

MASTER’S THESIS
Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

at the University of Applied Sciences Technikum Wien.

Department of Embedded Systems

The Lipmouse: A Labially Controlled Mouse

Cursor Emulation Device for People with

Special Needs

By: Ibáñez Flamarique, Alberto

Supervisor 1: Dipl.-Ing. Veigl, Christoph

Supervisor 2: MSc, Deinhofer, Martin

Vienna, June 07, 2014

Declaration

"I confirm that this thesis is entirely my own work. All sources and quotations have been

fully acknowledged in the appropriate places with adequate footnotes and citations.

Quotations have been properly acknowledged and marked with appropriate punctuation.

The works consulted are listed in the bibliography. This paper has not been submitted to

another examination panel in the same or a similar form, and has not been published. I

declare that the present paper is identical to the version uploaded."

Place, Date Signature

Vienna, July 14th, 2014 Alberto I

Kurzfassung

Menschen mit Behinderungen sind Teil unserer Gesellschaft. Für manche dieser Menschen

können einfache Tätigkeiten des Alltags unüberbrückbare Hürden darstellen - z.B. die

Verwendung eines Computers. In vielen Fällen ist die Hilfe weiterer Personen nötig, um

diese Hürden zu überbrücken. Unterstützungstechnologien dienen dazu, Menschen mit

Behinderung mehr Autonomie und Unabhängigkeit zu geben.

Im Jahr 2010 wurde das "AsTeRICS" Projekt gestartet, mit dem Ziel, ein frei verfügbares

Open-Source System zu Erstellung flexibler Assistenzlösungen zu entwickeln. Das

AsTeRICS Projekt wurde von der Europäischen Kommission finanziell unterstützt und in

Zusammenarbeit 9 internationaler Partnerorganisationen umgesetzt. Im Zuge des AsTeRICS

Projektes wurde ein lippengesteuertes Eingabegerät für Computer entwickelt, die

sogenannte "Lipmouse". Die Lipmouse dient dazu, einer Person mit Einschränkungen der

oberen Extremitäten einen alternativen Zugang zur Verwendung eines Computers, Tablets

oder Notebooks zu ermöglichen. Die Lipmouse konnte im Zuge des AsTeRICS Projektes

nicht fertiggestellt werden und wurde in der vorliegenden Arbeit verbessert und erweitert.

Die durchgeführten Verbesserungen können in 3 Hauptaufgaben zusammengefasst werden:

Im ersten Teil der Arbeit wurde eine portable Version des Lipmouse-Prototypen entwickelt

(die originale Version musste via USB-Kabel angebunden werden). Zu diesem Zweck

wurden ein Bluetooth-Modul und eine aufladbare Batterie zum bestehenden Design

hinzugefügt. Der zweite Teil der Arbeit beschäftigt sich mit der Planung und dem Layout

einer Leiterplatte für das Lipmouse-System. Im letzten Teil der Arbeit wurden die Software

bzw. Fimware des Limouse-Moduls in folgender Weise verbessert: die Verwendung der neu

hinzugefügten Hardware-Funktionen wurde in die Firmware eingearbeitet, und für die

Verwendung der Lipmouse im AsTeRICS System wurde ein geeignetes Software Plugin

erstellt.

2

Abstract

People with disabilities are part of the society. However, simple actions in their daily life, such

as using a computer become a challenge. In many cases they need the assistance of

another person. Assistive technologies help performing these tasks and help people with

special needs to live more independently. In 2010, a collaborative project called "AsTeRICS"

(Assistive Technology Rapid Integration and Construction Set) was initiated and partly

funded by the European Commission, where 9 international partner organisations worked

together to develop a free, open-source, flexible and affordable assistive technology tool.

A mouse cursor emulator controlled through the lips was developed for the AsTeRICS

platform. This device was called "Lipmouse" and was intended to provide a way of accessing

a computer, tablet or notebook to a person with an impairment in her/his upper limbs. This

thesis is a continuation and enhancement of the Lipmouse development.

The improvements accomplished can be summarized in three blocks: The first part of this

thesis consisted of the development of a portable version of the Lipmouse. The initial version

worked via USB cable. For that purpose, the new version incorporates a Bluetooth module

and a battery power supply system. The second part was focused on the design of a PCB

where all electronic components of the Lipmouse were integrated. Finally, the Lipmouse

source code was enhanced in two ways: The firmware of the Lipmouse was modified for

supporting the new functionalities described above. On the other hand, a specific software

plugin for the integration of the Lipmouse into the AsTeRICS framework has been developed.

Keywords: Mouse emulator, Lipmouse, Assistive Technologies, AsTeRICS

3

Acknowledgements

First of all, I would like to express my most sincere gratitude to Mr. Dipl.-Ing. Veigl for trusting

and believing in me to accomplish this incredible project. It has been an honour for me to

work under his supervision. Without his guidance, support and wisdom, it would not have

been possible.

A special mention for his invaluable help during the PCB design and the soldering process

deserves Benjamin Aigner, MSc. He has my most honest gratefulness.

I should thank the University of Applied Sciences Technikum Wien for accepting me as an

exchange student and allowing me to develop this Master Thesis, especially the Embedded

System Department for giving me this opportunity.

I also will not forget and thank all the marvellous people I got to meet this year in Vienna.

Thanks for being always there.

4

Table of Contents

 Introduction .. 6 1

1.1 Assistive Technologies ... 6

1.2 State of the Art ... 7

1.3 First Version of the Lipmouse ... 10

1.4 Motivation ... 11

 Methods ... 12 2

2.1 Introduction to AsTeRICS Project ... 12

2.2 AsTeRICS Platform .. 12

2.2.1 AsTeRICS Runtime Environment ... 13

2.2.2 AsTeRICS Configuration Suite ... 14

2.2.3 Communication Interface Modules Protocol ... 17

2.2.4 Plugin Design Tool ... 19

2.3 Programming Tools: AVR Studio and Eclipse ... 20

2.4 PCB Design: EAGLE CAD Software ... 22

2.5 Electrical Components .. 23

2.5.1 Teensy++ 2.0 and AT90USB1286 .. 23

2.5.2 Bluetooth 4.0 Low Energy Devices ... 24

2.5.3 Sip and puff Sensor: MP3V7007 .. 26

2.5.4 Force Sensors: FSR400 ... 26

2.5.5 Battery .. 27

2.5.6 Charger .. 29

2.6 Mechanical Components .. 29

 Implementation ... 30 3

3.1 The Bluetooth Radio-Link ... 31

3.1.1 Introduction to the Standard ... 31

3.1.2 HM10 BLE module and BLE-receiver USB dongle configuration 35

3.2 The Battery ... 42

3.2.1 Battery Selection .. 42

3.2.2 Circuit Protection Design .. 47

5

3.3 PCB Design .. 56

3.3.1 First Version ... 56

3.3.2 Second and Third Version .. 63

3.3.3 Fourth Version .. 63

3.4 The Plugin .. 69

3.5 Firmware .. 72

3.5.1 Previous Firmware ... 72

3.5.2 Firmware Improvements ... 74

3.6 Fuses and Memory Lock Bits Configuration ... 79

 Tests, Evaluations and Results .. 80 4

4.1 Board Assembling and Test .. 80

4.2 Software Test ... 82

4.3 Current Measurement ... 83

4.4 The Bluetooth Coverage ... 85

4.5 Applications .. 87

4.6 Remaining issues ... 90

 Conclusion ... 91 5

6

 Introduction 1

1.1 Assistive Technologies

Society is very complex and each human being has different necessities than the others. A

part of the community has difficulties carrying out daily and simple tasks, like using a

computer, reading a book, opening a door, getting up stairs, switching on lights, making a

phone call, and so on. Such people with special needs require dedicated tools which allow

them to equally participate in our society. They need special devices and tools in order to

perform their regular activities. These accessories are called "Assistive Technology

devices".

Official organisations like the Assistive Technology Industry Association (ATIA), [1],

Assistive Technology Partnership (ATP), [2], or the Individuals with Disabilities Education

Act (IDEA) American federal law, [3] , define "Assistive Technology" like the field involved

in developing "any item, piece of equipment, software or product system that is used to

increase, maintain or improve the functional capabilities of individuals with disabilities. Not

including a medical device that is surgically implanted or the replacement of such device".

This field has seen a great development in recent years. Despite their efforts, many

manufacturers work on particular aspects of an impairment solving only a part of the issue.

For example an on-screen keyboard can facilitate the access to a computer for a

quadriplegic person, but this application does not help him/her in switching on the light of

the room. In addition, each person with disabilities has different necessities than someone

else with the same problem. Therefore these devices need to be flexible and adaptable.

The lack of versatility makes these solutions inappropriate for creating a single, unique

system.

Another problem is the price. In most cases the devices are not affordable by the fact that

only a small group of people need them so the market is small compared to mainstream

consumer electronics. Accordingly, these gadgets are very expensive or are not easy to

get.

There is a diversity of types of impairment with different grades of disability. As a result, the

range of available AT solutions is very wide. They can be categorized in four general

classes: mobility (including muteness), auditory, vision, and psychology/neuronal (learning

disabilities, memory problems, narcolepsy).

This project is considered being part of the computer access field. Its goal is to guarantee

computer access for people who have their upper-limbs paralysed, who can only move

their lips or for whom a computer input solution based upon lip/mouth interaction is more

comfortable than for example an eye gaze system. A computer is not limited to surfing the

7

Internet like on-line shopping, checking emails and such activities. It is also capable of

either interaction or taking control over other systems, e.g. controlling an “intelligent house”

or using a wheelchair as well as a radio or TV via remote control. Thus, providing computer

access opens a door to an easier, more independent, and more comfortable life for people

with special needs.

1.2 State of the Art

There is a range of alternative ways to access a computer apart from the common tools,

such as keyboards and mice. Switches are the simplest solution for accessing all types of

electronic devices. Many of them are just buttons. There is a great variety of them: dual or

multi switches, foot switches, sip-puff switches, wireless switches, and so on as can be

seen in Figure 1.1.

(a) Dual switch (b) Bluetooth dual switch (c) Foot switch

 (d) Pal Pad switch (e) Sip-puff switch

Figure 1.1: Different types of switches

The keyboard combined with the mouse is one of the most important input peripherals for

computer access. However, a lot of people with problems in their upper limbs cannot use

them. There is a wide spectrum of alternative keyboards, from an ergonomic keyboard to

an on-screen keyboard. Some of them are depicted in Figure 1.2.

Another example would be the joystick, which is commonly known as controller for playing

video games, but it also can replace a mouse, a switch or a keyboard, i.e. a simple joystick

becomes an AT device. Like these previous devices, there are also adapted joysticks for

people with disabilities, from a regular hand used joystick to a mouth controlled joystick.

Besides computer access, joysticks can be found in wheelchairs or adapted cars. Some

examples are illustrated in Figure 1.3.

8

 (a) Ergonomic keyboard (b) Alternative keyboards (c) Mouth stick keyboard

 (d) Single hand keyboard (e) On-screen keyboard

Figure 1.2: Different types of keyboards

 (a) Simple joystick (b) Adapted joystick (c) Mini joystick

 (e) Head joystick (f) Wheelchair with chin joystick (g) Steering wheel adapted with joystick

Figure 1.3: Different types of joysticks

There are also other products like touchscreens or voice recognition input systems. The

touchscreens do not necessarily need the use of fingers; they could also be accessed with

a special stick held in the mouth. The voice recognition devices are promising systems,

because they can be configured in many ways to perform different actions with a computer.

9

Focusing on the mouse cursor solutions, there is also a great variety of these devices

depending on the users’ necessities. As depicted in Figure 1.4, there are ergonomic mice,

trackball solutions, head or eye controlled, switch adapted, touchpads, and so on.

 (a) Roll-mouse (b) Foot mouse (c) Head controlled

 (d) Button-mouse (e) Touchpad

Figure 1.4: Different types of mice

(The images of switches, joysticks, adapted keyboards and mice were taken from the

following AT vendor web pages: Infogrip [4], EnableMart [5], AbleData [6], Attainment

Company [7], Enabling Devices [8], and AbleNet [9]).

However, the Lipmouse user profile is very specific. It was designed for individuals who

cannot move their arms and head-camera mouse solutions do not fully satisfied them.

Nowadays, similar solutions can be found on the market. An example would be the

IntegraMouse Plus from LIFEtool [10], the Jouse2 or the Jouse3 from Compusult [11], the

Lipsync from Adaptive Computer Control Technologies Inc [12], the QuadJoy 3 from

QuadJoy [13] or the TetraMouse XS or TetraMouse XA from TetraLite Products [14]. A

picture of each one is shown in Figure 1.5. These solutions are characterized by a plastic

mobile stick that the user controls with the lips. Thus, the movement is reflected in a

movement on the computer screen cursor. Additionally there are clicking features. Many of

these devices incorporate either a sip and puff sensor to emulate the click or just a simple

switch. Most of them are wired and plugged through a USB cable. Nevertheless, the

IntegraMouse device has a wireless version. Several of them have replacements for the

10

mouthpiece due to saliva and bacteria accumulation. The QuadJoy costs approximately

800$ and the IntegraMouse nearly 2500$.

 (a) IntegraMouse, [10] (b) Josue 2, [11] (c) Lipsync, [12]

 (d) QuadJoy 3, [13] (e) TetraMouse XA, [14]

Figure 1.5: Different types of mouth controlled mice

1.3 First Version of the Lipmouse

A first version of the Lipmouse was developed in 2013. The device was especially

designed for one person, although it had multiple future possible users. The person

mentioned can only use his facial muscles, so he needed a dedicated and specific solution.

The device and the person using it are depicted in Figure 1.6

Although devices like IntregraMouse were available on the market, the IntregraMouse was

designed for people who can move their head and the strength required for moving the

mouth pieces is higher than the Lipmouse. In addition, the sensitivity is lower. (Reference

[15])

The current Lipmouse has a mouth stick made from plastic that is connected to an acrylic

glass plate. When the mouth piece is moved with the lips, the plate accordingly follows the

movement. It transmits the force through four screws to another plate where the pressure

sensors are placed. The force between the plates is adjusted with four springs. The tail of

the sensors is wired with air wires to the Teensy microcontroller (see Section 2.5.1) via a

voltage divisor made with 10kΩ resistors. The mouth stick is hollow inside allowing the air

11

flux to the sip and puff sensor. The stick end is connected to the sensor through a plastic

tube. The values measured in the five sensors are transmitted to the microcontroller, which

processes and sends them to the computer. The electrical components are mounted and

soldered in a perfboard. The board and the plates are covered and fixed to an acrylic

enclosure.

Figure 1.6: The first prototype of the Lipmouse

In order to be operative, this device needs a special software tool, the AsTeRICS

framework, described in the Sections 2.1 and 2.2.

1.4 Motivation

The purpose of the Lipmouse prototype was providing a device to emulate a computer

mouse for people with severe motor conditions who can only move the lips. The computer

mouse is one of the most important peripheral devices for interacting with computers.

Therefore, these people are not able to use a computer. Nowadays many tasks of our

daily life involve using a computer: work, media, communication via email or

videoconference, checking bank accounts, shopping and so on. Therefore it is very

important to develop an AT device to facilitate computers access also for people with

severely reduced motor capabilities. In addition, the Lipmouse could be also used together

with a tablet or a notebook.

This thesis is a continuation of work in the Lipmouse project, accomplished by Robert

Haderer, (Reference, [15]), as it was described in the previous section. The particular

targets were improving some parts of the written software code, designing a portable

solution (a wireless communication plus a battery powered system), implementing power

saving techniques, designing a printed circuit board (PCB), and testing it. The modification

of the existing enclosure, anti-bacteria and saliva membrane protection for the stick of sip

and puff sensor, and other enhancements will be achieved in a future project.

(a) The first prototype build of the Lipmouse (b) A person testing the first prototype in his

home

12

 Methods 2

In this section the different tools for the development of the project will be presented.

2.1 Introduction to AsTeRICS Project

This work builds upon a research initiative which has been

started in 2010 and was co-funded by the European

Commission: the “Assistive Technology Rapid Integration &

Construction Set”, abbreviated AsTeRICS, [16]. AsTeRICS is

an international free open-source project which allows creating

customisable tailored Assistive Technologies (AT) solutions.

This system provides an alternative way of interacting with

electronic devices like a PC, a tablet, a smartphone, a TV

remote control or a home environment control for people with

disabilities.

The AT market is still very small and narrow. Many solutions just satisfy a single specific

purpose. They cannot be combined or adapted for other similar situations. In fact, two

users with the same impairment may require different solutions depending on their wishes

or needs. Moreover, the available solutions are usually expensive. The AsTeRICS platform

was developed in order to address all these issues.

AsTeRICS can combine the simplest input systems like switches, buttons and adapted

keyboards with novel methods such as brain computer interfaces, head- and eye tracking,

inertial measurements and proximity sensors under a unique system covering multiple

scenarios.

The measurements of these sensor modules are delivered to an embedded platform where

they are processed. Depending on the configured solution, the embedded platform sends a

response over the corresponding actuators to perform an action or shows it on a display.

There is also a wide range of actuators that allow the emulation of a keyboard, phone calls,

a stereo control or a KNX home environment regulation.

In summary, AsTeRICS is endowed with a high level of flexibility, which makes it possible

to develop high adapted solutions for the users’ necessities in an economic way.

2.2 AsTeRICS Platform

The main component of the AsTeRICS framework is the computing platform, where the AT

application is hosted and executed. For this purpose, a specific OSGi based middleware

Figure 2.1: AsTeRICS

logo (Source: [16])

13

was created, the AsTeRICS Runtime Environment (ARE). The Open Services Gateway

Initiative (OSGi) defines a set of specifications in order to create a dynamic modular Java

system. The ARE model is composed of smaller independent sub-blocks, which represent

the sensor-, the processor- and the actuator-modules. The performance of each part is

independent, taking advantage of the modularity and the flexibility that OSGi provides. The

ARE loads and deploys the entire configured model. It acquires the sensors data,

processes it and generates the actuators response. Any device running a Windows

operating system, like a PC or a tablet can be used to host the ARE.

The models are created with the AsTeRICS Configuration Suite (ACS). It is a graphical

model based editor. The developer establishes which sub-blocks will be used for the

model, its properties and the relationship between sub-blocks. After the creation of a

model, the ACS sends the model to the ARE. The communication runs over a TCP

network connection, so the ACS and the ARE can operate in the same device or in

different devices which are connected through the Internet. Therefore, a developer can

configure a users’ model from distant locations. Moreover, the ACS can receive information

and modify some properties during the ARE’s execution.

The ACS also provides an auto-guided tool for the creation of these sub-blocks called

"plugins". The plugin is the software part that interacts directly with the actuator or the

sensor. In addition, some processing functions are encapsulated in these sub-blocks. This

system allows building complex and customizable solutions only with dragging and

dropping the blocks and interconnecting them. The user does not need to know how these

blocks work internally, in the same way as other model based editors like LabVIEW or

Simulink work.

The external hardware modules, i.e. the sensors and actuator, must implement a special

interface called Communication Interface Module (CIM) which allows the communication

with the ARE, described in Section 2.2.3. These devices are connected to the ARE via

USB, Bluetooth, ZigBee or other communication systems implementing this protocol in

their upper layer. Figure 2.2 shows an overview of the AsTeRICS framework.

2.2.1 AsTeRICS Runtime Environment

As mentioned, the ARE is the core of the AsTeRICS software, where all sensors, actuators

and processors source code is executed. The ARE was built in Java and needs a Java

Virtual Machine installed in the embedded platform. It requires at least JAVA 1.7 (JDK/JRE

7).In most cases the embedded platform is a variant of the Windows operating system. A

basic version of the ARE already runs on Linux and for other operating systems, a

Windows virtual machine could be installed and runs over it. The OSGi framework and the

ARE middleware are responsible for loading and deploying the model designed in the ACS

as plugins and their interconnections. Some modules may need additional software (i.e.

drivers) for working. They may require a legacy code and the Java Native Interface can be

14

used for the interoperability. The ARE coordinates the CIM modules through the CIM

protocol: it detects the virtual COM port or a serial interface, identifies the CIM, manages

and controls the exchange of data between the module and the ARE.

Figure 2.2: AsTeRICS system outline (Source: [17] , page 7)

Furthermore, the ARE disposes a desktop front panel, which allows the user to interact

with the system. For example: pressing a button to begin the execution, pause or stop it. It

can also show the status of the ARE: disconnected, connected, synchronized, running and

paused. Depending on how the model was configured and which GUI plugins it contains,

the ARE can also display the results of calculations, the signals acquired, messages, etc.

to inform about the execution process. Two examples of front panels can be seen in Figure

2.3. Image (a) corresponds to the front panel, showed at the beginning when the ARE is

launched. Picture (b) shows the front panel during the execution of a model. The user can

change some parameter values via this panel and modify the behaviour of the model. For

instance, during a mouse emulation model, it is possible for the user to change the

sensitivity or speed of the cursor. If the user needs more accuracy in his/her movements,

he/she can reduce the velocity during execution. In addition, the user may need special

functions, such as double click or hold the click for dragging and dropping items. This can

be done by placing buttons and by pushing them during the execution in order to perform

the associated action. (References [17] and [18]).

2.2.2 AsTeRICS Configuration Suite

The creation and configuration of the ARE's models are made with the ACS editor. All

sensor-, processor-, and actuator-modules available can be selected, configured in their

parameters, or interconnected with other plugins, defining the relationship between them.

The ACS can be connected directly to the ARE. Thus, the ARE can be controlled from the

ACS. The designed model can be uploaded to the ARE, or the current loaded model can

be downloaded to the ACS in order to save or modify it. The ACS can launch, pause,

15

resume and stop the model execution in the ARE. Moreover, the status of the ARE is

displayed inside the ACS. Errors, logging information and status messages are sent from

the ARE to the ACS, allowing debugging the model.

(a) At the beginning of the execution

(b) During execution of a model

Figure 2.3: ARE front panel (Source: [17], page 7 and 9)

Each plugin has one or more ports classified as input-, output-, event listener- and event

trigger-ports. The input- and output-ports are used to exchange data between the modules.

The event listener- and event trigger ports are employed to control and synchronize. When

a defined condition is reached in one module, it can send a signal to inform another plugin

to perform an action. One of the aims of this thesis was the creation of a specific plugin for

the Lipmouse, see Section 3.4. Until now, the previous prototype used the Arduino plugin,

for implementing the proof-of-concept with this generic microcontroller. An example of a

plugin is shown in Figure 2.4

16

Figure 2.4: Module example (Source: [17], page 21)

The output ports (red) can only be connected with input ports (blue); event trigger ports

(purple) can be connected with event event listener ports (green). After each connection,

the established channel must be configured accordingly. For example, if the input signal

must be synchronized with other incoming signals or an event trigger signal is paired with

an event listener in the other module. Moreover, the default module properties can be

defined. Many of them can be modified when the model is running. An example of a

finished model is depicted in Figure 2.5.

Figure 2.5: Example of a finished model (Source: [17])

17

Apart from the "Deployment" area in the ACS editor, there is another tab called "GUI

Designer" where the ARE window layout shown during runtime can be set. The size and

the appearance of the displayed elements can be arranged and adjusted, depending on

the users’ preferences.

For more specific information about the model creation consult [17].

2.2.3 Communication Interface Modules Protocol

As previously mentioned, the ARE model plugin and the firmware of the device must

implement a protocol named Communication Interface Modules (CIM). This provides a way

of exchanging data between the running firmware in the module and the ARE. The protocol

runs over a serial communication, such as (virtual) COM port using USB, UART, RS-232,

etc. If the device cannot support it or the developer does not want to implement it, the

plugin can use other external protocols like the raw port implementation, providing the

standard I/O stream classes of Java to communicate with the device. The devices which

implement the CIM-protocol are simply called CIMs.

The ARE-middleware provides a separate interface called CIM Communication, where all

CIM communication services for device communication are managed.

Each plugin has its own commands, called features. Each feature can be read to know the

state of the feature and/or written to perform an action. For instance, a CIM can have a

temperature sensor, which has to read the temperature value (the feature) periodically.

The ARE processes the value and sends it for example to another plugin such as a

threshold detector. Thus, if the temperature reaches a critical level, the threshold detector

sends a signal to the CIM, and writes to another CIM device to switch on the fan (another

feature). An example of this feature list is on Figure 2.6. It is the feature list of the HID-

actuator CIM, a module which can emulate mouse/keyboard/joystick devices on USB HID

level.

Figure 2.6: Example of a CIM feature list, the HID actuator (Source: [18], page 56)

18

The ARE must know which features are implemented by the device. According to this,

when the device is plugged in, the first step is its identification. Each CIM has a unique

identification number and a unique serial number. The identification number identifies the

type of CIM such as an accelerometer, an HID device, a Lipmouse, an Arduino

microcontroller, and so on. The serial number identifies the device. It is like the MAC

address of the device. The ARE sends a packet making a request and the device must

answer it with a reply packet. The ARE acts like a master and the device as a slave, only

answering when the ARE sends a reply. However, there is one option for sending

periodical information from the CIM to the ARE without an ARE request packet. There are

6 pairs of request/reply packet types and one more type for these periodical updates.

These categories are shown in Figure 2.7.

Figure 2.7: Different types of CIM packets (Source: [18], page 55)

The reply/request code identifies the type of packet. Thereby, the ARE and the CIM know

which kind of information is contained in the packet, the data format and how to manage

the data according to the packet's type. The entire structure of the CIM protocol packets is

depicted in Figure 2.8.

The packet ID is always the same combination of two bytes. It identifies the beginning of a

CIM packet. Thus, the ARE and the CIM know when a packet is being received. It also has

a synchronization purpose. These bytes are 0x4054, in ASCII format "@T". The next field

is the ARE ID or the CIM ID. The ARE ID identifies the ARE version. If the CIM detects that

the version of the ARE is below the minimum required version for compatibility, it can

refuse to reply to some features. The CIM ID identifies the CIM type and its version. The

data size notifies to the ARE/CIM how many bytes are in the optional data field, because it

can have different amounts. The minimum value is 0 (0x0000) and the maximum is 2048

19

(0x0800). If a device receives a value out of this range, it will consider the packet as

defective. All request packets are enumerated sequentially with a packet number, which is

incremented in each request. The reply packets have the same number as their

corresponding request, identifying each request with its reply. As the event replies do not

need a request, they have their own sequence. The request/reply packets sequence

ranges from 0x00 to 0x7f and the event replies range from 0x80 to 0xff. The CIM feature

address identifies the corresponding CIM feature. The request/reply field is subdivided in

two parts. The high-byte identifies the mode in the ARE-to-CIM packets and the error

status in the CIM-to-ARE packets. The mode informs if a CRC checksum is implemented

or not, and the error status reports to ARE if an error was detected by the CIM and which

type of error (lost packet, invalid ARE version, CRC mismatch, and so on). Despite the

error detection, the ARE does not resend faulty packets. The low byte consists of the

request/reply code. The optional data is the data sent according to the feature and the

desired action to perform. The optional CRC checksum is only added in the respective

mode. The minimum size of a packet is 11 bytes (without the optional fields) and the

maximum size is 2063 bytes. The fields with two or more bytes are stored in little-endian

format. The complete information about the CIM protocol is in the Section 5 and 6 of the

AsTeRICS Developer Manual, [18].

(a) ARE-to-CIM packet

(b) CIM-to-ARE packet

Figure 2.8: CIM packets field structure

2.2.4 Plugin Design Tool

In this project, a specific plugin for the Lipmouse was developed. The plugin’s internal

structure contains information of where the code is stored, the descriptor files, the

directories paths or the programming of common part as the output, inputs functions (the

source code skeleton) can be complex to accomplish. For creating it, the ACS has a tool

20

that helps the developer: the Plugin Creation Wizard. Figure 2.9 shows a screenshot of the

Plugin Creation Wizard.

Figure 2.9: The Plugin Creation Wizard (Source: [18], page 20)

The developer has to fill the gaps according to its necessities and the whole structure of

folders, files and the source code skeleton are created automatically. Then the developer

only has to program its own functions and features in the main file.

After the creation of a new plugin, the last step is activation and registering the plugin in the

ACS/ARE repository for being used. This can be done manually or using the Plugin

Activation Tool.

2.3 Programming Tools: AVR Studio and Eclipse

The Lipmouse has an integrated Atmel microprocessor, the AT90USB1286. This

microprocessor belongs to the AVR family implementing a RISC architecture. For Windows

platforms there is an open source software tool that allows application development for this

series of microprocessors, the WinAVR ([19]). This project provides the compiler (avr-gcc),

the programmer (avrdude), basic libraries (avr-libc), the assembler (avr-as), the make utility

for the source code generation, the debugger (avr-gdb), and much more tools. The AVR

Studio is an Integrated Development Environment (IDE) which uses the WinAVR tools. All

source files and header files needed for the Lipmouse's firmware were created with the

AVR Studio 4. The AVR Studio facilitates the task of programming and offers additional

21

functionalities, such as code debugging and simulations. In addition, the

microprocessor can be flashed using supported programmer tools. The

AVR Studio also allows loading files that contain definitions and functions

to facilitate the programming task, such as the use of interrupts, I/O

peripherals, the EEPROM memory management, sleep modes,

mathematical functions, types definitions, and so on.

After programming the code, it must be compiled. If the compilation is

successful, the WinAVR GCC will assemble and link the files. Then it will

create the .hex file for the microprocessor. Before the compilation and the

building process, some parameters must be specified: the frequency used

by the microcontroller CPU, if the project uses a Makefile or not, if the

compiler has to make any optimization or not, the type of device

(AT90USB1286) and the path where the output files will be stored. The

last step is downloading the firmware to the microprocessor.

The first setups where made using a Teensy++ 2.0 microcontroller. This board has its own

program for flashing and rebooting the microprocessor. However, for the final prototype that

only uses the AT90USB1286 chip, the Atmel FLIP tool was employed. It is a tool for

flashing the microprocessor through a USB, CAN or RS232 interface. The chips must

contain a special bootloader for this process and if it is erased or the CPU does not jump to

the bootloader section, the firmware cannot be actualized. Moreover, there are other

options for downloading the firmware to the microcontroller as via SPI or JTAG interfaces.

The JTAG also provides on-chip debugging and allows changing the fuses values of the

microcontroller. With the FLIP or the Teensy flashing program, the fuses cannot be

modified. Therefore, the final prototype board incorporated a JTAG interface. For that

purpose, the AVR Dragon programmer was used. It is a development tool from Atmel that

allows programming an AVR microprocessor using AVR Studio. It has various types of

interfaces supporting different ways of programming, like In-System Programming or JTAG.

Figure 2.12 shows a picture of the AVR Dragon used for programming the fuses.

As seen in the previous section, the ARE was programmed in

Java and runs in a Java Virtual Machine. One of the

objectives of this thesis was creating a new plugin for the

ARE. For this task, the Eclipse software was employed.

Eclipse is an IDE that can be used for programming in Java

and other languages and it facilitates the ARE framework

management, [20]. The ARE folder can be loaded including

all subfolders and files in order to provide an easy access to

the all ARE source code.

Figure 2.10:

AVR Studio

logo

Figure 2.11: Eclipse logo

(Source [20])

22

After the plugin creation through the Plugin Creation Wizard tool, the subfolders structure

of the plugin will appear in the workspace containing the descriptor files and the source

code skeleton for the plugin instance which has been created by the Plugin Creation

Wizard as described in Section 2.2.4 (\ARE\components\sensor.lipmouse). From this point,

the plugin programming process can continue using Eclipse.

The descriptor files: build.xml, the bundle_descriptor.xml and the manifest.mf can also be

edited from Eclipse. The Eclipse provides a debugging functionality that can be used for

debugging the ARE and all plugins. The last step is compiling the project and building it.

After that, the plugin is ready for operation.

Figure 2.12: The AVR Dragon

2.4 PCB Design: EAGLE CAD Software

For designing the Printed Circuit Board (PCB), there was the

need of a special computer-aided design (CAD) software. For

this project, the free version of EAGLE CAD [21] was chosen.

EAGLE CAD has three main tools: the EAGLE Schematic

Editor, the Layout Editor and the Autorouter functionality. To

create the schematics and the board layout, EAGLE procures a

set of libraries with the most common electrical components

from many manufacturers. Apart from the default libraries, there

are many projects on the Internet and these components can be

downloaded and integrated in the EAGLE repository. The

element14 community (from Farnell) has a wide list of libraries

with many components. If a component is not available in any library, EAGLE provides a

tool for creating new libraries, allowing the user to create its own components. The EAGLE

free version has some restrictions: the board cannot have a size over 100 x 80 mm and no

Figure 2.13:EAGLE logo

(Source: [21])

23

more than two layers (top and bottom). Though, it was enough for designing the Lipmouse

board.

Returning to the Schematic Editor subject, the first step is to add all essential components

for the project to the workspace. Then the electrical connection between them must be

drawn, including the ground and supply traces. The appropriate names and the values for

the components must be defined. When the electrical circuit is finished, the Design Rules

for the circuit must be checked. EAGLE has a checking tool to test if all connections are

right to satisfy the design rules (DRC – design rule check).

After the schematic design, the next task is the layout process. The board dimensions must

be defined according to the board requirements. Afterwards, the components must be

placed in their exact positions on the correct layer (top or bottom). The following step is

routing all components. The physical traces must be drawn in the board layout. The

process must be realised regarding to some consideration, such as avoiding right angles

traces, the thickness of the traces (for example the supply traces must be thicker because

they carry more power), placing the decoupling elements as close as possible to their

corresponding components, providing an adequate heat dissipation, and so on. A good

recommendation is to cover the entire board with a ground plane. In the same way of the

schematic, the last part is checking if the design satisfies the design rules.

When the design was finished, the last step was to send the EAGLE design to a board

manufacturer for the elaboration of the physical board.

2.5 Electrical Components

For the development of this thesis, some integrated electronic components were used for

creating the new Lipmouse prototype. This section will introduce and describe these

elements and their most important characteristics.

2.5.1 Teensy++ 2.0 and AT90USB1286

A microcontroller was necessary to sample the signals of the sensors, convert them to the

digital domain (with an analog-to-digital converter), process the data and interact with the

embedded platform. The first prototype employed the Teensy++ 2.0 microcontroller from

PJRC, [22]. This microcontroller uses as core an AT90USB1286 microprocessor from

Atmel. A picture of both can be seen in Figure 2.14. The Teensy was a good option

because it facilitates the access if a protoboard or perfboard solution is used. Besides, it

provides the USB connector, a 16 MHz crystal for clocking the system and a reset button.

Moreover, it has a solder pad for a 3.3 V regulator (MCP1825 from Microchip) to optionally

supply the board with 3.3V instead of 5 V. However, for this new version, a PCB was built

and it was considered that it was better to use the AT90USB1286 chip without any kind of

24

evaluation PCB. Anyway, the main characteristics of this microprocessor are reported in

Table 2.1.

Figure 2.14: The eval board and microcontroller employed during the project development.

Table 2.1: Main features of AT90USB1286 microprocessor (Source: [23])

2.5.2 Bluetooth 4.0 Low Energy Devices

The communication between the microprocessor and the software running in the PC in the

first prototype was done via USB. However, in this project a wireless solution was

incorporated in order to elaborate a portable solution. The technology chosen was

Bluetooth 4.0 Low Energy. Depending on the users’ necessities, the Lipmouse could be

used either connected with the USB cable or with the Bluetooth wireless link.

(a) Teensy ++ 2.0 board (b) AT90USB1286 microcontroller

25

Two devices were used for the Bluetooth connection, both from JNHuaMao Technology

Company, [24]. One was the HM-10 BLE 4.0 module, [25]. The other device employed was

the HM-15 BLE USB dongle. The dongle is similar to the HM-10, but it has already

soldered a male USB connector and it is ready to use (see Figure 2.15). The key features

of these devices are:

 RF transmission power of -23dBm, -6dBm, 0dBm or 6dBm.

 6kBps speed, both synchronous and asynchronous.

 Master (central) or slave (peripheral) role configuration.

 Authentication and encryption security.

 Point-to-point serial communications (UART and/or USB).

Moreover, the module supports a "sleep mode" in slave role. The module needs to be

supplied with +3.3V and 50mA. The dongle incorporates a LED that blinks when it is not

paired and lights when it is paired. The module has an output pin configured for this

purpose, but the LED has to be provided from the user. This way, it can be quickly noticed

when there is a problem with the connection establishment.

Figure 2.15: The BLE devices employed for the wireless communication

The main component of both devices is the chip CC2540 form Texas Instrument. This chip

integrates a large part of the modules needed for developing BLE applications: a

radiofrequency transceiver, an 8051 microcontroller unit, an in-system-programmable flash

(128 KB or 256 KB), an 8 KB SRAM, a 12-bit Analog-to-Digital Converter (ADC), a UART

and a USB interfaces, three general purpose timers, among other characteristics. This

integrated circuit only needs a few external components as the antenna or a crystal

oscillator to build a BLE device. Furthermore, a vendor specific firmware was programmed

in the chip developed by JNHuaMao that implements the BLE protocol stack.

(a) HM-10 BLE 4.0 module (Source: modified

from [25])

(b) HM-15 BLE USB dongle (Source: [26])

26

2.5.3 Sip and puff Sensor: MP3V7007

The Lipmouse was built to be controlled only with the lips and the mouth. Therefore, the

clicking function was accomplished with a sip and puff sensor. It needs a mouth piece for

inhaling and exhaling the air and a plastic tube for conducting the air flux from the mouth

piece to the sensor. The requirements for the sensor were being capable of measuring

negative and positive pressure values and using a voltage supply of 3.3 V. The pressure

range should have been approximately between -5 and 5 kPa. Unfortunately there was a

lack of available solutions on the market, which would fit these conditions. There were

many different pressure sensors, which were able to measure the difference of pressure

between two inputs. The first Lipmouse prototype used the MPXV7007GP device (with 5V

supply voltage) from Freescale Semiconductor. Nevertheless, for this project, the

MP3V7007GP device was used, which has the same pressure range between -7 and 7

kPa, but features a voltage supply of 3.3V as needed. Figure 2.16 shows a picture of the

utilized device. The most important characteristics of this sensor are illustrated in Table

2.2.

2.5.4 Force Sensors: FSR400

Mouse cursor movements are performed via the mouth piece: The user moves this piece

with the lips. The movement is transmitted to a small plastic plate, where four pressure

sensors convert the mechanical movements into electrical signals. The sensors chosen

were FSR400 physical force sensors from Interlink Electronics. These are basically

resistors, which decrease the resistance according to the force applied to sensor. The

range is approximately between almost infinite (i.e. an open circuit) to 1 kΩ. For a proper

operation they must be connected with another resistor to form a voltage divider

configuration. A variation in the resistance produces a change in the voltage that can be

converted into digital data by the microcontroller's ADC peripheral. Therefore, the

measured values depend on the used resistor and the voltage supply. The sensors are

depicted in Figure 2.17 and the main characteristics are summarized in Table 2.3.

Figure 2.16 MP3V7007GP sip and puff sensor

27

Table 2.2: MP3V7007GP main features (Source: [27])

If it would have been possible, a sensor with shorter tail would have been used, because

the tail had to be bended, so it could be attached to the plate and also hindered the

assembly inside the enclosure. Nevertheless, it was not possible to find such shorter

sensors during the realization of this project.

Figure 2.17: FSR400 pressure sensors

Table 2.3: FSR400 main features (Source: [28])

2.5.5 Battery

A portable solution requires also a portable power supply. In other words, the new

Lipmouse prototype needs a battery system. There are many types of batteries from

diverse chemistries with different performances for different applications. The discussion of

the election will be given in Section 3.2. In this subsection, the selected battery will be

described briefly.

28

The aim was to power the system as long as possible. This means the battery should have

a large capacity. Higher capacity means bigger in size. One of the purposes of the

Lipmouse project was to keep the physical dimensions as small as possible. Therefore, the

space inside the enclosure was limited. Due to its dimensions, a 1000mAh Lithium-

Polymer battery was chosen. Its features are illustrated in Table 2.4 and a picture of it can

be seen in Figure 2.18.

Figure 2.18: The battery employed for powering the Lipmouse

Table 2.4: Battery specifications (Source: [29])

This battery provides a built-in protection circuit to avoid overcharge and over-discharge.

The voltage range should be between 2.75 – 4.25 V. Moreover, this circuit has a short

circuit protection. However, the battery is charged via a USB connector (5 V). Therefore, it

is required another circuit to adjust the voltage from 5 V to battery’s voltage. This function

is accomplished by the charger as will be explained in Sections 3.2 and 3.3. Moreover,

nowadays chargers regulate the charging voltage and integrate other protection features

29

as overcharge and over-discharge. Hence, this built-in protection circuit is not necessary

and any single cell li-polymer battery can be used to power the system.

2.5.6 Charger

A battery requires a charging solution. When the battery is depleted, it must be charged.

There are many commercial electronics devices in which the user must remove the battery

and connect it to an external charger. It would not be practical for the Lipmouse user to

retire the enclosure, to disconnect the battery and to plug it into an external charger.

Therefore, the idea was to integrate the charging circuit with the rest of the electronic

components. The aim was to build a device which allows charging the battery through a

USB cable. Thereby, when the device is plugged into a USB port, the device is powered by

USB and charges the battery simultaneously. So of course if the USB is disconnected, the

system is again powered by the battery. The charger itself needs protections against

undervoltage, overvoltage or overheating. There are specific integrated circuits that

facilitate this type of designs. These types of topics will covered more deeply in Section

3.2.

2.6 Mechanical Components

The Lipmouse does not only consist of electronic components and software, it also has

mechanical components: an enclosure, a mouth piece stick, three plastic plates for placing

the sensors, a plastic tube, studs, springs, screws and nuts. As mentioned, this work was a

continuation of another one. The new version reused the same mechanical structure. To

provide an overview of the Lipmouse project, the physical design will be shortly described

in this subsection.

The enclosure, the three plastic plates, the screws and the nuts were made of acrylic

glass. It is a cheap material and very easy to manipulate. The acrylic glass was cut with a

laser cutter. The design was elaborated using the Inkscape and Corel Draw X6 software.

Then the patterns were loaded to the laser cutter, which cut and engraved the pieces. One

of the aims was to make the Lipmouse as small as possible. The final housing dimensions

were 80 mm x 35 mm x 35 mm, which gave enough space to fit all the internal parts.

Figure 2.19: Lipmouse's scheme (Source: [15])

30

The Lipmouse's structure is depicted in Figure 2.19. The mouth piece breaks through the

enclosure and is glued to the second plate. The movements in this part are transmitted to

the small plates and the studs, applying a slight force over the FSR sensors surface. The

other purpose of the mouth piece is to conduct the air flux to the sip and puff sensor. The

mouth piece has a gap and at the end of it there is plastic tube connected to the sip and

puff sensor. The four springs guarantee that after any movement, the mouth piece

recovers its original position. The screws hold the springs and support the inner plastic

plates. When they are adjusted via the nuts, a default force is applied to each sensor.

Unequal forces at diametral sensors produce a slight drift. This undesired drift must be

neglected, so these values should be corrected via a default offset value via the software.

Behind the plate with the sensors, the PCB is placed above the battery. In the first

Limpouse version, the FSR sensors where connected to the microcontroller through an air

wire. However in this project, the plate where the FSR sensors are located, was modified

to add the resistors of the voltage divisor and a connector for the Lipmouse PCB was

installed.

 Implementation 3

One main goal for this new model of the Lipmouse was wireless operation. Inside of the

Wireless Personal Area Networks (WPANs) standards, (i.e, the wireless networks of a few

meters of coverage) there are various technologies: Bluetooth, ZigBee, Wireless USB

(WiMedia), RFID, Z-Wave, IrDA, NFC, etc. For this project, the technology chosen was

Bluetooth, in its new version 4.0 Low Energy specification. However, that does not imply

that it is impossible to use another technology instead. Each standard has its own

advantages and disadvantages.

For the power supply system, there are many types of batteries of different chemistries and

architectures. The space inside the Lipmouse limits the solution chosen, but the capacity

must be big enough to operate during various hours, because the user cannot recharge the

battery continuously.

When the Lipmouse is connected through a USB cable, there is no concern for power,

because the USB port can usually supply up to 500 mA at 5 V (2.5 Watts). However, when

it is unplugged, the device employs the battery as a source of energy. For enhancing the

life cycle of the battery, adopting power saving strategies were needed. There are two

types of strategies: software and hardware strategies. The microcontroller can be entered

in a "sleep" mode out of a reduced power consumption state when the device is not being

used. The unused microcontroller’s internal peripherals (timers, TWI and SPI interface and

the USB module) can be disabled for saving more energy. In addition to this, some actions,

like disabling the brown-out detector, the watchdog and the internal voltage reference or

configuring the port pins to use the minimum power help to reduce the total power

consumed by the system. Otherwise, taking into account this issue in the electrical design

31

can also save energy. The new version of the Lipmouse worked at 3.3 V versus the 5 V of

the first prototype. Another essential consideration was to switch off the Bluetooth module

during the "sleep" state.

Though, there is the issue of charging the battery when it is depleted. The charger must be

designed and be incorporated with the rest of the electronics of the Lipmouse. Beside the

charging circuit, there is the safety protections cited in Section 2.5.6 that the battery needs

for a proper operation.

The other purpose of this thesis was to design and build a PCB for the electronic

components of the device instead of a perfboard like the previous version of the Lipmouse,

as was mentioned in Section 1.3 and 2.6.

The other part of this project was to improve the source code of the Lipmouse. On one

hand, there was the necessity of developing a specific Lipmouse plugin for the ARE. A new

plugin was created based on the Arduino plugin. On the other hand, the microprocessor’s

firmware was reedited according to the new improvements discussed in Section 3.5.2.

3.1 The Bluetooth Radio-Link

3.1.1 Introduction to the Standard

Bluetooth is a standard of WPAN developed by a consortium of enterprises: the Bluetooth

Special Interest Group (SIG). Part of its specification is regulated by the IEEE in the

802.15.1 standard. The main purpose is to create a short range wireless communication

technology for removing the electronic device’s cables. The most important features are

robustness, low complexity, small and low cost electronics, security, interoperability with

other devices and low power consumption. Many parameters are optional and depend on

the manufacturer's implementation, allowing a wide range of possibilities. Nowadays, more

than 20000 companies are members of the SIG. (References [30] and [31])

The number of applications of Bluetooth technology is very large. It is used in many

industries, like in the automotive sector, for consumer electronics, healthcare devices,

mobile telephony, home automation or tools for sports and fitness monitoring.

With the version 4.0 of Bluetooth, a new concept appeared: the Bluetooth Low Energy

(BLE) standard, also called Bluetooth Smart. Although Bluetooth Classic, i.e. Bluetooth

Basic Rate (BR) and Enhanced Data Rate (EDR) share a lot of characteristics with the

BLE specification, there are still many differences. In fact, the BLE version is not

compatible with the previous ones. However, devices can implement both standards

(Bluetooth Smart Ready), allowing a dual-mode communication.

32

The Bluetooth technology implements an entire protocol stack from the physical layer up to

the application layer following the OSI model as shown in Figure 3.1.

Figure 3.1: The BT protocol stack (Source: [32], page 23)

The Bluetooth system operates in the unlicensed 2.4GHz ISM band, between 2.400-

2.4835GHz. In BT Classic, there are 79 physical channels with a bandwidth of 1MHz (all

channels are not available in all countries, e.g. France and Spain). Nevertheless, in the

BLE specification the bandwidth of the channels is 2MHz, allowing only 40 channels. The

modulation in the BR case is a GFSK (Gaussian Frequency Shift Keying). In the EDR, the

access code and packet header employs the same GFSK modulation (EDR is compatible

with BR), whereas the rest of the packet uses a PSK (Phase Shift Keying) modulation (for

enhance the data rate). The BLE also uses a GFSK modulation, but the range of the

modulation index is different. In other words, BLE and BT Classic are incompatible. Their

own radio specifications make them incompatible. All specifications define a Frequency

Hopping Spread Spectrum (FHSS) modulation technique for avoiding interferences and

fading. The transceiver changes the RF channel 1600 times per second. These

specifications were fixed by the Bluetooth Core Specification, [33] and must be followed by

all Bluetooth devices’ manufacturers. A complete description about the GFSK and PSK

modulation schemes and FHSS technique is in [34], chapters 6 and 7.

Based on the transmitted power, three power classes were defined in BT Classic. The

main characteristics are summarized in Table 3.1, whereas in the BLE specification, the

allowed power range is different (to reduce the power consumption), see Table 3.2.

33

Table 3.1: BT Classic power classes (Source: [33], page 320)

Table 3.2: BLE power range (Source: [33], page 2483)

The Bluetooth specification determines two possible network architectures: point-to-point

or point-to-multipoint. In a point-to-point scenario, two BT units establish a physical

channel, where one device is the master and the other the slave. In a point-to-multipoint

scenario the physical medium access is shared by various devices, up to 7 active devices.

In this topology, one is the master which coordinates the communication and the rest are

slaves. These network architectures are called piconets. The communication is always

master to slave, never slave to slave. Nevertheless, one slave device can be connected to

two different masters, i.e. it can be a member of two piconets. This situation produces a

physical connection between two piconets and is denominated scatternet. In addition to a

scatternet, one device can be a master in one piconet and a slave in another piconet.

There can never be two masters in the same piconet. The scenario described above is

depicted in Figure 3.2.

34

Figure 3.2: The BT network architecture (Source: [33], page 348)

The (a) situation corresponds to a point-to-point scenario, (b) represents a point-to-

multipoint scheme and (c) is a plot of a scatternet. In this project, the devices employed

only support a point-to-point configuration.

The BT specification defines a Time Division Duplex (TDD) scheme for the medium

access. Each physical channel is divided in time slots. The duration of the time slots is 625

µs and each time slot has assigned one RF frequency (FHSS). The BT packets starts at

the beginning of a time slot and can occupy 1,3 or 5 time slots. The channel is used

alternatingly between the master and a slave. Moreover, BT distinguishes at the logic level

two types of traffic, synchronous or asynchronous: Synchronous Connection Oriented

(SCO) and Asynchronous Connection-Less (ACL), depending if it is Circuit Switching or

Packet Switching traffic.

The BT state diagram specifies three principal states: standby, connection and park; and

nine substates: page, page scan, inquiry, inquiry scan, synchronization train,

synchronization scan, master response, slave response and inquiry response. The state

diagram is depicted in Figure 3.3. The master response, slave response and inquiry

response substates do not appear to simplify the picture. For a detailed analysis of how the

connection process is established, consult the core specification [33] page 441 and ff. In

addition, inside of the connection state, there are three modes: active mode, sniff mode

and hold mode. The active mode is when the devices are actively involved in the

communication. The sniff mode and hold mode are two states for reducing the activity and

consequently the power consumption decreases. For example, the slave only listens the

channel at certain points of time or the master refuses the asynchronous traffic during a

period of time. For stopping transmitting for a long period but remaining synchronized in

the channel, there is the park state. (Reference [33], page 457 and ff.)

35

Figure 3.3: The BT state diagram (Source: [33], page 441)

Finally, at the top of the protocol stack, there are the BT Profiles. A BT profile is a set of

particular definitions and specifications of possible BT application functions and features.

Examples of profiles are:

 Advanced Audio Distribution Profile (A2DP)

 Basic Imaging Profile (BIP)

 File Transfer Profile (FTP)

 Headset Profile (HSP)

 Human Interface Device Profile (HID)

 Serial Port Profile (SPP)

 Video Distribution Profile (VDP)

The data sheets of the BT devices employed do not specify which profile implements.

However, Serial Port Profile is usually the profile implemented by Bluetooth applications

which emulate a serial communication.

3.1.2 HM10 BLE module and BLE-receiver USB dongle

configuration

The HM10- BLE module was placed in the designed Lipmouse's PCB and wired with the

Atmel microcontroller via the UART interface. Thereby, the microcontroller had to be

programmed in order to send the configuration commands. These commands are vendor-

specific and depend on the device’s firmware developed by the vendor, JNHuaMao

Technology Company.

36

Moreover, the BLE-receiver USB dongle, [35], has to be plugged to the embedded platform

or the PC, where the ARE is running, in order to use the Lipmouse. When the ARE detects

a newly connected USB device, it launches a scan process to detect if it is a new CIM

device. The scan process mainly consists of sending a CIM packet to every COM port,

asking for the device identification. If the receiver is a CIM device, it will answer to the

identification packet and the ARE will register it. This fact is important, because if the

Bluetooth connection is not established before the scan process starts, the CIM packet will

not arrive to the device and the ARE cannot register it. If the Lipmouse is being used by the

running model, the ARE stops automatically. Therefore, the Lipmouse’s BLE module and

the BLE-receiver USB dongle must be paired before clicking the ARE's start button.

The configuration of the HM10 BLE module and the BLE-receiver USB dongle is done by

AT commands. The commands must be sent in upper-case string format without spaces

and without any other symbol. In the case of the BLE-module, the serial communication is

by default set to 9600bps, 8 data bits, 1 stop bit and no parity bit. The BLE-receiver USB

dongle adjusts the data parameters automatically, since it opens a virtual serial COM port

through the USB connection. Some AT commands are the same for the module and the

dongle. However, there are only a few commands available for the module or the dongle.

The most important commands are shown in Table 3.3. For more information, please

consult the datasheets of the devices, [25] and [35].

One problem of the AT commands, which was not noticed in the datasheets, refers to the

time needed to wait between sending two AT commands. It was proven empirically, that if

two commands are sent too fast, the device does not interpret them and no response is

received. The conclusion reached is, that e.g. if AT+ROLE? and immediately AT+IMME?

are sent, the device receives AT+ROLE?AT+IMME?, which is not a valid command.

Commands cannot be delimited by including special characters like for example \r

(carriage return) or \n (new line). The solution for this problem was solved by waiting a few

milliseconds, before sending a second command. For almost all commands waiting 50ms

would be enough for a correct sending process. However, for commands which result in a

device reset, as AT+RESET, more waiting time is needed.

There are two ways for the establishment of the BT link: automatic (default) or manual. In

the automatic mode a master device detects the availability of slave devices (devices in

slave mode which are not paired with another device); if found, the pairing is established

immediately. When the connection is lost, the master will start again looking for the same

slave. If the same slave is available, the connection will be successful (this statement was

not defined in the datasheet but was deduced empirically by observing how the JNHuaMao

devices work).

37

Table 3.3: Most important AT commands extracted from the datasheets. To see the whole list,

consult [25] and [35]

38

In the manual case, the connection process is done by sending AT commands. Here, there

are also two possibilities to establish the connection manually. The first way is sending the

command, AT+CONNL (this is, connect to the last device paired successfully). This

command is available for both: module and dongle.

If it is the first time that the connection is established (no previous device was memorized),

the second way of manual connection has to be used. In this case the command

AT+CON[MAC ADDRESS] must be sent for the module. For example, if the MAC address

of the device was 00:11:22:33:44:55, the command would be AT+CON001122334455.

For the BLE-receiver USB dongle, the utilized command for manual connection is

AT+DISC. After receiving this command, the dongle will first search for all BLE slave

devices inside its cover range. Secondly, the dongle sends a list with the available devices

via the USB interface. Then a second AT command has to be sent for choosing a device of

the list, AT+CON[POSITION ON THE LIST - 1]. If the connection to the first device is

required, the command must be AT+CON0. If it is for the second device, the command

would be AT+CON1, and so on. The command AT+DISC only displays the 6 first devices

found.

Both solutions have disadvantages. In the automatic configuration, if more than one BLE

slave device is available, the selection of the slave by the master is unpredictable. It could

be a problem if there are other BLE applications (which are not AsTeRICS CIM devices)

inside the cover range. The advantage is that, if the first pairing is successful, the device

will always try to connect to this first device, avoiding the connection to other available

slave devices.

The main drawback of the manual case is that during the connection process, if the module

is the master, the MAC address of the dongle needs to be known. In order to find out the

MAC address of the dongle, the user should open a virtual serial COM port with the dongle

using a program which allows the serial communication with the COM ports, e.g HTerm

[36]. After the COM port is opened, the MAC address query command has to be sent.

Finally, incorporation of the address to the microcontroller's firmware code is mandatory.

In case of configuring the dongle as the master, first of all it is necessary to know the

module MAC address or to change the device's name for a recognizable one. Secondly,

the AT+DISC hast to be sent to look for the module. Finally the command for the

connection is required. An additional problem is how to send the AT commands. In case of

the module as master, it is easy via the microcontroller. However, in the case of the dongle

as master, the use of a program as HTerm or a suitable configuration application (.exe file)

is required. If instead of AT+DISC, the AT+CONNL command is used, the previous

configuration process is required for the first pairing. In addition, if one of the devices

breaks down and must be replaced by another, the procedure must be repeated. In

39

conclusion, in order to facilitate the use of the Lipmouse configuration procedure, the

automatic option was selected.

Another critical decision is the determination of which device is the master and which is the

slave. If the module is configured as master and the dongle as the slave, the dongle can be

used with the default settings (in other words, it does not need any configuration).

However, the appropriate baud rate and the master role have to be configured in the

module. This can be done at the microcontroller's firmware. In addition to this, once the

first connection is established, the module can only be paired with the same dongle, with

which it was paired the first time. Therefore, if the dongle is substituted, the user should

restore the module default factory settings for erasing the address of the previous dongle.

This action involves modifying the firmware and flashing the Lipmouse’s firmware again.

If the dongle is configured as master and the module as the slave, the baud rate and the

role configuration also has to be done by the microcontroller's firmware. Moreover, the

dongle has to be configured via HTerm or another similar program. As previous case, once

the dongle has established the first connection, it will always try to connect to the same

device. The command AT+RENEW, is used for restoring the default factory settings and

forgetting the address of the device. Thereby, the dongle could establish another

connection to a different device.

A reasonable requirement is that the firmware of the microcontroller should not need any

changes even if a connection with a different USB dongle is required. Therefore, the

dongle should be configured as a master and the module as a slave instead of the other

way around. The resulting configuration process of the dongle is described in Appendix A.

The next configuration issue concerns the module's UART baud rate: The ARE opens the

virtual serial ports at 115200 bps. Thus, the logic procedure would be to set the interface

UART's baud rate at 115200 bps. Nevertheless, it cannot be done, because the

microcontroller was supplied with 3.3V. At this operating voltage, the ALU's frequency

clock should be prescaled from 16MHz (external's crystal frequency clock) to 8MHz in

order to avoid over-clocking according to the AT90USB1286 specifications. On the other

hand, the microcontroller's UART could not work properly at 8MHz and a speed of115200

bps. As it can be seen in Table 3.4, the error is too high at 115200 at this baud rate for

both Normal and Double Speed modes. The speed of 76800 bps in Double Speed mode

has a slight error (0.2 %). However, the BLE module cannot support this baud rate (see

Table 3.3). Therefore, the best option was choosing 57600 bps in the Double Speed mode.

As shown in Table 3.5, in the Double Speed mode, the recommended maximum error for 8

data bits and non-parity bit is ±1.5 %. At this speed the error is 2.1 % which is better than

the -3.5 % error at 115200 bps and it is still inside the maximum range of total errors for a

working data communication. Testing if the microcontroller's UART could support 115200

bps was performed elucidating that it was impossible to establish a communication at this

40

baud rate. Selecting a speed of 38400 bps has an error inside of the recommended range,

but it would lead to a low baud rate which would limit the number of Lipmouse coordinated

updates per second.

Table 3.4: Baud rate errors at 8MHz. Normal Speed mode (U2Xn = 0) and Double Speed mode

(U2Xn = 1). (Source: [37] , page 205)

Apparently there was a speed mismatch problem. The maximum baud rate for the

microcontroller was 57600 bps and the ARE worked at 115200. The ARE baud rate could

not be modified, because this would affect the other CIM devices developed until that

moment. All CIMs work at 115200 bps and when the ARE opens a serial communication

port, it does not know which type of CIM is plugged in. Hence all communications have to

be compulsory work at 115200 bps from the ARE side. One idea was to send a special

sequence at 115200 bps, which could be recognised by a device working at 57600 bps. If

the device detected this sequence, it would send a message to the ARE. Then the ARE

would have realized that the CIM device was working at 57600 bps. Therefore, the ARE

would change the speed of this port to 57600 bps allowing the communication with a

slower CIM without affecting other possible CIMs attached.

However, this speed mismatch was not actually a problem. When the data arrives at the

serial interface of the BT device, it is encapsulated in a BT frame. The frame will travel at

various Mbps (in the air). As a consequence, the data is buffered between the layers of the

protocol stack. Thereby, a BT channel in the application layer can work at one speed, but

in the lower layers the data travels at more speed. Besides, the channel is not always

transmitting. Due to these facts, one side of the communication can work faster than the

41

other side, if the data rate (the total amount of data per time, no the serial velocity) can be

absorbed by the slower side of the communication. Otherwise, it will overflow and the

communication will fail. It turned out that the baud rate specification is only necessary for

the UART side (the microcontroller interface connecting to the BLE-module on the PCB) –

and that the baud rate specification for the Virtual COM Port (for the connected USB

dongle) is completely obsolete. Therefore, the BT module was configured to a baud rate of

57600 bps and the ARE still opens the VCP with 115200 bps. A test of the communication

revealed that there was not any problem working at different speeds.

Finally, the definitive solution was: if it is the first connection, the role of the dongle must be

set as a master. After changing the role, the device will try to connect to the module

automatically when the two devices will be switched on. The procedure can be seen in

Appendix A. The configuration settings are not cleared when the device is switched off.

Thus, the configuration process has not to be repeated for future uses.

For the module, the configuration commands were programmed in the microcontrollers’

firmware and they will be sent to the module via the UART interface. Therefore, the user

does not have to intervene in the module’s configuration. The configuration commands are

sent every time that the firmware is reset / the Lipmouse is powered on. If the module was

already configured, the configuration commands could be bypassed. However, it was

easier to send the commands every time than to detect if the configuration was already

done. In addition, in the unusual case that the Lipmouse (or BLE-module) would be

replaced, it will also be configured without performing any special action. The resulting

commands sequence is:

 Start the UART at 9600 bps (module’s factory speed)

 Send the AT command for changing the baud rate to 57600 bps and wait 50 ms.

 Send the AT command for changing the baud rate to 57600 bps and wait 50 ms

again. It was noticed in several cases that the baud rate change was not done

properly if the command is only sent one time.

 Send the AT command for resetting the module. When the baud rate is changed,

this it is not effective until the device is not reset.

 Wait 1000ms for the module restarting.

 Restart the UART at 57600 bps.

42

(a) Baud rate error depending of the number of data bits in Normal Speed mode (U2Xn = 0)

(Source: [37], page 197)

(b) Baud rate error depending of the number of data bits in Double Speed mode (U2Xn = 1)

(Source: [37], page 197)

Table 3.5: Baud rate errors

3.2 The Battery

3.2.1 Battery Selection

Developing a portable solution involves two topics: a wireless communication system and a

battery power supply. To understand why some batteries are better than others, it is

necessary to define the principal parameters that characterize them.

The first two questions to solve concern the suitability: a primary or a secondary battery

and which type of battery is better. In other words, what is to prefer: a non-rechargeable or

rechargeable battery and which chemistry is the best concerning specific capacity, specific

voltage, safety, life span, maintenance and self-discharge. The question of choosing a non-

rechargeable or a rechargeable variant is indirectly related to chemistry. Although primary

batteries have better performance and reliability in some aspects, the price (considering a

longer timespan) and the convenience of a rechargeable solution led to choosing a

secondary battery.

43

A rechargeable battery can be acquired for less than 15 € and an alkaline AA or AAA cell

can cost around 0.35 € (if they are bought in large amounts). This means, that for more

than 43 uses, it is cheaper than a non-rechargeable solution. If the Lipmouse was used for

a year, the increased cost would be amortized. Moreover, many users see an

inconvenience in changing the cells or having new cells available when needed. It is easier

for them to connect the device to the computer via a USB cable or to plug it in a local jack

for recharging the battery, rather than to change the alkaline cells. Nowadays, many

consumer electronics are recharged through a USB cable plugged in a computer. Hence, it

was reasonable to develop a solution of this type since this project involves using a PC or

another embedded platform with USB connectors. In addition, there was also the

environmental issue with the chemical recycling problems of the batteries.

The battery characteristics are derived from the inner electrochemical process. Thereby

batteries with the same chemistry, but with different internal designs have different

performance parameters. The principal chemistries are:

 Lead-acid

 Nickel-cadmium

 Nickel-iron

 Nickel-zinc

 Nickel-hydrogen

 Nickel-metal hydride

 Zinc-silver oxide

 Zinc-bromine

 Sodium-sulphur

 Sodium-metal-chloride

 Cadmium-silver oxide

 Lithium-ion-cobalt

 Lithium-ion-manganese

 Lithium-ion-phosphate

 Lithium-ion polymer

 Redox batteries

Moreover, there are solutions based on supercapacitors and ultracapacitors used as power

supply sources. Depending on the requirements of the application, some are more suitable

than others. The most important parameters are:

 Electrical characteristics. The nominal voltage value of the battery determines the

number of cells needed. The microcontroller chip needs a voltage supply of 2.7-

5.5V. Thus, it would be necessary to use more than one battery cell for some types

of chemistries. In addition, the minimum and maximum voltage range tolerable

must be taken into account. A mismatch in the voltage between the battery and the

rest of the circuit could damage some electronic components of the system,

including the battery. Analogous considerations must be done for the electrical

44

current. Therefore, the charging and discharging I-V curve of the battery would

affect the electronic design of the PCB.

 Capacity. The capacity of a battery is usually expressed in ampere-hour (or

milliampere-hour). This capacity is given for a specific discharge rate (the C-rate),

temperature, and cut-off voltage. The duration and the amount of current delivered

to the load can be calculated using this value. For example, a 1000 mAh battery

rated at a discharge current of 200 mA entails 5 h of autonomy. This means that if

the battery was used at a discharge rate of 100 mA, the battery would supply the

device during more or less than 10 hours, because, as cited above, the capacity

also depends on the discharge rate. In addition, the battery has its limits and

perhaps it cannot provide a high discharge rate, e.g. 2000 mA during 30 minutes.

Another way of expressing the capacity is determined by the energy stored in the

battery (in watt-hours). This quantity is defined in terms of mass and volume:

specific energy or gravimetric energy density and energy density or volumetric

energy density. Therefore, a battery with low specific energy and low energy

density will be large and have high weight. In other words, the battery selected

should have the highest possible specific energy and energy density.

 Duty cycle. The current supply can be continuous or intermittent. Some batteries

are optimized for delivering a considerable amount of power during a short period

of time, for example the flash of a camera. For this project, the application demands

a continuous flux of energy.

 The temperature. The specific energy of a battery depends on the temperature.

Batteries do not work properly below or above a certain temperature. For extreme

conditions special batteries have to be used. This application is thought to be used

by a person inside a building. Thus, the battery selected must work correctly

between 15 to 30 ºC.

 Lifetime. Some batteries can be recharged more often than others. The more

cycles, the longer the life of the battery. However, some batteries are more

resistant to overcharging and deep discharging than others. These situations can

decrease the battery's performance dramatically. Also, there is always a risk of

catastrophic failure, i.e. suddenly, the battery breaks down due to a failure in the

cell. Therefore, all batteries have a medium lifetime.

 Physical dimensions. The weight and the size of the battery are among the most

critical aspects in this project. At the moment of the realization of this work, the

enclosure design had the dimensions of 35 x 35 x 80 mm. The sensors, the PCB,

and a part of the mouth stick had to fit inside the enclosure together with the

battery. There are many types of packages available in the market, as some battery

chemistries allow building different form factors.

 Self-discharge. The batteries have internal losses and some types are sold with a

protection circuit that consumes a small amount of energy. Thus, these batteries

are discharging if they are not used over a long period of time.

45

 Environmental conditions. Besides the temperature, other factors, such as the air

pressure or the humidity affect the battery’s performance. Moreover, if the

application involves vibration, spinning, high accelerations or decelerations, an

effect in the battery’s life could be induced. However, this is not an issue for this

project, since the Lipmouse will be stored under normal conditions of humidity and

pressure and the device will not be exposed to excessive movements.

 Safety and reliability. As noted above, some batteries can be damaged out of

inappropriate use. The batteries can break down and liberate corrosive and

hazardous gases or liquids. In addition to this, the battery can overheat due to a

malfunction and may damage other parts of the device. Also, some batteries are

sensitive to deep discharge or under-/overvoltages. Hence, batteries need some

electronic protections.

 Maintenance. Some components of the batteries need to be replaced after a

prolonged use or cleaning of the electronic contacts may be required. Several

battery chemistries imply the voltage depression effect (also called memory effect),

which forces the user to perform a full charge and discharge cycle to recover the

capacity of the battery.

 Cost. There is always a trade-off between performance and price. The best battery

is usually the one that has good characteristics (not necessarily the best ones) at a

reasonable cost, as one aim of the project is to develop a cost-effective solution.

Table 3.6 summarizes the most important parameters for typical battery chemistries.

The Li-ion batteries have a high energy density, high specific energy, more than 1000

charge/discharge cycles, low charge time and the cell voltage is higher than in other types.

These batteries are good for portable and small devices like mobile phones, tablets, digital

cameras, laptops, mp3 players, and others. Therefore, they became very popular in recent

years. However, they have an important drawback: they need a protection circuit due to

safety reasons. This battery technology does not tolerate overcharging or low voltages

(undervoltage problems). All types of Li-ion chemistries are similar in performance and only

have slight differences among them. However, in particular the Li-ion polymer batteries

have greater energy density and they are more stable than the rest of Li-ion battery types.

Moreover, one of the best advantages is that they are more flexible in cell sizes.

Consequently, a wide variety of these batteries in different sizes is available on the market.

(Reference [38] and [39])

Hence, the battery chosen was a Lithium-ion polymer battery. The battery was bought from

SparkFun Electronics, [40] and it has a capacity of 1000mAh. It offers a low self-discharge

rate and the nominal voltage is 3.7 V, so that only one cell is necessary. In addition, it was

not too expensive ($8.95, without taking into account the possible shipping expenses), and

its dimensions fit the requirements: 50.8 x 33.5 x 5.9 mm. As a result, it fitted perfectly in

46

Table 3.6: Battery parameters of the most typical chemistries (Source: modified from [38], chapter

22)

47

the enclosure. In addition, the connection with the rest of the circuit was made by a

standard 2-pin JST connector, which was simpler than, for instance, the use of metallic

contacts. In conclusion, this battery suited for the project.

3.2.2 Circuit Protection Design

Not only the selection of most the suitable battery was important, but also the design of the

charger for it. The Li-ion batteries need a protection circuit, which is directly related to the

charging system. The operating principle of this type of batteries and their requirements will

be discussed below, in order to understand how the charger and the protection circuit

should be designed.

Most lithium batteries follow a constant current-constant voltage charging algorithm,

depicted in Figure 3.4.

Figure 3.4: The Li-ion charging cycle (Source: [41])

The charging cycle can be subdivided in three stages. The first stage only occurs if the cell

is completely depleted and the voltage of the battery cell is below 3 V. During this stage the

cell must be supplied with a small constant current, until the threshold voltage is reached.

In the second stage the current is raised up to the desired charging current value. This

current must be maintained constantly during the whole stage, while the voltage of the

battery is increasing. When the voltage is equal to the float voltage level, 4.2 V, the

constant current phase finishes. In the third stage the current starts to diminish and the

voltage remains constant. The charge cycle ends when the current is equal to a minimum

level. After several recharging cycles, the battery may not achieve this minimal value.

Thus, a timeout or other external mechanism is necessary to terminate the charge.

48

Notice that in the constant-current phase (second stage), the higher the current is, the

sooner the float voltage will be reached. However, this does not shorten the charge cycle

time significantly, since in the next phase more time will be required to reduce the current

to the minimum level due to the charging current is higher. (References [41] and [42])

The battery must be protected in case of: under/overvoltage situations, battery overheating

or when the minimum termination current is not reached. Therefore, the major electronics

manufacturers have developed a wide range of integrated circuits (ICs), which control the

charging process. These solutions can be classified in three groups, depending on the

charging method performed: linear, switch-mode, and pulse charger. (Reference [44])

A linear charger is easy to implement, more compact and cheaper than the other two types

of chargers. It uses a pass transistor to supply the voltage from the source to the battery.

This configuration has a low efficiency, since the transistor dissipates a lot of heat. One

advantage of this type of charger is that it needs only a few external components. In

addition, it is immune to electrical noise. Figure 3.5 (a) shows an example of a linear

charger, the MAX1898 by Maxim Integrated.

The switch-mode option is more efficient, seen from the energetic viewpoint and it can be

used with a wide range of voltage inputs. However, it needs more external components, for

example a LC filter, increasing the size of the PCB significantly. Another disadvantage is

that the switching action produces electrical noise and the inductor generates spurious

radiations, both potentially leading to interferences. An example of this type of solution is

depicted in ¡Error! No se encuentra el origen de la referencia. (b), the MAX1737 by

Maxim Integrated.

The third type, the pulse charger, is a combination of the two previous charging

technologies. It works more efficiently than a linear charger, but less than the switch-mode

option. The pulse charger also needs a pass transistor that connects the source with the

battery. When the cell is depleted during the trickle charge, the transistor supplies the

current like in the linear mode. However, in the constant voltage phase, the transistor acts

as a switch (it operates by allowing or blocking the conduction of the current). The power

dissipation is reduced, but it needs more time to charge. This configuration does not

require a LC filter, so the space on the board is even more reduced than in the switch-

mode configuration. The main problem with using this class of chargers is that the input

source has to be current-limited and accurate. Consequently, these solutions are usually

more expensive than the other charger types. The Figure 3.5 (c) shows an example of a

pulse charger, MAX1736, also by Maxim Integrated.

49

Figure 3.5: The different charger types

The resulting size of the PCB was crucial in this project. The solution had to be as simple

as possible. The linear chargers use less components and they do not need a LC filter.

Also the charging time is much shorter than in the pulse configuration. Thereby, the best

option was to search for a linear charger IC. In case the linear charger solution did not fulfil

all requirements or the heat dissipation was a problem, a pulse or switch-mode chip would

be selected.

Four of the major electronics manufacturers were consulted for the charger IC: Analog

Devices, Texas Instruments, Maxim Integrated and Microchip Technology. The possible

solutions and their main characteristics are summarized in Table 3.7.

The first column in Table 3.7 refers to the name of the chip and the second to the final

charge voltage. Depending on the cell design, this voltage is different in each case. Most of

the chargers work at 4.1 V or 4.2 V, but of course there are other types, too. As the charge

(a) Linear charger (Source: [44]) (b) Switch-mode charger (Source: [44])

(c) Pulse charger (Source: [44])

50

51

52

Table 3.7: IC charger proposal

53

voltage of the selected battery (see Section 2.5.5) is 4.2 V, the charger chip should work

for this voltage in order to obtain a proper performance of the battery.

Column 3 of Table 3.7 exposes the type of charger: linear, switch-mode or pulse. The most

common approach was the linear solution, so the solutions shown are only linear chargers,

although there were also switch-mode and pulse ICs.

Column 4 describes the control interface. Some chargers offer configurable parameters or

can report some information about the state of charge. These chips have I2C, SMBus or

other types of control interfaces. For this project these kinds of interfaces were not needed.

The solution designed had to be as simple as possible. Therefore, a standalone solution

was a better option.

Column 5 depicts the IC power supply type. This can be an AC wall adapter, a USB port or

a direct connection to the mains. However, the last type was not very popular due to the

fact that such designs are more complicated than in the other two cases. Some chips could

be used with either AC wall adapter or USB topologies. Others were optimized for one of

these cases. For this project, the battery had to be charged through a USB cable, since

this application involved a PC or an embedded platform with USB ports. Therefore, it was

more convenient to use USB.

The charge current (the current during the constant current phase) can be set by an

external resistor or by digital inputs, depending on the chip design. Many of the chips

designed for USB applications have two digital inputs that allow choosing between the

USB standard current values: 100mA or 500mA.

The next characteristic is the voltage range of the input source. The minimum voltage is

approximately around 4 V and the maximum value depends on the chip design: 6 V, 7 V or

12 V. The USB electrical specification is inside these ranges. The following parameter is

the maximum input voltage and it is related to the voltage input source. The voltage input

source is the voltage in which the charger operates correctly. However, sometimes sudden

overvoltages appear. Many ICs tolerate high voltages to a certain maximum value. This

value constitutes the maximum input voltage and if it is exceeded, the circuit could be

damaged or broken. The other dangerous situation is the exact opposite. If the voltage

applied to the battery is below a minimum level, the cell could be damaged as well. Thus,

the most ICs also feature an undervoltage lockout protection that stops the charging when

the voltage reaches this minimum. This voltage is typically between 2.5 V and 4 V. In order

to avoid unstable situations (e.g. a fluctuating signal around this value would constantly

activate / deactivate the charger), many chips implement a hysteresis cycle. This means

that for switching off the charger, the voltage has to be equal to the undervoltage lockout.

But for switching the device on again, the voltage has to be above the undervoltage value

plus a fixed threshold.

54

The manufacturers have implemented two variants of charging IC’s: The first variant

provides just one output pin which is directly connected to the battery. This results in two

design options for the application: either both the charger and the rest of the circuit are

separated or the charger is integrated into the system. The separate solution is less useful,

because when the user needs to recharge the battery, he/she has to detach it from the

device and plug it into the charger. After the charging, he/she must again connect the

battery to the system. Therefore, many designers have developed a solution to include the

charger inside the device. The charger has to be connected to the system load and to the

battery, but it only has one output pin. As a consequence the designer has to build a switch

circuit to select between supplying the power to the system load through USB or through

the battery. Besides of supplying the power to the system load when the USB supply is

connected, it must also charge the battery. The circuit will consume a part of the supply

current provided to the charger. Thus, if the system load varies, the consumed current is

modified which could be a problem for the battery in an integrated charging solution. The

charging current must be constant during the constant current phase and the in trickle

phase the current must remain low. Therefore, in such designs the battery and the rest of

the circuit should not be directly connected. A regulation circuit must be placed between

the battery and the system load. This circuit is also connected with the input source,

thereby when the input source is active, the system load takes the power from the source

and the battery is charged independently. If the input source is disconnected, the

regulation circuit will switch to the supply source of the battery.

The other solution developed by the manufactures is the integration of the regulation circuit

into the chip. In this case the charger IC has two output pins, one for the battery and

another for the system load. Therefore, the designer can implement the charger into the

system without regulation and switching circuit. The manufactures have patented their own

solutions. Texas Instruments calls it "Dynamic Power-Path Management" and Maxim

Integrated calls it "Smart Power Selector". This solution is rather preferred than the first

one, since it is simpler and saves space on the board. The solutions shown in the tables

differ in "sharing" when the chip has one output pin that must be shared by the battery and

the system load and "isolated" when the chip has independent pins for the battery and the

system load. Therefore, the output voltage (the voltage to the system load) will depend on

the solution implemented. In the "sharing" configuration the voltage will be 4.2 V during the

charge and 3.7 V when the battery is being discharged. The “isolated” case depends on

the specification of the chip, although these values are usually in the range of 3.5 V and

4.5 V. This feature was important, because the BT module and the microcontroller operate

at 3.3V. Consequently, the output voltage had to adapt this value through a low-dropout

voltage regulator (LDO). (Reference [45])

The suitable solutions found were all linear chargers. As mentioned, they need a pass

transistor to regulate the current from the input source to the battery. This transistor can or

55

cannot be integrated within the chip. A chip with the pass transistor integrated would be

preferred, but this feature would not be essential for the design.

The following parameters in Table 3.7 refer to the protection features of the ICs. The first

characteristic is the possibility of including a safety timer. As explained, after many uses,

the battery might not reach the minimum level fixed by the charger IC in the last phase of

the charge. Therefore, if the charge is not cut off by an external method, it will continue

indefinitely. One solution is to finish the charge after a timeout determined by a timer. Many

chips have a timer with a fixed value, but others can configure this value by an external

capacitor. Another safety measurement refers to a possible overheating of the system. If

the power dissipation is high and the chip cannot dissipate it fast enough, the charger

starts to overheat. Moreover, when a Li-ion battery is not working properly or is damaged,

overheating is also a possible outcome. Thus, many chips have a thermal protection,

consisting of an input pin for monitoring the temperature of the battery through a

thermistor. If the battery is too hot, the charger will stop the charging cycle. This rarely

happens, so many manufacturers include only a thermal protection, instead of a

temperature monitoring. The temperature monitoring is usually included in systems

submitted to stress, where the battery cell could result in damage. The last protection

parameter is the reverse blocking diode. Many pass transistors have a diode between the

drain and the source pins that allow a reverse current flowing back to the input source. In

order to avoid this situation, some chips have an integrated reverse blocking diode. Others

do not have it, so that the designer must be aware of placing one diode between the input

source and the charge IC input pin.

Moreover, these chips have output pins for showing the status of the charge through one

or more LEDs. They usually incorporate one output pin for a “charging status”-LED and/or

an output pin for a “power-on”-LED that displays the connection of a power supply (in this

case the USB). The charging status LED starts to blink to indicate an error in the charge in

most sophisticated solutions. This characteristic was not critical for the project, so if the

chosen IC did not have these LED output pins, it would be a minor concern.

ICs chargers have a temperature operating range. If it is taken outside the limit boundaries,

it could be permanently damaged. Thus, the application must work inside this range. The

requirement was not a problem, because many of these chips have a range between -40 to

85 ºC. The critical parameter was the battery temperature.

Finally, the last parameter of the table is the IC package. The chips are encapsulated in

standardized packages, but the offer is large: QFN, TDFN, DFN, SOT-23 (among others).

In general the dimensions for charger ICs are very small (not bigger than 4 x 4 mm). As

these packages are standardized, they also have a fixed number of pins, but not all of

them are used. There are solutions with 8, 12, 14, and up to 28 pins.

56

Some charger ICs also incorporate a special metallic pad that has to be soldered to the

ground plane of the board in order to faster dissipate the heat from the chip.

There are also other types of characteristics which are not shown in Table 3.7, for example

the prize. The prize is important when it comes to cost effectiveness. However, the final IC

was chosen because it fulfilled the previous requirements, even if it was not the cheapest

one.

The best options were the MAX8606 from Maxim and one type of the bq2403X family from

Texas Instruments, although there were other possible solutions, too. These circuits can be

used with USB power supply; they are systems with "isolated" system loads and have an

internal pass transistor, thermal monitoring, safety timers and a reverse blocking diode.

Moreover, the current range for the charge is meets the project requirements and both

solutions offer under- and overvoltage protections.

Nevertheless, the final selection was the MCP73831 from Microchip Technology. The

electrical design of the charger and the problems appeared during the design phase will be

discussed in Section 3.3

3.3 PCB Design

In this section, the different PCB versions which have been designed in course of the work

will be explained. The whole process and the problems that emerged until the definitive

version was created will be discussed.

3.3.1 First Version

For the first design, some ideas were taken from the AsTeRICS Open EEG project made

by Fabian Schiegl. Both projects have the BLE module in common as well as the utilized

microcontroller (AT90USB1286) and a battery powered system. For the first version of the

PCB, the selection and the connection of the components will be explained in detail. In the

following versions, only the changes will be discussed.

The previous Lipmouse prototype used the Teensy++ 2.0 microcontroller board. However,

this board would occupy too much space on the PCB. For this project, only the

AT90USB1286 microcontroller from Atmel (this microcontroller is also the core of the

Teensy++ 2.0) was used. . Thus, the reset line, the decoupling caps, the USB connection

and the external oscillator needed to be provided separately on the PCB.

The design was done using the EAGLE CAD software (see Section 2.4). The first part

consisted of the elaboration of the schematic. All decisions about the electrical components

and their interconnection with the other components were made during the schematic

57

design. Therefore, the considerations made concerning each component will be discussed

one by one in the following pages.

As it was seen in Section 3.2, the Lipmouse had to incorporate a USB connector which

would allow charging the battery and communicating from the device to the ARE through a

USB cable instead of using the Bluetooth radio-link, which could be desired due to the fact

that the wired connection is more reliable than the wireless one. A mini USB connector was

chosen, since it is smaller than the common “Type B”-USB connector. This connector has

five pins: VCC, D+, D-, ground and the mode pin. The mode pin is used by mini- and micro

connectors to support the USB On-the-go specification where the device could act like a

host. For this project, the Lipmouse had to work in a "device" mode, so this pin remains

unconnected. The VCC or +5 V pin had to be connected to the charging system and the

microprocessor USB VCC pin. In addition, a LED with its corresponding current limiting

resistor was connected to the VCC trace, in order to show if the system is powered by the

USB. However, the VCC line was connected to the rest of the circuit through a 1 µH ferrite

bead to remove the high frequency noise that could come from the USB cable. The ground

pin had to be wired to the device's ground line and the D+ and D- pins had to be connected

to their corresponding microcontroller pins through a 22 ohms resistor.

When the first version of the schematic was designed, the MAX8606 from Maxim

Integrated was chosen for the charging system. The characteristics are summarized in

Table 3.7 and the complete description can be found in the datasheet [46] . This chip did

not have an EAGLE model. Therefore, the symbol and footprint had been designed using

the EAGLE library creation tool. A footprint of the component following the physical

dimensions of the datasheet was made for the board design. After that, the schematic

symbol was created, assigning the pin connections to their corresponding pins in the

layout. The footprint is depicted in Figure 3.6.

Figure 3.6: IC charger footprint

This charger chip had 14 pins. The input pin was routed to the supply net through the

ferrite bead and a decoupling capacitor of 4.7 µF was needed. There were two output pins

for the battery and two other output pins to connect the system load. The battery pins were

wired to a 2 pin SMD JST connector where the battery was connected. The connector has

one terminal connected to the IC charger that had to be connected to ground via a 10 µF

capacitor. The other pin was directly connected to ground. The IC charger has two digital

58

inputs to select the input current or to suspend the IC (both via low level inputs). The input

current is distributed for supplying the charging and supplying the load system. Thus, the

current absorbed by the system had to be known in order to calculate the charging current.

The ̅̅ ̅̅ ̅̅ and ̅̅ ̅̅ ̅̅ configurations and the corresponding current are illustrated in Table 3.8.

Table 3.8: ̅̅ ̅̅ ̅̅ and ̅̅ ̅̅ ̅̅ control signals (Source: [46], page 9)

The USB standard values, 100 mA or 500 mA, can be chosen. If none of them were

suitable for the application, the current could be set by a resistor connected to pin.

The value of this resistor can be calculated according to the desired current (system

current + charging current) following the formula shown on the third line of Table 3.8. The

USB port by default only can supply until 100 mA. If the application requires a higher value,

it must be negotiated during the USB enumeration process. In the first design, a current of

500 mA was selected, so that ̅̅ ̅̅ ̅̅ pin was connected to the ground and ̅̅ ̅̅ ̅̅ to the supply

trace. The pin was left unconnected.

The chip has two open-drain output pins, ̅̅ ̅̅ ̅̅ and ̅̅ ̅̅ ̅̅ , that display the charging status

and connection/disconnection according to the input source (the USB). These pins could

be routed to a LED or to a microcontroller's input (through a pull-up resistor) in order to

control the charge. In this case, the pin ̅̅ ̅̅ ̅̅ was connected to a LED and its

corresponding resistor to indicate the charge status. The ̅̅ ̅̅ ̅̅ pin was left unconnected,

since it shows if a power source is connected and this function was accomplished by the

LED connected to the USB power supply trace. The safety timer was not used in this

design, thus, the pin for this function, ̅̅ ̅̅ ̅̅ , was wired to ground. In addition, the thermal

protection was implemented. According to the datasheet, the pin for the temperature

measurement had to be connected to a 10 kΩ NTC thermistor with a β value of 3500 K.

The VL pin had to be connected to a 0.1 µF bypass capacitor. Finally, there were two

output pins where the system load was connected. These pins also needed a decoupling

capacitor of 4.7 µF. In the first schematic version, the decision was to place a mechanical

switch between these pins and the rest of the circuit to, manually turn the power supply on

and off.

The system output voltage was around 3.5 V. Nevertheless, the BLE module needed a

supply voltage of 3.3 V. Therefore, the output from the charger had to be regulated to this

value. This function was accomplished by a LDO regulator. The chosen component was

the MCP1703 from Microchip Technology, specifically the 3302E/DB version, which has a

59

3.3 V output voltage. The input pin was connected to one of the switch terminals and

needed a 1 µF decoupling capacitor. The output pin had to be decoupled with another 1 µF

capacitor. Thus, the supply pins of the microprocessor, the BLE module and the sensors

had to be connected to this 3,3V net.

The sip and puff sensor, MP3V7007GP, has 8 pins where only 3 are actually used (see

Section 2.5.3 and [27]). One is the supply input, so it was connected to the 3.3 V supply

trace. The second pin is the output voltage that was connected to the PF0 pin of the

microcontroller, which corresponds to the first Analog-Digital Converter (ADC) pin. The

sensor’s ground pin was connected accordingly to the ground trace and the rest of the pins

needed to remain unconnected. The MP3V7007GP sensor did not have an EAGLE model.

Therefore, it was created in using the Eagle design tool. The footprint can be seen in

Figure 3.7.

The pressure sensors, FSR149, were connected in a way that one pin connects with the

3.3 V supply net and the other one with the corresponding microcontroller pin (see Section

2.5.4 and [28]). For a right measurement value, the sensor had to be connected through a

voltage divisor, so this pin was also routed to a 10 kΩ resistor, which was leaded to

ground. The connection pins with the microcontroller were PF4, PF5, PF6 and PF7 pins,

which correspond to ADC input pins.

Apart from the mentioned connections, the microcontroller needed some components for a

proper operation. First of all it needed a power supply via a connection of the two VCC pins

to the 3.3 V voltage supply trace. These pins also need a 100 nF decoupling capacitor. The

microcontroller has another supply input, the analog voltage supply (AVCC). This pin

needed to be connected to the voltage supply trace, but with a ferrite bead between the

traces in order to reduce the possible high frequency noise. Moreover, this pin also

required a 100 nF bypass capacitor. Also, the pins UCAP and AREF pins had to be

connected to ground through a 100 nF decoupling capacitor. The microcontroller provides

a reset signal, which lets the user restart the device. The reset is an “active low” signal, so

a button connected to the ground via a series resistor and wired to a pull-up resistor and

the reset pin was installed. The values of the resistors were 330 Ω for the series resistor y

4.7 kΩ for the pull-up resistor. The reset pin also needed 10 nF decoupling capacitor to

reduce the electrical noise. In addition, this reset signal was connected to the BLE reset

pin. The clock signal was provided by an external 16 MHz crystal which had to be

connected to the XTAL1 and XTAL2 pins. Each crystal pin had to be wired to an 18 pF

capacitor routed to ground. The UART pins, that allow the communication with the BLE

device, had to be connected to their corresponding pins on the Bluetooth module. The

UART transmission pin (TX), PD3, had to be wired with the BLE module’s UART reception

(RX) pin. In the same way, the UART reception pin (PD2), should be wired with the BLE

module’s UART transmission pin. Finally, the four ground pins had to be connected to the

ground trace and the rest of the pins remained unconnected.

60

The BLE module has 34 pins. However most of them remained unconnected. The voltage

supply pin had to be routed to the 3.3 V voltage supply trace with a 100 nF decoupling

capacitor and the four ground pins connect to the ground net. The UART transmission pin

had to be wired with the microcontroller's UART reception pin (the same reception UART

pin of the module). The reset pin was wired to the reset circuit described above, so if the

button is pressed, both microcontroller and the BLE module will receive a valid reset signal.

Furthermore, the BLE module has a pin, PIO1, that can be connected to a LED,which will

blink when searching for a pairing device (to establish a connection), and will shine as a

pairing is achieved. (It does not shine when the BLE is not powered). Thus, a LED and a

470 kΩ series resistor were connected to this pin.

The whole components wired are shown in Figure 3.8.

After finishing the schematic, the components had to be placed in the board layout and the

traces had to be drawn. The microcontroller was the component with most connections.

Hence, it makes sense to places this part in the center of the PCB and arranges the other

components around the microcontroller. The USB connector was placed in one of the

narrow borders, just in the middle, since the enclosure had the hole for the USB cable at

this point. The bypass capacitors had to be placed as close as possible to the

corresponding pins. The height of the BLE module was similar to the board width. Thus,

the best option was to place it in one of the borders. The sip and puff sensor and the pin

header for the pressure sensor were also located in one of the boards’ corners. While the

components were placed in the PCB, the physical traces were drawn. Some traces cross

each other and in some cases two connected components were on different layers.

Consequently, these traces were conducted from the top side to the bottom side through

vias. Ultimately, the whole board was covered by a ground plane on the bottom and

another ground plane on the top layer. The ground planes provide an easier

interconnection with all ground traces. Moreover, a ground plane reduces the electrical

noise and the crosstalk noise between two adjacent traces. Few more vias were needed in

order to connect the two ground planes. The result of the first PCB design run is displayed

in Figure 3.7. The top layer corresponds to Figure 3.7(a) and the bottom layer to Figure 3.7

(b).

61

Figure 3.7: First board design

(a) Board top layer of the first design (b) Board bottom layer of the first design

62

Figure 3.8: First schematic design

63

3.3.2 Second and Third Version

Before finishing the first design, some errors were detected. The errors found were:

 The antenna of the BLE module had to remain free of metallic elements, as for

example traces, pads or planes. The metallic parts disturb the emission pattern of

the antenna if they are too close, reducing the quality of the Bluetooth connection.

Therefore, the pressure sensor had to be moved to the left and the ground plane

had to be removed from the surroundings of the antenna.

 The pin PE2 could be used for the hardware bootloader activation. Accordingly, this

pin had to connect to the ground in order to use the bootloader for flashing the

microcontroller’s firmware. First, this was done via a 10 kΩ resistor. However, this

resistor was not necessary and the HWB pin could be wired to ground directly.

 The voltage supply traces had to be thicker, because they need to conduct high a

current.

 The package of the ferrite bead was 0603. Nevertheless, there was no 1 µH

inductor of this size available at the vendors consulted. Hence, it had to be changed

to a 0805 size.

 The switch to turn on and off the system was through-hole and interfered with the

microcontroller mounted on the bottom size. The solution was to change it to a

SMD right angle switch.

 Placing the three LEDs together in a row would seem better than putting them on

the board without any certain order.

 The capacitors and resistors package size chosen was 0805. However, using the

0603 packages would be possible and it would save space in the board.

 In spite of avoiding the sharp traces in the routing process, there were some of

them that must be rearranged.

 All together some components could be better placed.

The first design needed a review. The problems encountered were corrected and the

improvements were applied during the second and the third versions of the PCB desing.

The components were placed more efficiently. However, the third version could be further

improved, leading to the fourth (and final) version.

3.3.3 Fourth Version

After starting the fourth design iteration, some design considerations changed. In the first

Lipmouse version, FSR sensors were mounted on a small plastic plate as can be seen in

64

Figure 2.19. The two terminals of each pressure sensor were routed to the PCB through a

loose air wire. To improve this situation, the idea was to mount a small PCB (a daughter-

board) behind the sensor plate. The metallic contact of the sensor would be soldered to

this small PCB and it would wire to the main PCB through a flatband cable. The resistors

for the voltage divider for the pressure sensors were also included on the new PCB. This

solution was more compact, did not have loose wires and looked more professional that

the solution accomplished in the first prototype. In addition, the supply and the ground

traces had to be available on this small board. The daughter-board EAGLE design is

shown in Figure 3.9.

Furthermore, a JTAG interface was added to the main PCB. The JTAG allows testing and

debugging the electrical connections of a microcontroller to the PCB. For further

information about JTAG interface consult [43].Moreover, the microcontroller can be flashed

through the JTAG interface. The board's JTAG connector also has another function. As the

JTAG is not necessary when the Lipmouse is working and the JTAG signals share the pins

with the ADC inputs, the small PCB could be connected to the main PCB via the JTAG

connector. Therefore, these pins are shared by the JTAG and the FSR pressure sensors.

Figure 3.9: Daughter board design

Moreover, it was noticed that the charger IC, it could be difficult to solder it without special

equipment. As it can be seen at Table 3.7 most of the single chip charger solutions have

small sized packages and could not be used if easy reproduction of the design is a goal.

Consequently, the charger IC was changes to the MCP73831 from Microchip, which was

available in a SOT23-5 package. This package can be soldered to the PCB even by hand.

(a) Schematic design (b) Board design

65

The drawback was that this chip has a "sharing" load system. Therefore, a regulation

circuit which makes the battery charge section and the system supply independent was

designed. This circuit followed the recommendations exposed in [45] and is depicted in

Figure 3.10.

Figure 3.10: Load sharing circuit (Source: [45])

In Figure 3.10, the superior trace was routed to the supply voltage. When the USB is not

connected, the resistor pulls down the Q1 gate to zero. Thereby, the current flows

from the battery to the system load. If the USB is plugged in, the transistor’s gate is 5 V

and the transistor switches off. Therefore, the current cannot flow from the battery to the

system load. Instead, the current flows from the USB supply to the system load through

the diode D1. Simultaneously, the battery is charged from pin . The value of had

to be high, otherwise a lot of current would be wasted. A decent value was 100 kΩ.

According to the Section 3.5, the microcontroller’s sleep modes were used to reduce power

consumption in idle mode. For that purpose, a button was needed for the microcontrollers’

wake-up and standby mode control. This was implemented via an external interrupt, so the

button was wired to PB0 (INT0) pin. Furthermore, some landing pads where drawn and

connected to other external interrupt pins (PE4, PE5 and PE6) in case of the necessity of

more external buttons in a future prototype.

Finally, it was decided that it would be better to turn on and off the BLE module by software

instead of a mechanical switch. Therefore, a MOSFET transistor was placed between the

BLE ground pins and the ground trace. The transistor’s drain was wired to the BLE

module’s ground pins and the transistor’s source was wired to the PCB ground net. The

gate was connected to an I/O pin of the microprocessor, PA3. Thereby, when this pin has a

high level, the transistor is ‘on’ and the BLE ground is connected to the device’s ground

trace. In case of low pin level, the transistor is ‘off’, so the BLE ground floats, switching off

the BLE module.

The final schematic design is depicted in Figure 3.12

The board layout was updated according to the following considerations: The USB

connector had to be placed in the middle of one of the narrower edges, like in the previous

66

designs. The microprocessor had to be mounted in the center of the board, because many

components were wired to it. The USB connections were routed to the microprocessor D+,

D-, VBUS and GND. The best way to orientate the chip was facing these pins to the USB

connector. The BLE module was placed in the opposite edge of the USB connector, in

order to not disturb the rest of the components and traces. In this design, the module was

allocated sideways too. The orientation chosen is shown in Figure 3.11 (b) to facilitate the

routing with the microcontroller. The LDO regulator and the charger IC were situated next

to the board edges in each side of the USB connector due to the availability of free space.

The decoupling capacitors were allocated as close as possible to the corresponding

components. The sip and puff sensor had to be connected at the furthest border in order to

bend the plastic tube properly during the assembly of the PCB inside the enclosure.

Therefore, it was situated on the top layer. The JST connector, the LEDs and the buttons

were also placed at this layer, because there was not enough space at the bottom layer.

The light of the LEDs has to cross the enclosure and the edge of the PCB should touch the

enclosure. Hence, 90º LEDs were chosen and were placed close to the edge to avoid

using light pipes to conduct the light outside of the enclosure. The buttons for the reset and

sleep/wake-up, the device were also 90º-types for the same reason. They were mounted

close enough to the case so that they can be pushed from the outside without any

extension. The connectors for the JTAG and the daughter board were through-hole types,

so both sides of the PCB had to be free of elements. The connector had to be placed on

the top layer, because it had to be connected to the daughter board. The location chosen

was between the microprocessor and the BT module, due to the free space for the holes.

In addition, three solder pads were allocated on the top layer, connected with three

microcontroller pins, allowing external interrupts to provide additional functions in a future

(if needed). Finally, as explained in the first design, a ground plane was added to cover

both sides of the board. The final board design is shown in Figure 3.11.

All components and the electrical connections were correct and the board design was fine.

It constituted a valid version. Thereby, the board design was sent to manufacture and the

components were ordered from the corresponding vendors. The bill of materials which

have been ordered is shown in Appendix B.

67

Figure 3.11: Fourth board design

(a) Board top layer of the fourth design (b) Board bottom layer of the fourth design

68

Figure 3.12: Fourth schematic design

69

3.4 The Plugin

Although the previous version of the Lipmouse used the Teensy++ 2.0 microcontroller, the

plugin employed in the ARE model was the Arduino plugin. The reason was that both the

Arduino Uno and the Teensy use an Atmel microcontroller, so they are compatible in many

aspects. The Arduino plugin can configure the microcontroller

digital pins as inputs or outputs and read and write the values of

these pins. Moreover, there are six analog inputs which were

used in the previous Lipmouse for reading the 4 sensors values

through the ADC (so 2 ADC input were unused). In addition, this

plugin offers a series of listeners for detecting changes in the pin

values.

However, a new plugin was needed for the Lipmouse. Despite

the fact that the Arduino plugin can be used for communicating

with the Lipmouse's firmware, the Lipmouse is a different CIM

which does preprocessing of the sensor values and thus needs

its own plugin. If using the generic Arduino plugin for interfacing,

the connections with the rest of the plugins in the ACS to create the Lipmouse model would

not be very intuitive, as shown in Figure 3.13. The ADC outputs are A0, A1, A2, A3 and A4,

however, the correspondence between sensor value and output is not explicit. A user who

wants to use this plugin with Lipmouse hardware needs to know how it was implemented.

The simpler and more intuitive the design of a plugin is, the easier will it be for a person to

use it. Moreover, the Arduino plugin has functionalities that were not required and could

confuse the user. Thus, one goal of this project was to develop a specific plugin for the

Lipmouse.

First of all, the characteristics of the new plugin were defined: how many inputs, outputs

and properties; how the data is displayed and its format; if it needs event listeners and/or

triggers; among other features. In this case, the CIM emulates a mouse cursor. The

requirements were:

 3 outputs ports: one for the X value, other for the Y and other for clicking functions

(pressure value).

 1 property: for increasing or decreasing the frequency of the periodical updates.

A new CIM requires a new CIM ID, a new unique serial number and a new CIM feature list.

The CIM ID is formed by four bytes. The two most significant bytes identify the type of CIM

and the two less significant represent the version of the Lipmouse. The last CIM registered

before the Lipmouse was the proximity sensor with a CIM ID of 0xA301. Therefore, to

identify the Lipmouse, the unique CIM value 0xA4 was chosen and the version (of the

Figure 3.13: Arduino

plugin

70

plugin), was set to 0x01. Hence, the complete CIM ID chosen was 0xA401. For the unique

serial number, 0x12345678 was chosen. In case of two Lipmouse CIMs with the same

address running in the same ARE, collisions could appear. In that case, one of the

Lipmouse CIMs must use a different address (which can only be changed in the firmware

source code), but this case is practically impossible.

The feature list is composed by three features. The first feature (command) returns the

unique serial number to the ARE. This feature is compulsory in all CIMs since the ARE

must know the unique serial number of each connected CIM device. The ARE sends one

packet containing this command to each communication port at the beginning of the

execution. If there is a CIM attached, it will respond to the ARE with a reply packet,

containing its unique serial number. Thereby, the ARE registers the CIM device. The

second feature refers to the time between two periodical updates of the sensor data. The

frequency of the updates can be regulated depending on the users’ requirements. This

value is in the range of 0 to 65535 milliseconds. The 0 value means that the CIM should

not send any periodic update. The last feature is defined for reading the values of the

sensors. The Lipmouse emulates a mouse cursor, so these values correspond to the X-

and Y positions and the pressure value (to implement the clicking characteristics or similar

functions in the ARE model).

The difference between the right and left sensor value forms the X value and the top

sensor minus the bottom sensor compounds the Y value. This operation had to be done in

the ACS model when the Arduino prototype was used. However, in the new plugin, the

subtraction is done in the Lipmouse’s firmware. Thus, the X and Y values are already

available to be used in the ACS model. The feature list is depicted in Table 3.9 .

Table 3.9: Lipmouse feature list

As it was shown in Section 2.2.4, the first step in the creation of a plugin is the creation of

the subfolders and directories, the descriptor files and the source code skeleton. The

plugin was made by using the Plugin Creation Wizard tool, in which the three output ports

and their corresponding names, data types and descriptions were defined. Also the

71

periodic ADC update frequency property must be defined in the corresponding field of this

tool. The name for the plugin was defined as "Lipmouse" and the category selected was

"Sensor" inside the "Standard Input Devices" subcategory. After clicking in "Create plugin",

the plugin was created containing this basic structure.

The descriptor files are build.xml, descriptor.xml and manifest.mf. Technically, these files

did not have to be modified. In case that some parameters configured in the Plugin

Creation Wizard tool need to be redefined, this can be done in the descriptor.xml file. (for

example changing the name of the output ports, the data type or the description text box).

The source code of the plugin resides in the LipmouseInstance.java file. After the plugin

creation, it contained a basic skeleton code. However, the functions were not complete and

the code for the CIM protocol management and other auxiliary functions had to be included

in this file. Some parts of the implementation of the CIM protocol were taken from Arduino's

plugin code and adjusted to the Lipmouses’ requirements, due to the similarities with the

Arduino's plugin. All CIMs must implement the JAVA-interface

class CIMEventHandler. This interface contains two methods that

must be defined in each plugin for the implementation of the CIM

protocol: handlePacketReceived and handlePacketError (see the

page 36 from [18]). The ARE will send request packets to the CIM

and the CIM will reply to them, or it can send the periodic updates

without a request. When these packets arrive at the ARE, it

processes them, and forwards dedicated packets to the registered

listener functions residing in the plugin code. If an error is

detected, it must be managed by the handlePacketError method. If

the received packet is correct, it must be processed by the

handlePacketReceived method. One or more actions must be

performed, depending on the type of packet. If a reply to a “read feature” packet has been

received, there are only two options: the reply contains a unique serial number packet or it

contains an ADC report value packet. In the case of a received ADC report value packet,

the data (the X, Y and pressure values) must be sent to their corresponding output ports of

the plugin. When the CIM sends ADC values periodically in multiple event reply packets

the X, Y and pressure values are sent to the output ports as well.

There is just one type of write feature packet contains the property value of the periodic

ADC update frequency. Changing the ADC frequency property is handled by the

setRuntimePropertyValue method of the plugin. This method sends the corresponding

write feature packet to the CIM's firmware for changing the ADC frequency when the

property has been changed during runtime.

Furthermore, the ADC data sent by the microcontroller must be converted to the format

used by the other plugins connected to the Lipmouse plugin, in order for a proper

Figure 3.14: Lipmouse

plugin

72

communication. The data of the plugin output ports must be integer, i.e. 4 bytes. However,

the data sent by the microcontroller has two byte length (short integer). Therefore, two of

the bytes must be padded with 0 to convert the short integer into an integer. If the short

integer contains a negative value, the two bytes left must be padded with ones, i.e. 0xffff.

The process of sending packets to the CIM device firmware is supported by the

CIMPortManager instance. This class is responsible for managing and controlling all

communications with the CIMs. In addition, CIMPortManager is in charge of delivering the

CIM packets from the Lipmouse to the plugin.

Finally, the start, pause, resume and stop method stubs provided during the plugin creation

had to be completed. When one of these methods is called, the plugin must send the

corresponding packet to the CIM to start / stop the periodic data transfers. This action must

be implemented inside these methods. Furthermore, in the start method, the plugin code

needs to get the connection to the COM port via the CIMPortManager and register it. In the

case of the stop method, it closes the connnection. Moreover, the start method must send

the write features command for setting the ADC update report frequency.

After the plugin programming, the last step was the registration of this plugin in the ARE.

The activation was done by adding the line: "asterics.sensor.Lipmouse.jar" to the loader.ini

file (.\AsTeRICS\bin\ARE\profile\loader.ini). Now every time the ARE is launched, it will

start the Lipmouse OSGI bundle. The Lipmouse plugin is depicted in Figure 3.14. If a

person wants to create his/her own ACS model and the Lipmouse plugin is not available in

the ACS, the component collection (containing all available plugins of the ARE) has to be

updated. There are two options: After activating the plugin in the ARE by modifying the

loader.ini file and connecting ACS and ARE the tab "Download Component Collection" in

the "System" allows all plugins loaded by the ARE to be displayed in the ACS. The other

option is to use the "Plugin Activation Wizard" tool available in the "Misc." menu.

3.5 Firmware

3.5.1 Previous Firmware

As mentioned, the first version of the firmware was based on the Arduino firmware, due to

the similarities between the Teensy and Arduino microcontrollers. In fact, the plugin used in

the first prototype was the Arduino one. In the same way, some auxiliary files were reused

in the firmware creation since the Lipmouse CIM also employs the ADC, the timers and the

USB in a similar manner as the Arduino CIM’s firmware does. In addition, the

implementation of the CIM protocol was the same.

The flow structure of the Arduino firmware is summarized in Figure 3.15. The firmware

starts configuring the parameters of the ADC, the timer and the USB interface. The clock

frequency is set to 16 MHz. After the setup, the main loop, which is continuously executed,

begins. The first step is checking if a new byte has been received. When an ARE packet is

73

received, the bytes are processed one by one using a protocol parse state machine. If the

data is correct (the data fits to the specifications), the byte will be stored until the whole

frame is received. If during the reception an error is encountered, the protocol will start

again from the beginning to search a new frame. In other words, at first, the protocol parser

is looking for the "@" (0x40) that marks off the beginning of a frame. When this byte is

detected, the protocol knows that the next byte must be the "T" character (0x54). If the

second byte was "T", means that a new frame is being received. The third byte should be

the ARE ID low byte and the fourth one the ARE ID high byte. The next field expected will

be the data length. First, the low byte will be received and -then the high byte. If the value

is correct (inside the allowed range), the protocol parser continues to the next field.

Thereby, the protocol parser is storing the successive fields of the packet until it is

complete.

Figure 3.15: Firmware flow graph

74

When an entire packet was received, it must be processed. During this operation, the ARE

reply packet is built parallel, in order to answer the request packet. The first processing

task is to identify the type of packet (i.e. the request/reply code). There are 6 possibilities

(Figure 2.7): the feature list request, the write feature request, the read feature request, the

reset CIM request, the start CIM request and the stop CIM request. For the reset packet no

action is necessary. However, if a start packet has been received, the timer must be

enabled which triggers the periodic ACD event replies. If a stop packet has been received

the timer must be disabled (in order to stop the event replies). After performing these

actions, the required reply packet must be sent (to acknowledge the reception of the

packet). In case of receiving a feature list request, the feature list is copied to the data field

of the reply packet and it is sent to the ARE. For the read/write features, the corresponding

CIM feature address must be read from the packet. The Arduino CIM features are:

Read feature

 Unique number

 Get pin values

 ADC report

Write feature

 Set pin direction

 Set pin state

 Set ADC period

 Set pin mask

 Set PWM

Nevertheless, only the unique number, ADC report and the set ADC period features are

used for the Lipmouse.

The next step in the main iteration is to check if a CIM event packet must be sent or not. As

the first version of the Lipmouse CIM inherited the Arduino source code, there were two

types of CIM event packets. One was the pin change status checking. This type of event is

not employed by the Lipmouse, so it was erased in the new version. The other was the

ADC periodical report. This CIM event is used by the Lipmouse for sending periodically the

sensor values to the ARE. The frequency of these events can be set by the user through

the plugin property “update period”. By default, this value is 0, so it has to be changed in

the ACS model; no report will be sent until this value is different from 0. The time between

two events is measured by a timer unit of the microcontroller. When the counter reaches

the desired value, the timer creates an interrupt and the ADC event reply frame is

generated (by reading the relevant ADC input pins) and transmitted to the ARE.

3.5.2 Firmware Improvements

In this subsection only the improvements fulfilled will be discussed, since the rest of the

code is inherited from the Arduino firmware. The CIM ID and the unique number were

75

substituted by the Lipmouse values. The feature addresses were modified accordingly. The

unused features, like “get pin values”, “set pin direction”, “set pin state”, were removed.

The new Lipmouse prototype can be used with a USB cable or through a Bluetooth

connection. So there are two operation modes: the USB mode and the BT mode. When a

packet is to be sent, it must be delivered by the USB or by the UART interface which is

directly connected to the BT module. Consequently, this part of the code was re-written. At

the beginning of the code, during the configuration process, the selection of the operation

mode was added. The detection consists on: switch on the microcontroller’s USB

peripheral; if the USB port is connected to USB host, it will detect a new device attached

and it will try to enumerate the device. Therefore, after switching on the USB peripheral

and waiting a second (for completing the enumeration process), the availability of the USB

connection can be checked. If the USB is operative, the USB mode must be selected. It is

preferable to use the USB, rather than the BT, since it is more robust and reliable.

Otherwise, the BT mode hast to be employed. Moreover, additional configurations had to

be implemented for the BT mode. First, a new Lipmouse features the BT module with the

default factory parameters, so it must be configured. This process is repeated every time

the firmware starts, although one time would be enough. Alternatively, the configuration

status could be saved in the EEPROM memory and checked every startup. The

configuration consists of changing the baud rate speed from 9600 bps to 57600 bps,

resetting the module and setting the role using AT commands (explained in the Section

3.1.2). The other configuration settings are: to disable the unused functions and

peripherals in order to save power and enlarge the life cycle of the battery (it is also done

with the USB mode, although in this mode the power consumption is not a problem). The

disabled peripherals are the TWI (Two-wire interface), the SPI (Serial peripheral interface)

interfaces and the Timer 3. The analog comparator, the brown-out detector and the

watchdog functions are also disabled. If the USB is employed, the UART is disabled and if

the BT is used, then the USB is disabled.

When the BT mode is being used and the USB is plugged in, the operation mode should

change. However, the availability of the USB cannot be checked in each iteration. It would

mean switching on the microprocessor’s USB peripheral; wait to the enumeration and to

examine if the configuration was done correctly. The probability of connecting the USB per

iteration is too low, so in a long term, this process would consume too much power. In

order to save energy of the battery, it was preferred to select between USB or BT at the

beginning of the firmware execution and if the user wants to change the selection, he/she

would only have to stop the ARE, reset the firmware, wait a few seconds for the

configuration and launch the ARE again.

One or more FSR sensors could deliver wrong force values (due to mechanical or

electrical problems), leading to a drift in the X- or Y-values (and the mouse cursor

respectively). The best way to counteract this effect is by adding an opposite offset value to

76

the current X and Y values. In other words, the device must be calibrated. As mentioned in

the PCB design, Section 3.3, a button was wired to an external pin change interrupt of the

microcontroller. The firmware was programmed to make a calibration each time the

interrupt is triggered, i.e. each time the button is pressed or released. The calibration

consists of reading all ADC sensor ports. These values correspond with the drift.

Therefore, the values must be subtracted in each future value to compensate the drift. The

user does not have to touch the mouth piece during the calibration in order not to alter the

measurements. The calibration only removes the constants drifts. The variable drift due to

the electronic noise cannot be suppressed with the calibration. Therefore, when the

Lipmouse is not touched, there will be values near to zero that may produce a slight drift.

These values must be removed or converted to zero by other plugins for example,

“AdjustmentCurve” plugin.

The Limpouse does not have a turn on/off button. When the USB is plugged in, since it

supplies the device, this is not a problem, but when it is unplugged, the Lipmouse is

running until the battery is depleted. In that moment, there will not be enough energy to

power the system, so it stops working. Hence, when the Lipmouse is not being used

anymore, it must reduce its activity to the minimum, in order to consume the lowest energy

possible. The two actions developed for this purpose were to switch off the BT module and

to enter the microcontroller’s "deep sleep" mode. As shown on the PCB design, Section

3.3, a MOSFET was placed between the BT ground and device ground to switch on/off the

BT module. The activation/deactivation is done via a microcontroller pin, i.e. it is done by

software. When this pin is low, the transistor does not conduct the current (the BT ground

is floating), so that the BT module is off. When the pin is high, the transistor allows the flux

of current and the BT is power on.

The sleep modes halt the different clock systems and the modules associated with these

clocks. Depending on which modules are turned off, there are 6 types of possible sleep

modes: Idle Mode, ADC Noise Reduction Mode, Power-down Mode, Power-save Mode,

Standby Mode and Extended Standby Mode. The ways of waking up the microprocessor

are different in each sleep mode: external interrupts or pin change interrupts, TWI, Timer2,

ADC, among others (Reference [37]). Figure 3.16 summarizes the active clock domains

and the wake-up sources.

The CPU clock controls the general operations, calculations, the Status Register or the

Stack Pointer, among other functions. The flash operations are regulated by the flash

clock. The I/O clock governs the peripherals like SPI, USART, port pins, timers, and so on.

It is also employed by the synchronous external interrupts. The Asynchronous clock is

used by the microprocessor's asynchronous operations. The ADC clock controls the ADC

module.

77

The USB clock is independent to the rest of the clocks and it is only running when the USB

is enabled. The difference between Power-down and Power-save and between Standby

and Extended Standby is that in the first ones the Timer2 is disabled and in the second

ones, it is enabled, so it can be used as a wake up source.

When the Lipmouse is not being used anymore, no operation, calculation, register or

peripheral is needed. Therefore, the sleep mode, which had to be employed, was the

Power-down mode, since it is the one that switches off more modules and, consequently, it

is the mode that consumes less power. The same external button was used to make the

calibration and to sleep or wake up the microcontroller. The Lipmouse cannot be

suspended if the user touches the button by accident. He/she must be aware of what it is

doing. Thus, it was established to sleep/wake up the Lipmouse if the user is pressing the

button during at least five seconds. If it is pressed shorter, the Lipmouse will not to perform

any action (only the calibration).

Figure 3.16: Active clock domains and wake up sources in the different sleep modes (Source: [37],

page 53)

The implementation for entering the sleep mode was done as follows: when the user

presses the button, a pin-change interrupt is triggered. In the Interrupt Service Routine

(ISR), the timer is set and starts counting until five seconds are elapsed. At the end of the

counting, the corresponding ISR for the timer is triggered. There, the timer is disabled

(stops running). An auxiliary variable is used to store the result - if the 5 seconds have

elapsed or not. When the button is released, this variable is checked. If the button is

released before 5 seconds, the timer stays disabled and the normal execution must

continue. Therefore, the Lipmouse will not enter in the suspend mode.

78

If the timer reaches 5 seconds, which means that the button is still pressed, the Lipmouse

must be suspended. Before sleeping/waking up the microprocessor, the BT module is

either turned off or on. In fact, this is done in the timer’s ISR.

Additional considerations had to be taken into account. The microcontroller cannot be sent

to sleep mode inside the timer ISR, since when the user will release the button, this action

will wake up the microcontroller again. In the pin change ISR, as well as in the timer ISR

case, the code for sending the microcontroller to sleep mode could not be inside the ISR ,

since the program execution would be halted inside the ISR. When the button is pressed

again, the interrupt would not be triggered, because a previous one is still being processed.

In conclusion, the sleep mode management must be done outside of the ISRs, i.e. in the

main program. This is done through another auxiliary variable. Another issue to consider is

the bounce effect of the button. When a mechanical button is pressed, the signal produced

does not change from one level to another level immediately. Due to the components

elasticity and the vibrations, there is an unstable interval during a short period of time. The

bounce effect is depicted in Figure 3.17.

.

Figure 3.17: Bounce effect (Source: [47])

The bounces may trigger undesired pin-change interrupts. The solution implemented to

avoid these unintentional interrupts, was to add a delay to the pin change ISR, to ignore

subsequent pin changes. The time cannot be set too long, because if the button is

released during this delay, the interrupt will be missed. The delay chosen for this

application was 50 ms. However, a delay is not an optimal solution. The CPU is idle during

the delay and cannot continue the normal execution of the firmware. There are hardware

solutions, for instance a simple RC filter or there are specific ICs that filter the signal as

MAX6816 from Maxim Integrated. These solutions need to modify the PCB design. Thus, it

was preferable a software solution. A simple counter that is incremented (or decremented)

until reach a value that is bounce-free. Nevertheless, the number of transition is not

constant. If the value selected is too high, the count will not be reached. Consequently, the

calibration will not be done or the sleep mode will not be set. Another option is when a

79

transition is detected, sample the button output. When a representative number of samples

have the same level, the signal is stable and bounce-free. Thus, the calibration or the sleep

mode action can be performed. This solution requires a firmware modification. It should be

developed in a future work since the delay solution was kept in this thesis.

3.6 Fuses and Memory Lock Bits Configuration

After downloading the firmware, the microcontroller fuses must be configured according to

application requirements. The fuses cannot be (un)programmed using FLIP program. This

must be done with the AVR Studio using the AVR Dragon. The fuses which should be

configured are:

 Once the microcontroller was flashed, the fuse HWBE had to be activated and the

reset button had to be pushed for downloading other firmware. When the HWB fuse

is programmed (HWBE = 0), it obliges the bootloader execution after a reset,

instead of starting to execute the firmware. The bootloader allows flashing the

microcontroller with new firmware. When the definitive version of the firmware was

downloaded, the HWBE function had to be disabled, in order to reset the device

without starting the bootloader (HWBE = 1).

 The fuse CKDIV8 is programmed (CKDIV8 = 0) by default. This fuse determines an

initial value for the Clock Prescale Register. If it remains “programmed” the system

clock will be prescaled by 8 at star up. Therefore, the fuse must be set as

unprogrammed (CKDIV8 = 1).

 The microcontroller uses a 16 MHz ceramic crystal oscillator as a clock source. The

clock source is selected by the fuses CKSEL3, CKSEL2, CKSEL1 and CKSEL0.

The default values are: CKSEL3 = 1 (unprogrammed), CKSEL2 = 1

(unprogrammed), CKSEL1 = 1 (unprogrammed) and CKSEL0 = 0 (programmed).

These values correspond to a ceramic resonator (slowly rising power) with a

frequency range between 8.0 – 16 MHz. Therefore, these fuses should not be

modified.

For further information about microcontroller fuses consult [37], page 367 and ff.

Besides fuses bits, there are other special bits that must be taken into account, the data

memory lock bits (see [37], page 366). If the bootloader lock (memory protection in boot

section) bits are disabled, the bootloader will be erased during the firmware download.

Therefore, the FLIP tool cannot be used for subsequent firmware downloads. In this case

the AVR Dragon connected via JTAG is the only way to change firmware. By default, the

bootloader lock is disabled. Hence, if a user wants to use the FLIP for flashing the

microcontroller, he/she must enable the bootloader lock using also the AVR Studio and the

AVR Dragon.

80

 Tests, Evaluations and Results 4

4.1 Board Assembling and Test

The PCB designs described in Section 3.3 were sent to a board manufacturer to build the

daughter and the main boards. The components for the boards were also ordered. When

all components arrived, they were soldered to the corresponding boards. Four copies of

each board were requested in order to make four prototypes.

The first board was soldered by hand. The components were placed in their corresponding

positions on the PCB. The metallic contacts had to touch the solder pad. Then both parts

were heated with the soldering iron and when they were hot enough, the tin was melted

with the head of the soldering iron connecting the component to the solder pad. The

components were soldered one by one. First, the most difficult ones were soldered (the

more elements surround the target component, the more difficult it is to solder). The

soldering process is depicted in Figure 4.1.

Figure 4.1: The soldering process of the main board

The next step was to check if all electrical connections were right. If there was a short

circuit and the board is powered, the board or USB supply could be damaged. This

inspection was done with a multimeter and some faults were discovered. The first error

was a via that was close to a solder pad with an excessive amount of tin. The amount of tin

was enough to short circuit the solder pad and the via. The surplus material was removed

from the via with solder wick. Another problem found was that the Schottky diode was

incorrectly soldered. The direction of the diode was wrong. The diode was removed and

soldered in the correct position. The LEDs did not have any mark to guess the correct

direction and they were also soldered in the wrong direction. Hence, they had to be re-

soldered in the suitable direction.

The other three boards left were soldered using a reflow oven. This process consisted of

applying a solder paste to the solder pads of the board through a metallic mask. Once the

solder paste had been applied to all solder pads, the components were placed in their

corresponding positions on the solder paste.

(a) Main board during the soldering

process

(b) Main board finished

81

After that, the board was put into the reflow oven. The oven heats the board until the solder

paste is melted, using a pre-defined heat profile for about 10 minutes. Then the board is

cooled, solidifying the tin between the solder pads and the metallic connectors of the

components. All components cannot be soldered with this technique and some of them

had to be soldered by hand, as for example the BT module. A better, robust, effective,

faster and more professional result was achieved with this technique, rather than using the

traditional hand soldering.

The components of the daughter board were also soldered. The resistor and the FSR

sensors were soldered in their corresponding places. Afterwards, one of the small plastic

plates was glued to the board and the head of the sensors was glued in front of the plate.

Finally, the connector for plugging it to the main board was soldered. The result is

displayed in Figure 4.2. For connection of the board to the AVR Dragon, a JTAG adapter

cable was made. A male JST-connector compatible with the board connector was soldered

to a 2x5 pin header which plugs it into the JTAG cable of the AVR Dragon. Figure 4.2

shows a picture of this cable.

 Figure 4.2: The daughter board finished Figure 4.3: JTAG transition cable

When all electrical connections were correct, the USB cable could be plugged into the

Lipmouse CIM to test the software. The first time, drivers for the USB were installed and

the USB was enumerated correctly. There was no previous firmware flashed on the

microprocessor, so the bootloader was executed and the microprocessor could be flashed

with the Atmel FLIP tool.

82

4.2 Software Test

As will be explained in Section 4.6, there was a problem in the board that could not be

solved satisfactorily. This malfunction causes a reset in the firmware when the BT module

is switched on via the MOSFET transistor. After the firmware execution the BT module is

turned on originating an infinite loop resetting continuously the firmware.

Therefore, the board was tested without the MOSFET transistor. The solder pads of the

source and the drain were soldered through an air wire. Thus, the BT module ground was

connected directly to the device's ground and the BT module was always ‘on’. Then, the

board was working without any problem. The USB and the BT mode both worked as

expected. The calibrations were done properly and when there was an unintentional drift,

the user button was pressed and the measures became zero, showing that the calibration

worked. The Lipmouse suspension was also checked. When the button was pressed for 5

seconds or longer, after releasing it, the microprocessor was sent to sleep. No sensor

value was sent anymore, the activity of the Lipmouse stopped. If the button was pushed

again for 5 seconds or longer, after releasing the button, the Lipmouse continued with its

normal operation. If the button was pressed for less than 5 seconds, the Lipmouse kept on

sleeping or running, respectively.

The sensitivity of the sensors was also tested in the ARE. According to the sensor pressed,

the mouse cursor moved following the desired direction. Therefore, with this set-up, the

Lipmouse plugin software and the board firmware worked as intended.

As the firmware works when bypassing the MOSFET transistor terminals with an air wire,

the following step was to simulate the switch operation in a manual way. The air wire was

modified with a pin header connector in order to connect and disconnect the ground by

hand. The board was tested again. When the suspension button was pressed during five

seconds, the microcontroller went to sleep and the air wire was disconnected manually.

Thus, the BT module was shut down and the activity at the ARE was stopped. Before

waking-up the microcontroller, the air wire was connected again. Then, the button was

pressed for five seconds to wake up the controller. However, the Lipmouse plugin did not

react. This occurs because the firmware switches off the Bluetooth module during the

“sleep mode”. After establishing again the normal operation, the module is switched on so

a reset is triggered due to the problem mentioned above. The solution was to stop the

ARE, to reconnect the air wire, to wait for the establishment of the BT connection, to

launch the ARE again and to press the user button in order to wake up the microcontroller.

The result was that the ARE worked again since the switch-on function was done manually

instead of by software and the reset only happened once.

Finally, the USB mode never showed a problem again. The USB mode worked correctly as

expected. To change between the USB mode and the BT mode, the USB cable must be

83

plugged (for USB) or unplugged (for BT) and the board must be reset through the reset

button. Then the firmware starts again and detects if the USB is available. Otherwise, BT

mode is selected. In order to change the mode, the following actions should be performed:

the ARE must be stopped, the USB cable should be dis/connected and the ARE should be

restarted. In the case of the BT, the ARE cannot be launched again until the Bluetooth

connection is established.

4.3 Current Measurement

The current consumed by the Lipmouse was measured in the different types of scenarios.

A multimeter with a resolution of milliamperes was used for the empirical measurement of

the current and the battery cable was manipulated, in order to place the multimeter in

series with the battery cable. Thus, the current flowing in/out of the battery could be

measured. The measures were taken only in the BT mode since the power consumption is

not a critical issue when connected to USB.

The theoretical current consumption is:

 The microcontroller (active, 8 MHz and = 3 V): 5 mA typical, 10 mA maximum.

 The microcontroller (power-down mode, watchdog and brown-out detector

disabled, = 3 V): 2 µA typical.

 The Bluetooth module (active): 8.5 mA.

 The LDO: 2 µA typical, 5 µA maximum.

 The charger IC (charging): 2500 µA typical, 3750 µA maximum.

 The charger IC (charge complete): 260 µA typical, 350 µA maximum.

 The charger IC (standby): 180 µA typical, 300 µA maximum.

 The charger IC (shutdown): 28 µA typical, 50 µA maximum.

 The LED and the resistor of the BT module status (assuming that PIO1 has an

output voltage of 3.3 V; not specified in the data sheet): 7.02 mA.

 The transistors: A transistor, when conducts, part of the current is dissipated as

heat. It means that a small part of the current is absorbed by the transistor showing

a resistive behaviour. It is described by the (ON) parameter. The graphs of the

data sheet do not offer enough resolution since the current is very small. In the

case of the FD360P, (ON) = 100 mΩ. Thus, = 0.3 mV (calculated

approximately with transistor equations), implies that the current absorbed by the

84

transistor is 3 mA. An analogous result for the TSM2306 transistor shows a

consumption of 2 mA. These values are approximations.

 The ferrite beads and the capacitors do not dissipate electric power. The resistive

effect is low, so it can be neglected.

 The power dissipated by the voltage divider of the pressure sensors was also

neglected. The FSR resistance is >10 MΩ (no pressed) or several kΩ (pressed),

plus the 10 kΩof the voltage divisor resistor. In the worst case, it is below 0.3 mA.

The current measures were done with the air wire version board due to the problems with

the BT power switching which have been described in the previous section. The

measurements were done without the MOSFET transistor. The Lipmouse in the active

mode should consume theoretically: 5 to 10 mA + 8.5 mA + 0.3 mA + 7 mA + 3 mA ≈ 23.8

to 28.8 mA. If the microcontroller was in the power-down mode and the BT was powered,

the consumption would be: 2 µA + 8.5 mA + 0.3 mA + 7 mA + 3 mA ≈ 18.8 mA. If the BT

system was switched off (BT module + LED), it would be: 2 µA + 0.3 mA + 3 mA ≈ 3.3 mA.

The issue is that the 7 mA of the BT module status LED and the 3 mA consumed by the

load sharing system transistor may not correspond with the reality.

According to the empirical results, when the Lipmouse is running in normal operation, it

consumes almost 25 mA, Figure 4.4 (a). When the microprocessor is sent to sleep and the

BT is still powered on, the current measured in this case was approximately 15 mA, Figure

4.4 (b). If the BT system is shut down, the consumption goes down to 3.75 mA, Figure 4.4

(c). These results agreed with the theoretical values: 25 mA is inside the range 23.8 to 28.8

mA, 15 mA ≈ 18.8 mA and 3.75 mA ≈ 3.3 mA.

Furthermore, the current during the battery charge was measured. The resistor for setting

the current in the fast charge period was selected in order to have a current of 200 mA

during this phase. The precondition current, i.e. trickle charge period before the fast charge

phase, is between 7.5 - 12.5 % of the value of the fast charge current. This leads to a

current value between 15 mA - 25 mA. The measures were: 23 mA during the precondition

period and 199 mA during the fast charge phase matching with the theoretical values.

The duration of the battery can be determined approximately through the power

consumption. The capacity of the battery is 1000 mAh. This value decreases slightly with

the number of dis/charging cycles. The Lipmouse consumes 25 mA. Therefore, the

duration of the battery will be 40 hours. The Lipmouse has enough autonomy to be used

for a couple of days. Moreover, a current of 200 mA means that the battery will be

completely charged in approximately 5 hours. In conclusion, the Lipmouse will be always

ready to use since it can be used during the day and charged during the night.

85

Figure 4.4: Current measurement

4.4 The Bluetooth Coverage

Another fact of interest is the range where the device can be used. The different types of

obstacles cause: diffractions, reflections (multipath effect), scattering, absorptions or guide

wave effects. These effects and other applications using the same frequency-bands inside

the Lipmouse coverage, degrade the RF signal. Moreover, the media is not static and is

continuously changing (shadowing and fading). There are not two identical scenarios.

Therefore, the coverage values are always estimations.

The typical scenario of the Lipmouse usage is inside a room where the user handles the

computer from a few meters distance according her/his necessities. Since the user needs

to see the computer screen, in most cases the Lipmouse and the dongle receiver will be in

line-of-sight, i.e. without obstacles between them.

There are more or less complex models for RF coverage and many of them were deducted

from collections of empirical measurements. These models offer good approximations

(a) Current consumed by

the Lipmouse running in

normal operation

(b) Current consumed by
the Lipmouse in the sleep
mode and the BT switched

on

(c) Current consumed by

the Lipmouse in the sleep

mode and the BT switched

off

86

under certain conditions as for instance Okumura-Hata or Walfisch-Ikegami (chapter 4 of

COST Action 231, [48]). On the one hand, the simplest models do not offer accurate

values, only a general idea of the maximum distance between the transmitter and the

receiver. On the other hand, the most complex models have a lot of variables to take in

account and a deep analysis of the whole parameter space is required. These models are

difficult to compute. However, they offer better results.

The path loss computation using the simplest model of indoor propagation models from

COST 231, the "one-slope model" ([48]), is:

where

 = the path loss at 1 meter of distance,

 = power decay index,

 = distance between transmitter and receiver in meters.

The power emitted by the transmitter is 0 dBm. The sensitivity of the receiver is not

explicitly given in the data sheet of the BT devices. Nevertheless, the BT standard says

that the minimum sensitivity of a receiver must be at least -70 dBm for a bit error rate of 0.1

%. Taking these parameters into account and assuming = 33.3 dB and = 4.0, (the

same values that the Table 4.7.2 of [48]), leads to:

8.27m is the maximum theoretical distance between the transmitter and the receiver. This

result is not accurate, but gives an idea about how much the maximum distance between

the Lipmouse and the PC with a direct line-of-sight.

Moreover, some empirical measurements of the Lipmouse coverage were done. For that,

various samples were taken among different points of two different rooms. The rooms

tested were a 4 m x 3 m bedroom and a 8 x 14 mm hall. The Figure 4.5 shows an image of

the test realized in the hall. The result obtained was that the Lipmouse worked properly

without any failures in the different points tested in both rooms. The range was also

measured between rooms. With only one wall between the PC and the Lipmouse, it was

still running. But with 2 or more walls, the application began to lose packets.

87

Figure 4.5: Test of the indoor coverage

The coverage was measured outdoors in order to measure the limit of the range. It was

observed that with a separation distance of 40 meters the application begins to receive

faulty packets. An example of the defective packets received is depicted in Figure 4.6. This

produces a loss of sensitivity in the cursor movements. The stumbling movements make it

impractical for the use of the Lipmouse when the ARE is continuously receiving faulty

packets. However, the dongle and the BT module were still paired. To lose the BT

connection, a distance of at least 60 meters was necessary (these measurements were

done with direct line-of-sight.)

The test revealed that the BT connection works well and the Lipmouse could be used

without any problem in a wide range of applications.

Figure 4.6: Faulty packets received

4.5 Applications

The objective of the Lipmouse is to provide a mouse emulator for people with motor

problems in their upper limbs. A way of interacting with a computer will be provided to such

88

individuals. For that purpose, the required elements are the Lipmouse, a computer with the

AsTeRICS software installed, and a suitable AsTeRICS model which interconnects the

Lipmouse plugin with other suitable plugins to provide the desired functionality to the user.

This section will focus on how a user or a developer must configure such a model.

For setting a simple model, the steps required are:

 Open the ACS editor.

 When the ACS is ready, click on the tab "Components".

 Select "Sensors" →"Standard Input Devices" → "Lipmouse" and drag the Lipmouse

icon to a suitable position.

 Select "Processors" → "Basic Math" → "Threshold" and move it next to the

Lipmouse.

 Select "Actuators" → "Input Device Emulation" → "Mouse" and move in front of the

Lipmouse.

 Connect the output "x" of the Lipmouse with the input "mouseX" of the Mouse. An

analogue step must be performed for the "y" output and the "mouseY" input.

 Connect the "pressure" output with the input "in" of the Threshold plugin. Connect

the event trigger of the Threshold with the event listener of the Mouse. Select the

event channel created, and for the "leftClick" event listener, choose

"eventNegEdge".

 Select the Lipmouse and set the property "periodicADCupdate" to 30.

 Select the Threshold and set the properties as: "thresholdHigh" to 490,

"thresholdLow" to 490 and "eventCondition" to "above->below". The rest of the

properties do not need to be modified.

 Select the property "enableMouse" of the Mouse properties.

 Launch the ARE and connect it to the ACS through the tab "System" → "Connect to

ARE" in the ACS editor.

 Click "Upload Model" and the "Start Model".

 Now the mouse cursor will be controlled via the Lipmouse and left mouse clicks can

be generated via sip/puff actions.

The result obtained is depicted Figure 4.7.

89

Figure 4.7: The example ACS model

Due to the electrical noise, this model does not work optimally, since there is a slight

tremor in the cursor. As the electrical noise is fluctuating continuously, it could not be

suppressed with the calibration. This problem can be solved with the AdjustmentCurve

plugin ("Processors" → "Signal Shaping" → "AdjustmentCurve"). With this plugin, samples

near to zero, caused by the electrical noise could be rejected. An example of this is the

model showed in Figure 4.8.

The Figure 4.8 is a functional model and can be used without any tremor problem. At this

point, the Lipmouse is ready for operation. The steps to follow are: first of all the ARE must

be launched and the ACS model must be uploaded. Secondly, the Lipmouse hardware

must be powered on or if it is already turned on, it must be reset. Then the model can be

started. If a problem occurs during the execution or the user wants to wake up the device,

the user must stop the ARE. After that the user must reset the Lipmouse and, in the case

of the BT mode, he/she has to wait until the BT connection is established. Finally the ARE

should be started. More sophisticated models can be developed including the use of other

sensors and actuators. The combinations and the possibilities are wide.

90

Figure 4.8: A more complex ACS model to use the Lipmouse

4.6 Remaining issues

During the software test, it was discovered that when the BT module is switched on

through the MOSFET transistor, the board is apparently reset. Therefore, the firmware

restarts and when the BT module is switched on again, the firmware is reset for a second

time. This issue happens again and again, causing an infinite loop that does not allow to

continue with the firmware execution. This problem could be caused by short breakdown of

the supply voltage. When the BT module is turned on, the supply trace suffers a change in

its impedance. Moreover, the bypass capacitor of the module must be charged. This may

cause the power supply instability and thus the malfunction of the microcontroller.

One attempt to solve the problem was to change the resistor between the MOSFET's gate

and the microcontroller pin by another resistor with a larger value. The resistor was

substituted by a 1 kΩ (the value was multiplied by ten). Technically, this action will reduce

the speed of the transistor response and the instability in the supply voltage trace should

be lower. This attempt did not solve the problem, the resets continued to happen. As the

problem was switching on the BT module, the code for performing this action was moved

to the beginning of the program in order to do it as soon as possible. It worked in the hand

soldered board. Nevertheless, when the same firmware was downloaded to one of the

reflow boards, the reset problem was still there. So the problem was solved in one case,

but not in all assembled devices. At the time of the conclusion of this thesis, it could not be

found an explanation to why works in the hand soldered board and no in the other boards.

Furthermore, a satisfactory solution to this issue was not found.

91

 Conclusion 5

The results achieved were positive. The PCB design and construction were successfully

accomplished. The battery system offers enough autonomy. The firmware and the plugin

run as expected. Hence, Lipmouse is a device ready to use.

The Lipmouse project is not finished yet. Although it is a functional device and can be used

without any problem, the project is still going on. The problem with the power supply trace

and switch on/off of the BT module must be reviewed. In addition, other types of

improvements could be incorporated. For example the clicking system of the Mouse plugin

cannot be directly connected with the pressure output of the Lipmouse. It must be done

through a threshold component. Therefore, the threshold could be integrated inside the

Lipmouse plugin. A remodelling of the enclosure and the incorporation of a membrane for

the mouthpiece, in order to avoid the accumulation of saliva and the proliferation of

bacteria, must be accomplished in a future work.

This project offers the possibility of a computer access to people with physical problems in

their upper limbs. The Lipmouse can be combined with other systems, based on the

AsTeRICS platform and personalized solutions for these people could be created. It will

allow them to be more independent and to enhance their quality of life. In summary, the

prospects of the Lipmouse project are very promising.

92

Bibliography
[1] ATIA, "What is Assistive Technology? How Is It Funded?"

http://www.atia.org/i4a/pages/index.cfm?pageid=3859 [Available on 07.05.2014].

[2] ATP, "III. Definitions and legal requirements", 2008,

http://www.atp.ne.gov/techassist/def-legal.html [Available on 07.05.2014].

[3] IDEA, "Definition: Assistive technology device", 2004,

http://idea.ed.gov/explore/view/p/,root,statute,I,A,602,1, [Available on 07.05.2014].

[4] Infogrip, "Infogrip web page", http://www.infogrip.com/[Available on 08.05.2014].

[5] EnableMart, "Enablemart web page", http://www.enablemart.com/ [Available on

08.05.2014].

[6] AbleData, "AbleData web page", http://www.abledata.com/ [Available on

08.05.2014].

[7] Attainment Company, "Attainment Comapnay web page",

http://www.attainmentcompany.com/assistive-technology [Available on 08.05.2014].

[8] Enabling Devices, "Enabling Devices web page",

http://enablingdevices.com/catalog[Available on 08.05.2014].

[9] AbleNet, "AbleNet web page", http://www.ablenetinc.com/Assistive-Technology

[Available on 08.05.2014].

[10] LIFEtool, "IntegraMouse", http://integramouse.com/index_en.html [Available on

08.05.2014].

[11] Compusult Limited, "Josue 2 and Josue 3", http://www.jouse.com/jouse3/home

[Available on 08.05.2014].

[12] Adaptive Computer Control Technologies Inc, "Lipsync", the official web page

seems not exist, taken from

http://www.abledata.com/abledata.cfm?pageid=113583&top=0&productid=192238&

trail=0 [Available on 08.05.2014].

[13] QuadJoy, "QuadJoy 3", http://quadjoy.com/ [Available on 08.05.2014].

[14] TetraLite Products, "TetraMouse Xs and TetraMouse XA", http://tetramouse.com/

[Available on 08.05.2014].

[15] R. Haderer, "Application, extension and evaluation of AsTeRICS", 2014, Master

Thesis, University of Applied Science Technikum Wien.

[16] AsTeRICS, "AsTeRICS logo", 2010, http://www.asterics.eu [Available on

15.04.2014].

93

[17] AsTeRICS, "AsTeRICS User Manual version 2.2", 2013,

http://www.asterics.eu/index.php?id=51 [Available on 12.05.2014].

[18] AsTeRICS, "AsTeRICS Developer Manual version 2.2", 2013,

http://www.asterics.eu/index.php?id=51 [Available on 12.05.2014].

[19] WinAVR, "WinAVR official web page", http://winavr.sourceforge.net/ [Available on

27.05.2014].

[20] The Eclipse Foundation, "Eclipse project official web page", http://www.eclipse.org/

[Available on 27.05.2014].

[21] CadSoft Computer, "EAGLE offcial web page", http://www.cadsoftusa.com/

[Available on 28.05.2014].

[22] PJRC, “Teensy++ 2.0 vendor”, http://www.pjrc.com/teensy/ [Available on

28.05.2014].

[23] Atmel Corporation, "Key parameters for AT90USB1286",

http://www.atmel.com/devices/at90usb1286.aspx?tab=parameters [Available on

28.05.2014].

[24] JNHuaMao Technology Company, “Bluetooth Low Energy devices vendor”,

http://www.jnhuamao.cn/bluetooth.asp?ID=1 [Available on 28.05.2014].

[25] JNHuaMao Technology Company, "HM Bluetooth module datasheet", 2014.

[26] ITEAD Intelligent Systems Co.Ltd, "Serial Port BLE Module (Master/Slave) : HM-

10", http://imall.iteadstudio.com/im130614001.html [Available on 17.04.2014].

[27] Freescale Semiconductor, "MP3V7007 data sheet",

http://www.freescale.com/les/sensors/doc/data_sheet/MP3V7007.pdf [Available on

29.05.2014].

[28] Interlink Electronics, "FSR400 data sheet",

http://media.digikey.com/pdf/Data%20Sheets/Interlink%20Electronics.PDF/FSR400

_Series.pdf [Available on 29.05.2014].

[29] Everwin Tech Co., "Battery data sheet",

https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf

[Available on 30.05.2014].

[30] Bluetooth SIG, Inc., "Technology Overview",

https://developer.bluetooth.org/TechnologyOverview/Pages/Technology-

Overview.aspx [Available on 16.04.2014].

[31] N. Gupta, "Inside Bluetooth Low Energy", Artech House, 2013.

94

[32] IEEE, "IEEE Standard 802.15.1: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specications for Wireless Personal Area Networks

(WPANs)", 2002, http://standards.ieee.org/findstds/standard/802.15.1-2002.html

[Available on 22.04.2014].

[33] Bluetooth SIG, Inc., "Bluetooth Core Specication, version 4.1", December 2013,

https://www.bluetooth.org/en-us/specification/adopted-specifications/ [Available on

16.04.2014].

[34] S. Haykin, “Communication Systems”,4th ed. John Wiley & Sons, 2000.

[35] JNHuaMao Technology Company, "HM BLE USB Dongle datasheet", 2013.

[36] Tobias Hammer, "HTerm version 0.8.1 beta", 2006, http://www.der-

hammer.info/terminal/ [Available on 18.04.2014].

[37] Atmel Corporation, "AT90USB1286 manual", 2012,

http://www.atmel.com/Images/doc7593.pdf [Available on 22.04.2014].

[38] D. Linden and T. B. Reddy, "Handbook of batteries", 3rd ed. McGraw-Hill, 2002.

[39] R. M. Dell and D. A. J. Rand, "Understanding Batteries", 1st ed. The Royal Society

of Chemistry, 2001.

[40] SparkFun Electronics , "Polymer Lithium Ion Battery - 1000mAh, product number

PRT-00339", https://www.sparkfun.com/products/339 [Available on 30.04.2014].

[41] S. Dearborn, "Charging Li-ion Batteries for Maximum Run Times", April 2005.

[42] G. Paparrizos, "Fundamentals of battery charging: Part 1", May 2011.

[43] IEEE, “IEEE Standard 1149.1: Standard for Test Access Port and Boundary-Scan

Architecture”, 2013, http://standards.ieee.org/findstds/standard/1149.1-2013.html

[Available on 30.04.2014].

[44] Maxim Integrated, "Application Note 913: Switch-Mode, Linear, and Pulse Charging

Techniques for Li+ Battery in Mobile Phones and PDAs", 2002,

http://www.maximintegrated.com/en/app-notes/index.mvp/id/913 [Available on

09.06.2014].

[45] B. Chu, "Application Note 1149, AN1149", Microchip Technology Inc., 2008,

http://ww1.microchip.com/downloads/en/AppNotes/01149c.pdf [Available on

06.05.2014].

[46] Maxim Integrated, "MAX8606ETD+ data sheet", Maxim Integrated Products Inc.,

2008, http://datasheets.maximintegrated.com/en/ds/MAX8606.pdf [Available on

04.05.2014].

95

[47] M. Verle, "PIC Microcontrollers - Programming in C", 1st edition mikroElektronika,

2009 http://www.mikroe.com/chapters/view/17/chapter-4-examples/ [Available on

03.06.2014].

[48] European Commission, Directorate General XIII " Telecommunications, Information

Market, and Exploitation of Research ", "COST Action 231: Digital Mobile Radio

Towards Future Generation Systems : Final Report", 1999,

http://www.cost.eu/domains_actions/ict/Actions/231 [Available on 06.06.2014].

96

List of Figures

Figure 1.1: Different types of switches .. 7

Figure 1.2: Different types of keyboards ... 8

Figure 1.3: Different types of joysticks .. 8

Figure 1.4: Different types of mice .. 9

Figure 1.5: Different types of mouth controlled mice ..10

Figure 1.6: The first prototype of the Lipmouse ...11

Figure 2.1: AsTeRICS logo (Source: [16]) ...12

Figure 2.2: AsTeRICS system outline (Source: [17] , page 7) ...14

Figure 2.3: ARE front panel (Source: [17], page 7 and 9) ..15

Figure 2.4: Module example (Source: [17], page 21) ...16

Figure 2.5: Example of a finished model (Source: [17]) ...16

Figure 2.6: Example of a CIM feature list, the HID actuator (Source: [18], page 56)17

Figure 2.7: Different types of CIM packets (Source: [18], page 55)18

Figure 2.8: CIM packets field structure ..19

Figure 2.9: The Plugin Creation Wizard (Source: [18], page 20) ..20

Figure 2.10: AVR Studio logo ..21

Figure 2.11: Eclipse logo (Source [20]) ...21

Figure 2.12: The AVR Dragon ...22

Figure 2.13:EAGLE logo (Source: [21]) ...22

Figure 2.14: The eval board and microcontroller employed during the project development.

 ..24

Figure 2.15: The BLE devices employed for the wireless communication25

Figure 2.16 MP3V7007GP sip and puff sensor ...26

Figure 2.17: FSR400 pressure sensors ...27

Figure 2.18: The battery employed for powering the Lipmouse ...28

Figure 2.19: Lipmouse's scheme (Source: [15]) ..29

Figure 3.1: The BT protocol stack (Source: [32], page 23) ...32

Figure 3.2: The BT network architecture (Source: [33], page 348)34

Figure 3.3: The BT state diagram (Source: [33], page 441) ...35

Figure 3.4: The Li-ion charging cycle (Source: [41]) ..47

Figure 3.5: The different charger types ..49

Figure 3.6: IC charger footprint..57

Figure 3.7: First board design..61

Figure 3.8: First schematic design ...62

Figure 3.9: Daughter board design ..64

Figure 3.10: Load sharing circuit (Source: [45]) ...65

Figure 3.11: Fourth board design ..67

Figure 3.12: Fourth schematic design ...68

Figure 3.13: Arduino plugin ...69

97

Figure 3.14: Lipmouse plugin ..71

Figure 3.15: Firmware flow graph ..73

Figure 3.16: Active clock domains and wake up sources in the different sleep modes

(Source: [37], page 53) ...77

Figure 3.17: Bounce effect (Source: [47]) ..78

Figure 4.1: The soldering process of the main board ...80

Figure 4.2: The daughter board finished ..81

Figure 4.3: JTAG transition cable ..81

Figure 4.4: Current measurement ...85

Figure 4.5: Test of the indoor coverage ...87

Figure 4.6: Faulty packets received ...87

Figure 4.7: The example ACS model...89

Figure 4.8: A more complex ACS model to use the Lipmouse ...90

Figure A.1: The dongle COM port ... 101

Figure A.2: HTerm ... 102

Figure A.3: Restoring the factory default settings of the dongle 102

Figure A.4: Setting the dongle as a master device .. 103

98

List of Tables
Table 2.1: Main features of AT90USB1286 microprocessor (Source: [23])24

Table 2.2: MP3V7007GP main features (Source: [27]) ..27

Table 2.3: FSR400 main features (Source: [28]) ...27

Table 2.4: Battery specifications (Source: [29]) ...28

Table 3.1: BT Classic power classes (Source: [33], page 320) ..33

Table 3.2: BLE power range (Source: [33], page 2483) ...33

Table 3.3: Most important AT commands extracted from the datasheets. To see the whole

list, consult [25] and [35]..37

Table 3.4: Baud rate errors at 8MHz. Normal Speed mode (U2Xn = 0) and Double Speed

mode ...40

Table 3.5: Baud rate errors ...42

Table 3.6: Battery parameters of the most typical chemistries (Source: modified from [38],

chapter 22) ..46

Table 3.7: IC charger proposal ..52

Table 3.8: and control signals (Source: [46], page 9) ...58

Table 3.9: The bill of materials ordered ¡Error! Marcador no definido.

Table 3.10: Lipmouse feature list ..70

Table B.1: Table B.1: The bill of materials ordered for the PCB……………………....…......104

99

List of Abbreviations

ACS AsTeRICS Configuration Suite

ADC Analog-Digital Converter

ALU Aritmetic Logic Unit

AsTeRICS Assistive Technology Rapid Integration & Construction Set

AT Assitive Technology

AT (command) ATtention (Hayes command terminology)

BLE Bluetooth Low Energy

CAD

CIM

Computer Aided Design

Communication Interface Module

CRC Cyclic Redundancy Check

CPU Central Processing Unit

EAGLE Easily Applicable Graphical Layout Editor

GFSK Gaussian Frequency Shift Keying

HID Human Interface Device

IC Integrated Circuit

ID

IDE

Identification

Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

I/O Input and Output

IrDA Infrared Data Association

ISM Industrial, Scientific and Medical

I-V

ISR

Intensity (electrical current) vs Voltage

Interrupt Service Routine

JTAG Joint Test Action Group

LED Light Emitting Diode

LDO Low Drop Out (regulator)

MAC Media Access Control

NFC Near Field Communication

NTC Negative Temperature Coefficient

OSI Open Systems Interconnection

PSK Phase Shift Keying

PC

PCB

Personal Computer

Printed Circuit Board

RISC Reduced Instruction Set Computer

RF Radio Frequency

RFID Radio Frequency Identification

SIG Special Interest Group

SMD Surface Mount Device

SPI Serial Peripheral Interface

TDD Time Division Duplex

TDMA Time Division Multiple Access

100

TWI Two Wire Interface

USB Universal Serial Bus

UWB Ultra Wide Band

WPAN Wireless Personal Area Network

WWW World Wide Web

101

A: Configuring the Bluetooth Dongle
As mentioned, the Bluetooth dongle needs to be configured before being used. It must be

set as a master device. The first step is to install a terminal program for opening the BLE-

dongle’s virtual COM port and sending the commands to this COM port. There are many

free terminal programs available. Here, the configuration will be explained using the HTerm

program (Reference [36]). This software can be downloaded for free and runs on Windows

and Linux platforms.

The first step is to plug the BLE USB dongle into the computer and to open the "Device

Manager". After the enumeration, the device will be visible in the COM port section, see

Figure A.1. In the example, the port number is COM4. The next task is to open the terminal

program.

Figure A.1: The dongle COM port

In the case of HTerm, a window similar to Figure A.2 should appear. The first step is to

select the corresponding COM port from the list, in this case COM4. If it has not appeared,

click on the "R" button in order to refresh the COM ports. After selecting the suitable COM

port, click on "Connect".

If there was no problem, the AT commands can be sent now. The first command to be sent

must be "AT+RENEW", to delete a previous configuration in the dongle. This command

restores the factory default settings. The dongle will respond "OK+RENEW", see Figure

A.3. For the change to be effective, the dongle must be powered off and powered on again.

102

For that purpose, click the "Disconnect" button, unplug the dongle, plug it again and click

the "Connect" button again. Now, the command for changing the role to master must be

sent, "AT+ROLE1". If the dongle answers with "OK+Set:1", the dongle is configured and

ready to be used, see Figure A.4. It will try to pair with the first slave device available.

Figure A.2: HTerm

Figure A.3: Restoring the factory default settings of the dongle

103

Figure A.4: Setting the dongle as a master device

Note: At the first time of use or after a renew command (AT+RENEW), the dongle will

search for any available slave and will try to establish a connection with this device. If the

connection is done successfully, the dongle will save its MAC address and, in a future

connection, will only search for that device. It will not pair with another device. Therefore, if

the dongle has to connect with a different device, it must delete the previous address. An

easy way to delete this address is to send a renew command as it was explained in this

appendix.

104

B: Bill of materials

T
a
b
le

 B
.1

:
T

h
e
 b

ill
 o

f
m

a
te

ri
a
ls

 o
rd

e
re

d
 f

o
r

th
e

 P
C

B

	Master Thesis Alberto Ibanez

