in entomopathogenic 

populations could benefit selection of variants with an enhanced level of a particular 

trait, that can be useful when these pathogens are used as a microbial control agent 

(Cory & Franklin, 2012). 

Deletion of se4 decreased OB pathogenicity by almost 4-fold compared with 

vSeBacAL1 (Table 2), but had no effect on speed of kill (Fig. 2). Se4 is a homolog of 
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the hoar gene, which is found in other group II alphabaculoviruses. This gene, which 

is under the control of an early promoter (IJkel et al., 1999), has an unusual codon 

bias and displays genetic variability suggesting frequent mutations in this locus (Le 

et al., 1997). It has been suggested that hoar may interfere with host defenses and the 

high mutation rate could be an adaptation that favors infection across different host 

species (Le et al., 1997). Additionally HOAR has been found in the ODV membrane 

in Helicoverpa armigera NPV (Hou et al., 2013), and in midgut cells of Mamestra 

configurata larvae during infection by M. configurata NPV-A (Donly et al., 2014). 

As a result, HOAR has been hypothesized to be a regulatory protein that allows 

adaptation to different insect hosts, and that seems to play a role in the primary 

infection of host midgut cells (Donly et al., 2014). In view of our observations, se4 

may enhance the ODV efficiency of entry in the midgut.

Deletion of se5, a gene of unknown function, resulted in a 10-fold decrease in OB 

pathogenicity (Table 2), whereas time to death of infected insects was increased by 

7 h compared to the parental SeBacAL1 (Fig. 2). In addition, the infectivity of ODVs 

in cell culture was between three and four times lower. Differences in the infectious 

activity of ODVs by end-point dilution may be the consequence of less ODVs occluded 

within SeBacAL1Δ5 OBs, or OBs of smaller size. However, there were not significant 

differences observed in the number of virions occluded within OBs, or in the size of 

the OBs. Analysis of the putative SE5 protein did not indicate the presence of signal 

peptide or transmembrane domains, suggesting that it might be an intracellular 

protein. Two N-myristoylation sites were detected in SE5 that may be involved with 

weak and reversible protein-membrane and protein-protein interactions (Murray 

et al., 1997; Peitzsch & McLaughlin, 1993). Several phosphorylation sites were 

also identified. Post-translational phosphorylation affects many cellular signaling 

pathways, including metabolism, growth, differentiation and membrane transport 

(Blom et al., 1999). Although protein analysis provided no further clues about the 

putative function of se5, but bioassays indicated an important role of this gene in 
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pathogenicity and virulence requiring further studies.  

Deletion of se28 (vSeBacAL1Δ28) resulted in a slight increase in OB pathogenicity 

compared to vSeBacAL1 OBs. Se28 encodes for a putative protein of 190 aa with 

homologs only in some group II alphabaculoviruses, but not in those of group I. Se28 

deletion did not significantly affect the speed of kill and protein sequence analysis 

failed to detect conserved domains or motifs that could provide hints concerning 

its function. Moreover, se28 is located in a hypervariable region of the SeMNPV 

genome; genotypes have been identified in natural SeMNPV populations with 

deletions encompassing ORFs 12 to 39 (Dai et al., 2000; Muñoz et al., 1998), indicating 

that this gene is unlikely to be essential for viral replication . A homolog of se28 

(Maco40) was expressed in midgut cells of Mamestra configurata larvae after infection 

with MacoNPV-A, suggesting that se28 might have a role in the early stages of 

infection (Donly et al., 2014).

Deletion of se76 (vSeBacAL1∆76) resulted in a 2.3-fold increase in LC50 value, 

indicating reduced OB pathogenicity (Table 2). Se76 encodes a homolog of CG30. 

The cg30 gene is present in almost all alphabaculoviruses, and contains a RING finger 

motif and a leucine zipper motif (Thiem & Miller, 1989). cg30 may be an ubiquitin 

ligase that catalyzes the ubiquitination and destruction of cellular p53 (Imai et al., 

2003). Autographa californica MNPV (AcMNPV) lacking cg30 was found to replicate 

in a similar fashion as wild-type virus in cell culture or in insects (Passarelli & 

Miller, 1994). A cg30 knockout mutant of Bombyx mori NPV, however, produced 

fewer budded virions (BVs) and OBs and took 24 h longer than wild-type BmNPV 

to kill infected insects (Ishihara et al., 2013). Speed of kill was not affected in case 

of vSeBacAL1Δ76, in contrast to the observations of Ishihara et al. (2013), perhaps 

due to the different virus-host systems employed. Another member of the RING 

finger gene family, ie-2, displays different phenotypes upon infection in different 

host cells (Prikhod’ko et al., 1999). Indeed, the ability of ie-2 to trans-stimulate viral 

DNA replication is dependent on the cell line used. Due to its DNA binding motifs 
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it is likely that CG30 binds to viral genomic DNA and may play a role in regulation 

of viral and/or host gene expression, but the consequences for pathogenicity remain 

elusive.

Both se87 and se129 encode for the double copy of P26 in SeMNPV (IJkel et al., 

1999). The p26 gene is not essential for virus replication in cell culture (Goenka & 

Weaver, 2008). A p26 knockout in SfMNPV did not affect OB infectivity or speed of 

kill in larvae (Simón et al., 2008). Our results on the se87 knockout support previous 

observations on p26; deletion had no significant effect on LC50 value, whereas se129 

knockout resulted in a 1.8-fold reduction in OB pathogenicity. Deletion of se87 and 

se129 resulted in similar speed of kill compared to the parental bacmid virus. The 

role of these two copies of P26 remains of interest and a double-knockout (se87 and 

se129) might provide further information on their role in pathogenicity and/or 

virulence.

In conclusion, the genes studied, se4, se5, se28, se76 and se129 have an effect on 

insecticidal properties of SeMNPV, as hypothesized by Thézé et al. (2014). Se5 is the 

most promising gene for further studies as it affects both pathogenicity and virulence, 

although it is conceivable that these properties are linked in this case. The other 

genes deserve further investigation as their effect on virulence and pathogenicity 

are not connected.

Acknowledgements

We thank N. Gorría and I. Ibañez (Universidad Pública de Navarra) for technical 

assistance with insect rearing; T. Williams and M. Giesbers (Wageningen Electron 

Microscopy Center) and M. Hikke (Wageningen University) for technical assistance 

with electron microscopy. This study received financial support from the Spanish 

Ministry for Science and Technology (AGL2008-05456-C03-01). A.S. received a  

fellowship (BES-2009-012043) from the Spanish Ministry of Education and Culture.



Chapter 2

3838

Supplementary information

Table 1. Name and sequence of the primers used  for the construction of SeBacAL1 
knockout and repair bacmids. 

Primer Sequence Amplification purpose
Annealing 

position in 
SeAl1

SeORF4-KO-F
TACAATTTAATTTTTTTAGATGGT-
GGTTGTGATGATTCGTCGTCGT-
GATCGCTCGGATCCACTAGTAACG

Se4 deletion from 
SeMNPV bacmid; 
forward primer

3187-3236

SeORF4-KO-R
C A A A T G G T G T G T T C G A C G C -
CGTTCGTGCACGTCGGAGATGTT-
G A T C T C A A C C T C T A G A T G C A T -
GCTCG

Se4 deletion from 
SeMNPV bacmid; re-
verse primer

5284-5333

SeORF5-KO-F
ATGGTTAACGATTCCAGAAACACT-
GATATCATCGACGCTGTCGTCTGA-
GCGCTCGGATCCACTAGTAACG

Se5 deletion from 
SeMNPV bacmid; 
forward primer

6165-6214

SeORF5-KO-R
T T A T G C A T C A G C T G T T G T T T -
GATCTTCGTCATCGGTGGTTTCTC-
CGTCGCCCTCTAGATGCATGCTCG

Se5 deletion from 
SeMNPV bacmid; re-
verse primer

7645-7694

SeORF28-KO-F
ATGGCCACGATCAGAAATAAAA-
GCTTGTTGCGCAGTCTCGAACACT-
GACGGCTCGGATCCACTAGTAACG

Se28 deletion from 
SeMNPV bacmid; 
forward primer

28565-28614

SeORF28-KO-R
TCACTCCGAGTACATTATTCGA-
AGTTCATTTTCAAACTTATCCAA-
ATCGTCCTCTAGATGCATGCTCG

Se28 deletion from 
SeMNPV bacmid; re-
verse primer

29088-29137

SeORF76-KO-F
ATGGAATCGATAACACTCGGTT-
GTTCGGTGTGCATGTCCGAAGTCT-
GAATGCTCGGATCCACTAGTAACG

Se76 deletion from 
SeMNPV bacmid; 
forward primer

74519-74568

SeORF76-KO-R
TTAAAATTTAGCTTTTTTAAAAAT-
GGCAATAGTGTTAGACGACGTC-
GATGCCTCTAGATGCATGCTCG

Se4 deletion from 
SeMNPV bacmid; re-
verse primer

75876-75925

SeORF87-KO-F
TACAATATTAAAACGTTGCCGGCA-
AATTGGGTTTTGATTCTAATTTGA-
GAGCTCGGATCCACTAGTAACG

Se87 deletion from 
SeMNPV bacmid; 
forward primer

84058-84107

SeORF87-KO-R
T C A A T G T C G A T G T G T -
GTTAATTCGGTTGCGACCAACGAT-
GTCGCCAAACCCCTCTAGATGCAT-
GCTCG

Se87 deletion from 
SeMNPV bacmid; re-
verse primer

84766-84815

SeORF129-KO-F
ATGATGAGCTTTGCGAGTTTTTTAC-
T A G T G C T C A T T T G T T C G G C G T -
GATCGCTCGGATCCACTAGTAACG

Se129 deletion from 
SeMNPV bacmid; 
forward primer

122957-123001

SeORF129-KO-R
C T A T A C G A T A T T G C C A A T A C T -
GTCGTCGTTGTCGTCGTCGTCTTT-
GTTCTCCTCTAGATGCATGCTCG

Se129 deletion from 
SeMNPV bacmid; re-
verse primer

123747-123796

SeORF4-F GGTCTAGAGCGTACACAAAAGCAA-
AAAA

Se4 insertion into 
SeBacAL1Δ4; forward 
primer

5478-5497

SeORF4-R GGGGTACCGAAACACTCATATAGA-
AAGC

Se4 insertion into 
SeBacAL1Δ4; reverse 
primer

3159-3178

SeORF5-F G G C T C G A G G A A T G A T G A C C A -
ACTTTTTTG

Se5 insertion into 
SeBacAL1Δ5; forward 
primer

5968-5988

SeORF5-R GGAAGCTTATATGTACACAATAAA-
ATTCAAAG

Se5 insertion into 
SeBacAL1Δ5; reverse 
primer

7768-7791
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SeORF28-F GGTCTAGATTTCAACGTATTGCC-
TACGC

Se28 insertion into 
S e B a c A L 1 Δ 2 8 ; 
forward primer

28436-28455

SeORF28-R G G G G T A C C G A A A A A A G C G T -
GGTTTCCAA

Se28 insertion into 
SeBacAL1Δ28; reverse 
primer

29138-29157

SeORF76-F GGTCTAGATATCATGTACTACCTAT-
CAT

Se76 insertion into 
S e B a c A L 1 Δ 7 6 ; 
forward primer

74368-74387

SeORF76-R GGGGTACCTTGCAAATAAAATA-
CAGTTTAC

Se76 insertion into 
SeBacAL1Δ76; reverse 
primer

75929-75950

SeORF87-F GGTCTAGATACAACGTTTTGCG-
CATTCG

Se87 insertion into 
S e B a c A L 1 Δ 8 7 ; 
forward primer

84942-84961

SeORF87-R GGGGTACCCTGTGAATCAAATGT-
GAATC

Se87 insertion into 
SeBacAL1Δ87; reverse 
primer

84037-84056

SeORF129-F G G T C T A G A C A A G A A A C T G C -
CATTTTATA

Se129 insertion into 
S e B a c A L 1 Δ 1 2 9 ; 
forward primer

122806-122825

SeORF129-R GGGGTACCTTTAATGTCGGCTCG-
GATCA

Se129 insertion into 
SeBacAL1Δ129; rever-
se primer

123860-123879
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Abstract
Baculoviruses can be transmitted horizontally from insect to insect, or vertically, 

from parents to offspring. Analysis of the whole genome sequence of seven different 

Spodoptera exigua nucleopolyhedrovirus (SeMPNV) genotypes associated with 

vertical (VT-SeAL1, VT-SeAL1, VT-SeOx4) or horizontal transmission strategies 

(HT-SeG24, HT-SeG25, HT-SeG26 and HT-SeSP2A), revealed that the vertically 

transmitted genotypes shared the same mutations in three genes that were different 

from those of the horizontally transmitted isolates (Thézé et al., 2014). Those three 

genes were se5, se96 and se99. A bacmid-based recombination system was used 

to successfully generate single ‘knockout’ viruses from the parent genotype, VT-

SeAL1. Fourth instar S. exigua larvae were infected with a 40% lethal concentration 

(LC40) of the different ‘knockout’ viruses; a concentration that in case of VT-

SeAL1 produced a high prevalence of sublethally infected adults. Analysis of the 

prevalence of infection in the adults, inoculated at the larval stage with the different 

viral treatments showed no significant differences in the prevalence of sublethal 

infections in any treatment, as compared to the wild type control. This observation 

was supported by the near-equal amounts of virus estimated to be present in infected 

adults. The results in this study indicate that se5, se96 and se99 alone did not affect 

the prevalence of sublethal infections in adults. To what extent the transmission of 

SeMNPV was affected, remains to be determined. Improving our knowledge on 

the genetic mechanisms associated with vertical transmission of baculoviruses may 

contribute to the development of optimized strategies for the use of virus-based 

insecticides.
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Introduction
Baculoviruses are arthropod-specific viruses with double-stranded, circular, 

supercoiled genomes varying in size from about 80 to over 180 kb, encoding between 

90 and 180 genes (Rohrmann, 2013b). Baculoviruses are characterized by the 

production of two types of virions; budded viruses (BVs), that mediate the cell-to-cell 

spread of the infection within the insect, and the occlusion derived viruses (ODVs), 

involved in the horizontal transmission of the virus from insect to insect (Slack & 

Arif, 2006). ODVs are surrounded by a proteinaceous matrix forming an occlusion 

body (OB), which protects the virions from environmental decay and enhances their 

persistence in the field. Baculoviruses can be transmitted horizontally, from insect 

to insect, when a susceptible caterpillar ingests OBs persisting in the environment 

(Cory & Myers, 2003). Horizontal transmission of the virus is more prevalent when 

the host population densities are high. At low population densities or with highly 

mobile host, other mechanisms of transmissions may dominate (Burden et al., 2002). 

Indeed, baculoviruses have been found to be vertically transmitted, from parents 

to offspring (Burden et al., 2002; Vilaplana et al., 2010; Cabodevilla et al., 2011a; 

2011b; Virto et al., 2013). Vertical transmission can be due to surface contamination 

of the eggs (transovum transmission), virus passing within the egg (transovarial 

transmission), or as a latent infection (Cory & Myers, 2003). 

Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) has been isolated in 

many regions of the world. A number of genotypes have been isolated from OBs 

present in the soil of Almerian greenhouses (Murillo et al., 2007). Because OBs in the 

soil can only be transmitted when they are being eaten by susceptible hosts (Fuxa 

& Richter, 2001), the genotypes found in the soil are expected to be predominantly 

transmitted horizontally. On the other hand, insect colonies frequently succumb to 

spontaneous nucleopolyhedrosis under controlled conditions in the laboratories 

(Burden et al., 2002; Cory et al., 1997) as a consequence of sublethal infections (Murillo 

et al., 2011). Genotypes isolated from diseased laboratory colonies are expected to be 
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predominantly transmitted vertically.

Thézé et al. (2014) identified and compared the whole genome sequence of seven 

different SeMPNV isolates associated with vertical (VT-SeAL1, VT-SeAL2, VT-

SeOx4) or horizontal transmission strategies (HT-SeG24, HT-SeG25, HT-SeG26 and 

HT-SeSP2A). Vertically transmitted genotypes shared the same mutations in three 

genes that were different from those of the horizontally transmitted isolates. The 

genome of three vertically transmitted isolates shared a deletion of 3 bp at 1382 

nt in open reading frame (ORF) 5 (se5), a 3 bp deletion at 114 nt in ORF96 (se96), 

and a deletion of 9 bp at 54 nt in ORF99 (se99). The se5 gene, of unknown function, 

has a homolog in S. litura MNPV. The se96 gene is homologous to ac150, which is 

considered to be a per os infectivity factor that mediates, but is not essential for oral 

infection (Zhang et al., 2005). The se99 gene is a homolog of ac134 (also called p94), a 

non-essential gene for AcMNPV, which harbours a non-hr origin of replication (ori) 

(Pijlman et al., 2003b). One could hypothesize that one or more of these three genes 

are involved in sublethal infections and vertical transmission, but experimental 

evidence is lacking. 

Vertical transmission can influence the effectiveness of baculoviruses in biological 

control programs against agricultural or forest pests, in particular when inoculative 

strategies are employed (Kukan, 1999). However, little is known about the molecular 

mechanisms that determine different transmission routes. In the present study, we 

examined the different ORFs selected by Thézé et al. (2014) in order to determine 

their potential role vertical transmission of SeMNPV. For this purpose, a bacmid-

based recombination system was used to delete the respective ORFs associated with 

vertical transmission of the SeAL1 genotype and the occurrence of these viruses 

in the abdomens of male and female moths upon infection was measured. The 

results indicate that Se5, Se96 and Se99 alone did not affect the degree of sublethal 

infections and that this was reflected in the near equal concentrations of wild-type 

and “knockout” viruses in the abdomens of infected adult moths. A putative role of 
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any of these genes in vertical transmission, if at all, is predicted to occur beyond this 

stage, possibly in the process of transmission to offspring.

Material and methods
Insect and viruses. S. exigua larvae were obtained from Andermatt Biocontrol AG 

(Grossdietwil, Switzerland), maintained at constant environmental conditions (25 

± 1° C, 50% ± 5% RH, and a photoperiod of 16:8 h light: dark) and reared on a 

wheatgerm-based semisynthetic diet (Greene et al., 1976). The SeMNPV genotype 

used in this study was SeAL1, one of the genotypes sequenced by Thezé et al. (2014), 

which originated from the progeny of field-collected moths that produced progeny 

that subsequently died from virus infection during laboratory rearing, and was 

known to be capable of being vertically transmitted. This virus was selected for the 

construction of a SeMNPV bacmid. The complete genotype was cloned into bacmid 

cloning vector BAC-Bsu36I (Pijlman et al., 2002), that was modified by adding a 

MauBI restriction site and designated as BAC-Bsu-MauBI (Serrano et al., submitted).

Generation of knockout bacmids. For deletion mutagenesis of se5, se96 and se99 

from SeBacAL1, 68- to 70-bp primers were designed with 50-bp 5´ends within the 

deletion target region on the SeMNPV genome (Table 1). The 3’ ends of the primers 

anneal to chloramphenicol resistance gene flanked by mutant LoxP sites (Suzuki 

et al., 2005), which was amplified from pCRTopo-lox-cat-lox (Marek et al., 2011). 

PCR on pCRTopo-lox-cat-lox was performed using Phusion Polymerase (Thermo 

Scientific) according to the manufacturer, giving a product of 1170 bp. SeBacAL1 

DNA was cloned into electro-competent MW003 cells (Westenberg et al., 2010), 

and selected on LB-plates with streptomycin and kanamycin for 2 days at 32°C. 

Single colonies were picked and grown ON in 1 ml SOB-medium at 32°C. The ON-

culture was used to inoculate 10 ml SOB-medium, incubated at 32°C and cells were 

harvested when an OD600 of 0.6 was reached. The culture was then split into two 

and 5 ml were induced for 10 min at 42°C. After incubation, the cells were washed 
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twice with ice-cold 10% glycerol. Finally, the cells were resuspended in 100 µl 10% 

glycerol and stored at -80°C. The next day, cells were electroporated with 150 ng 

of the PCR product amplified from pCRTopo-lox-cat-lox. The cells were recovered 

in 1 ml SOB-medium and incubated for 3 h at 32°C. Subsequently, both induced 

and non-induced cells were plated out on LB plates, supplemented with 50 µg/

ml kanamycin and 50 µg/ml chloramphenicol. The plates were incubated for 48 

h at 32°C. Finally, single colonies were picked to analyze if recombination had 

occurred (Dolphin & Hope, 2006). To confirm the deletion of the ORFs, restriction 

endonuclease analysis of the bacmid DNA and PCR amplifications were performed. 

Once the correct knockout was selected, bacmid DNA extraction was performed and 

electroporated into DH10β (Invitrogen) for further amplification.

Production of OBs. Fourth-instar S. exigua larvae were injected with 10 µl DNA of 

the knockout and wild type bacmids from a mixture containing 100 µl DNA (50ng/ 

µl) and 50 µl Lipofectin reagent (Invitrogen). Injected larvae were transferred to 

artificial diet and reared individually at 25°C. Virus-induced mortality was recorded 

daily. OBs were extracted from NPV-killed larvae by homogenization in water 

and purified by filtration and differential centrifugation as described (Muñoz & 

Caballero, 2000). These OBs were, together with SeAL1, used for bioassays.

Bioassay. To determine the effect of the different ORFs on vertical transmission of 

SeMNPV, bioassays with OBs from the knockout viruses were performed using 

the droplet feeding method (Hughes et al., 1986). For this, fourth instar S. exigua 

were starved for 12 h and then allowed to drink from an aqueous suspension 

containing 10% sucrose, 0.001% Fluorella blue, and OBs at a concentrations that 

produced around 40% mortality by each virus: 1x104 OBs/ml for SeAL1, SeBacAL1, 

SeBacAL1∆96, and SeBacAL1∆99; and 1x105 OBs/ml for SeBacAL1∆5. Control 

larvae were fed a solution of sucrose and Fluorella blue without OBs. Larvae that 
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ingested the suspension within 10 min were transferred individually to 24-well 

tissue culture plates with semi-synthetic diet. Groups of 24 larvae were treated with 

each concentration. Insects were incubated at 25 ºC and mortality was recorded daily 

until larvae died or pupated. Adults that survived the infection were individually 

stored at -80 ºC. 

DNA extraction. Total insect DNA was extracted using MasterPure Complete 

DNA Purification kit (Epicentre Biotechnologies), according to the manufacturer 

recommended protocol. Abdomens of adults were individually dissected and 

placed in a 2 ml tube with ceramic beads and 300 µl lysis solution with 1 µl 50 µg/

µl Proteinase K. The tissue was homogenized using MP FastPrep-24 tissue in a cell 

homogenizer at 4.0 m/s for 20s. The mixture was incubated at 65 °C for 15 min at a 

constant 1100 rpm orbital agitation. A 150 µl volume of the sample was then treated 

with RNase for 30 min at 37°C. Protein precipitation reagent was added to lyse the 

sample and the debris was pelleted by centrifugation at 10,000 g for 15 min. Cold 

isopropanol was used to precipitate nucleic acids. Samples were washed twice with 

70% ethanol, resuspended in 20 µl sterile Mili-Q water and stored at -20°C. Blank 

extraction sample containing only water were processed in parallel to control for 

cross-contamination during extraction.

Detection of sublethal infections. In order to estimate the prevalence of latent 

infections, quantitative PCR (Q-PCR) based on SYBR fluorescence was performed in 

a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) in 96-well reaction plate. 

Specific primers were designed to amplify a 149 bp region of the SeMNPV DNA 

polymerase gene (Table 1) based on the complete genome sequence of the SeAL1 

genotype (GenBank accession number: HG425343). Amplifications were performed 

in a total reaction of 10 µl containing 5 µl SYBR green Premix Ex Taq (2x) (TaKaRa 

Bio Inc., Shiga, Japan), 0.4 µl of both forward and reverse primers (10 pmol/µl) and 
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1 µl 50 ng/µl DNA. Four non-template reactions were included in each run and a 

standard curve was included in triplicate to determine the efficiency of each reaction. 

For the standard curve, SeAL1 DNA was extracted from OBs, purified through CsCl 

gradients, quantified using a spectrophotometer (Eppendorf BioPhotometer plus) 

and then serially diluted in sterile MilliQ water to the following concentrations: 6.25 

x 10-4, 1.25 x 10-4, 2.5 x 10-5, 5 x 10-6 and 1 x 10-6 µg/µl. All reactions were performed 

in triplicate. The Q-PCR temperature and time conditions included an initial 

denaturation step at 95 °C for 30s, followed by 45 amplification cycles comprising 

three steps: 95°C for 5s, 60°C for 15s and a final cycle for the dissociation curve 

consisting in 95°C for 15s, 60°C for 15s and 95°C for 15s. Data acquisition and 

analysis was performed with CFX Manager Software 3.1 (Bio-Rad).

Statistical analysis. The frequencies of insects that tested positive for sublethal 

infection by Q-PCR were not normally distributed and were analyzed by non-

parametric Kruskal-Wallis test in SPSS (IBM). 

Results
Construction of ‘knockout’ viruses. To determine the effects of removing 

se5, se96 and se99 individually on the transmission of SeMNPV, a SeMNPV 

bacmid with the VT-SeAL1 isolate genome was used (SeBacAL1) (Serrano et al., 

submitted). SeBacAL1Δ5, SeBacAL1Δ96 and SeBacAL1Δ99 ‘knockout’ bacmids 

were then constructed by deleting se5, se96 and se99, respectively. In their place, 

a chloramphenicol acetyltransferase (cat) gene was inserted to facilitate antibiotic 

selection in E. coli. To identify the knocked out loci, restriction endonuclease analysis 

(Fig. 1) and PCR on the flanking sequences of the deleted gene (data not shown) 

were performed. To test the transfectivity of these ‘knockout’ and control bacmids, 

these bacmids were directly injected into fourth instar S. exigua larvae together with 

lipofectin transfection reagent. All larvae sucumbed to lethal polyhedrosis disease 

indicating that the deletions were non-essential. OBs were harvested and tested for 
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the presence of the correct virus by PCR. These OBs were propagated in fourth instar 

S. exigua and used for further experiments. 

Detection of sublethal infections in adult S. exigua. To detect the prevalence of 

sublethal infection of all the knockout viruses in adults, S. exigua fourth instar larvae 

were infected with the 40% lethal concentration (LC40) of the SeAL1 genotype, 

SeBacAL1 bacmid and all the ‘knockout’ viruses. As expected, mortality ranged 

from 33.3 to 45.5%, whereas no mortality was observed in the control mock-infected 

larvae (Table 2). In a previous study, a similar concentration of SeAL1 OBs resulted 

Figure 1. Restriction endonuclease profiles with BglII of the DNAs of SeBacAL1 and the recombinant 
knockouts SeBacAL1Δ5, SeBacAL1Δ96 and SeBacAL1Δ99. Lane M contains a 1 kb Marker-Ladder from 
Stratagene. The asterisks indicate the restriction polymorphisms of each knockout.
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in a prevalence of sublethal infections in adult moths as high as 60%, as indicated by 

the number of Q-PCR positive adult survivors (Cabodevilla et al., 2011b).

All the emerged adults from the different viral treatments were subjected to 

Q-PCR analysis using primers designed to target the highly conserved viral DNA 

polymerase gene (Table 1). 

None of the control adults gave Q-PCR positive results, indicating that the 

laboratory insect population is free of virus (Table 3). Adults infected with the wild-

type virus, VT-AL1, and the wild-type bacmid, SeBacAL1, showed 90 and 62.5% 

prevalence of sublethal infections, respectively, indicating that the LC40 resulted in 

a high prevalence of sublethally infected adults (Table 3). Statistical analysis of the 

prevalence of infection in the adults inoculated with the different viral treatments, 

including se5, se96 and se99, showed no significant differences in any treatment, as 

compared to SeBacAL1 (P>0.05) (Table 3). Given the absence of significant differences 

between the different knockouts in the prevalence of virus infection allowed the use 

of SeBacAL1 bacmid as the only control, there was no need to test ‘repair’ viruses. 

Table 2. Percentage of S. exigua larval mortality due to nucleopolyhedrovirus disea-
se and number of surviving pupae in vertical transmission assays.

Virus
OB concentration 

(OBs/ml)

No. of virus-

killed larvae 

(% mortality)

Total no. of 

infected larvae

No. of 

pupae

Control 0 0 24 21

SeAL1 1x104 8 (33.3) 24 15

SeBacAL1 1x104 9 (39.1) 23 11

SeBacAL1∆5 1x105 6 (35.3) 17 8

SeBacAL1∆96 1x104 9 (37.5) 24 13

SeBacAL1∆99 1x104 10 (45.5) 22 11
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Virus
No. of NPV-positive 

adults (%)
Average viral load (µg/µl)

No. 

adults 

analyzed
Control 0 (0) a - 11

SeAL1 9 (90) a 3.75 x 10-6 10

SeBacAL1 5 (62.5) a 2.29 x 10-6 8

SeBacAL1∆5 3 (50) a 8.45 x 10-6 6

SeBacAL1∆96 8 (72.7) a 2.27 x 10-6 11

SeBacAL1∆99 10 (90.9) a 1.07 x 10-5 11

Discussion
The development of highly sensitive molecular techniques has allowed detection 

of baculovirus sublethal infections as well as studies on their vertical transmission 

to assess the role of this spread strategy on the population dynamics of their 

hosts. Baculoviruses can establish sublethal infections to transmit the virus from 

parents to offspring. However, little is known about the molecular mechanisms 

that regulate the formation and persistence of sublethal infections. In a previous 

study, several SeMNPV genotypes differed in their ability to persist as sublethal 

infections in the adult stage, indicating that certain genotypes are better adapted to 

vertical transmission than others (Cabodevilla et al., 2011a). The VT-SeAL1 genotype 

produced 100% sublethal infection in adults that survived an OB treatment in the 

larval stage, whereas genotype HT-SeG25 only produced 16% sublethal infection 

among survivors of a similar treatment (Cabodevilla et al., 2011a). The comparison 

of the whole genome sequence of seven SeMNPV genotypes involved in vertical and 

horizontal transmission strategies resulted in the identification of three candidate 

Table 3. Prevalence of sublethal infection in S. exigua adults that survived OB 
treatments and average viral load in the virus-positive adults. Values labelled with 
the same letter did not differ significantly (p>0.05).
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genes as potentially being involved in the transmission strategy of SeMNPV: se5, 

se96 and se99 (Thézé et al., 2014). 

Se5 is an early gene of unknown function and it is homolog to the ORF6 of Spodoptera 

litura MNPV (Spln6). Unfortunately, Spln6 has not been characterized and its 

hypothetical function is unknown. SE5 is 509 aa in length and has a protein size of 

59.24 kDa. As discussed in the previous chapter (Serrano et al., submitted), deletion 

of se5 decreased the pathogenicity of SeBacAL1 by almost 10-fold, and the mean 

time to death was significantly increased by almost 7 h. Although se5 appears to 

have an important role in the viral infectivity of SeMNPV (Serrano et al., submitted), 

it did not affect the virulence of the virus, since its deletion did not result in a change 

in the prevalence of sublethal infections in adults, as compared to the wild-type (wt) 

bacmid SeBacAL1 (Table 3). 

SE96 is 118 aa long and has a protein molecular size of 12.67 kDa. Se96, a late 

expressed gene, is a homolog of ac150, which belongs to the 11K gene family encoding 

products with a hydrophobic N-terminal domain, and a core “C6” motif, and whose 

functions frequently involve interaction with chitin, although no functions have 

been assigned yet (Dall et al., 2001). Deletion of ac150 alone did not affect the viral 

pathogenicity in Trichoplusia ni or Heliothis virescens larvae (Lapointe et al., 2004). 

However, when it was deleted together with ac145, another member of the 11K gene 

family, the pathogenicity decreased drastically in T. ni larvae, but not in H. virsecens 

larvae. Intrahemocoelic injection of budded virus from the double mutant recovered 

the pathogenicity as compared to the wt virus, indicating that ac150 might have a 

role in the primary infection of AcMNPV, in a host dependent manner (Lapointe 

et al., 2004). In a different study, deletion of ac150 significantly decreased the 

pathogenicity of AcMNPV, with a higher LD50 compared with the wild-type virus 

in S. exigua, H. virescens and T. ni  larvae (Zhang et al., 2005). However, deletion of 

ac150 resulted in an identical pathogenicity compared to that of wild-type AcMNPV 

after intrahemocoelic injection of BV in fourth instar S. exigua, H. virescens and T. 
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ni. Both experiments indicated that ac150 can be considered a per os infection factor 

that mediates, but is not essential for, oral infection (Zhang et al., 2005). In our study, 

the same OB concentration was administered for SeBacAL1 and the knockout of 

se96, and both concentrations produced similar mortalities, in contrast to what was 

observed by Zhang et al. (2005). The conserved viral motif “C6” is different in ac150 

than in se96, they do not group together in a phylogenetic tree based in the 11K 6C 

motifs, indicating that those motifs were probably acquired independently (Dall et 

al., 2001). The different C6 motif might be responsible for the observed difference 

in the pathogenicity between AcMNPV and SeMNPV. Although se96 is considered 

to be involved in the oral infection of SeMNPV, its deletion did not affect the 

prevalence of sublethally infected adults as compared with that of the wild-type 

virus, SeBacAL1 (Table 3). 

SE99 is 716 aa long and has a predicted protein size of 85.65 kDa. Se99 is a homolog 

of gene p94, which is an early, non-essential gene of unknown function (Friesen 

& Miller, 1987; Pijlman et al., 2003b). p94 was suggested to have evolved together 

with the adjacent gene p35, which is an inhibitor of apoptosis (Clem et al., 1994). 

Deletion of p94 from AcMNPV did not affect the pathogenicity of the virus (Clem et 

al., 1994), with similar a LC50 value compared with that of wild-type OBs. This seems 

to be confirmed in this study, where a concentration of 1x104 OBs/ml produced 

around 40% mortality in both SeBacAL1 and SeBacAL1Δ99. In a detailed study 

about defective interfering (DI) virus formation, a 2.8 kb fragment that exhibited 

strong origin of viral replication (ori) activity was identified after serial AcMNPV 

passage in cell culture, (Kool et al., 1994). This sequence was designated as non-hr 

ori and is located within the p94 coding sequence, yet is non-essential (Pijlman et al., 

2003b). P94 is not present in Bombyx mori NPV, however, the BmNPV genome has 

retained parts of the non-hr ori, indicating that this part of p94 may be important for 

virus replication (Kool et al., 1994), and the generation of DI particles (Pijlman et al., 

2003b). Although p94 seems to have an effect on the viral replication, it did not affect 
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the transmission route, since deletion of se99 did not affect the prevalence of infected 

adults as compared to that of the wild-type virus, SeBacAL1.

The results in this study indicate that se5, se96 and se99 alone did not affect the 

prevalence of sublethal infections in adults. However, the question remains 

whether there is an effect of these deletions on the expression level of viral genes 

or on the efficiency of virus transmission to offspring, and therefore, on the vertical 

transmissibility of the virus. In the case of genotype SeG25, that showed a low 

prevalence of vertical transmission, a much lower level of gene expression was found 

(Cabodevilla et al., 2011a), whereas two other horizontally-transmitted genotypes 

of SeMNPV did not, compared to viruses showing vertical transmission, such as 

SeAL1. Therefore it would be of interest to measure the transcription in abdomens 

of adult moths infected with SeG25 and its deletion mutants, as compared to SeAL1, 

which adopts predominantly a vertical route of transmission. 

Finally, it is now particularly important to analyze virus transmission to offspring 

to determine whether that is affected by the deletion of any of the three SeMNPV 

genes, se5, se96 and se99.

Vertically transmitted infections may contribute to improve pest control strategies 

from one generation of insects to the next, by reducing the number of applications 

of baculovirus-based insecticides required in the field. The genetic factors associated 

with vertical transmission mechanisms, however, are poorly understood, but merit 

study as they may contribute to optimize the use of these viruses, and may contribute 

to an improved understanding of the mechanisms behind the issue of viral latency 

or sublethal infection in general.
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Supplementary information

Table 1. Primers used for the generation of SeBacAL1 knockout mutants lacking 

ORFs Se5, Se96, Se99, and for q-PCR amplification to determine prevalence of 

mutants in vertical transmission assays. 

Primer Sequence Amplification purpose

SeORF5-KO-F
ATGGTTAACGATTCCAGAAACACTGA-
TATCATCGACGCTGTCGTCTGAGCGCTCG-
GATCCACTAGTAAC

Se5 deletion from SeMNPV bac-
mid; forward primer

SeORF5-KO-R TTATGCATCAGCTGTTGTTTGATCTTCGT-
CATCGGTGGTTTCTCCGTCGCCCTCTA-
GATGCATGCTCG

Se5 deletion from SeMNPV bac-
mid; reverse primer

SeORF96-KO-F
ATGAAGTCGTGGATGAAAACGGTCA-
T A T T G A T T T T G A T A C T T T A C T G A A T -
GCTCGGATCCACTAGTAACG

Se96 deletion from SeMNPV 
bacmid; forward primer

SeORF96-KO-R C A T A A T T G A A A A C A A T C T T G A -
A G T C G T T C T T T T T T C G T T G C C T C A A -
ATCTCCTCTAGATGCATGCTCG

Se96 deletion from SeMNPV 
bacmid; reverse primer

SeORF99-KO-F ATGATTAGAAGAACACTTTTTACAAT-
GGGCATCACCGGCAGCGTCTGAGA-
GCTCGGATCCACTAGTAA

Se99 deletion from SeMNPV 
bacmid; forward primer

SeORF99-KO-R
C A A T A T T T C A A A -
TACATTAATTTCCTTTTCGAATAGTTGA-
TAATGTCTTCCCTCTAGATGCATGCTCG

Se99 deletion from SeMNPV 
bacmid; reverse primer

DNApol149-F CCGCTCGCCAACTACATTAC DNA polymerase amplification 
for Q-PCR. Forward primer

DNApol149-R GAATCCGTGTCGCCGTATATC DNA polymerase amplification 
for Q-PCR. Reverse primer
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Abstract
A natural Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolate 

from Florida shares a strikingly similar genotypic composition to that of a natural 

Spodoptera frugiperda MNPV (SfMNPV) isolate from Nicaragua. Both isolates 

comprise a high proportion of large-deletion genotypes that lack genes that are 

essential for viral replication or transmission. To determine the likely origin of such 

genotypically similar population structures, we performed genomic and functional 

analyses of these genotypes. The homology of nucleotides in the deleted regions 

was as high as 79%, similar to those of other colinear genomic regions, although 

some SfMNPV genes were not present in SeMNPV. In addition, no potential 

consensus sequences were shared between the deletion flanking sequences. These 

results indicate an evolutionary mechanism that independently generates and 

sustains deletion mutants within each virus population. Functional analyses using 

different proportions of complete and deletion genotypes were performed with the 

two viruses in mixtures of occlusion bodies (OBs) or co-occluded virions. Ratios 

greater than 3:1 of complete/deletion genotypes resulted in reduced pathogenicity 

(expressed as median lethal dose), but there were no significant changes in the speed 

of kill. In contrast, OB yield increased only in the 1:1 mixture. The three phenotypic 

traits analyzed provide a broader picture of the functional significance of the most 

extensively deleted SeMNPV genotype and contribute toward the elucidation of the 

role of such mutants in baculovirus populations.
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Introduction
The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and 

the beet armyworm, S. exigua (Hübner) (Lepidoptera: Noctuidae), are polyphagous 

pests of agricultural crops. S. frugiperda is native to the tropical and sub-tropical 

regions of the Americas, from the United States to Argentina (Sparks, 1979). S. 

frugiperda adults disperse over long distances during the summer months. S. exigua 

originated from the Middle East, but it is now found in tropical and subtropical 

areas worldwide, including Europe and the Americas (Zheng et al., 2012). The 

geographical distributions of S. exigua and S. frugiperda have overlapped in North 

America for more than a century (Capinera, 1999). 

The multiple nucleopolyhedroviruses (genus Alphabaculovirus, familia 

Baculoviridae) isolated from S. exigua (SeMNPV) and S. frugiperda (SfMNPV) 

are important species-specific mortality factors, particularly in the high density 

populations of their respective hosts. Alphabaculoviruses, including SeMNPV, have 

proven to be effective for use as a base in biological insecticides (Moscardi, 1999). A 

detailed understanding of the genetic and phenotypic diversity within and between 

baculovirus populations can facilitate the selection of highly insecticidal strains for 

development as a base of commercial products (Erlandson, 1990). 

The diversity of SfMNPV and SeMNPV has been described both between (Caballero 

et al., 1992b; Escribano et al., 1999; Murillo et al., 2001) and within populations (Dai 

et al., 2000; Hara et al., 1995; Maruniak et al., 1984; Muñoz et al., 1998; Simón et al., 

2004a). The genomes of SfMNPV and SeMNPV are strikingly similar (Muñoz et al., 

1998; Simón et al., 2004b), with 72 to 85% nucleotide homology in colinear regions 

covering 30% of the genome, and with >85% of genes being shared; this has led 

researchers to suggest that these two viruses are closely related (Harrison et al., 2008). 

The large-deletion genotypes present in a Floridan SeMNPV isolate, SeMNPV-US2 

(SeUS2), were observed to share parallel genetic and phenotypic characteristics 

with an SfMNPV isolate from Nicaragua, SfMNPV-NIC (SfNIC) (Simón et al., 
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2005a). SeMNPV and SfMNPV represent different virus species (Herniou et al., 

2011). The genotypic structure was detected later in other geographically distant 

populations of these viruses. Specifically, a Californian SeMNPV isolate (SeUS1) 

includes three genotypes with deletions in similar locations and of comparable 

lengths to those of SeUS2, namely, SeUS1-B (K. Zimmermann, D. Muñoz, and P. 

Caballero, unpublished data), SeUS1-XD1 (Dai et al., 2000), and a 25 kb deletion 

genotype (Heldens et al., 1996) that we designated here as SeUS1-JH (Fig. 1). Five 

samples from Japan and Thailand show restriction endonuclease profiles (Hara et 

al., 1995) with signs of deletion genotypes, characterized by submolar PstI-C and 

PstI-D fragments. Finally, in SfMNPV isolates from the United States (Harrison et 

al., 2008) and Colombia (Barrera et al., 2011), the presence of genotypes with sizable 

genomic deletions in the same genomic region has been reported recently. The 

host ranges of these viruses differ. SeMNPV is not pathogenic for S. frugiperda or 

any other heterologous host, whereas SfMNPV, although it is lethal to S. exigua, 

produces atypical pathogenesis, lack of integument rupture, and no progeny virus 

in this (S. exigua) host. The existence of such similar population structures in distinct 

viruses that infect different host species raises questions concerning the origins and 

functions of these genotypes.

In this study, we analyzed the gene content of SeUS2 genotypic variants and 

compared the genotypic structure of SeUS2, SeUS1, and SfNIC in an attempt to 

determine the origins of such genotypically similar population structures that would 

provide clues as to the ecological or evolutionary factors that determine population 

structure in these viruses. In doing so, we also identify a series of characteristics that 

can be employed as genotype selection criteria for the development of biological 

insecticides that are based on these viruses. 

Material and methods
Insects, Cell lines and Viruses. S. exigua larvae were obtained from a laboratory 

colony, maintained under constant environmental conditions (25 ± 1° C, 50% ± 5% 
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RH and a photoperiod of 16 h light and 8 h dark), and reared on a wheat germ-based 

semisynthetic diet (Greene et al., 1976). This colony was known to be free from latent 

or covert nucelopolyhedrovirus infections (Cabodevilla et al., 2011b). S. exigua Se301 

cells, which were kindly provided by S. Herrero (Universidad de Valencia, Spain) 

were maintained at 28º ± 0.5 °C in Grace`s insect cell culture medium supplemented 

with 10% fetal bovine serum (FBS) (Gibco, Scotland, U.K.). The SeMNPV isolate 

from Florida, SeUS2- wild type (WT), which was used in this study, is the active 

ingredient of the bioinsecticide Spod-X and was kindly provided by Du Pont Ibérica 

S.A, Barcelona, Spain. The virus was amplified by infecting S. exigua fourth instars 

from the laboratory colony using the droplet feeding method (Hughes et al., 1986).

Initially, the SeUS2 genotypic variants SeUS2-A, SeUS2-C, SeUS2-D, SeUS2-E, and 

SeUS2-F were obtained by in vivo cloning (Muñoz et al., 1998) in S. exigua larvae. 

SeUS2-E could not be fully isolated, but several samples contained enriched mixtures 

of this genotype with SeUS2-A as a contaminant, and so these were used to construct 

the physical map of SeUS2-E (Muñoz et al., 1998). Viral occlusion bodies (OBs) were 

produced by feeding healthy fourth instars with a virus-contaminated diet. OBs 

were extracted from dead diseased larvae by homogenization in water, and they 

were purified by filtration and differential centrifugation (Muñoz et al., 2001).

Viral DNA purification, restriction endonuclease digestion, cloning and PCR 

amplification. Viral DNA was extracted from ~109 OBs in 300 μl of water by 

dissolving the polyhedrin matrix with the addition of 100 μl of 0.5 M Na2CO3 and 

50 μl of 10% (w/v) sodium dodecyl sulfate (SDS) at 60°C for 10 min. Undissolved 

OBs and other particulates were pelleted by low-speed centrifugation (2,700 x g for 5 

min). Supernatant containing occlusion-derived virions (ODVs) was recovered and 

incubated with 500 μg/ml proteinase K at 50°C for 2.5 h. Viral genomic DNA was 

extracted with phenol and chloroform, precipitated by the addition of 0.1 vol. 3 M 

sodium acetate (pH 5.2) and 2.5 volumes 96% ethanol, washed with 70% ethanol and 
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dissolved in 0.1X Tris-EDTA (TE) buffer (10mM Tris-acetate and 1mM EDTA [pH 

8.0]). For restriction endonuclease digestion, ~2 μg of viral genomic DNA was treated 

with 10 U of PstI (Takara, Shiga, Japan); on occasions, it was treated with BamHI, 

(Amersham) following the manufacturer’s recommendation, which in the case of 

BamHI resulted in cloneable polymorphic fragments for SeUS2-C and SeUS2-D. 

Electrophoresis was performed in horizontal 1% agarose gels in Tris-acetate-EDTA 

(TAE) (0.04 M Tris-acetate, 0.001 M EDTA [pH 8.0]), and the DNA fragments 

were visualized by staining with ethidium bromide. The cloneable SeUS2-C PstI-J 

fragment, which is characteristic of this genotype and results from the shortening 

and fusion of SeUS2-A PstI-C and PstI-D fragments, was gel-extracted, purified 

through GFXTM PCR columns (Amersham Biosciences, Little Chalfont, Bucks, UK) 

and cloned in pUC19 plasmid (Promega Biotech Iberica, Madrid, Spain) using a 

DNA ligation kit (LigaFast™, Promega Biotech Iberica). The same procedure was 

followed using a cloneable 3.1-kb product of BamHI digestion of the characteristic 

SeUS2-D PstI-C fragment, containing the 2.5-kb insertion. PCR amplifications were 

performed in a total reaction mixture volume of 50 µl containing 250 µM of each 

deoxynucleoside triphosphate, 56 pmol of each primer, polymerase buffer and 

Accuzyme DNA polymerase (Bioline Supply, Segovia, Spain). The following cycling 

conditions were used: 3 min of initial denaturation at 94°C, 25 amplifications cycle 

(30s denaturation at 94°C, 1 min annealing at 58°C, and 2 min of extension at 72°C) 

with a final extension step at 72°C for 10 min.

Nucleotide sequencing. Sequencing was performed in an ABI Prism Big Dye 

Terminator Cycle Sequencing Ready Reaction kit on a 9600 PE model thermocycler. 

The reaction products were loaded into an automated DNA sequencer ABI PRISM 

(Sistemas Genómicos, Valencia, Spain).

Determination of the deletion/insertion breakpoints for each variant. For 
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SeUS2-C, the characteristic SeUS2-C PstI-J fragment was purified from an agarose 

gel, cloned into pUC19, and sequenced using universal reverse primer. The deletion 

in SeUS2-E was mapped using the SeUS1-based primers, prE-F01 and prE-R01 

(Table 1), designed to target a 2.7-kb fragment around the deletion breaking point. 

The SeUS2-F deletion was mapped by cloning a 4.8-kb restriction fragment of the 

SeUS2-F genome obtained with PstI and BamHI and sequencing with universal 

forward primer. To map the insertion point on SeUS2-D, the SeUS2-D PstI-C 

fragment containing the insertion was digested with BamHI, cloned into pUC19, 

and sequenced with primers universal forward, prD13-F02, and prD13-F03 (Table 

1). The last two primers were designed from the sequences obtained with primers 

universal forward and prD13-F02, respectively. 

Sequence computer analysis. DNA and protein comparisons with entries in the 

updated GenBank/EMBL databases were performed with BLASTn, FASTA and 

BLASTp (Altschul et al., 1990; Pearson, 1988). A pairwise alignment of sequences 

was made using the Needleman-Wunsch global alignment algorithm of the Emboss 

software (Rice et al., 2000).

In vitro virus cloning. For complementation analyses, SeUS2-A and SeUS2-C were 

cloned in vitro. Fifth instars of S. exigua from the laboratory colony were inoculated 

per os with SeUS2-WT OBs at a 90% lethal concentration (LC90) (2.3x105 OBs/ml). The 

hemolymphs of these insects were extracted at 48 h post infection (h.p.i.), added to 

500 µl Grace´s culture medium supplemented with 10 % FBS, filtered throughout 

a 0.45 μm filter, and used for 10-fold serial dilutions (10-1 to 10-6). A 100-μl volume 

of this mixture was added to Se301 cells at a density of 8 x 105 cells/ml in 96-well 

tissue culture plates. At 5 days postinfection, the virion-containing supernatants 

from wells with only one infection plaque were collected and inoculated onto 

Se301 cells, which were plated at a density of 2x106 cells/ml in 6-well tissue culture 
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plates and incubated in 2 ml Grace´s insect cell culture medium supplemented with 

10% FBS and 2% penicillin-streptomycin (Gibco, Scotland, U.K.). At 10 days post 

infection the medium and the cells were collected and centrifuged at 2,300 x g for 

5 min. to separate the OB-containing cells from the budded virus (BV)-containing 

supernatant. Individual genotypes purified by this procedure were stored at 4ºC. 

For the production of OBs, fourth-instar S. exigua insects from the laboratory colony 

were injected with 8 μl of each of the BV suspensions obtained in vitro. Inoculated 

larvae were reared individually on a semisynthetic diet until death. Dead larvae 

were stored at -20ºC. SeUS2-A and SeUS2-C were identified by using restriction 

endonuclease analysis of viral DNA as described above.

Production of occlusion body mixtures and co-occlusion of genotypes. Two types 

of virus populations were constructed: i) mixtures of OBs of two genotypes, Se-

US2A and Se-US2C and ii) co-occlusion of SeUS2-A and SeUS2C in ODVs within 

the same OBs, following methods developed previously (Clavijo et al., 2010). For the 

OB mixtures, suspensions of SeUS2-A OBs or SeUS2-C OBs that had been purified in 

vitro were quantified by titration in an improved Neubauer hemocytometer, diluted 

in distilled water to a concentration of 1x108 OBs/ml, and mixed in the following 

proportions: 90% SeUS2-A and 10% SeUS2-C (9A+1C), 75% SeUS2-A and 25% 

SeUS2-C (3A+1C), 50% SeUS2-A and 50% SeUS2-C (1A+1C), 25% SeUS2-A and 75% 

SeUS2-C (1A+3C), 10% SeUS2-A and 90% SeUS2-C (1A+9C). These mixtures were 

then used in bioassays. To produce co-occluded genotypes, 100 µl samples of each 

of the previous OBs mixtures (1x108 OBs/ml) were incubated with 1 volume 1M 

Na2CO3 at 50 ºC for 60 min to release ODVs. Eight-microlitre volumes of each ODV 

suspensions were injected into S. exigua fourth instars that were reared individually 

on semisynthetic diet until death. OBs were extracted from dead larvae, purified as 

described above, resuspended in 50 μl distilled water, and used in bioassays.

The relative proportions of each genotype in the OB mixtures and the co-occluded 
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preparations were estimated by semi-quantitative PCR. Primers P1, P2, and P3 (Table 

1) were designed to differentiate between SeUS2-A and SeUS2-C, which produced 

amplicons of 691 and 791, respectively. Amplifications were performed using 

genomic DNA extracted from OBs. Reactions were stopped at the mid-logarithmic 

phase of amplification (17 cycles), before the rate of amplification began to decrease. 

The relative intensities of the two amplicons were compared using the Scion Image 

PC program (Scion Corporation, Maryland, USA), as described previously (Simon 

et al. 2005b).

Bioassays. Bioassays with OB mixtures and with co-occluded genotypes were 

carried out using the droplet feeding method (Hughes et al., 1986). Second instar S. 

exigua larvae were starved for 12 h and then were allowed to drink from an aqueous 

suspension containing 10% sucrose, 0.001% Fluorella blue, and OB mixtures or co-

occluded genotypes at five different concentrations (2.45 x 105, 8.1 x 104, 2.7 x 104, 9 x 

103, 3 x 103 OBs/ml). Control larvae were fed a solution of sucrose and Fluorella blue 

without OBs. Larvae that ingested the suspension within 10 min were transferred 

individually to 24-well tissue culture plates and given a semisynthetic diet. Groups 

of 24 larvae were treated with each concentration. Each assay was performed three 

times. Insects were incubated at 25 ºC, and mortality was recorded daily until larvae 

died or pupated. Virus-induced mortality was subjected to probit analysis using the 

Polo-PC program (LeOra Software, 1987). 

Mean time to death (MTD) and OB production were calculated for SeUS2-WT, 

SeUS2-A, and the following co-occluded genotype mixtures: 9A+1C, 3A+1C and 

1A+1C. For this, groups of 24 S. exigua second instars were inoculated with an LC90 

concentration of each inoculum (1.50x105 OBs/ml for SeUS2-WT , 1.64 x 105 OBs/ml 

for SeUS2-A, 2.14 x 105 OBs/ml for 9A+1C, 1.26x105 OBs/ml for 3A+1C, and 2.07x105 

OBs/ml for 1A+1C), which were estimated in the previous bioassay. Inoculated 

larvae were reared individually at 25ºC and mortality was recorded at 8 h intervals 
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until death or pupation. Cadavers were collected individually and homogenized 

in 100 µl distilled water. The whole experiment was replicated three times. Time 

mortality data were subjected to Weibull survival analysis using Generalized Linear 

Interactive Modeling (GLIM) (Crawley, 1993) software. OB yield per larva was 

estimated by counting of OBs in a Neubauer hemocytometer. Two OB counts were 

performed for each larva, and the whole experiment was performed three times 

with 24 larvae per replicate. Results were  normalized by square root transformation 

and were subjected to analysis of variance (ANOVA) parametric statistics in SPSS 

v15 (IBM, New York, USA).

Results
Population structure of SeUS2. The large genomic deletions in the SeUS2 genotypic 

variants SeUS2-C and SeUS2-E were mapped between nucleotides (nt) 16,437 and 

39,757 of SeMNPV isolate SeUS1-A (IJkel et al., 1999). These deletions encompassed 

all or part of the PstI-L, D, and C fragments (Fig. 1). Additionally, a 2,535 bp insertion 

and a 2,639 bp deletion were detected in the SeUS2 genotypic variants SeUS2-D 

and SeUS2-F, respectively (Fig. 1b). Other SeUS2 genotypes, such as SeUS2-B and 

SeUS2-H, show small deletions in the homologous region hr1 (data not shown). The 

genomic regions of 19,517 to 39,757 bp in SeUS2-A and of 18,753 to 35,122 bp in 

Figure 1. Gene content of SeMNPV and SfMNPV deletion genotypes. (A) Schematic representation of 
the SeMNPV-US1A (SeUS1-A) genome (above). The PstI restriction sites and fragments are represented 
as light blue bars and letters, respectively. Shaded rectangles correspond to origins of replication within 
homologous regions (hrs) or not (non-hr), and numbers correspond to nucleotide position in kb. ORFs 
(below) are represented as arrowed bars where size and arrowhead direction indicate their respective 
length and transcription direction, and colors are according to key panel. Numbers below ORFs indicate 
their number. (B) Linear maps (thick horizontal lines) and corresponding ORFs (colored arrowed bars) of 
the SeMNPV (Se, above) and SfMNPV (Sf, below) auxiliary gene rich (AGR) regions. Horizontal dashed 
arrows represent the deletions in the SeUS2, SeUS1-JH and the SfNIC deletion variants. The lengths of 
the SeUS2-C, SeUS2-E, and SeUS2-F deletions are indicated in bp. The approximate deletion points of 
the SeUS1 genotypes SeUS1-B (left break point) and SeUS1-JH have also been included. The SeUS2-D 
insertion point is also represented as a vertical dotted arrow and the insertion as a solid yellow line. 
Homolog ORFs between SeMNPV and SfMNPV are connected by thin dotted lines.
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SfNIC-B, which encompass the large deletions present in SeUS2-C and SfNIC-C, 

shared 79% nucleotide sequence identity.

Gene content of SeMNPV deletion genotypes. SeUS2-C has a large deletion of 

20,241 bp, representing 14.9% of the genome in relation to that of SeUS1-A, between 

nt 19,517 and 39,757. Compared with SeUS1-A, SeUS2-C lacked open reading frames 

(ORFs) 17 to 39, which include the chitinase, gp37, ptp-2, egt, pkip, arif-1, pif-2, pif, 

and fgf genes. The left side of the deletion results in a 48% loss in the 5´ coding 

region of cathepsin. The right side of the deletion is 48 bp upstream of the ORF 40 

start codon, and this eliminates the promoter elements of this early transcribed gene. 

No alternative consensus sequences were found in the 100-bp region located to the 

left of the deletion point. None of the genes in this region are necessary for viral 

replication, but pif-1 and pif-2 are essential for horizontal transmission, specifically 

during per os infection in the insect midgut (Kikhno et al., 2002; Pijlman et al., 2003a). 

SeUS2-E has a large deletion of 12,794 bp (between nt 16,437 and 29,230) representing 

9.4% of the genome with respect to SeUS1-A. This deletion completely eliminates 

ORFs 13 to 27, including genes such as 38.7kd, lef-1, cathepsin, chitinase, gp37, ptp-2, 

and egt. The left side of this deletion eliminates 258 of the 629 nt that constitute the 

3´ end of lef-2. Both lef-1 and lef-2 are essential genes for viral DNA replication (Lu  & 

Miller, 1995). The right side of this deletion removes most of ORF 28, including the 

whole promoter region and 510 out of the 572 encoding nucleotides. The remaining 

parts of lef-2 (372 bp from the 5´ end) and ORF 28 (63 bp from the 3´ end) fuse in 

frame and constitute a chimerical protein of 107 aa that has the carboxyl-terminus of 

ORF 28 and the amino-terminus of lef-2.

SeUS2-F had a deletion of 2,639 bp (between nt 21,836 and nt 24,474), representing 

1.9% of the genome in relation to SeUS1-A. ORFs 20 to 22, and 1,005 bp at the 3´ 

end of ORF 19 (chitinase) in the left side of the deletion, are absent in the SeUS2-F 

genome. The right side of the deletion starts 119 bp upstream of the ORF23 starting 
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codon, but the consensus baculovirus late promoter (GTAAG, at nt 24,579) of this 

putative gene is conserved. 

NIC-A NIC-C NIC-E NIC-F NIC-G NIC-H NIC-I

left right left right left right left right left right left right left right

U
S2

-C

left 48.3 38.5 34.2 46.2 38.8 45.9 35.7 46.7 41.9 44.3 36.2 42.6 43.1 43.1

13.8 27.7 49.3 27.7 37.3 27.9 41.4 23.3 17.7 23.0 41.4 23.0 8.6 35.4

right 37.0 35.3 34.4 35.9 34.8 44.8 39.1 42.2 35.1 35.9 31.6 41.9 44.4 36.1

7.4 41.2 34.4 31.2 40.9 25.9 40.6 40.6 52.7 37.5 45.6 32.3 30.2 31.1

U
S2

-E

left 38.7 40.6 35.1 38.6 41.9 39.7 36.6 44.1 39.1 44.1 31.6 39.0 35.4 31.2

27.4 26.6 58.4 41.4 25.8 34.9 46.5 22.0 37.7 18.6 40.4 18.6 30.8 34.4

right 53.6 42.9 42.9 46.7 51.9 38.9 43.5 63.0 33.9 42.1 33.9 53.7 36.5 32.3

19.6 33.3 36.5 25.0 11.1 18.5 32.3 16.7 10.7 22.8 48.2 13.0 34.9 38.7

U
S2

-F

left 34.4 35.2 41.0 40.6 37.1 59.3 37.9 42.6 34.3 32.8 31.0 46.8 32.8 36.8

32.0 45.1 23.0 40.6 27.4 25.4 33.3 29.5 41.4 34.4 44.8 29.0 21.3 15.8

right 35.5 54.1 46.8 42.2 38.1 34.4 37.1 37.5 34.7 41.5 35.7 33.3 33.3 38.6

29.0 18.0 24.2 26.6 28.6 37.5 27.4 35.9 44.4 35.4 37.5 37.9 16.7 14.0

U
S2

-X
D

1

left 42.4 50.0 45.9 38.3 51.6 35.6 35.9 44.8 43.5 50.9 40.7 36.1 41.7 38.7

43.9 21.7 27.9 21.7 32.3 30.5 34.4 25.9 25.8 12.7 38.9 31.1 23.3 35.5

right 30.3 49.1 42.1 45.0 47.5 47.3 45.2 43.9 44.3 41.3 39.3 39.3 29.0 37.1

40.9 8.8 12.3 18.3 26.2 14.5 25.8 19.3 42.9 33.3 41.1 27.9 43.5 32.3

Alignment of the deletion flanking regions between the SeMNPV and SfMNPV 

genotypic variants. To reveal any potential recombination events between SeMNPV 

and SfMNPV, sequences of ca. 50 bp flanking the deletion breakpoints of the SeMNPV 

deletion genotypes SeUS2-C, SeUS2-E, and SeUS2-F were aligned with seven of the 

genotypes present in the SfNIC population (Table 2). A deletion genotype present in 

the SeMNPV isolate from California, SeUS1-XD1 (Dai et al., 2000), was also included 

Bold text indicate nucleotide identities of >50%

Table 2. Percentages of nucleotide identity and gaps (italized) existing between 
the left and right flanking sequences of the deletions in the SeMNPV and SfMNPV 
deletion genotypes.
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in the analysis. No significant homologies were detected between the SeUS2 

genotypes and those of SfNIC or SeUS1-XD1, even for the genotypic variants with 

breakpoints on homologous genes, as was the case of the left breakpoints of SeUS2-F 

and SfNIC-F and of SeUS2C and SfNIC-E, and for the right breakpoints of SeUS1-

XD1 and SfNIC-F and of SeUS2E and SfNIC-I. Only seven alignments showed 

homologies of >50%; the greatest observed homology was 63.3% in the SfNIC-F and 

SeUS2-E right flanking sequences. However, all variants were aligned with no less 

than 7.5% gaps. The flanking sequences of the deletions in SeUS2-C, SeUS2-E and, 

SeUS2-F were analyzed for potential consensus nucleotide features, but none were 

found. 

Figure 2. Relative proportions of SeUS2-A and SeUS2-C in mixtures of OBs and occluded virions. 
Semi-quantitative PCR analysis of specific SeUS2-A and SeUS2-C PCR products in the OBs mixtures 
(A) and co-occlusions (B). For amplification, total DNA of the wild-type, pure genotypes SeUS2-A and 
SeUS2-C, and mixtures of OBs and co-occluded genotypes were used. The figures next to amplicons 
indicate the relative proportion of each product estimated by densitometric analysis with the Scion Image 
program. The molecular marker (MM) used was 1 kb ladder from Stratagene.
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Relative proportion of SeUS2-A and SeUS2-C in the wild type population and 

in tissue culture plaques. In the natural SeUS2-WT population, the full-length 

genome variant, SeUS2A, and the deleted genome variant, SeUS2-C, were present 

in relative proportions of ~3:1, respectively (Fig. 2). The opposite occurred in 

tissue culture plaques. SeUS2-C was present in 81% of the 97 plaques obtained 

following inoculation with hemolymph from SeUS2-WT infected larvae, based on 

PstI restriction profiles. The remaining 19% of plaques comprised SeUS2-A. The 

genotypes SeUS2-E or SeUS2-F were not identified in any of the plaques.

Pathogenicity of SeUS2-A and SeUS2-C OB mixtures. The 50% lethal concentration 

(LC50) of SeUS2-WT (1.69 x 104 OBs/ml) and SeUS2-A (1.31 x 104 OBs/ml) were 

statistically similar (Table 3). The relative proportions of SeUS2-C in the mixtures 

were assessed using semi-quantitative PCR and were similar to those predicted from 

the ratio of OBs in the inoculum: 27% SeUS2-C in the mixture 9A+1C, 38% SeUS2-C 

in 3A+1C, 59% SeUS2-C in 1A+1C, 67% SeUS2-C in 1A+3C, and 84% SeUS2-C in 

1A+9C (Fig. 2A). 

Only the 9A+1C OB mixture was as pathogenic as SeUS2-A OBs (Table 3). However, 

in all other OB mixtures with SeUS2-C OBs in proportions ≥ 25%, LC50 values were 

significantly higher than those of SeUS2-A OBs alone. The relative potencies of 

the OB mixtures reflected the abundance of SeUS2-A OBs in the inoculum. REN 

and PCR analysis of the OB samples extracted from larval cadavers confirmed the 

presence of SeUS2-A alone; SeUS2-C was not detected in the larvae, reflecting the 

lack of per os activity of these OBs (data not shown).

Pathogenicity, virulence, and OB yield of co-occluded SeUS2-A and SeUS2C 

mixtures. Densitometric analysis of genotypes-specific PCR products indicated 

that the frequency of SeUS2-C in co-occluded mixed-genotype OBs closely reflected 

the frequency of this genotype in the ODV inocula used to inject larvae (Fig. 2B). 
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Co-occluded mixtures for 1A+3C and 1A+9C could not be obtained because the 

proportion of SeUS2-C in progeny OBs was always markedly lower than those of 

the ODV mixtures that were used to inject larvae. 

The LC50s of the two co-occluded mixtures in which SeUS2-A was the predominant 

Table 3. LC50 values for S. exigua second instars treated with (i) SeUS2-A OBs or 
SeUS2-WT OBs, (ii) mixtures of SeUS2-A OBs and SeUS2-C OBs, and (iii) OBs 
comprising co-occluded mixtures of SeUS2-A and SeUS2-C.

Virus

LC50 (OBs/ml)

Mean
Relative 

potency

Confidence limits 95%

lower upper

(i) SeUS2-A 1.31 x 104 1 - -

    SeUS2-WT 1.69 x 104 0.77 0.23 1.30

(ii) Mixtures of OBs

    9A+1C 1.54 x 104 0.84 0.56 1.22

    3A+1C 2.00 x 104 0.65 0.43 0.98

    1A+1C 2.85 x 104 0.46 0.30 0.69

    1A+3C 5.80 x 104 0.22 0.13 0.37

    1A+9C 1.97 x 105 0.06 0.02 0.15

(iii) Co-occluded genotypes

    9A+1C 1.60 x 104 0.81 0.52 1.26

    3A+1C 1.50 x 104 0.86 0.57 1.29

    1A+1C 9.30 x 104 0.14 0.08 0.23

    1A+3C Not possible

    1A+9C Not possible

Regressions could not be fitted with a common slope; a test for non parallelism was significant (χ2=40.71, 
df=9, P<0.001). Relative potency was therefore calculated as the ratio of LC50 values of each inoculum and 
SeUS2-A. As such, relative potencies indicate the relative pathogenicity of each inoculum compared with 
that of SeUS2-A. The confidence limits refer to relative potency values. Co-occluded mixtures for 1A+3C 
and 1A+9C OBs could not be produced as the proportion of SeUS2-C was markedly lower than that of 
the ODV inoculum used to inject larvae
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genotype (9A+1C and 3A+1C) were statistically similar to that of SeUS2-A alone 

(Table 3). However, the LC50 of OBs comprising a mixture of 1A+1C was 7.1-fold 

higher than that of SeUS2-A alone.

The MTD of the insects infected by SeUS2-A did not differ significantly from those 

obtained with the co-occluded mixtures involving 9A+1C, 3A+1C, or 1A+1C. In 

contrast, larvae infected with SeUS2-WT died significantly more slowly than did 

insects infected by SeUS2-A alone or by any of the co-occluded mixtures (Fig. 3A).

The distribution of OB yield values was normalized by transformation and 

subjected to ANOVA (Fig. 3B). The OB yield values of SeUS2-WT, SeUS2-A, and 

of the co-occluded mixtures 9A+1C and 3A+1C were statistically similar, with a 

mean OB production between 1.89 x 107 and 1.50 x 107 OBs/larva, whereas the co-

occluded mixture 1A+1C produced 2.52 x107 OBs/larvae and was significantly more 

productive (in terms of OBs) than were the other inocula tested.

Figure 3. Influence of SeUS2-C on speed of kill and virus yield of occluded genotype mixtures. (A)
Mean time to death (MTD) values of SeUS2-WT, SeUS2-A, and co-occluded mixtures 9A+1C, 3A+1C 
and 1A+1C. Bars labelled with the same letter were significantly similar. (B) Occlusion body (OB) 
yields of SeUS2-WT, SeUS2-A, and co-occluded mixtures 9A+1C, 3A+1C, and 1A+1C. Values above 
the bars indicate means and those followed by identical letters did not differ significantly for pairwise 
comparisons (ANOVA, P>0.05).

A B
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Discussion
Two hypotheses can explain the origin of such similar population structures in SeUS2 

and SfNIC: (i) SfNIC genotypes were derived from recombination events occurring 

between SeMNPV deletion genotypes and SfMNPV, or vice versa; or (ii) selection 

has independently favored the formation and maintenance of deletion genotypes in 

each population. 

The high colinearity and sequence homology between the genomes of SeMNPV and 

SfMNPV suggest a recent common ancestor for these viruses. Interestingly, both 

viruses are capable of replication in S. exigua when inoculated singly and, although 

SeMNPV cannot replicate alone in S. frugiperda, SfMNPV can assist SeMNPV 

replication in S. frugiperda larvae, although the molecular basis for this helper 

function is unknown (Simón et al., 2004b). 

It seems highly unlikely that the deletion genotypes present in the American 

SeMNPV and SfMNPV populations could have originated from Asian SeMNPV 

populations following the introduction and spread of Asian S. exigua biotypes in the 

New World (Capinera, 1999). Specifically, two pieces of evidence suggest that this is 

not the case. First, none of the SfNIC deletion genotypes share homologous flanking 

sequences around the deletion breakpoints of SeUS2-C, SeUS2-E, SeUS2-F or SeUS1-

XD1. Second, SfNIC deletion genotypes could not have originated from SeUS2-C or 

SeUS2-E because the US2 variants lack genes that are present in SfNIC. Theoretically, 

based on genetic content alone, SfNIC-F and SfNIC-I could have been generated 

by recombination with SeUS2-F, and SfNIC-H by recombination with SeUS1-XD1, 

but their flanking sequences around each deleted region could only have been 

generated if they had undergone additional recombination events involving identical 

crossovers; however, this is extremely unlikely. Similarly, the possibility that New 

World SeMNPV deletion genotypes were derived from SfMNPV populations is 

inconsistent with the presence of similar SeMNPV genotypes in isolates from Asia 

(Hara et al., 1995), a region where SfMNPV is not found. 
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This leaves the independent generation of similar population structures in SeMNPV 

and SfMNPV as the only viable hypothesis. Genetic and functional analyses suggest 

that deletion variants may have arisen by selection due to their important roles in 

the survival and/or transmissibility of the viral population.

Genetically, SeMNPV and SfMNPV deletion regions are auxiliary gene-rich 

regions that contain genes that are not essential for virus replication but which 

reduce dependence on the host cell machinery or increase virus fitness in other 

ways (O’Reilly, 1997). Deletion affected two essential genes for viral replication, 

both of which are late expression factors (lef-1 and lef-2), only in the genotype 

SeUS2-E. Variants lacking genes that are essential for replication or transmission are 

maintained in the population through complementation with complete genotypes 

in multiply infected cells (Turner & Chao, 1999). This is possible in baculoviruses 

because, on average, each cell is infected by four budded virions, each carrying a 

single genome (Bull et al., 2001; Simón et al., 2006). Complementation was observed 

in SfMNPV genotypes lacking per os infection factor (pif-1, pif-2) genes, which are 

required for ODV entry into midgut epithelial cells. As such, SfNIC-C and SfNIC-D 

are not infectious when administered per os, and the same situation is observed in 

SeUS2-C, which has a peroral non-infectious phenotype. 

In tissue culture cells, SeUS2-C appeared to have a replicative advantage over 

the complete genotype, as indicated by the 1:3 SeUS2-A:SeUS2-C ratio of plaques 

resulting after infection with an SeUS2wt population, which comprised the opposite 

proportion of these two genotypes. 

The ability of a virus population to produce co-occluded genotypes was dependent on 

the prevalence of both deletion and complete genotypes in the SeMNPV population. 

When the ratio of complete/deletion genotypes in the injected inoculum was 1:3 

or 1:9, the replication rate of the deletion genotype was too low to produce OBs 

with a frequency similar to those of co-occluded genotypes; the complete genotype 

invariably dominated. This differed from the situation in SfNIC genotypes, in which 
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OBs comprising ratios up to 1:9 could be produced by injection of the appropriate 

inoculum (López-Ferber et al., 2003), suggesting species-specific differences in the 

interactions among genotypes in their respective insect hosts.

In SfMNPV, co-occluded mixtures of complete and deletion variants at a ratio of 

3:1 enhanced the pathogenicity of the mixed genotype OBs with respect to that of 

the complete genotype alone, seemingly due to the dilution effect of the deletion 

genotype on the concentration of PIF-1 in the ODV envelope (Clavijo et al., 2009).

No such interaction was observed between SeUS2-A and SeUS2-C. SeUS2-C 

genotype was previously classified, in a study performed prior to the development 

of co-occlusion techiniques, as a defective parasitic genotype because it reduced 

the pathogenicity of OB mixtures comprising SeUS2-A OBs and ≥80% of SeUS2-C 

OBs (Muñoz et al., 1998). In the present study, the presence of SeUS2-C did not 

significantly affect OB pathogenicity when co-occluded mixtures were tested at 

ratios of 9:1 or 3:1 of SeUS2-A/SeUS2-C (Table 3), whereas the pathogenicity of OBs 

comprising a 1:1 ratio was severely compromised. 

SeUS2-C and SfNIC-C both appear to play important roles in determining the 

pathogenicity of the Spodoptera virus population. Intriguingly, the prevalence 

of deletion variants in natural populations is maintained at a remarkably similar 

and highly stable frequency, representing approximately 25% of the population 

genotypes in SeUS2-WT (Muñoz & Caballero, 2000, this study) and 25% of the 

genotypes in SfNIC (Lopez-Ferber et al., 2003; Simón et al., 2006). Heterogeneous 

host susceptibility has been recently demonstrated both to increase prevalence of 

mixed-genotype baculovirus infections (van der Werf et al., 2011) and to mediate 

the selection of viral genotypes (Hitchman et al., 2007). Host ecology has also been 

observed to determine the relative fitness levels of genotypes in mixed-genotype 

infections (Hodgson et al., 2004).

The presence of genotypic diversity within ODVs and the occlusion of 

multiple genotypes into each OB is a natural phenomenon in multicapsid 
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nucleopolyhedroviruses that favors the transmission of virus diversity but also 

allows deletion variants to survive in the population (Clavijo et al., 2010).

Functional complementation of co-occluded viral mixtures allowed us to examine the 

consequences of SeUS2-A-SeUS2-C interactions on two additional correlates of virus 

transmissibility. Speed of kill (virulence) did not vary among co-occluded genotype 

mixtures, but was slower for SeUS2-WT, indicating that additional genotypes 

present in the natural population may be capable of modulating this phenotype. 

Indeed, genotype SeUS2-D, which has an insertion in the auxiliary gene rich region, 

was identified as a slow-killing variant in the population (Muñoz et al., 2000). As 

for OB production, all co-occluded mixtures showed OB yields/larvae similar to 

that of the wild-type population, except the mixture comprising 50% SeUS2-C (1A-

1C). Larvae infected by this mixture produced a significantly higher number of OBs, 

which suggest that SeUS2-C may have a role in promoting virus transmissibility via 

increased OB production. The genetic basis for this is presently unclear, but it may 

be related to the absence of one or more of the genes of unknown function that are 

present in the SeUS2-C deleted region. One such gene is se28, the homolog of which 

is partially deleted in SfMNPV (sf27)  in a fast-killing variant of this virus (SfMNPV-

3AP2), although its influence on OB production has not been determined (Harrison 

et al., 2008)

Although SfNIC and SeUS2 populations are clearly similar in terms of genotypic 

structure and diversity, the functional importance of their deletion variants appear 

to encompass different aspects of virus transmissiblity in each virus population, 

ranging from OB pathogenicity effects (López-Ferber et al., 2003) and speed-of-

kill characterisitics (Harrison et al., 2008) to the quantities of OBs produced in each 

infected insect (as in this study). The three phenotypic traits analyzed here provide 

a broader picture of the functional significance of the defective genotype SeUS2-C. 

Previous studies demonstrated that the deletion variants SeUS2-C and SeUS2-E, 

could invade a deletion variant-free SeMNPV population and become as abundant 
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as in their original population after only four serial passages in larvae (Muñoz & 

Caballero, 2000). Studies on SeUS2-E were hindered because this genotype lacks 

the essential lef-1 and lef-2 genes, making its purification impossible in cell culture. 

Future cotransfections with plasmids containing these factors may allow us to 

clone this genotype. Although the function of SeUS2-E remains veiled, it is clear 

that defective genotypes tend to persist in baculovirus populations because of their 

functional importance in key processes, particularly in transmission. 

In conclusion, genomic and functional analysis of deletion genotypes present in 

SeMNPV and SfMNPV isolates indicate that the existence of remarkably similar 

population structures in distinct baculovirus species from different hosts clearly 

points to a shared evolutionary mechanism that generates and sustains deletion 

mutants within each virus population independently, rather than using a recent 

exchange of deletion variant genotypes between these viruses. 
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Supplementary information

Table 1. Name and sequence of the primers used to map the deletion break point for 
SeUS2-E and for the quantification of the SeUS2-C and SeUS2-A genotypes. 

Primer name Sequence Genotype Use

prE-F01 5´-TGTTACTTGCGTGGCTATCG-3´
SeUS2-E

Mapping

prE-R01 5´-GTGACACGCTTCGATCTTGA-3´ Mapping

P1 5´-CACGTAGCGCAACAAATCCTC-3´ SeUS2-C Quantification

P2 5´-CGAGGACGAGTAGAGTGTTG-3´ SeUS2-C & 
SeUS2-A Quantification

P3 5´-CAGTCACCTTCGCCCACAGC-3´ SeUS2-A Quantification
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key regulator of viral spread

Adapted from:
Amaya Serrano, Sarah Nadif, Delia Muñoz, Monique M. van Oers, 
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Abstract
The US1 natural isolate of the Spodoptera exigua multiple nucleopolyhedrovirus 

(SeMNPV) is composed of several genotypic variants, most of which carry deletions 

of variable size in the ORF15-41 region. From this isolate, bacmids containing 

the complete SeMNPV genome (SeBac10) and a natural genotypic variant with a 

deletion (SeBac72) were generated. SeBac72 displayed a much more efficient viral 

spread in S. exigua cells as compared to SeBac10. We hypothesized that one or more 

gene(s) in the deleted region of SeBac72 severely affected viral spread of SeBac10 

in cell culture. Complete genome sequencing of SeBac72 revealed a 9.5 kb deletion 

spanning ORF16-28. SeBac10-derived bacmids with combined or individual ORF16-

28 knockouts were constructed to assess viral spread in Se301 and SeUCR cells. 

SeMNPV ORF28 (se28) was identified as the responsible gene preventing successful 

spread of genome-length SeMNPV in cultured cells, which explains why Se28-

deleted viral genomes are preferentially selected in cell culture. Unexpectedly, se28, 

when reinserted into SeBac72, could not rescue the inhibition of viral spread, and 

gene silencing of se28 did not enhance the spread of SeBac10. This suggested that 

not the transcript or translated product, but rather the DNA sequence and/or the 

sequence topology of se28 determine the viral spread. Sequence analysis revealed 

that the entire SeMNPV ORF27-30 region was collinear with the AcMNPV ORF15-

18 region and shares an overall 43% identity. Despite extensive similarity at the 

DNA level between se28 and ac16 (DA26), their amino acid sequences were non-

homologous and clearly separate the group I from the group II NPVs. Both the se28/

ac16 genes are part of hypervariable regions associated with insertions/deletions. 

Overall, we identify the se28 region as a key regulator of viral spread in a region that 

may drive the genotypic variation in natural baculovirus isolates.
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Introduction
The family Baculoviridae groups arthropod-specific viruses with double-stranded, 

circular, supercoiled genomes varying in size from about 80 to over 180 kb, encoding 

between 90 and 180 genes (Rohrmann, 2013b). Baculoviruses have long been used 

as biocontrol agents of natural insect populations in many agricultural crops and in 

forestry (van Oers & Vlak, 2007). The application of baculoviruses as bioinsecticides 

is increasing due to development of insect resistance to common chemical pesticides 

and societal demands for the use of safer pesticides and less-toxic chemical residues 

in the food chain (Moulton et al., 2002). All products currently on the market are 

produced in vivo (Moscardi, 1999). Production of baculoviruses in vitro, in bioreactors 

with cultured insect cells, is theoretically attractive because such systems require 

selection of insect cell clones supporting high baculovirus yields. These systems can 

be well controlled, allow rapid scale up and may be cost competitive (Moscardi, 1999). 

However, the baculovirus genome is prone to genetic alterations (mainly deletions) 

which are favorable for virus amplification in cell culture (Kool et al., 1991; Pijlman et 

al., 2001). The deleted genes are obviously non-essential for in vitro amplification but 

may well negatively affect infectivity in vivo and hamper the utilization of insect cell 

bioreactors for the production of effective baculovirus-based bioinsecticides (Dai et 

al., 2000; Pijlman et al., 2003b; Pijlman et al., 2001).

The beet armyworm Spodoptera exigua is an important agricultural insect pest 

that is distributed worldwide and causes significant economic losses. Spodoptera 

exigua nucleopolyhedrovirus (SeMNPV) is an attractive bioinsecticide since it is 

monospecific to the beet armyworm and is relatively virulent compared to other 

baculoviruses (Smits & Vlak, 1988). SeMNPV has been isolated from several different 

geographical regions in the world (Caballero et al., 1992a; Gelernter & Federici, 1986a; 

Hara et al., 1995; Kolodny-Hirsch et al., 1993; Kondo et al., 1994; Vlak et al., 1981). 

Natural NPV populations are genetically heterogeneous and have been found 

to contain a mixture of several distinct genotypes; complete genotypes as well 



Chapter 5

84

as genotypes carrying different deletions (Simón et al., 2004a). Evolutionary 

mechanisms independently generate and sustain these deletion genotypes within 

the viral population, indicating that this heterogeneity is important for virus 

survival (Serrano et al., 2013). Muñoz et al. (1998) characterized a natural SeMNPV 

isolate from Florida (SeUS2) that contains at least seven genotypic variants. The 

genotypic variants had alterations, insertions or deletions, within the same region 

of the SeMNPV genome, predominantly between 16437 nt and 39757 nt (ORFs 12 

to 40), indicating that this part of the genome is hypervariable (Muñoz et al., 1998). 

Similarly, a Californian isolate of SeMNPV (SeUS1) also comprises a mixture of 

genotypes with varying deletions (Caballero et al., 1992b; Dai et al., 2000). The PstI 

digestion of the SeUS1 isolate showed several submolar bands, and PCR amplification 

using primers annealing to open reading frame (ORF)14 and ORF28, resulted in at 

least five products (Dai et al., 2000), suggesting that SeUS1 is composed of at least 

five deleted genotypes in this hypervariable locus alone. When this SeMNPV was 

grown in Se301 insect cell culture, viruses with large deletions were quickly selected 

for (Heldens et al., 1996). While the deletion mutants were replication competent 

in cell culture, they lost infectivity in vivo. The deletions were as large as ~25 kbp, 

located approximately between 18500 nt to 40500 nt, and affected ORF 15 to 41. 

Later, it became clear that the deletion included essential genes required for oral 

infectivity, the so-called per os infectivity factors pif-1 (se35) and pif-2 (se36) (Kikhno 

et al., 2002; Pijlman et al., 2003a). 

To repair the loss of in vivo infectivity in a practical manner, alternating rounds 

of infection with the SeUS1 isolate between Se301 cell culture and S. exigua larvae 

yielded a SeMNPV variant, called SeXD1, which retained its biological activity in 

vivo and displayed an enhanced speed of kill of S. exigua larvae. SeXD1 appeared 

to be also a natural genotype within the SeUS1 population and had a somewhat 

smaller deletion of 10.5 kb, from 18513 to 29106 nt comprising ORF 15 to 28 (Dai 

et al., 2000). The deleted region included the chitinase, cathepsin, gp37, ptp-2 and egt 
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genes and nine others (Dai et al., 2000). 

These findings clearly illustrate that cell culture production of complete, genome-

length SeMNPV with retained bioactivity in vivo is cumbersome. However, the causal 

mechanism for rapid generation and/or selection of viruses carrying large deletions 

in the ORF15 to 41 region in cell culture remains unknown. To obtain better insight 

in the mechanism behind SeMNPV genotypic variation, viral DNA of the SeUS1 

isolate was used for the isolation of complete and deleted viral genotypes via bacmid 

cloning in E. coli, as described previously (Pijlman et al., 2002). Bacmids containing 

the complete SeMNPV genome (SeBac10) and a genotypic variant (SeBac72) were 

generated and their replication in cell culture was studied. Significant differences 

in amplification between both bacmids in cell culture led to the identification of 

the ORF28 gene as a regulator of virus spread in S. exigua cells. Our results provide 

an explanation for the selective advantage of deleted genotypes that are naturally 

present in baculovirus populations.

Materials and methods
Cell lines and Viruses. The S. exigua cell line Se301 was donated by Dr. T. 

Kawarabata and was maintained at 28ºC in HyClone Insect Cell Culture Media 

CCM3 supplemented with 5% fetal bovine serum (FBS) (Thermo Scientific). The 

SeUCR cell line was donated by Dr. B. A. Federici and maintained at 28ºC in 

Grace’s supplemented medium containing 10% FBS (Thermo Scientific) (Gelernter 

& Federici, 1986b). The generation of SeMNPV bacmids used in this study was 

described before (Pijlman et al., 2002).

Complete genome sequencing of SeBac72. The genome sequence of SeBac72 was 

determined by Roche 454 Next Generation Sequencing (NGS) (KeyGene). The 

samples were de novo assembled using Newbler (454 runAssembly software) using 

default parameters. 

Generation of SeMNPV gene knockouts by recombination in E. coli. For deletion 
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mutagenesis of the desired ORFs of the SeMNPV-US1 bacmid, SeBac10GFP, 68- 

to 70-bp primers were designed with 50-bp 5´ends flanking the deletion target 

region on the SeMNPV genome (Table 1). The 3’ ends of the primers anneal to 

chloramphenicol acetyltransferase gene flanked by mutant LoxP site (Suzuki et al., 

2005) using a mutant lox sequence, which was amplified from pCRTopo-lox-cat-

lox (Marek et al., 2011). PCR on pCRTopo-lox-cat-lox was performed using Phusion 

Polymerase (Thermo Scientific) according to the manufacturer´s protocol, giving a 

1170 bp product. The PCR product was purified using the Illustra GFX PCR DNA and 

gel purification kit (GE Healthcare). Approximately 150 ng PCR product was used 

for homologous recombination in MW003 cells (Westenberg et al., 2010) containing 

SeBac10GFP. Homologous recombination was performed as follows. SeBac10GFP 

DNA was transformed into electrocompetent MW003 cells, and selected on LB-

plates with streptomycin and kanamycin for 2 days at 32°C. A single colony was 

picked and grown ON in 1ml SOB-medium (2% tryptone, 0.5% yeast extract, 0.05% 

NaCl, 2.5 mM KCl and 10 mM MgCl2) at 32°C. The ON-culture was used to inoculate 

10 ml SOB-medium. The culture was incubated at 32°C until cells reached OD600. 

Next, the culture was split in two and 5 ml were induced for 10 min at 42°C. After 

incubation, cells were washed twice with 10% ice-cold glycerol. Cells were then 

resuspended in 100 µl 10% glycerol and stored at -80°C. The next day cells were 

electroporated with 150 ng of the PCR product, recovered in 1 ml SOB-medium 

and incubated for 3 h at 32°C. Subsequently, both induced and non-induced cells 

were plated on LB plates, supplemented with 50 µg/ml kanamycin and 50 µg/ml 

chloramphenicol. The plates were incubated for 48 h at 32°C. Finally, single colonies 

were picked to analyze if recombination had occurred (Dolphin & Hope, 2006) by 

restriction endonuclease analysis of the bacmid DNA and PCR amplification. Bacmid 

DNA was electroporated in DH10β cells. For deletion mutagenesis of gp37, ptp-2, 

egt and ORF28 in the SeMNPV-US1 bacmid SeBac10GFP, the same cloning strategy 

previously described was followed. Replacement was confirmed by restriction 
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endonuclease analysis and by PCR with primers SeORF25-F-CON and SeORF28-R-

CON, designed outside the regions to be deleted (Table 1). 

Transfection of SeMNPV bacmids. Se301 cells were seeded in a six-well tissue 

culture plate (Greiner Bio-One) at a confluency of 5x105 cells. Transfection was 

performed with 1 µg recombinant bacmid DNA using 10 µl Lipofectin transfection 

reagent (Invitrogen). Six days after transfection, GFP expression was checked under 

a fluorescence microscope Zeiss Axio Observer Z1.

Expression of se28 in AcBacmid. To express se28 in a heterologous virus, the 

bacmid AcΔccΔp10 from Autographa californica MNPV was used (Metz et al., 2011). 

This bacmid  contains a deletion of the promoters and large parts of the coding 

sequences of cathepsin and chitinase (Kaba et al., 2004). Furthermore, the p10 promoter 

and ORF are deleted by replacement with a zeocin resistance marker by Lambda 

Red recombination (Datsenko & Wanner, 2000). Modified LoxP sequences flanking 

the zeocin resistance marker were used for subsequent removal of the resistance 

marker by Cre recombinase (Suzuki et al., 2005) using a mutant lox sequence. Se28 

was cloned into the pFastBac derivative pDEST8 plasmid (Invitrogen) fused with 

mCherry (pDESTmChSe28) and se28 with mCherry and with 2A ribosomal skipping 

element from Foot-and-Mouth disease virus (FMDV) (pDESTmCh2ASe28). The 

pDEST8 constructs were transposed into the attTn7 transposon integration site 

from the AcΔccΔp10 using the Bac-to-Bac baculovirus expression system resulting 

in AcBac-mChSe28 and AcBac-mCh2ASe28. The transposition was checked by 

PCR using M13 and M13F-Genta primers (Table 1). As a control, we used AcBac-

mCh. Transfection of AcBac-mCh, AcBac-mChSe28 and AcBac-mCh2ASe28 was 

performed in Se301 cells using Lipofectin as a transfection reagent. 

Transient expression. Se28 was cloned into pIB-V5-His-GW plasmid (OpIE2 
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promoter) for transient expression in Se301 insect cells. Se28 was cloned fused to mCh 

(with or without FMDV-2A) resulting in pIB-mChSe28 and pIB-mCh2ASe28. Forty-

eight hours post-transfection, mCherry expression was checked under fluorescence 

microscope Zeiss Axio Observer Z1.

Expression of Se28 in SeBac72. Se28 was amplified using Phusion Polymerase 

(Thermo Scientific) with primers including its own promoter and containing a 

KpnI restriction site (Table 1). The resulting fragment was cloned into a CloneJET 

PCR Cloning Kit (Thermo Scientific), sequenced and cloned as KpnI fragment 

into a pFastBacSepolGFP. The protocol from the Bac-to-Bac manual (Invitrogen) 

was followed to transpose the se28 from pFastBacSe28 into the attTn7 transposon 

integration site of SeBac72GFP to generate the repair bacmid, SeBac72GFPSe28.

Gene and protein sequence analysis. DNA and protein homologs of se28 were 

searched in the updated GenBank/EMBL databases using BLAST (Altschul et al., 

1990). PSIPRED was used to predict protein secondary structure (McGuffin et al., 

2000) and PROSITE to search for protein domains (Hulo et al., 2008). Transmembrane 

domains were detected with TMHMM v2.0 (Jones, 2007). For the Bayesian phylogeny 

of baculoviruses based on lef-8 gene, lef-8 sequences of all baculoviruses that have 

se28 or Da26 genes were included. Sequences were translated  in frame to proteins 

and aligned using MAFFT version 7 (Katoh et al., 2005). Protein alignment was 

converted back into corresponding codon alignment using PAL2NAL (Suyama et 

al., 2006). Gblock was used for trimming sequences to select conserved domains 

(Talavera & Castresana, 2007). Bayesian inference was conducted using MRBAYES 

3.1.2 (Ronquist & Huelsenbeck, 2003), using the GTR + I + G model (default settings, 

six million generations, burn-in of 25%). A pairwise alignment of SeMNPV ORF27 

to 30 (26928 to 32669 nt) and AcMNPV ORF15 to 18 (11426 to 15459 nt) was made 

using the Needleman-Wunsch global alignment algorithm in Emboss software (Rice 
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et al., 2000).

Results
Analysis of cloned SeMNPV bacmids. During the direct cloning of SeUS1 as 

a bacmid (Pijlman et al., 2002), several complete bacmid clones that retained 

the predicted restriction profile were selected, as well as bacmids with apparent 

deletions in the PstI-D fragment (Fig. 1A). Clone 10 (SeBac10) was identified as the 

full-length bacmid. However, SeBac72 was identified as a bacmid with a ~9 kbp 

deletion in the PstI-D restriction fragment (Fig. 1A), which probably represents a 

natural genotype of the wt SeUS1 isolate, since deletions in this region have often 

been reported (Dai et al., 2000; Heldens et al., 1996). 

In order to visualize putative differences in viral replication and spread in cell 

culture, a pFastBac vector expressing GFP under control of the polh promoter was 

transposed into the attTn7 transposon integration site of the different bacmids. After 

transfection of the bacmids in S. exigua Se301 cells, it was observed that vSeBac72GFP 

readily replicated in cell culture and initiated viral spread in cell culture much faster 

as compared to the complete bacmid vSeBac10GFP, which mostly remained confined 

to a single cell or small group of neighbouring cells (Fig. 1B). Although vSeBac10GFP 

did not efficiently spread from cell to cell, the initially transfected cell did express 

GFP from the very late polyhedrin promoter, suggesting that baculovirus DNA 

replication was taking place and (very) late gene expression was not impaired. 

In previous studies with SeUS1 it was shown that a deletion of ~25 kbp of the viral 

genome was selected for within the first passage in cell culture (Heldens et al., 1996) 

and that transfection of vSeBac10 in cell culture yielded a ~16 kbp deletion in the 

region ORF17-35 before the virus could be further amplified (Pijlman et al., 2002). 

Together with the current observations, this suggested that the efficiently amplifying 

vSeBac72 lacked important sequences on a ~9 bkp deleted fragment that may explain 

why the complete, genome-length SeBac10 failed to spread in cell culture.
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Complete genome sequencing of SeBac72 identifies a 9.5 kbp deletion spanning 

multiple ORFs. To initiate the identification of the gene(s) responsible for preventing 

viral spread by the complete vSeBac10, the complete genome sequence of SeBac72 

was determined by Roche 454 next generation sequencing (NGS). The sequence 

reads (31876) were assembled into 5 large contigs with an average coverage of 97.1% 

per contig, which could be joined based upon the published SeMNPV sequence 

(Genbank accession number NC_002169) with confidence to yield the complete 

SeBac72 sequence. Upon comparison of the SeBac72 sequence with the published 

SeUS1 sequence (IJkel et al., 1999), it was found that SeBac72 contained a deletion 

of ~9.5 kbp, located from nt 19172 to 28718 (Fig. 2A) spanning ORF16 to ORF27. 

A small fragment from the downstream ORF30 was found inserted in reverse 

orientation at the junction site, suggesting that the deletion was most likely the 

Figure 1. Characterization of genome-length SeMNPV bacmid SeBac10 and deletion mutant SeBac72 
(A) PstI restriction endonuclease analysis of genomic DNAs from SeBac10 and SeBac72. Asterisks 
indicate the PstI-D diagnostic restriction fragment in SeBac10 and the truncated variant in SeBac72. Lane 
M contains a λ BamHI/HindIII/EcoRI DNA size marker. (B) Se301 insect cells transfected with bacmid 
DNA from SeBac10GFP and SeBac72GFP. Bright field (upper row) and fluorescence field (lower row). 
Pictures were taken 6 days post transfection.
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result of a non-homologous recombination event. The deletion affected genes such 

as cathepsin, chitinase, gp37, ptp-2, egt and some ORFs with unknown function, as well 

as the putative promoter region of ORF28. By revisiting the PCR results of Dai et al. 

(2000), it became clear that the sequence of the 1.9 kbp PCR product in that paper 

(Fig. 2B) corresponded to the sequence of the deletion junction now identified in 

SeBac72 by NGS. We therefore concluded that SeBac72 contains the viral genome of 

a naturally occurring SeUS1 genotype, which is closely related to SeXD1 but was not 

characterized in detail at that time.  

Figure 2. Sequence analysis of SeBac72 (A) The top line represents the physical map of the wt SeMNPV-
US1 genome, PstI restriction endonuclease sites are represented below the genome line. The coloured 
arrow bars show the organization of ORFs in the deleted region in  SeBac72. ORF numbering is according 
to the published SeMNPV-US1 genome (IJkel et al., 1999). The thick arrows above indicate the position 
of primers A and B to distinguish genotypes by PCR. The length of deletion is indicated in bp. (B) PCR 
analysis of genotypic variants present in the SeMNPV-US1 isolate. The primers A and B correspond to nt 
17874 to 17904 and 29135 to 29163, respectively. The arrow indicates the 1,9 kbp amplicon corresponding 
to the deletion in SeBac72. Lane M contains a λ DNA size marker BamHI/HindIII/EcoRI (sizes in kbp).
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Mapping SeMNPV gene(s) preventing virus spread in cell culture. Based on the 

observed failure of vSeBac10 to spread in cell culture, we hypothesized that one 

or more gene(s) in the SeBac72 deleted region (se16-se28) was responsible for this 

phenotype. To identify this gene(s) we first constructed three different multiple-

gene bacmid knockouts by lambda red recombination using SeBac10 as a backbone: 

SeBac10GFPΔ16-19 (deleting ORFs from 16 to 19), SeBac10GFPΔ20-24 (deleting 

ORFs from 20 to 24) and SeBac10GFPΔ25-28 (deleting ORFs from 25 to 28) (Fig. 3A). 

The deletion of the desired region was made by introduction of a chloramphenicol 

resistance gene (cat) through homologous recombination in E. coli as described 

(Pijlman et al., 2002). Replacement was confirmed by restriction endonuclease 

analysis (Fig. 3B) and PCR with specific primers designed outside of the regions 

to be deleted (data not shown). Bacmid DNA was used for transfection of Se301 

insect cells using Lipofectin. Six days post transfection the cells were observed with 

fluorescence microscopy. As expected, vSeBac72GFP transfection showed very 

efficient replication and spread of the GFP signal in the cell layer (Fig. 3C). In sharp 

contrast, however, vSeBac10GFP showed a much lower viral spread compared to 

vSeBac72GFP (Fig. 3C). The knockout vSeBac10GFPΔ25-28 showed a similar spread 

as vSeBac72GFP, whereas vSeBac10GFPΔ16-19 and vSeBac10GFPΔ20-24 displayed 

the vSeBac10GFP phenotype (Fig. 3C). This experiment indicated that the gene(s) 

preventing virus spread of SeBac10 were located within the region spanning ORF25-

28.
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ORF28 prevents virus spread of genome-length SeMNPV in cell culture. In order 

to map the gene(s) within the ORF25-ORF28 region that prevented viral replication 

in cell culture, we constructed single gene knockouts using the SeBac10 backbone 

(Fig. 4A). ORF25 is a gp37 homologue, ORF26 is ptp-2 homologue, while ORF27 

is the egt gene and ORF28 is a gene with unknown function. The construction of 

the single gene knockouts was performed as described above. Replacement was 

Figure 3. (A) Schematic representation of the genes deleted in the multiple knockouts SeBac10GFP∆16-19, 
SeBac10GFP∆20-24 and SeBac10GFP∆25-28. (B) PstI restriction endonuclease analysis of DNA from the 
multiple knockouts. Lane M contains a λ BamHI/HindIII/EcoRI DNA size marker. (C) Se301 insect cells 
transfected with DNA from the multiple gene knockouts. Bright field (upper row) and fluorescence field 
(lower row).  Pictures were taken 6 days post-transfection.
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confirmed by restriction endonuclease analysis (Fig. 4B) and PCR with specific 

primers designed outside of the regions to be deleted (Fig. 4C). vSeBac10GFPΔgp37, 

vSeBac10GFPΔptp-2 and vSeBac10GFPΔegt had the same phenotype as 

vSeBac10GFP but did not rescue efficient viral spread (Fig. 4D). However, the single 

gene knockout vSeBac10GFPΔ28 did rescue viral spread with the same efficiency 

Figure 4. (A) Schematic representation of the genes deleted in the single knockouts SeBac10GFP∆gp37, 
SeBac10GFP∆ptp-2, SeBac10GFP∆egt and SeBac10GFP∆OORF28. Arrows indicate the position of the 
primer for PCR control. (B) PstI restriction endonuclease analysis of DNA from the single knockouts. 
Lane M contains a λ BamHI/HindIII/EcoRI DNA size marker. (C) PCR analysis of DNA from the single 
knockouts. Lane M contains a λ PstI DNA size marker (sizes in kbp). (D) Se301 insect cells transfected 
with DNA from the single gene knockouts.Bright field (upper row) and fluorescence field (lower row).  
Pictures were taken 6 days post-transfection.
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as the positive control vSeBac72GFP (Fig. 4D). Se28 was therefore identified as the 

responsible gene that prevents spread of genome-length SeMNPV in cell culture. 

In order to confirm that the observation was not an artefact of the cell line used, we 

transfected SeUCR cells with bacmid DNA from the single knockouts. We observed 

very similar results as with the Se301 cells: vSeBac10GFPΔgp37, vSeBac10GFPΔptp-2 

and vSeBac10GFPΔegt had the same phenotype as vSeBac10GFP (single cell 

infection), whereas vSeBac10GFPΔ28 showed viral spread with similar efficiency 

as vSeBac72GFP (Fig. 5). Thus, se28 prevented the viral spread in both cell lines, 

indicating that the block of viral spread was independent of the cell line. The overall 

viral spread in SeUCR was not as efficient as in Se301 cells. This is in agreement with 

studies by others demonstrating that Se301 cells are more susceptible to SeMNPV 

infection than SeUCR (Hara et al., 1993). For that reason, further experiments were 

conducted in Se301 cells.

Expression of se28 is not cytotoxic to insect cells. One possible explanation 

for preventing viral spread by se28 is that the SE28 protein has a pro-apoptotic 

function and kills the cells before progeny virus is produced. To study whether 

se28 expression was cytotoxic to the insect cells, the gene was initially cloned as 

a C-terminal fusion to a mCherry marker gene, with/without a Foot-and-Mouth 

disease virus (FMDV)-2A ribosome skipping element in between to produce nearly 

Figure 5. SeUCR insect cells transfected with DNA from the single knockouts SeBac10GFP∆gp37, 
SeBac10GFP∆ptp-2, SeBac10GFP∆egt, and SeBac10GFP∆ORF28. Bright field (upper row) and fluorescence 
field (lower row). Pictures were taken 6 days post-transfection.
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authentic SE28 (Fig. 6A). The expression vector pIB contained an OpMNPV ie2 

promoter to drive the expression of the fusion protein in insect cells. Transient 

expression of both pIB-mChSe28 and pIB-mCh2ASe28 in the Se301 insect cells after 

Figure 6. (A)  Overview of the pIB-DEST expression plasmid containing the OpIE2 promoter, the FMDV 
autocleaving protease 2A, and the gene Se28. (B) Se301 insect cells transfected with pIB-mChSe28 and 
pIB-mCh2ASe28 for transient expression. Pictures were taken 48 hours post-transfection. (C) Overview 
of the recombinant bacmids of AcMNPV, where Se28 expression is driven under AcMNPV polyhedrin 
promoter. (D) Se301 insect cells transfected with AcBac-mCh, AcBac-mChSe28 and AcBac-mCh2ASe28. 
Bright field (upper row) and fluorescence field (lower row). Pictures were taken 6 days post-transfection.
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48 hours post-transfection showed mCherry expression throughout the cell and no 

obvious negative effects on cell viability were observed (Fig. 6B).

Expression of se28 does not block AcMNPV spread in cell culture. In order to 

determine whether se28 was also capable of blocking viral spread of a heterologous 

baculovirus in cell culture, se28 was expressed from an AcMNPV bacmid. Se28 was 

cloned downstream the polh promoter in a pDEST8 plasmid (a Gateway-compatible 

pFastBac-derivative) fused with mCherry (pDESTmChSe28), or separated from 

mCherry using a FMDV-2A element (pDESTmCh2ASe28). The pDEST constructs 

were transposed into the attTn7 transposon integration site of an AcMNPV bacmid 

(AcBac-mChSe28 and AcBac-mCh2ASe28) (Fig. 6C). The transposition was confirmed 

by PCR using M13F-R and M13F-Genta primers (data not shown). Se301 cells were 

transfected with bacmid DNA. vAcBac-mCh was used as a negative control. Seven 

days post-transfection cells were observed with fluorescence microsocopy. vAcBac-

mChSe28 and vAcBac-mCh2ASe28 showed the same, very efficient viral replication 

and spread as the control bacmid vAcBac-mCh (Fig. 6D). Thus, expression of se28 

from a heterologous AcMNPV bacmid in Se301 cells did not prevent virus spread 

in cell culture, indicating that the block on baculovirus replication is virus-specific. 

Protein expression of SE28 in vAcBac-mChSe28 and vAcBac-mCh2ASe28 was 

confirmed by Western blot with antibodies against mCherry (data not-shown). 

Gene silencing of se28 fails to rescue virus spread of genome-length SeMNPV in 

cell culture. Since deletion of se28 rescued virus spread of SeBac10 in cell culture, 

we wished to confirm a role for the SE28 protein by RNA interference (RNAi). 

We hypothesized that silencing of se28 would rescue the efficient viral spread of 

SeBac10 in cell culture. First, Se301 cells were transfected with dsRNA targeting se28 

(specific; dsSe28) or firefly luciferase (unspecific; dsLuc). Next, cells were transfected 

with bacmids vSeBac10GFP and vSeBac72GFP (positive control) one day post 
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dsRNA transfection. As a control for the Se28-specific silencing, an infection with 

an AcMNPV virus expressing mChSe28 (Ac-mChSe28) was included. As expected, 

silencing with dsSe28 but not with dsFluc substantially decreased the amount of 

red fluorescence produced by Ac-mChSe28, indicating that the dsRNA-induced 

silencing of se28 was efficient and specific (Fig. 7). 

Transfection with vSeBac72GFP transfected cells show overall green fluorescence 

as before, with no difference between cells transfected with dsSe28 and dsLuc (Fig. 

7). However, and in contrast to our expectation, transfection with vSeBac10GFP did 

not show more green fluorescent cells in dsSe28-transfected cells in comparison with 

dsLuc transfected cells. So, viral spread of vSeBac10 could not be rescued in cells 

with robust silencing of se28 expression, but only when the se28 gene was physically 

deleted from the viral genome.

Figure 7. Se301 cells transfected with dsRNA of Se28 (first column), dsRNA of Luc (second column) 
or not transfected with RNA (third column), and transfected 24 h later with SeBac10GFP (first row), 
SeBac72GFP (second row), or with AcBac-mChSe28 (third row). Pictures were taken 72 h after first 
transfection for AcBac-mChSe28, and 144 hrs for SeBac10GFP and SeBac72GFP.
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Efficient spread of SeBac72 in cell culture cannot be blocked by se28 expression 

from another locus. We showed that deletion of se28 from SeBac10 rescued viral 

spread whereas silencing of se28 via RNAi did not. In order to investigate whether 

a reintroduction of se28 under control of its own promoter in SeBac72 could lead to 

a block in viral spread, se28 was cloned including its own promoter in a pFB1SeGFP 

plasmid, which already contained GFP downstream the polyhedrin promoter 

(Pijlman et al., 2004) to generate pFBGFPSe28. This construct was transposed into 

the attTn7 transposon integration site of SeBac72 (SeBac72GFPSe28), which is 

located inside the polyhedrin gene (Pijlman et al., 2002) (Fig. 8A). The transposition 

was checked by PCR using M13F-R and M13F-Genta primers (data not shown). 

Se301 cells were transfected with bacmid DNA. Seven days post-transfection, 

cells were observed with fluorescence microscopy. Rather unexpectedly, however, 

vSeBac72GFPSe28 showed the same, efficient viral spread as vSeBac72GFP (Fig. 8B). 

Thus, while deletion of se28 was required to rescue viral spread of genome-length 

vSeBac10, se28 was not able to block the spread of vSeBac72 when expressed from 

another locus. 

Figure 8. (A) Overview of the recombinant bacmid SeBac72GFPSe28, where Se28 expression is 
driven under its own promoter. (B) Se301 insect cells transfected with SeBac10GFP, SeBac72GFP, and 
SeBac72Se28. Bright field (upper row) and fluorescence field (lower row). Pictures were taken 6 days 
post-transfection.
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Se28 is located in a hypervariable region that is conserved at the DNA level in 

group I and II NPVs. To understand in more detail the surroundings of se28 in the 

viral genome, we compared the hypervariable region of SeMNPV with a previously 

described hypervariable region of AcMNPV (O’Reilly et al., 1990) (Fig. 9A), using 

a pairwise sequence alignment. DNA sequence alignment between SeUS1 ORF 27 

to 30 (26928 to 32669 nt) and AcMNPV ORF 15 to 18 (11426 to 15459 nt) showed 

an overall 43% identity at nucleotide level with a minimal number of large gaps 

(Fig. 9B). This suggests that these genomic regions are collinear and are quite 

conserved. Remarkably, however, only two of the four predicted ORFs in this region 

are conserved at the amino acid level: egt (ac15/se27) and DA16 (ac17/se29). In 

contrast, se28 is not a protein homologue of ac16 (DA26), yet these genes are found 

at analogous positions in SeMNPV and AcMNPV genomes, and share significant 

homology at the DNA level (43.7%). The baculovirus bayesian phylogeny based on 

a lef-8 gene showed that SE28 is only present in the group II Alphabaculovirus, and 

DA26 is only present in the group I Alphabaculovirus (Fig. 9C). In conclusion, the 

DNA sequence/topology in the se28 region is likely more important for blocking 

viral spread than the encoded proteins.
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B

Se27 Se29 Se30Se28

Ac15 Ac16 Ac17 Ac18

egt DA26 Da16 Da41

DNA
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Figure 9. (A) Schematic representation of the hypervariable region of SeMNPV (26928 to 32669 nt) and 
AcMNPV (11426 to 15459 nt). (B) DNA and protein alignment of the hypervariable regions of AcMNPV 
and SeMNPV. (C) Bayesian phylogeny of baculovirus based on lef-8 gene. The bar at the bottom indicates 
a branch length of 10% distance. Baculoviruses having a se28 homologue are marked by a black square, 
while the black dots mark the homologues of da26.

C
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Discussion
The SeMNPV natural isolate SeUS1 contains genotypic variants with interesting 

differences in phenotype. vSeBac72, a bacmid clone of a natural deleted genotype 

from the SeUS1 isolate, was found to display a much more efficient viral spread 

in cell culture than vSeBac10, a bacmid containing the complete SeMNPV genome 

(Pijlman et al., 2002). After 454 high-throughput sequencing of SeBac72, a deletion 

of 9.5 kb was mapped, which disrupted open reading frames (ORFs) 16 to 28. After 

sequential knockouts of different ORFs from this region using SeBac10 as backbone, 

se28 was identified as the responsible gene that prevents viral replication and 

spread of the complete, genome size SeMNPV in cell culture. A common feature 

of baculoviruses is that serial passage in cell culture leads to creation of variants 

with large deletions, which sometimes act as defective interfering particles (Kool et 

al., 1991; Lee & Krell, 1994). Heldens et al. (1996) reported that in the SeUS1 isolate, 

however, a deletion of about 25 kbp of the viral genome is rapidly selected within 

the first passage to enable efficient virus replication in cell culture. Subsequently, 

Dai et al. (2000) selected a natural SeUS1 genotype with an ORF16-28 deletion but 

with retained bioactivity and cell culture replication. Since we now have found that 

deletion of se28 is sufficient and necessary for the replication and spread of SeMNPV 

in cell culture, it seems likely that se28 plays an instrumental role in the selection of 

mutants with large deletions.

Baculoviruses, particularly group II NPVs, can be genetically heterogeneous and 

often comprise a mixture of different genotypes. The SeMNPV-US2 isolate consists of 

a mixture of several distinct genotypes (Muñoz et al., 1998). One of those genotypes, 

SeUS2-C, had a deletion from ORF17 to 39, in the same region of the genome as 

the deletion in SeBac72. The SeUS2-C genotype was found to have a replicative 

advantage in cell culture, compared to the complete genotype (Serrano et al., 2013), 

which is in agreement with the enhanced spread of viral replication of SeBac72. A 

Nicaraguan isolate of a baculovirus closely related to SeMNPV, Spodoptera frugiperda 
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MNPV (SfMNPV), is composed of nine different genotypes and has a similar 

population structure as SeMNPV-US2 (Simón et al., 2004a). The genotype SfNIC-C 

with a deletion of 15kb from ORF 20 to 36, was the most prevalent genotype 

isolated in cell culture (Simón et al., 2004a). All those deleted genotypes, SeBac72, 

SeUS2-C and SfNIC-C, appear to have a strong replicative advantage in cell culture 

as compared to the complete genotype. It has been hypothesized that faster DNA 

replication, favouring shorter genomes, might be an explanation for the observed 

replicative advantage of the deleted genotypes (Frank, 2000). However, the single 

gene knockouts of gp37, ptp-2 and egt did not recover the efficient viral spread of 

SeBac72, whereas the knockout of only Se28 did. Therefore, it seems unlikely that 

shorter genomes are the main driving force for a replicative advantage of these 

deletion mutants in cell culture. 

Interestingly, the genetic heterogeneity in the natural genotypes of SeMNPV and 

SfMNPV map to the same genomic region, showing that this region is intrinsically 

hypervariable and may play an important role in the generation of genotypes with 

different biological activity (Muñoz et al., 1998; Simón et al., 2004a). It has been 

hypothesized that deletion genotypes have arisen by selection due to important 

roles in survival and/or transmissibility of the virus (Serrano et al., 2013). Cell 

sloughing, the mechanism in which necrotic epithelial cells from the larvae midgut 

are discarded, has been described as a key step in the resistance of insects to fatal 

infection (Hoover et al., 2000). A deleted genotype that can spread the virus a lot 

faster, may be able to avoid the cell sloughing, but further experimentation is 

necessary to test this hypothesis. The increased speed of kill of SeXD1, a natural 

deleted SeMNPV genotype would be in agreement with this model (Dai et al., 2000).   

When se28 is present in the viral genome, it efficiently blocks the spread of SeMNPV 

in cell culture. This leads to wonder why a baculovirus would keep a gene that 

negatively affects the transmission of the virus. Mathematical models predict 

that highly virulent parasites will rapidly become extinct following invasion of 
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a host population due to the disappearance of susceptible hosts (Swinton et al., 

1998). This usually does not happen because pathogens have evolved a number of 

mechanism that ensure persistence like life stages that facilitate long-term survival 

in the environment (Vilaplana et al., 2010). The presence of a complete genotype 

that replicates slower might lead to prolonged survival of the host, which in turn 

may be beneficial for viral transmission. Parasites rely on the host survival for 

persistence, and it has been suggested that parasites can prevent super infection 

by more virulent pathogens to prevent killing the host (Vilaplana et al., 2010). It 

has been observed that upon co-infection of a wild-type (wt) isolate of SeMNPV 

and a deleted genotype, persistence of the deleted genotype in the viral progeny 

was observed, and this persistence decreased the pathogenicity of the wt isolate 

(Muñoz & Caballero, 2000). Se28 appears to block viral spread, at least in cultured 

cells, and thus may decrease the overall pathogenicity of the virus in vivo, to favour 

persistence of baculovirus infection in the insect. 

In contrast to what we initially expected, se28 silencing via RNAi did not rescue 

genome size SeBac10 replication, suggesting that Se28 transcripts or SE28 protein 

were not involved in blocking viral spread. When se28 was placed back in SeBac72 

(“negative rescue”), the resulting virus could still efficiently replicate and spread 

in cell culture. Thus, the block in viral spread was not recovered when se28 was 

expressed from the polyhedrin locus. When se28 was placed in Autographa californica 

MNPV (AcMNPV) bacmid, an heterologous virus belonging to the group I of the 

Alphabaculovirus genus, AcBacSe28 could still replicate and spread like the control 

virus, supporting the view that se28 is not able to block viral replication or spread of 

an heterologous virus via transcription or protein products. Together, these results 

indicate that the regulatory function of se28 on viral spread is likely dependent on its 

locus and topology instead of its products (i.e. transcripts, protein).

Sequence alignment of the hypervariable region of SeMNPV with a previously 

described hypervariable region of AcMNPV (O’Reilly et al., 1990) showed that these 
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genomic regions are collinear and quite conserved. In this context it is interesting 

to note that the genomic region of se28 among Alphabaculoviruses is homologous at 

the DNA level (Fig. 9) but not on the protein level, and that both se28 in group II 

and its topological homologue DA26 in group I Alphabaculoviruses are associated 

with genomic instability. Interestingly, deletion of BmNPV Bm8, a homologue of 

AcMNPV Da26, produced an enhanced virus replication and accelerated the speed 

of kill in insect larvae (Katsuma et al., 2012), in agreement to the faster speed of kill 

of the SeXD-1 genotype (Dai et al. , 2000).

We are now further investigating the role of the se28 sequence in viral spread by 

mutational analysis of the se28 region, without affecting the se28 gene function. Our 

findings have not only increased our understanding of the role of genotypic variants 

in baculovirus infection, but they may also be important to establish large-scale 

bioreactor production of baculoviruses with retained bioactivity in vivo. 
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Supplementary information

Table 1. Name and sequence of the primers used in this study.

Primer Sequence
Amplification purpose 

(flanking region)

SeORF16-KO-F
CAACGCCCCAACAACGATCACGG-
CAGTGTCGTCGAAATAATATAGTT-
GAAGCTCGGATCCACTAGTAACG

Se16-19 deletion from SeMNPV 
bacmid; forward primer

SeORF19-KO-R
A A T A A A T G C A A T G T A T A A A -
TAATGATTTTTTTTATTATTATTTA-
TAACCTCCTCTAGATGCATGCTCG

Se16-19 deletion from SeM-
NPV bacmid; reverse primer

SeORF20-KO-F
TAAAAAAAATCATTATTTATACATT-
GCATTTATTTCAAATAAAACATCTT-
GCTCGGATCCACTAGTAACG

Se20-24 deletion from SeMNPV 
bacmid; forward primer

SeORF24-KO-R
C T T A T A A T G G G T A A A A A A A A A -
A C A A A A T T T T A T T T A A T C A A A -
ACTTTATTCCTCTAGATGCATGCTCG

Se20-24 deletion from SeM-
NPV bacmid; reverse primer

SeORF25-KO-F
TAAATAAAATTTTGTTTTTTTTTTACC-
CATTATAAGTTTAAACACATAAA-
GCTCGGATCCACTAGTAACG

Se25-28 deletion from SeMNPV 
bacmid; forward primer

SeORF28-KO-R
AATTCAAACATAATGAGAATGTGT-
GTGTATGTTAAAAGCGTGGTTTCCA-
ACCTCTAGATGCATGCTCG

Se25-28 deletion from SeM-
NPV bacmid; reverse primer

Segp37-KO-F
TAAATAAAATTTTGTTTTTTTTTTACC-
CATTATAAGTTTAAACACATAAA-
GCTCGGATCCACTAGTAACG

Segp37 deletion from SeMNPV 
bacmid; forward primer

Segp37-KO-R
T C A A T G A T T G T T T C G T C G G C -
GACGTAAACTATAATCATCAAACTC-
TACGTCCTCTAGATGCATGCTCG

Segp37 deletion from SeM-
NPV bacmid; reverse primer

Septp2-KO-F
TCAAAATTCCATTTGTGATTCGGC-
CATTTGCAGTTGCCGCAAAAACGA-
ATGCTCGGATCCACTAGTAACG

Septp2 deletion from SeMNPV 
bacmid; forward primer

Septp2-KO-R
A T G C A T A C T A A C G A C G A C A -
ACTTTACGCAACTGTCCAACGGAA-
ACTGAGTCCTCTAGATGCATGCTCG

Septp2 deletion from SeM-
NPV bacmid; reverse primer

Seegt-KO-F
A T G A A C G G T T G C G C T G T C C -
TAATTTTATTTTTTGCACTGACCACGT-
GATCGCTCGGATCCACTAGTAACG

Seegt deletion from SeMNPV 
bacmid; forward primer

Seegt-KO-R
TCACACTAAATTAATTCTCAGTAATT-
GACGCAGATGGTTCATTACAGT-
GACCTCTAGATGCATGCTCG

Seegt deletion from SeMNPV 
bacmid; reverse primer

SeORF28-KO-F
ATGGCCACGATCAGAAATAAAA-
GCTTGTTGCGCAGTCTCGAACACT-
GACGGCTCGGATCCACTAGTAACG

Se28 deletion from SeMNPV 
bacmid; forward primer

SeORF28-KO-R
AATTCAAACATAATGAGAATGTGT-
GTGTATGTTAAAAGCGTGGTTTCCA-
ACCTCTAGATGCATGCTCG

Se28 deletion from SeMNPV 
bacmid; reverse primer

M13-F CCCAGTCACGACGTTGTAAAACG
Check transposition in attTn7 
site. Forward primer

M13-R AGCGGATAACAATTTCACACAGG
Check transposition in attTn7 
site. Reverse primer

Genta-R AGCCACCTACTCCCAACATC Check transposition in attTn7 site

SeORF25-F-CON CCAGCAATTGCAAATATCGC
Check construction single 
knockouts. Forward primer
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SeORF28-R-CON CTACTGCGCAAGTTCGACAT
Check construction single 
knockouts. Reverse primer
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Baculoviruses are arthropod-specific viruses that affect more than 600 

lepidopteran, dipteran and hymenopteran insects species (Herniou et al., 2003). 

Baculoviruses play an important role controlling the size of insect populations, 

and have been widely applied as biocontrol agents against forest and agricultural 

insect pests due to their efficacy, high specifity and safety for non-target organisms 

(Moscardi, 1999). Over the years considerable knowledge has been generated in 

terms of baculovirus biology, pathology, ecology and genetics. Functional analysis 

of baculovirus genes and studies on genotypic variation are essential to understand 

the adaptation of baculovirus isolates towards optimal fitness and transmission. 

Spodoptera exigua MNPV has been long applied as biocontrol agent against larvae of 

the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). 

This doctoral thesis aims to gain further insight in the insecticidal properties of 

SeMNPV by studying the function of different open reading frames (ORFs) involved 

in the pathology and transmission of SeMNPV, and by studying the impact of 

natural genotypic variation in SeMNPV isolates on the ecology of this virus. 

SeMNPV genes involved in specific biological properties
The development of bacmid technology, first established for the baculovirus type-

species Autographa californica MNPV (AcMNPV) to maintain a full-length viral 

genome as a bacterial artificial chromosome in E. coli (Luckow et al., 1993), has 

enabled numerous studies on the function of specific viral genes by producing 

specific virus gene knockout viruses. The implementation of a similar strategy 

for other baculoviruses, e.g. SeMNPV, HaSNPV (Pijlman et al., 2002; Wang et al., 

2003), has allowed also studies on the function of baculovirus species-specific 

genes that are not present in AcMNPV. At the same time the decrease in costs for 

Sanger sequencing and the concurrent development of next generation sequencing 

techniques has increased the availability of whole genome sequences of many 

baculoviruses. This has illuminated detailed information on genetic variation within 
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and between baculovirus species (Rohrmann, 2013c) and isolates, and provides 

new information and options to improve the insecticidal properties of SeMNPV 

by genetic engineering. The genomes of seven different European SeMNPV 

isolates associated with different routes of transmission and different insecticidal 

properties, have recently been completely sequenced (Thézé et al., 2014). In chapter 

2, a bacmid-based recombination system of SeMNPV isolate VT-SeAL1 (SeBacAL1) 

was developed to study the potential role of several ORFs selected by Thezé et al. 

(2014) thought to be involved in specific insecticidal properties of SeMNPV. The 

selected ORFs were se4, se5, se28, se76, se87 and se129. These ORFs do not belong to 

the 37 baculovirus common genes, known as core genes (Garavaglia et al., 2012). The 

baculovirus core genes are believed to be involved in essential biological functions 

such as transcription, virion structure, binding to midgut cells or establishment 

of infection (Miele et al., 2011). However, there is a much larger number of non-

core genes, known as variable or auxiliary genes, that might be responsible for the 

considerable difference in biological properties of baculovirus species, like host 

range, virulence, ecological fitness and transmission (van Oers & Vlak, 2007). 

Deletion of se4, se5, se76 and se129 clearly reduced the pathogenicity of the SeBacAL1 

virus, with an increased lethal dose 50 (LD50) compared with the wild-type (wt) 

bacmid SeBacAL1. Specifically, a se5 knockout virus was 10 times less pathogenic 

than SeBacAL1 and showed a significant reduction in ODV titer in cell culture. It was 

hypothesized that the differences in infectious ODV titers could be due to differences 

in the number of ODV per OB, or due to differences in OB sizes. However, TEM 

and SEM pictures did not show any difference in the number of ODVs per OBs or 

occlusion bodies size, indicating that se5 is not required for correct nucleocapsid 

packaging, ODV formation or OB assembly. Further experiments need to be done to 

elucidate the function of se5 to check for a possible effect on the production of BV, 

such as BV titers and intercellular spread.

The presence of se28 in the SeMNPV genome seemed to have a negative effect on 
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the virulence of the virus as compared to the natural SeMNPV genotype SeAL1. 

Virulence is described as the ability to kill a pest quickly (Cory & Franklin, 2012). The 

bacmid SeBacAL1 (wt) also killed larvae significantly faster than the natural genotype 

SeAL1. In the construction of SeBacAL1 a unique MauBI restriction site located in 

the intergenic region between se27 (egt) and se28 was used. The fastest killing isolate 

sequenced by Thezé et al. (2014), SeOx4, had a frame shift change with a deletion 

of 4 bp in the se28 coding sequence and a truncation of 42 aa at the C-terminus 

of the 190 aa-long authentic protein, also as a result of the frameshift. In fact se28 

was annihilated. In our experiments disruption of the se27-se28 intergenic region 

in SeMPNV reduced the time to death (Chapter2). In SeBacAL1 the introduction 

of the bacmid cloning vector in that specific locus already appeared to affect the 

speed of kill, which might explain why subsequent deletion of se28 did not have 

additional effect on the virulence. The current thinking is that the intergenic region 

in the SeMNPV genome between se27 and se28 is somehow related to virulence. 

Transmission of SeMNPV in S. exigua
The seven European SeMNPV isolates sequenced by Thezé et al. (2014) were shown 

to be associated in two distinct routes of transmission (Cabodevilla et al., 2011b). 

First, baculoviruses can be transmitted horizontally, from insect to insect, when a 

susceptible caterpillar ingest an OB available in the environment (Cory & Myers, 

2003). Second, they can also be transmitted vertically, from parents to off-spring. 

Vertical transmission is important when the host density is low and largely dependent 

on sublethal infection. Baculovirus sublethal infections appear to be common in 

natural populations of lepidopteran insects and seem to play an important role 

in virus-host dynamics (Cory & Myers, 2003). Sublethal infections may benefit 

pest control programs, because insect that do not die due to viral infection have a 

reduced probability of reproduction and the possibility to transmit the virus to the 

offspring, which are then more likely to succumb to baculovirus disease following 
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OBs application than healthy larvae (Cabodevilla et al., 2011b). It has been previously 

demonstrated that genotypes associated with vertical transmission of the virus have 

a higher ability of producing sublethal infections than the genotypes associated with 

horizontal transmission (Cabodevilla et al., 2011a). The three SeMNPV genotypes 

associated with vertical transmission routes were VT-SeAL1, VT-SeAL2 and VT-

SeOx4, and the four genotypes associated with horizontal transmission route 

were HT-SeG24, HT-SeG25, HT-SeG26 and HT-SeSP2A. Cabodevilla et al., (2011a) 

found that 100% of larvae subletally-infected with genotypes VT-SeAL1 and VT-

SeAL2 developed a persistent viral infection in adults, however, only 15% of 

larvae subletally-infected with HT-SeG25 showed a persistent viral infection. They 

hypothesized that this could be due to specialization of the different genotypes in 

the different transmission routes. 

Upon comparison of the whole genome sequences, the vertically transmitted isolates 

were found to share the same mutations in three genes that were different from 

those of horizontally transmitted isolates. Those genes were se5 (unique, unknown 

function), se96 (ac150-homolog) and se99 (ac134-homolog). In Chapter 3 these three 

ORFs were deleted one-by-one from SeBacAL1, a bacmid constructed from the 

vertically transmitted isolate VT-SeAL1. However, single deletion of each ORF did 

not show any effect on the persistence of sublethal infections in adults, as evidenced 

from the level of virus in adult abdomens. The (molecular) mechanisms by which 

the SeAL1 virus persists in the cells of sublethally infected insects still remains 

enigmatic. The virus might be either present at a low-level infection in reproductive 

tissue or as an episome in insect cell nuclei. The latter is also the case with herpes 

viruses and explains the latency phenomenon there. In case the genetic factors that 

modulate vertical transmission of baculovirus are identified and their mode of 

action is understood, it may provide new leads to improve the trans-generational 

biological control of S. exigua.
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SeMNPV genotypic variability is optimized for maximum likeli-
hood of transmission
The development of the bacmid technology has also allowed the cloning of the 

different genotypes present in a natural baculovirus isolate, including those that 

cannot be readily isolated/purified in cell culture. Baculoviruses are highly 

heterogeneous, usually composed of different genotypic variants within a single 

NPV field isolate (Lee & Miller, 1978; Muñoz et al., 1998; Simón et al., 2004a). The 

existence of genotypic variants within an isolate is usually indicated by the presence 

of submolar bands in restriction endonuclease digestion analysis of viral DNA 

and those genotypic variants can have different modifications such as deletions, 

insertions, or duplications in the viral genome (Muñoz et al., 1998). The significance of 

the maintenance of such genotypic variability on fitness and transmission of the virus 

at the population level is not yet clear. In Chapter 4 a Florida (US) isolate of SeMNPV 

(SeUS2) was used to compare for its genotypic structure with that of a Nicaraguan 

isolate of S. frugiperda MNPV (SfNIC), a different group II Alphabaculovirus but 

with similar genotypic structure, high colinearity and DNA sequence homology. 

It was attempted to determine the origin of such similar genotypic structures. 

Comparison of the flanking sequences around the breakpoints of the genotypes led 

to the conclusion that the deleted variants had been generated independently, and 

subsequently selected for, presumably due to their important roles in the survival 

and/or transmissibility of the viral population as a whole. 

The existence of genotypic variants have been reported in both group I and group 

II alphabaculoviruses (Lee & Miller, 1978; Muñoz et al., 1998; Simón et al., 2004a). 

This might indicate that this is a widespread phenomenon with an important role 

in the transmissibility or the fitness of the baculovirus populations. In Chapter 4 the 

deleted genotype SeUS2-C was found to be present in a proportion of ~25% in the 

wild-type population. Interestingly, SeUS2-C seemed to have a strong replicative 

advantage in cell culture, as indicated by the higher number of plaques obtained 

with SeUS2-C genotype (81%) than with the complete genotype SeUS2-A (19%). A 
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similar effect was observed in SfNIC, where the deleted genotype SfNIC-C was the 

genotype isolated in a higher prevalence in cell culture, although the proportion of 

SfNIC-C in the wild type virus population is only 22% (López-Ferber et al., 2003). 

The differences observed between the prevalence of deleted genotypes in vitro and 

in vivo might be due to favored replication in specific tissues. However, the tissue 

of origin of most insect cell lines is unknown. It has been previously hypothesized 

that the replicative advantage of the deleted genotypes in cell culture is its faster 

replication due to a smaller genome, but other factors may also play a role. In 

SeMNPV the single gene knockouts of gp37, ptp-2 and egt did not recover the 

efficient viral spread of SeBac72, whereas the single knockout of se28, a very short 

ORF with unknown function, did. Therefore, it seems a good possibility that shorter 

genomes are not the major driving force for a replicative advantage of these deletion 

genotypes in cell culture, but rather an intergenic region (see below).

Although SeUS2-C displayed a replicative advantage in cell culture, its presence 

in a high proportion in co-occluded OBs with the complete genotype SeUS2-A 

negatively affected the pathogenicity of the virus in larvae. The pathogenicity of OBs 

with a high ratio of deleted genotype SeUS2-C (50%) was severely compromised, 

with a 10 times lower relative potency as compared with the the wild type SeMNPV 

isolate (Chapter 4). The SeUS2-C genotype lacks two per os infection factor (pif) genes, 

which are required for viral entry into the midgut epithelial cells (Kikhno et al., 2002; 

Peng, 2012; Pijlman et al., 2003a), which likely explains the decrease in pathogenicity 

observed. It was impossible to produce OBs with proportions of 75 or 90% of SeUS2-C 

indicating that selection takes place in vivo rather quickly, possibly at the midgut 

level. In support of this assumption, the SeUS2-C genotype can perfectly replicate 

after injection in larvae and produces BV that spread the infection from cell to cell. 

López-Ferber et al. (2003) were able to produce co-occluded OBs involving 75% and 

90% proportion of the deleted genotype SfNIC-C, a genotype that also lacks the 

pif genes. So, the lack of pif genes does not fully explain why it was not possible to 
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produce OBs with a high proportion (90%) of SeUS2-C genotype co-occluded. This 

suggests that other selection mechanism(s) may play a role. The reason why it was 

not possible to achieve co-occluded OBs with high percentage of deleted genotype 

SeUS2-C still remains unclear. Although the deletion of SeUS2-C and SfNIC-C 

affects similar ORFs, it seems that the deleted genotypes behave in different ways, 

depending on the baculovirus species. 

Co-infection experiments with SeUS2 and another natural SeMNPV isolate from 

Spain, SeSP2, also support the importance of deletion genotypes (Muñoz & Caballero, 

2000). SeUS2-C invaded and established in the SeSP2 population and became as 

abundant in the progeny OBs as in their original population after only four serial 

passages in S. exigua larvae (Muñoz & Caballero, 2000), remaining stable at low 

concentration. When mixed infections at various proportions of OBs of complete and 

deleted genotypes of SfNIC were subjected to serial passage in insects, the genotype 

population rapidly converged to a common stable proportion that reflected the 

natural proportion of each genotype, as is found in wild type isolates. This suggests 

that the wild type virus population is carefully structured to increase the maximum 

likelihood of transmission (Simón et al., 2006). An increase of the frequencies of the 

deleted genotypes was certainly not observed. If the main advantage of the deleted 

genotypes would have been their faster replication, higher frequencies of the deleted 

genotypes in the wild-type viral population would be logically expected (Clavijo et 

al., 2009; Simón et al., 2006). In conclusion, the deleted genotypes appear to have an 

important role in the transmission of the virus, explaining why they are maintained 

in the viral populations in vivo. 

se28 is involved in establishing genotypic variability
In the SeUS2 isolates genomic alterations of the different genotypes all mapped to 

the same genomic region, designated as a hypervariable region. This hypervariable 

region maps between nt 16437 and 39757 (Muñoz et al., 1998; Serrano et al., 2013), 
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affecting genes such  as chitinase, cathepsin, ptp-2, egt and some genes of unknown 

function. 

The SeMNPV-US1 (SeUS1) isolate has been isolated from California (US) and is 

also composed of several genotypic variants (Dai et al., 2000). After direct cloning of 

SeUS1 DNA as a bacmid (Pijlman et al., 2002) it was surprisingly found that the full 

length genotype SeBac10 could not replicate in cell culture. In order to replicate in 

cell culture, the SeUS1 isolate first needed to generate large deletions, with sizes up 

to ~25 Kb in the hypervariable region of SeMNPV genome (Heldens et al., 1996). In 

sharp contrast, a bacmid derived from another natural genotype of the SeUS1 isolate, 

the SeBac72, was found to have a much higher replication and virus spread in cell 

culture. In Chapter 5, it was found that SeBac72 had a deletion of 9.5 kb affecting 

ORFs 16 to 28. Subsequently, after elimination of the other ORFs se28 was identified 

as the gene responsible for the prevention of successful viral replication and spread 

in cell culture. Deletion of se28 was found to be both sufficient and essential for the 

replication and spread of SeMNPV in cell culture. Thus it can be hypothesized that 

se28 is largely responsible for the positive selection of natural deleted genotypes, but 

this should be studied in greater detail in in vivo experiments. 

Genomic organization of hypervariable regions is conserved among 
group I and II alphabaculoviruses.
Homologues of se28 are present in the group II Alphabaculovirus, but are not present 

in group I Alphabaculovirus, the group to which AcMNPV belongs (Herniou et al., 

2011). However, after DNA sequence alignment of the region encompassing ORFs 

27 to 30 of SeMNPV, and ORFs 15 to 18 of AcMNPV, a 43% sequence identity at 

the DNA level was found in between hypervariable regions previously described 

for both viruses (O´Reilly et al., 1990). Thus, this region appears to be much better 

conserved among baculoviruses than previously thought. In Mamestra configurata 

NPV-A, ORF 39 is egt, ORF 40 is a homologue of Se28, and ORF 41 is a homologue of 
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AcORF 17, da16 (Li et al., 2002). In Bombyx mori NPV ORF 7 is egt, ORF 8 is Da26, and 

ORF 9 is homologue of AcORF17, da16 (Gomi et al., 1999). AcMNPV had also been 

found to create deletions in a hypervariable region of the genome after serial passage 

in cell culture (Kumar & Miller, 1987), affecting the genes egt and da26. Deletion of 

AcMNPV da26, which aligns with Se28 at the DNA but not the protein level, does 

not affect viral growth in cell culture but increases the infectivity of the virus in 

insects. It has been hypothesized that da26 is required for infection of specific hosts 

or tissues (O´Reilly et al., 1990). 

Deletion of BmNPV Bm8, a homologue of da26, produced an enhanced virus 

replication and OB production in the middle silk gland of infected larvae (Katsuma 

et al., 2012). Bm8 was identified to determine tissue tropism in BmNPV infection in 

lepidopteran larvae. Katsuma et al. (2012) also found that deletion of Bm8 accelerated 

the speed of kill in insect larvae, in agreement to what was observed by Dai et al. 

(2000), where the SeXD-1 genotype was found to kill larvae faster. Deletion of se28 

in SeMNPV appears to increase the budded virus (BV) production in cell culture 

(Chapter 3). An earlier BV production might affect the rate of spread of infection, 

therefore, increasing the speed of kill. Se28 appears to be a regulator of virulence in 

SeMNPV (Chapter 3), a role that was supported by the experiments conducted with 

SeAL1 genotype. Via the construction of the SeBacAL1 bacmid and its biological 

testing it was found that the insertion of the bacmid cloning vector in the intergenic 

region in between intact ORF se27 and se28 significantly increased the speed of kill, 

compared to the wild type isolate SeAL1. 

Previous studies showed that deletion of egt is responsible for a fast-killing isolate 

of S. frugiperda MNPV (Harrison et al., 2008). However, two egt deletion mutants of 

BmNPV did not accelerate the speed to kill in B. mori larvae (Katsuma et al., 2012), but 

the deletion of Bm8 did. Due to the fact that genome organization of the hypervariable 

regions of SeMNPV and AcMNPV is conserved among baculoviruses, these regions 

seem to play an important role on tissue tropism infection or an important role in 
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the viral infection. What remains unexplained at this stage is how a genomic region 

conserved between group I and II NPV at the nucleotide level can regulate similar 

phenotypic traits, while the proteins encoded by this region (group I NPVs: DA26, 

group II NPVs: SE28) share no or very low amino acid homology. 

Se28 genomic region as a conserved non-protein-coding genetic 

element? 
Certain process affecting DNA functions such as replication and transcription seem to 

be related to precisely located non-coding genomics regions that specifically interact 

with the proteins involved in this process. Recently a conserved non-protein-coding 

genomic element (CNE) that plays an essential role in baculovirus pathogenesis has 

been identified (Kikhno, 2014). This element is a sequence of 154-157 bp in length 

conserved in all the Alphabaculovirus genomes sequenced to date and its deletion 

from an AcMNPV bacmid disables the ability to generate infectious virus particles 

capable of spreading the infection (Kikhno, 2014). It could be that the genomic region 

involving se28, or homologue genomic region in other alphabaculoviruses, is also a 

conserved non-protein-coding genomic element that plays a role in the virulence 

and transmissibility of the Alphabaculovirus. 

Concluding remarks
This thesis describes the construction a new SeMNPV bacmid SeBacAL1 that allows 

the functional studies of several ORFs, which led to the identification of se5 as having 

an important role on the pathogenicity of the SeMNPV. The study of the genotypic 

diversity of SeMNPV and SfMNPV isolates has demonstrated that such similar 

genotypic diversity has been generated independently and is apparently structured 

to maximize the likelihood of transmission.  Finally, the study of a deleted genotype 

from SeMNPV has allowed the identification of the genomic region of se28 as the 

driving force for the selection of deletion genotypes, with an important role in the 
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virulence and transmission of SeMNPV.
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Spodoptera exigua MNPV (SeMNPV) only infects larvae of the beet armyworm, 

Spodoptera exigua. SeMNPV natural isolates are comprised of mixtures of 

related DNA genotypes that are thought to be important for fitness and survival. 

Amplification of SeMNPV in cultured cells leads to rapid loss of virus infectivity in 

vivo associated with preferential selection of genotypes with large deletions. This 

thesis focuses on the biological characterization of the baculovirus Spodoptera exigua 

MNPV to gain insight specifically in the role of genotypic diversity and of individual 

viral genes in pathogenicity, virulence and transmission. Rapid improvements in 

DNA sequencing technologies and reduced costs have facilitated the identification 

of virus genes that may play an important role in the SeMNPV infectivity process. 

In a previous study the sequencing and comparison of seven different SeMNPV 

isolates with different insecticidal properties, such as virulence and pathogenicity, 

led to the identification of several ORFs as candidate genes that might be involved 

in these insecticidal traits: se4, se5, se28, se76, se87 and se129 (Thézé et al. 2014). In 

Chapter 2 a bacmid-based recombination system was developed using the SeMNPV 

isolate VT-SeAL1 to delete these ORFs individually previously identified. Deletion 

of se4, se5, se76 and se129 decreased the pathogenicity of the virus compared to virus 

derived from the wild-type (wt) bacmid, SeBacAL1. Deletion of se87 did not change 

the pathogenicity, whereas deletion of se28 slightly increased the pathogenicity. As 

for the speed of kill or virulence, deletion of se4, se28, se76, se87 and se129 did not 

dramatically change the virulence, although deletion of se5 delayed the speed of kill 

with about seven hours. Interestingly, the wild-type virus SeAL1 was also slightly 

less virulent than the virus derived from SeBacAL1, which may relate to the insertion 

of the bacmid cloning segment into the SeAL1 genotype in the intergenic region 

between se27 and se28. Overall, deletion of se5 displayed the most dramatic effect 

on the SeMNPV insecticidal properties studied, with a decrease in pathogenicity of 

almost 10-fold and a delay in time to death of seven hours, as compared to the bacmid 

SeBacAL1-derived virus. A previous study on the ecology of SeMNPV revealed 
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that a genotype designated as VT-SeAL1 was found to produce 100% of sublethal 

infections in adults that survived an OB treatment in the larval stage. Meanwhile, 

another genotype designated as HT-SeG25 only produced sublethal infections in 

16% of the cases. This led to the hypothesis that some SeMNPV genotypes can be 

associated with a vertical transmission route of the virus (via eggs), whereas others 

are associated with horizontal transmission of the virus (from larva to larva). By 

comparison of of the DNA of horizontally transmitted isolates and vertically 

transmitted isolates, Thézé et al. (2014) identified three ORFs that may be involved 

in the vertical transmission of the virus: se5, se96 and se99. In Chapter 3 the bacmid-

based recombination system developed in Chapter 2 was used to delete the respective 

ORFs from the SeMNPV genome and test the consequences for vertical transmission. 

S. exigua larvae were sublethally infected with an LC40 and sublethal infections of 

SeMNPV were detected in adult moths by quantitative-PCR (Q-PCR). This analysis 

did not detect significantly differences in the number of moths sublethally infected 

with any of the viruses, which may suggest that they are not involved in vertical 

transmission at all or only in concert with other ORFs. Different isolates of SeMNPV 

and a related baculovirus, SfMNPV, have similar genetic population structures. They 

are characterized by the presence of different genotypes with variable deletions in 

the same genomic region, roughly from se12 to se40 in the SeMNPV and from sf20 

to sf36 in SfMNPV. These regions encode several important genes such as cathepsin, 

chitinase, gp37, ptp2, egt, pkip, arif1, pif1, pif2 and fgf, as well as some open reading 

frames of unknown function. In Chapter 4 the genotypic structure of SeUS2, SeUS1, 

and SfNIC isolates is compared to determine the evolutionary and ecological modes 

of action of these genotypically similar population structures. Sequence alignment of 

the deletion flanking sequences pointed to an independent evolutionary mechanism 

that generates and maintains the genotypes in the respective virus. The isolation of 

a deleted genotype and functional complementation studies with different mixtures 

of a deleted and a complete genotype, clearly demonstrates the interplay between 
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genotypes in a natural viral population. 

The deleted genotype SeUS2-C appeared to have a replicative advantage in 

cell culture, since it was present in a 81% of plaques isolated in cell culture after 

inoculation with hemolymph from SeUS2-WT infected larvae. However, the full-

length genotype SeUS2-A was only found to be present in a 19% of plaques. The 

presence of genotype SeUS2-C in a high concentration in OBs co-occluded with the 

full length genotype SeUS2-A, severely compromised the pathogenicity of the virus. 

Interestingly, the prevalence of the SeUS2-C genotype was only about 25% in the wt 

isolate SeUS2, as compared to the 81% of plaques isolated in cell culture. 

It is hypothesized that deleted genotypes have arisen due to their important role(s) 

in the transmissibility of the virus and that the genotypic diversity in a virus is 

structured to maximize the likelihood of transmission. The SeMNPV-US1 isolate is 

also composed of several genotypes, most of which carry deletions of variable size 

in the se15-se41 region. In Chapter 5, bacmids containing the complete SeMNPV 

genome (SeBac10) and a natural genotypic variant with a deletion of about 9.5 kb 

(SeBac72) and the respective viruses were generated. Virus derived from SeBac72 

displayed a much more efficient viral spread in S. exigua cells as compared to virus 

derived from SeBac10 in line with what was found in Chapter 4. Sequencing of 

SeBac72 led to the observation that genes se16-se28 were affected by this deletion. 

By differential deletion of the individual ORFs from the full-length bacmid SeBac10, 

se28 was identified as the gene responsible for preventing successful spread of 

SeMNPV in cell culture. Expression of se28 in an Autographa californica MNPV 

background, a heterologous virus belonging to group I Alphabaculovirus, did not 

block the viral spread. Strikingly, RNAi silencing of se28 in the full length genotype 

SeBac10 did not lead to virus spread in cell culture, suggesting that not the transcript 

or translated product, but rather the DNA sequence and/or the sequence topology 

of se28 determines viral spread. Sequence analysis of the SeMNPV se27-se30 region 

with AcMNPV ac15-ac18 showed a 43% conservation at the DNA level, yet the amino 
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acid sequences of se28 and ac16 (DA26) are non-homologous. Both the se28/ac16 

genes are part of hypervariable regions associated with insertions/deletions in both 

viruses. Overall, the Se28 region has been identify as a key regulator of viral spread 

in a region that may drive the genotypic variation in natural baculovirus isolates. In 

conclusion, the results presented in this thesis furthered our knowledge of genetic 

and genotypic diversity of SeMNPV, and baculoviruses more general, and may aid 

the improvement of baculovirus-based biological control strategies in the future.
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Baculovirussen worden al vele jaren toegepast bij de biologische bestrijding 

van plaaginsecten, behorende tot de insectenorden Lepidoptera, Diptera en 

Hymenoptera, vanwege hun effectiviteit, hoge specificiteit en veiligheid voor niet-

doelorganismen. Het kernpolyedervirus (baculovirus) van de floridamot Spodoptera 

exigua (S. exigua multicapsid nucleopolyhedrovirus = SeMNPV) infecteert uitsluitend 

insectenlarven (rupsen). Natuurlijke isolaten van SeMNPV bevatten verschillende, 

maar verwante DNA genotypen. Verondersteld wordt dat deze variatie belangrijk is 

voor vitaliteit (‘fitness’) en overleving van het virus in the natuur. Vermenigvuldiging 

van SeMNPV in gekweekte cellen leidt tot een snelle afname in infectiositeit van het 

virus in vivo en kenmerkt zich door een voorkeursselectie van genotypen die grote 

deleties bevatten. Dit proefschrift richt zich op de biologische karakterisering van 

het baculovirus SeMNPV, vooral om meer inzicht te verkrijgen in de functie van 

genotypische diversiteit en in de rol van individuele genen betrokken bij pathogenese 

(ziekteverwekkend vermogen), virulentie (aggressiviteit) en overdracht van dit 

virus. 

De snelle technologische vooruitgang bij het ophelderen van DNA-basenvolgorden 

en de afnemende kosten hiervan hebben de identificatie van virale genen met een 

potentieel belangrijke rol in het infectieproces van SeMNPV vergemakkelijkt. In 

een voorafgaande studie (Thézé et al. 2014) werden zeven isolaten van SeMNPV 

geselecteerd op basis van verschillen in virulentie en pathogeniciteit. Van deze 

virussen zijn de volledige DNA-basenvolgorden bepaald en met elkaar vergeleken. 

Deze exercitie heeft geleid tot de identificatie van zes ‘open reading frames’ (ORFs = 

genen) die betrokken zouden kunnen zijn bij de verschillen in biologische activiteit. 

In Hoofdstuk 2 is een bacmide-recombinatiesysteem ontwikkeld voor het SeMNPV-

isolaat VT-SeAL1 om de geïdentificeerde ORFs te kunnen verwijderen en het effect 

hiervan te kunnen bestuderen. Verwijdering van se4, se5, se76 en se129 leidde tot 

verminderde pathogeniciteit van het virus in vergelijking met het virus verkregen 

vanuit het wildtype bacmide SeBacAL1. Verwijdering van se87 had geen effect, 
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terwijl verwijdering van se28 in beperkte mate de pathogeniciteit verhoogde. 

Verwijdering van se4, se28, se76, se87 en se129 had geen invloed op de virulentie, 

echter verwijdering van se5 vertraagde de ‘speed of kill’ met ongeveer zeven uur. 

Een interessante waarneming was dat het wildtype virus SeAL1 ook minder virulent 

was dan het virus afgeleid van SeBacAL1. Dit verschil zou het gevolg kunnen zijn 

van het invoegen van het bacmide-cloningssegment in SeAL1, in de intergene regio 

tussen se27 en se28. Samengevat, de verwijdering van se5 had het meest uitgesproken 

effect op de biologische eigenschappen van SeMNPV: een bijna tienvoudige afname 

in pathogeniciteit en een vertraagde ‘speed of kill’ van ongeveer zeven uur in 

vergelijking met het virus verkregen vanuit het bacmide SeBacAL1. 

Een eerdere studie over de ecologie van SeMNPV liet zien dat een genotype, 

genaamd VT-SeAL1, in 100% van de gevallen sublethale infecties veroorzaakte 

in volwassen insecten die blootstelling aan polyeders, de verpakkingsmodule 

van baculovirussen, in het larvale stadium hadden overleefd. Echter, een ander 

genotype, genaamd HT-SeG25, leidde slechts tot sublethale infecties in 16% van 

de gevallen. De hypothese was dat sommige genotypes van SeMNPV geassocieerd 

zijn met verticale overdracht van het virus (via het ei), terwijl andere geassocieerd 

zijn met horizontale overdracht (van larve naar larve). Door het DNA van deze 

virusisolaten uit deze verschillende groepen met elkaar te vergelijken, zijn drie ORFs 

geselecteerd die betrokken zouden kunnen zijn bij verticale virusoverdracht: se5, 

se96 en se99 (Thézé et al., 2014). In Hoofdstuk 3 is het bacmide-recombinatiesysteem 

(ontwikkeld in Hoofdstuk 2) gebruikt om deze ORFs uit het genoom van SeMNPV 

te verwijderen en het effect hiervan op de verticale virusoverdracht te bestuderen. 

Larven van S. exigua werden geïnfecteerd met een sublethale dosis (LC40), waarna 

een eventuele sublethale infectie in volwassen insecten (motten) werd gedetecteerd 

met behulp van een kwantitatieve PCR. Deze experimenten lieten echter geen 

significante verschillen in aantallen sublethaal geïnfecteerde insecten zien tussen de 

diverse virussen. Dit kan erop wijzen dat de geselecteerde ORFs niet betrokken zijn 
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bij verticale virusoverdracht of alleen in combinatie met andere ORFs. 

Verschillende isolaten van SeMNPV en een gerelateerd baculovirus, SfMNPV, 

hebben een overeenkomstige genetische populatiestructuur. Verschillende 

genotypen zijn hierin aanwezig die variabele deleties bevatten in dezelfde regio op 

het virale genoom, die loopt van ongeveer se12 tot se40 in het SeMNPV-genoom 

en van ongeveer sf20 tot sf36 in het SfMNPV-genoom. Deze regio’s coderen voor 

een aantal belangrijke genen, zoals cathepsin, chitinase, gp37, ptp2, egt, pkip, arif1, pif1, 

pif2 en fgf, als ook voor een aantal ORFs met een vooralsnog onbekende functie. 

In Hoofdstuk 4 is de genotypische populatiestructuur van de isolaten SeUS2, 

SeUS1 and SfNIC vergeleken, met als doel om de evolutionaire en ecologische 

functionaliteit van deze populatiestructuren te achterhalen. Een directe vergelijking 

van de basenvolgorde van de gebieden die de deleties begrenzen, duidde op een 

onafhankelijk evolutionair mechanisme dat betrokken is bij het tot stand komen en 

handhaven van de verschillende genotypen in de virusisolaten. De zuivering van 

genotypen die een deletie bevatten en de functionele complementatie-experimenten 

met verschillende mengsels van intacte genotypen of die met deleties, lieten zien 

dat er een wisselwerking bestaat tussen de diverse genotypen in een natuurlijke 

viruspopulatie. Een van de genotypen met een deletie, SeUS2-C, bleek een selectief 

voordeel te hebben bij vermeerdering in celkweek. SeUS2-C was aanwezig in 81% 

van alle plaque-gezuiverde isolaten die vanuit de hemolymph van SeUS2-WT 

geïnfecteerde larven waren gezuiverd. Het intacte genotype SeUS2-A was slechts 

aanwezig in 19% van de plaque-gezuiverde isolaten. Een relatief hoge concentratie 

van genotype SeUS2-C ten opzichte van SeUS2-A in polyeders verminderde de 

pathogeniciteit van het virus sterk. In het wildtype isolaat SeUS2 was het aandeel 

van SeUS2-C ongeveer 25%, terwijl het aandeel van SeUS2-C in plaque-gezuiverde 

isolaten 81% was. De hypothese is nu dat genotypen met deleties bestaan als gevolg 

van hun belangrijke rol in virusoverdracht en dat genotypische diversiteit zo is 

gestructureerd dat de kans op virusoverdracht zo groot mogelijk is. 
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Het SeMNPV-US1 isolaat bevat verschillende genotypen, waarvan de meesten 

deleties van verschillende grootte bevatten in de regio se15-se41. In Hoofdstuk 5 zijn 

bacmides en virussen gemaakt van het volledige SeMNPV-genoom (SeBac10) en een 

natuurlijke genotypische variant met een deletie van ongeveer 9.5 kilobasenparen 

(SeBac72). In overstemming met de bevindingen in Hoofdstuk 4, verspreidde virus, 

afgeleid van SeBac72, zich veel efficiënter in S. exigua-celkweek in vergelijking met 

virus afgeleid van SeBac10. Het ophelderen van de volledige basenvolgorde van 

SeBac72 liet zien dat de regio se16-se28 ontbrak. Door deze ORFs individueel uit te 

schakelen in SeBac10, kon se28 worden geïdentificeerd als het gen dat verantwoordelijk 

is voor het voorkomen van virusverspreiding in celkweek. Het tot expressie brengen 

van se28 via Autographa californica MNPV (AcMNPV, een baculovirus behorend 

tot een ander baculovirus-taxon, groep I Alphabaculovirus) leidde echter niet tot 

het voorkomen van virusverspreiding. ‘Gene silencing’ van se28 via RNAi leidde 

ook niet tot verspreiding van het virus, afgeleid van SeBac10, in celkweek. Deze 

resultaten suggereren dat niet het transcript of het eiwit afgeleid van se28, maar 

wellicht de DNA-basenvolgorde van se28 bepalend is bij virusvermeerdering. Een 

vergelijking van de SeMNPV se27-se30 regio met de AcMNPV ac15-ac18 regio laat 

een conservering van 43% op DNA-niveau zien, terwijl de aminozuurvolgorden 

van se28 en ac16 (DA26) geen overeenkomst vertonen. Zowel se28 als ac16 zijn 

onderdeel van een hypervariabel deel in het genoom dat geassocieerd is met deleties 

en inserties in beide virussen. Se28 is hier wel geïdentificeerd als een belangrijke 

regelaar van virusvermeerdering en heeft tevens een mogelijk rol bij het tot stand 

komen van genotypische variatie in natuurlijke baculovirusisolaten. 

De resultaten uit dit proefschrift hebben onze kennis over de genetische en 

genotypische variatie van SeMNPV en baculovirussen over het algemeen vergroot. 

De verkregen inzichten zijn waardevol voor de verdere verbetering van biologische 

bestrijding van plaaginsecten met behulp van baculovirussen. 
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Los baculovirus se vienen utilizando desde hace tiempo como agentes de control 

biológico contra lepidópteros, dípteros e himenópteros debido a su eficacia, alta 

especificidad y seguridad frente a organismos que no son el objeto del tratamiento. 

El nuclepoliedrovirus múltiple de Spodoptera exigua (SeMNPV) tiene un estrecho 

rango de huésped y solo afecta a larvas de la rosquilla verde, Spodoptera exigua. Los 

aislados naturales del SeMNPV están compuestos de mezclas de genotipos que 

se creen que son importantes para la supervivencia del virus. La amplificación de 

SeMNPV en cultivo celular conduce a una rápida perdida de infectividad in vivo 

asociada con la selección preferente de genotipos con grandes delecciones. Esta tesis 

se centra en la caracterización biológica del baculovirus de Spodoptera exigua para 

mejorar nuestro conocimiento sobre el papel de la diversidad genotípica y sobre la 

implicación de genes individuales en patogenicidad, virulencia y transmisión.

Avances en la tecnología de secuenciación de ADN y los más bajos costes de la 

misma han facilitado la identificación de genes virales que pueden jugar un papel 

importante en el proceso de infectividad del SeMNPV. En un estudio previo la 

secuenciación y comparación de 7 genotipos diferentes del SeMNPV con diferentes 

propiedades insecticidas, como la virulencia y la patogenicidad, permitieron 

la identificación de algunos ORFs como genes candidatos que pueden tener un 

efecto en esas propiedades insecticidas: se4, se5, se28, se76, se87 y se129 (Thézé et 

al., 2014). En el Capitulo 2 se construyó un sistema de recombinación basado en 

bacmidos utilizando el genotipo VT-SeAL1 para deleccionar individualmente los 

ORFs previamente identificados. La delección de se4, se5, se76 y se129 disminuyó la 

patogenicidad del virus comparado con el virus derivado del bacmido al insertar 

aislado silvestre, SeBacAL1. La delección del se87 no afectó la patogenicidad, 

mientras que la deleccion de se28 aumento ligeramente la patogenicidad. La 

delección individual de los genes se4, se28, se76, se87 y se129 no afectó la virulencia 

del virus, aunque la delección de se5 retrasó el tiempo de mortalidad alrededor de 7 

horas. Interesantemente, el genotipo silvestre SeAL1 mostró ser ligeramente menos 
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virulento que el bacmido SeBacAL1, lo cual puede ser debido a la inserción del 

plásmido de clonaje en la región intergénica del se27 y se28 del genoma de SeAL1. En 

conjunto, la deleccion de se5 mostró los efectos más significativos en las propiedades 

insecticidas estudiadas del SeMNPV, con un descenso en la patogenicidad de casi 

10 veces y un retraso en el tiempo de mortalidad de 7 horas, comparado con el virus 

derivado del SeBacAL1.

Un estudio previo sobre la ecología del SeMNPV reveló que el genotipo designado 

VT-SeAL1 produjo un 100% de infecciones encubiertas en adultos que habían 

sobrevivido a un tratamiento con OB en el estadio larvario. En cambio, otro genotipo 

designado HT-SeG25 solo produjo un 16% de infecciones encubiertas. Esto nos llevó 

a plantear la hipótesis de que algunos genotipos de SeMNPV pueden estar asociados 

con una ruta de transmisión vertical del virus, mientras otros genotipos pueden 

estar asociados a una ruta de transmisión horizontal. La comparación de genotipos 

de transmisión vertical con genotipos de transmisión horizontal, Thézé et al. (2014) 

permitió identificar tres ORFs que pueden estar envueltos en la transmisión vertical 

del virus: se5, se96 y se99. En el Capítulo 3 el sistema de recombinación de bacmidos 

desarrollado en el Capítulo 2 se utilizó para deleccionar estos ORFs y comprobar 

el efecto sobre la capacidad de transmisión vertical del virus. Larvas de Spodoptera 

exigua fueron infectadas sub-letalmente con una concentración equivalente a la CL40 

y las infecciones sub-letales fueron detectadas en adultos mediante PCR cuantitativa 

(Q-PCR). El análisis no mostró diferencias significativas en el número de adultos que 

adquirieron una infección persistente con ninguno de los virus, lo que sugiere que 

dichos genes no están involucrados en la transmisión vertical del virus o, si lo están, 

lo hacen conjuntamente con otros genes. 

Las estructura genotípica de diferentes aislados silvestres de SeMNPV es muy similar 

a la composición genotípica de una población natural del SfMNPV. Las poblaciones 

de ambos baculovirus se caracterizan por la presencia de diferentes genotipos con 

delecciones en la misma región del genoma, la comprendida entre el se12 y el se40 
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en el caso de SeMNPV, y entre sf20 y sf36 en el caso de SfMNPV. En dichas regiones 

se localizan importantes genes: cathepsin, chitinase, gp37, ptp2, egt, pkip, arif1, pif1, pif2 

y fgf, así como algunas ORFs de función desconocida. En el Capitulo 4 la estructura 

genotípica de los aislados SeUS2, SeUS1 y SfNIC fue comparada para determinar 

los mecanismos de acción evolutivos y ecológicos de estas estructuras genotípicas 

poblacionales tan similares. El alineamiento de las secuencias que flanquean a los 

puntos de delección de los diferentes genotipos indicó que se trata de un mecanismo 

de evolución independiente que genera y mantiene los genotipos en las respectivas 

poblaciones de estos virus. El aislamiento de un genotipo deleccionado y los estudios 

de complementación con diferentes mezclas de genotipo deleccionado y completo, 

claramente demostró una interacción entre los genotipos en la población viral. El 

genotipo deleccionado SeUS2-C tuvo una ventaja replicativa en cultivo celular, ya 

que estaba presente en un 81% de las placas aisladas en cultivo celular después 

de la inoculación de hemolinfa extraída de larvas infectadas con SeUS2-WT. Sin 

embargo, el genotipo completo SeUS2-A solo se encontró presente en un 19% de 

las placas. La presencia de una alta concentración de SeUS2-C en OBs co-ocluidos 

con el genotipo completo SeUS2-A comprometió severamente la patogenicidad 

del virus. Interesantemente, la prevalencia del genotipo SeUS2-C fue solo del 25% 

en el aislado silvestre SeUS2, comparado con el 81% de placas aisladas en cultivo 

celular. Se cree que los genotipos deleccionados se han generado debido a funciones 

importantes en la transmisibilidad del virus y que la diversidad genotípica del virus 

está estructurada para maximizar la probabilidad de transmisión.

El aislado SeMNPV-US1 está también compuesto por varios genotipos, muchos 

de los cuales llevan delecciones de tamaño variable en la región del genoma 

comprendida entre el se15y el se41. En el Capítulo 5 se generaron bácmidos que 

contenían el genoma completo de SeMNPV (SeBac10) y un genotipo natural con 

una deleccion de 9.5Kb (SeBac72). El SeBac72 mostró una proliferación viral más 

eficiente en células de S. exigua que el genotipo completo SeBac10, lo cual concuerda 
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con lo que se encontró el Capítulo 4. La secuenciación de SeBac72 puso de manifiesto 

que los genes se16-se28 estaban afectados por la deleccion. El análisis de diferentes 

delecciones de ORFs individuales del bácmido SeBac10, permitió identificar al se28 

como el gen responsable de prevenir la proliferación de SeMNPV en cultivo celular. 

Sin embargo, la expresión de se28 en un bácmido de Autographa califórnica MNPV, 

un virus heterólogo que pertenece al grupo I de los Alphabaculovirus, no bloqueó la 

proliferación viral. Sorprendentemente, el silenciamiento de se28 mediante RNAi en 

el genotipo completo SeBac10 no condujo a un aumento de la propagación del virus 

en cultivo celular, sugiriendo que no es el transcrito ni la proteína, sino la secuencia 

de ADN y/o la secuencia topológica de se28 lo que determina la proliferación viral. 

La comparación de la secuencia de la región se27-se30  del genoma de SeMNPV 

con la región ac15-ac18 del genoma de AcMNPV mostró un 43% de homología a 

nivel de ADN, aunque la secuencia de aminoácidos de se28 y ac16 (DA26) no son 

homólogas. Ambos genes se28/ac16 son parte de regiones hipervariables asociadas 

con inserciones/delecciones. En conjunto, la región del gen se28 ha sido identificada 

como un regulador clave en la propagación del virus y se cree que puede ser 

responsable de la variación genotípica encontrada en los aislados naturales de 

baculovirus.

En conclusión, los resultados presentados en esta tesis profundizan nuestro 

conocimiento en la diversidad genética y genotípica de SeMNPV, y de los baculovirus 

en general, y puede ayudar en el futuro a la mejora de las estrategias de control 

biológico basadas en baculovirus.
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1.	 Se construyo un bacmido usando el aislado silvestre SeAL1, SeBacAL1, para la 

deleccion de genes individuales del nucleopoliedrovirus múltiple de Spodoptera 

exigua. Curiosamente, el aislado silvestre SeAL1 es significativamente menos 

virulento que el bacmido SeBacAL1, probablemente debido a la inserción del 

plásmido de clonaje entre los genes se27 y se28. 

2.	 De todos los genes deleccionados, la deleccion del se5 fue la que mas afectó 

la patogenicidad y la virulencia del bacmido SeBacAL1, con un aumento de 

10 veces de la concentración letal 50 y un retraso del tiempo de mortalidad de 

más de 7 horas. Se5 parece tener un papel importante en la patogenicidad y 

virulencia del virus, aunque no se pudo determinar su función exacta.

3.	 La deleccion individual de las pautas de lectura abiertas (ORFs) se5, se96 y se99 

no afecto la prevalencia de infecciones encubiertas en adultos supervivientes a 

una infección subletal en estadio larvario.  Sin embargo, no se puede concluir 

que estas tres ORFs no actúen juntas formando un complejo.

4.	 La comparación de las secuencias que flanquean los puntos de deleccion de 

los diferentes genotipos de SeMNPV y SfMNPV parece indicar un mecanismo 

independiente que genere y mantenga las estructuras poblacionales tan similares 

en ambos baculovirus.

5.	 El genotipo deleccionado SeUS2-C tiene una ventaja replicativa en cultivo 

celular, indicado por el 81% de placas aisladas en cultivo celular, frente al 19% 

de placas aisladas del genotipo completo SeUS2-A. Sin embargo, en el aislado 

silvestre SeUS2, el genotipo SeUS2-C está presente solamente en un 25%.

6.	 La presencia de una alta concentración del genotipo SeUS2-C en mezclas co-

ocluidas con el genotipo SeUS2-A, disminuye drásticamente la patogenicidad 

del virus. Parece que la diversidad genotípica en SeMNPV está estructurada 

para aumentar la probabilidad de transmisión viral.

7.	 La región génica del se28 se ha identificado como la responsable que previene la 

proliferación viral del SeMNPV en cultivo celular. 
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8.	 Se28 pertenece a una zona hipervariable del genoma que tiene un 43% de 

homología a nivel de ADN con otra zona hipervariable del genoma de Autographa 

californica MNPV.
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