
 
 

 

 

 

 

 

 

 

 

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS 

INDUSTRIALES Y DE TELECOMUNICACIÓN 

 

 

Titulación : 

 

INGENIERO DE TELECOMUNICACIÓN 

 

 

Título del proyecto: 

 

SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

 

 

      Hugo Arguiñáriz Bridonneau 

Tutor: Javier Navallas 

Pamplona, 20 de Junio de 2014 

 
 



 

(This page was intentionally left blank) 

  



 
 

Table of Contents 

1- INTRODUCTION .................................................................................................................................................... 1 

Project context ......................................................................................................................................................... 1 

Introducing the Galileo GNSS ................................................................................................................................... 1 

Brief GNSS overview ................................................................................................................................................. 3 

Ways to improve correlation performance .............................................................................................................. 7 

The core of the Project: CMUL operation ................................................................................................................ 8 

Introducing the LEON processor .............................................................................................................................. 9 

VHDL concepts overview ........................................................................................................................................ 10 

2- PROJECT SUMMARY ........................................................................................................................................... 11 

3- BACKGROUND .................................................................................................................................................... 12 

4- OBJECTIVES ......................................................................................................................................................... 13 

5- ORIGINAL SPECIFICATION ................................................................................................................................... 13 

6- CONSTRAINTS ..................................................................................................................................................... 14 

7- IMPLEMENTATION.............................................................................................................................................. 15 

7.1- Mapping the new instructions onto available opcodes .................................................................................. 15 

7.2- The new instructions ....................................................................................................................................... 16 

Operations on 1 bit codes ................................................................................................................................... 16 

Operations on 2 bit codes ................................................................................................................................... 17 

Operations on 3 bit codes ................................................................................................................................... 18 

7.3- Modifying the pipeline .................................................................................................................................... 21 

8- VHDL files modification ...................................................................................................................................... 24 

8.1- New VHDL files added to LEON ....................................................................................................................... 24 

8.2- OLD LEON VHDL FILES THAT NEED TO BE MODIFIED ...................................................................................... 25 

9- HOW TO ADD NEW OPCODES INTO THE BINUTILS ASSEMBLER ........................................................................ 26 

9.1- FILES THAT HAVE TO BE MODIFIED ............................................................................................................. 26 

9.2- OTHER FILES THAT MUST BE ADDED TO THE BINUTILS DIRECTORY ........................................................... 29 

10- BUILDING THE BINUTILS AND GCC TOOLCHAIN ............................................................................................. 30 

10.1 - HOW TO BUILD BINUTILS FROM SCRATCH .................................................................................................. 30 

10.2 - HOW TO BUILD GCC FROM SCRATCH .......................................................................................................... 30 

11- RESULTS .......................................................................................................................................................... 34 

12- FURTHER DEVELOPEMENT ............................................................................................................................. 37 

Reference documents ................................................................................................................................................ 38 



 

 

Table of figures 

Figure 1: Aerial view of ESTEC (left) and ESA locations (right) ..................................................................................... 1 

Figure 2: Example of GNSS receptor receiving broadcast signals from 12 satellites at the same time ....................... 3 

Figure 3: Simplified modulation scheme of a GPS broadcast signal with C/A code. .................................................... 4 

Figure 4: Schematic showing where the correlation of spreading code and signal takes place .................................. 4 

Figure 5: Correlation peak example in GNSS receiver .................................................................................................. 5 

Figure 6: Example of 3 sample multiply and accumulate ............................................................................................. 5 

Figure 7: Example of AGGA2 receptor, where the correlator unit is shown. ............................................................... 6 

Figure 8: Classical multiply and accumulate using several instructions vs a single cmul operation. ........................... 8 

Figure 9: VHDL design phases ..................................................................................................................................... 10 

Figure 10: Example of a very simple 2 input multiplexer in VHDL ............................................................................. 10 

Figure 11: Table of extended arithmetic and logic opcodes ...................................................................................... 15 

Figure 12: CMUL2 operation registers ....................................................................................................................... 17 

Figure 13: CMUL3L/4L operation registers ................................................................................................................ 17 

Figure 14: CMUL3U/4U operation registers ............................................................................................................... 18 

Figure 15: CMUL7Loperation registers ....................................................................................................................... 19 

Figure 16: CMUL7L operation flow example .............................................................................................................. 19 

Figure 17: CMUL7M operation registers .................................................................................................................... 20 

Figure 18: CMUL7U operation registers ..................................................................................................................... 20 

Figure 19: Unmodified pipeline of SPARC V8 processor ............................................................................................ 21 

Figure 20: Example of successfully built binutils and gcc ........................................................................................... 33 

Figure 21: Comparison of vhdl files before and after modification ........................................................................... 34 

Figure 22: Simulation to ensure that the modifications don’t interfere with proper operation. .............................. 35 
 

 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

1 
 

 

1- INTRODUCTION 
 

Project context 

This project was developed as part of a 6 months internship at the European Space Agency (ESA). 
The ESA has several research centers all around Europe, but most of its technical development is 
done at the European Space Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands. 
The whole project took place at ESTEC as an intern at the TEC-ED department. 
 

 

Figure 1: Aerial view of ESTEC (left) and ESA locations (right) 

This project will be used as the final research project for the Telecommunication Engineering studies 
at the Public University of Navarre (UPNA), Spain. This could be considered equivalent to a degree 
thesis in other educational systems.  
 

Introducing the Galileo GNSS 

To understand the usefulness of this project we must know what the European Galileo project is.  
 
A Global Navigation Satellite System (GNSS) is any network of geostationary satellites that are used 
to provide worldwide geo-spatial positioning on the Earth surface. Two examples are GPS and 
Galileo. 

 
Most people are familiar with the American GPS system. Until very recently GPS was the only widely 
available satellite navigation system.  The USA military grants civilian availability worldwide and it 
is being used for any imaginable application.  
 
However GPS has several drawbacks. GPS is entirely controlled by the USA Department of Defense 
(DoD). That means that the DoD could, in case of conflict, intentionally degrade or interrupt GPS in 
any region of the world.  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

2 
 

 
For most of the history of GPS, civilian availability was very limited. Although the DoD granted 
worldwide civilian access, the civil signal was voluntarily degraded and accuracy was limited to 
100m, while the American military had access to undistorted GPS with precision up to 20m.  

 
This double system of a different civilian and military access, called selective availability, was 
disabled in 2000. However it shows how the access to GPS can be controlled and restricted by policy 
makers according to political or military interest, thus making GPS unreliable for foreign 
governments.  
 
That is why some countries have been trying to develop their own independent system. This would 
prevent external control and avoid dependence on the USA system. Several countries have developed 
systems on a regional level (covering the whole country territories, but without worldwide 
coverage). Some examples of countries with such systems already in operation are China, Japan, India 
and France.  
  
Those are systems with only a regional coverage. However in the last decade several systems with 
worldwide coverage have been developed. The 4 worldwide satellite navigation systems to be 
operational in the near future are: 
 

 GPS   (USA,    already in operation) 
 GLONASS  (Russian Federation,    already in operation) 
 COMPASS  (China,    not fully operational yet) 
 GALILEO  (Europe,    to be fully operational by 2020). 

 
 
The Galileo project is being developed by the European Union and the ESA to serve as an autonomous 
alternative to the American GPS. Its goal is to provide a high precision, reliable and global satellite 
positioning systems upon which all European nations can rely, independent from other similar 
systems controlled by foreign powers (USA, Russia or China).  
 
A very distinctive feature of Galileo will be that it is not a military project, and it will be controlled by 
the European Union directly. This makes it better for civilian applications.  
 
One of the main focuses of the Galileo project will be search and rescue operations. Although GPS can 
already be used for this role, Galileo was specifically optimized for search and rescue from the 
beginning, making it much more precise in situations like natural disasters. The Galileo receivers 
themselves will have a distress signal that can be activated by the user in emergency, immediately 
alerting the Rescue Co-ordination Centre and giving rescue teams an extremely precise position of 
the person.  
 
The specification of Galileo states an accuracy better to 1 m, which is much higher than any other 
similar system (at the time of writing, GPS can only reach 7.8 m in accuracy). This high accuracy 
makes Galileo suitable for civilian applications not possible with current GPS systems, like automatic 
air traffic control.  
 
The first Galileo satellites were launched for test purposes in 2011, and the system is planned to be 
fully operational by 2020.  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

3 
 

  
 
This project is not directly linked to the Galileo project, but is applicable to any GNSS system, 
including GPS.  Although the particular details of each different GNSS system vary, the basic 
principles this project deals with are common to all systems.  
 
The main goal of the project is simply to optimize the reception of GNSS signals. This makes receptors 
consume less time and resources in the process of getting a GNSS signal.  
 
During the development of this project I was indeed in contact with people who were working on the 
Galileo project, mainly in order to get ideas and feedback. Because it is system independent, it can be 
used on GPS receivers while Galileo is still not operational.   

 

Brief GNSS overview 

To understand this project we must briefly see how GNSS receptors work. GNSS systems are 
extremely complex so only a few relevant aspects will be mentioned. For a full explanation of GNSS 
receivers please refer to more complete sources.  
 
To determine its location the receiver (mobile phone or any other GNSS device) must receive signals 
from several satellites at the same time (at least 4, although usually many more are received). 
Receivers are passive components that don’t send any data, they just listen to incoming signals.  
 
The receiver must know exactly which of all the satellites orbiting the Earth he is receiving from. By 
knowing which satellites are visible, and the exact location of each satellite, it can calculate its own 
position. 
 

 

Figure 2: Example of GNSS receptor receiving broadcast signals from 12 satellites at the same time 

 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

4 
 

All satellites broadcast in the exact same frequency, so there must be a way by which the receiver 
determines which satellites the signal came from. In order to do this each satellite has its own unique 
code. The signal is mixed with this unique code before broadcasting it.  
 
Those codes are always the same and unique for each satellite, so when we get a signal we know 
which specific satellite it came from, as long as we are able to decipher which code it carries. In the 
case of GPS this unique code is called C/A code, or spreading code.  
 
 

 
 

Figure 3: Simplified modulation scheme of a GPS broadcast signal with C/A code.  

When the signal reaches the receiver, the code is extracted and compared with a list of all known 
codes. The codes corresponding with the correct satellites will then be detected.  
 

 

Figure 4: Schematic showing where the correlation of spreading code and signal takes place 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

5 
 

This comparison is done via a correlation. The signal is continuously correlated with sample codes. 
When the code doesn’t match the result of the correlation will almost be zero. However when we get 
the right code there will be a peak in the output that can be detected. 
 

 

 
Figure 5: Correlation peak example in GNSS receiver 

 
Correlation is a simple operation consisting in only a sumatory of multiplications: 
 
 

𝑍(𝑡) =  ∑ 𝑥(𝑖) ∗ 𝑐(𝑖 − 𝑡) 

Being x the signal and c the sample code. 

 
The correlation is then just a continuous multiplication and accumulation of samples.  

 
 

 
Figure 6: Example of 3 sample multiply and accumulate 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

6 
 

 
However in GNSS receivers it must be calculated continuously at a very high speed. A typical receiver 
has more than 8 channel, with 3-5 correlation units per channel, which means that not only one, but 
many correlations are taking place in parallel all the time.  
 
 
 

T  
Figure 7: Example of AGGA2 receptor, where the correlator unit is shown. 

 
 
Even such a simple operation made so fast and so often can become a serious bottleneck if not 
optimized properly. If better and faster ways to perform correlations in the receiver could be found 
performance could be greatly increased.  
 
Because correlations can become such a bottleneck in receiver design, the purpose of this project 
was to find a way to optimize correlation to make it faster.  
  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

7 
 

Ways to improve correlation performance 
 

1- Software optimization: If the correlation is done by software the algorithms could in theory be 

improved.  Some really clever optimizations have already been developed in the past. 

  

2- Specialized hardware optimization: In the same way that computers have hardware dedicated 

to graphics or sound, designing circuits that deal with only one task in an optimized way is 

always the solution which offers the highest performance, and it will always beat software 

solutions in raw speed. It would be possible to design correlation hardware for this specific 

task (Application Specific Integrated Circuit or ASIC). However this is the least flexible option 

and modern system try to avoid it. Once the device is functioning a software update is pretty 

straightforward on the existing device, but a hardware update would require to throw away 

the device and get a new one altogether.  

 

3- Processor optimization: This falls in between the two previous solutions and it’s the scope of 

this project. With this approach the correlation is performed by software. It is the underlying 

hardware that is optimized to deal with specific operations in an optimized way, but how that 

hardware is used depends on the software programmer, thus retaining flexibility.  

 

This project will take the last approach, modifying the processor to deal faster with correlation 
instructions.    



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

8 
 

The core of the Project: CMUL operation 

The way this project tries to optimize correlation for the GNSS receiver is introducing new custom 
instructions into the processor. The software programmer can then use this fast instructions for 
optimized code.  
 
It is important to note that correlations can already be done with existing instructions in any 
processor family. But those instructions are general purpose and thus not optimized. This project 
offers new alternative instructions that are less general but optimized (they do less, but they are 
good at doing it).  
 
The instructions will be called Cumulative Multiplication (CMUL) instructions, and are basically a 
hybrid between multiply instructions and accumulate instructions. Thus instead of first multiplying 
samples and then adding the results, CMUL instructions do it all at once.  
 
A single instructions can also multiply and accumulate several samples in parallel, thus optimizing 
the process even more. A more detailed explanation of how CMUL instructions work and why they 
improve performance will be discussed in later sections.  
 
This project will take advantage of the fact that most existing instructions work on 32 bit registers, 
but samples for GNSS signal correlations are usually between 1 and 3 bits wide only. Thus most of 
those 32 bits are wasted.  
 

 
Figure 8: Classical multiply and accumulate using several instructions vs a single cmul operation.  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

9 
 

 

Introducing the LEON processor 

LEON is a 32 bit RISC processor based in the SPARC-V8 architecture and instruction set.  It was 
originally developed at ESTEC at the TEC-ED department (the same department this project was 
collaborating with).  Development of the LEON 1 started in 1997, and the most current version is the 
LEON 4.  
 
Originally it was developed by engineer Giri Gaisler, working at ESTEC. However after the release of 
the first version Gaisler left ESA to focus on the development of LEON and founded Gaisler Research, 
the company that currently owns and distributes the LEON processor. The LEON is distributed as 
self-contained VHDL code. That way the user can burn the processor into any FPGA or printed circuit 
of their choice.  
 
Most LEON versions are distributed for free by Gaisler Research. That has made it a very popular 
processor for universities and other research centers.   
 
ESA owns a propietary version of LEON, called the LEON2FT (FT = Fault Tolerant). This is a Single 
Event Upset (SEU) fault tolerant version of LEON2. All flip flops are protected by triple redundancy, 
and additional parity checks protect critical areas of the processor. That ensures that the processor 
wont be affected by external radiation in space. This version is licensed by ESA. 
 
 

 

Figure 6: LEON2FT IP core. 

 
This Project will modify a LEON2FT processor to implement the new instructions. There are more 
recent versions of the processor like LEON3FT or LEON4, but those have more complex structures 
and would be more complex to modify. Because the purpose of this project is not getting a 
releasable version of the modified processor, but to test an idea, it was decided to go for the 
simplest choice. If the idea proofs to be worthy, further research could be done to implement it on 
more advanced processors. 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

10 
 

VHDL concepts overview 

Because this project deals mainly with modifying the LEON2FT VHDL code, and the concept of VHDL 
is not very known for people not using it, this short overview will explain the concept so that the rest 
of the project is easier to understand.  
 
VHDL is just a Hardware Description Language. The way a hardware designer codes VHDL may seem 
similar to the way a programmer uses C++ or Python. However instead of compiled into machine 
code, VHDL will be synthesized into a netlist that can be used to manufacture real hardware.  
 
This is what confuses most people not familiar with VHDL. During the project we will be talking about 
the processors source code, but we must keep in mind that this code refers to a real hardware 
architecture and not to a software program.   
 

 

Figure 9: VHDL design phases 

This may seem like a complex way to design hardware, but in projects involving millions of logic 

gates this is the only scalable method.  

The LEON processor is fully described as a group of vhdl files. Those files are then linked together 

and synthesized into a netlist. That netlist can be used to program the processor into an FPGA or to 

manufacture an ASIC by printing the corresponding hardware components into a circuit board.   

This project will modify some of those VHDL files to implement the changes. When that VHDL code 

is used to manufacture the processor circuit, the added CMUL instructions will be available to anyone 

using the chip.  

 

Figure 10: Example of a very simple 2 input multiplexer in VHDL   



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

11 
 

2- PROJECT SUMMARY 
 

In order to make the document easier to read this overview will summarize the sections that will 
follow.   
 

This project was born to test the idea of optimizing performance by adding new instructions to a 
processor. This has been done in the past, but never for this kind of applications.  
 
Implementing this idea into a real world scenario would involve a big team of experienced 
developers, a big budget and more time than a simple 6 months internship offers. Because this would 
be a big commitment, this project will help decide if it is worth the effort.  
 
This document will present all the steps from specification to final testing.  
 
 

1. The first few sections will focus on technical specifications, constraints and explaining CMUL 
instructions in a more detailed and technical manner.  

 
2. Implementation into the real processor VHDL code. Even the final processor is hardware, it 

is defined by VHDL code which will later be translated into hardware.  
 

3. Adding instructions to the compiler and assembler. Once the processor is finished, it will be 
able to handle new instructions. However when programming software for that processor we 
must tell the assembler and compiler about the existence of those instructions and when to 
use them. This step was more complex than expected, so a complete tutorial on how to modify 
the GNU compiling toolchain and compile it will be provided step by step.  

 
4. When both the processor and the assembler are ready some results can be tested to see if 

there was an improvement. The end of the project was spent proving that the modifications 
on the processor didn’t cause any trouble and did not interfere with normal operation.  

  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

12 
 

3- BACKGROUND 
 

A general purpose microprocessor (GPUP) offers a set of standard arithmetic instructions with a 
fixed data width (e.g. 32 bit). In many applications, no optimal use can be made of these instructions, 
because the algorithm predominantly uses specific operations or a reduced data width. For example, 
correlation with coarse quantisation (1-3 bit) is used in spread-spectrum applications, e.g. navigation 
receivers, software defined radio (SDR). Such operations can always be emulated on a GPUP, but this 
often implies a huge overhead in terms of performance and power consumption, and present space 
GPUP often do not have enough spare performance for SDR. 
 
The classical way out is to develop dedicated hardware processing blocks to be implemented on 
FPGA or ASIC devices, loosely coupled with a GPUP which is almost always necessary to control the 
processing. This concept is adequate for applications with a large and continuous demand for a 
specific type of processing. But it may not be very power- and resource-efficient for use cases with 
intermittent processing requirements. 
 
To serve these use cases, lower level processing 'blocks' are more adequate. Elementary, semi-
specialized instructions can be used flexibly for various types of application, and they allow an 
improvement of the power- and area-efficiency compared to SW emulation on a GPUP. 
 
The SPARC instruction set has a number of instruction-opcodes which are not used by the 
specification. These can be assigned to custom instructions to be developed. These custom 
instructions can significantly enhance the performance for certain applications, while re-using, as 
much as possible, the existing integer unit data path, e.g. registers, load/store, hence minimizing the 
area and power overhead. 
 
Similar concepts have been used on commercial microprocessors, such as the Pentium MMX 
extensions, introduced by Intel in the 90's, or MD5/Montgomery operations for crypto applications 
implemented on Sparc T4 [1]. 
 
Instruction set extension for LEON, are also found in literature [2] [3]. This two references can be 
used as an example and guideline.  
  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

13 
 

4- OBJECTIVES  
 

Development of custom instruction set extensions for SPARC general purpose microprocessors. The 
extensions shall be developed as a plugin or patch to the existing LEON2FT integer unit. The focus is 
on coarsely quantized correlation operations required for GNSS receivers. The extensions shall be 
verified in simulation and synthesis and a small demo application be developed. 
 

5- ORIGINAL SPECIFICATION 
 

The following specification uses the usual SPARC rs1/rs2/rd register naming convention. The 
spreading code (= one operand in rs1) is quantized in 1 bit corresponding to the values [-1, 1]. The 
signal (= other operand in rs2) can be quantized in various ways: 
 

 CMUL2: 1-bit quantization like for the spreading code 
 CMUL3: 2-bit 3 levels (also called 1.5 bit), corresponding to the values [-1, 0, 1] 
 CMUL4: 2-bit code with values [-3, -1, 1, 3]  
 CMUL7: 3-bit code with values [-7, -5, -3, -1, 1, 3, 5, 7]  

 
Since the number of samples in rs2 varies (32 with 1-bit quantization, 16 with 2-bit, 10 with 3-bit), 
while the number of samples in rs1 is always 32, it could be convenient (if enough opcodes are 
available) to have several variants of the instructions, for example: 
 

 CMUL3U and CMUL4U correlating rs2 with the upper part (bits 31:16) of rs1 
 CMUL3L and CMUL4L correlating rs2 with the lower part (bits 15:0) of rs1 
 CMUL7U, CMUL7M, CMUL7L correlating rs2 with the upper (29:20), mid (19:10) and lower 

(9:0) part of rs1 
 
 
The correlation operation consists of the following operations: 
 

 Vectorial multiplication rs1 * rs2. With 1-bit signal quantization, 32 samples are multiplied in 
parallel, with 2-bit 16 samples, and with 3-bit 10 samples. Due to the 1-bit spreading code, the 
multiplication is reduced to multiply by 1 or -1 (sign reversal). 

 Adding up the 10, 16 or 32 partial sums. 
 Adding the result to the accumulator rd. 

 
The new arithmetics, should not significantly degrade the timing performance of the existing LEON 
logic. Single cycle operation is the goal and can probably be achieved with an accumulator limited to 
32-bit. If the new logic introduces a critical path, pipelining over 2 cycles may be considered. 
 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

14 
 

An implementation with a 64-bit result, involving the Y register, in analogy to the Sparc UMUL/SMUL 
instructions may be considered, but probably leads to timing problems. ICC flags should be updated 
to indicate overflow of the accumulator. 

6- CONSTRAINTS 
 

1. The new Sparc processor must be compatible with SPARC V8 specifications [4]. All SPARC 
V8 instructions remain implemented.  

2. The LEON2 specific instructions smac and umac are not suppressed to maintain 
compatibility with programs using them.  

3. The flow of the original instructions is not altered whatsoever. The pipeline remains 
unchanged, and the original instructions remain untouched. The only difference is the 
existence of new instructions.  

4. The new instructions will be implemented in the processor itself. The goal of the project is 
not to implement new capabilities using a dedicated coprocessor.  

5. The performance of the new instructions should be checked first at synthesizable RTL and 
also at a higher software level.  

6. We use the fact that in the SPARC V8 some binary instructions opcodes are not valid. If 
executed they will generate an illegal instruction trap. The new instructions will be 
implemented using those unused encodings. We expect that a correct program will never 
use those illegal instructions to perform system calls, but instead use the supported way of 
performing system calls (ticc instructions). Incorrect programs that do not follow this 
standard may not work on the new processor. 

7. The binutils assembler will be modified to recognize the new instructions. We do not intend 
to write a compiler who takes our instructions into account. Optimized techniques of doing 
so do exist, but this is considered a separate and ambitious project.    

  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

15 
 

7- IMPLEMENTATION 
 

7.1- Mapping the new instructions onto available opcodes 
 

The SPARC V8 architecture defines 6 categories of instructions. Any new instructions must be 
implemented in the correct category, which for the CMUL instructions is the arithmetic instructions 
set. This is due not only to consistency, but it avoids adding overhead in the decode stage.  
 
For this category of opcodes, there is 9 unimplemented gaps in the basic V8 specification. However 
LEON processors have their own additional instructions (smac, umac), so there is only 7 available 
opcodes for the CMUL expansion.  
All 7 will be used for the CMUL instructions detailed in the project specification.  
 

 

Figure 11: Table of extended arithmetic and logic opcodes 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

16 
 

7.2- The new instructions 
 

Although not stated in the original specification, the CMUL instructions are actually 3 operand 
instructions. Every CMUL operation needs not only the two input operands, but an extra input with 
the previous value of the accumulator. After each operation this accumulator will be updated for use 
by future instructions or for reading.  
 
An extra register will be used to store the value of this accumulator. Sparc V8 provides a series of 
Ancillary State Registers (ASR) for this purpose. ASR 16 till 31 are available for implementation 
specific uses, and one of them will be used as an accumulator.  
 
LEON2FT already uses certain ASR for different purposes. In particular register asr16, asr18 and 
asr24 to asr31 are already taken. For the CMUL expansion the register asr20 will be used, although 
this choice is completely arbitrary.  
 
The implementation of the instructions in inspired in the LEON smac/umac instructions, which also 
use additional accumulator registers (%y and %asr18). 
 
The asr18 accumulator can be written using the WRASR instruction. This can be used to reset the 
accumulator to zero. It can be also read using the RDASR instruction.  
 
Note that because rs1 is assumed to always contain +/- 1 levels, the partial multiplications that 
appear in the following examples are actually just a sign change operation. A loockup table can be 
used instead of actual 32 bits multiplications, which would be overkill for this simple case. 
 

Operations on 1 bit codes 

Assembly syntax 
 

CMUL2   rs1,rs2,rd 
 
Operation 
 

prod[31:0] = rs1[31]*rs2[31] + rs1[30]*rs2[30] + rs1[29]*rs2[29] + rs1[28]*rs2[28] + 
rs1[27]*rs2[27] + rs1[26]*rs2[26] + rs1[25]*rs2[25] + rs1[24]*rs2[24] + rs1[23]*rs2[23] + 
rs1[22]*rs2[22] + rs1[21]*rs2[21] + rs1[20]*rs2[20] + rs1[19]*rs2[19] + rs1[19]*rs2[19] + 
rs1[18]*rs2[18] + rs1[17]*rs2[17] + rs1[16]*rs2[16] + rs1[15]*rs2[15] + rs1[14]*rs2[14] + 
rs1[13]*rs2[13] + rs1[12]*rs2[12] + rs1[11]*rs2[11] + rs1[10]*rs2[10] + rs1[9]*rs2[9] + 
rs1[8]*rs2[8] + rs1[7]*rs2[7] + rs1[6]*rs2[6] + rs1[5]*rs2[5] + rs1[4]*rs2[4] + rs1[3]*rs2[3] 
+ rs1[2]*rs2[2] + rs1[1]*rs2[1] + rs1[0]*rs2[0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 
 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

17 
 

 

Figure 12: CMUL2 operation registers 

Operations on 2 bit codes 

 
Assembly syntax 
 

CMUL3L  rs1,rs2,rd 
CMUL4L  rs1,rs2,rd 
CMUL3U  rs1,rs2,rd 
CMUL4U  rs1,rs2,rd 
 
 

Operation (for the CMUL3L and CMUL4L versions) 
 

prod[31:0] = rs1[15]*rs2[31:30] + rs1[14]*rs2[29:28] + rs1[13]*rs2[27:26] + 
rs1[12]*rs2[25:24] + rs1[11]*rs2[23:22] + rs1[10]*rs2[21:20] + rs1[9]*rs2[19:18] + 
rs1[8]*rs2[17:16] + rs1[7]*rs2[15:14] + rs1[6]*rs2[13:12] + rs1[5]*rs2[11:10] + 
rs1[4]*rs2[9:8] + rs1[3]*rs2[7:6] + rs1[2]*rs2[5:4] + rs1[1]*rs2[3:2] + rs1[0]*rs2[1:0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 
 

 

 

Figure 13: CMUL3L/4L operation registers 

 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

18 
 

Operation (for the CMUL3U and CMUL4U versions) 
 

prod[31:0] = rs1[31]*rs2[31:30] + rs1[30]*rs2[29:28] + rs1[29]*rs2[27:26] + 
rs1[28]*rs2[25:24] + rs1[27]*rs2[23:22] + rs1[26]*rs2[21:20] + rs1[25]*rs2[19:18] + 
rs1[24]*rs2[17:16] + rs1[23]*rs2[15:14] + rs1[22]*rs2[13:12] + rs1[21]*rs2[11:10] + 
rs1[20]*rs2[9:8] + rs1[19]*rs2[7:6] + rs1[18]*rs2[5:4] + rs1[17]*rs2[3:2] + rs1[16]*rs2[1:0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 
 

 

 

Figure 14: CMUL3U/4U operation registers 

 

Operations on 3 bit codes 

 
Assembly syntax 
 

CMUL7L  rs1,rs2,rd 
CMUL7M  rs1,rs2,rd 
CMUL7U  rs1,rs2,rd 
 
 

Operation (for CMUL7L) 
 

prod[31:0] = rs1[9]*rs2[29:27] + rs1[8]*rs2[26:24] + rs1[7]*rs2[23:21] + rs1[6]*rs2[20:18] 
+ rs1[5]*rs2[17:15] + rs1[4]*rs2[14:12] + rs1[3]*rs2[11:9] + rs1[2]*rs2[8:6] + 
rs1[1]*rs2[5:3] + rs1[0]*rs2[2:0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 
 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

19 
 

 

 
Figure 15: CMUL7Loperation registers 

 
Figure 16: CMUL7L operation flow example 

 
Operation (for CMUL7M) 
 

prod[31:0] = rs1[19]*rs2[29:27] + rs1[18]*rs2[26:24] + rs1[17]*rs2[23:21] + 
rs1[16]*rs2[20:18] + rs1[15]*rs2[17:15] + rs1[14]*rs2[14:12] + rs1[13]*rs2[11:9] + 
rs1[12]*rs2[8:6] + rs1[11]*rs2[5:3] + rs1[10]*rs2[2:0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

20 
 

 

 
Figure 17: CMUL7M operation registers 

 
Operation (for CMUL7U) 
 

prod[31:0] = rs1[29]*rs2[29:27] + rs1[28]*rs2[26:24] + rs1[27]*rs2[23:21] + 
rs1[26]*rs2[20:18] + rs1[25]*rs2[17:15] + rs1[24]*rs2[14:12] + rs1[23]*rs2[11:9] + 
rs1[22]*rs2[8:6] + rs1[21]*rs2[5:3] + rs1[20]*rs2[2:0] 
 
result[63:0] = prod[31:0] + %asr20[31:0] 
 
%asr20[31:0] = result [31:0] 
 
rd = result [31:0] 
 

 

 
Figure 18: CMUL7U operation registers 

 

  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

21 
 

7.3- Modifying the pipeline 

 
The main task for this project has been modifying the pipeline to integrate the new CMUL block 
without interfering with the rest of the pipeline.  
 
 
 

 

Figure 19: Unmodified pipeline of SPARC V8 processor 

 

Special care must be taken with data and structural hazards. Part of the pre-existing hazard handling 
architecture can be utilized (because the result of the CMUL operation is propagated through the 
pipeline as any other result, which can use the built in mechanism regardless of what operation 
originally provided that result).  
 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

22 
 

 
 
 

 
Figure 10: CMUL extension of the pipeline 

 
However data protection (and forwarding) for the %asr20 accumulator register must be taken care 
of. For this the Graz University CIS extension can be a good resource, as some of its instructions use 
the %asr18 register in a similar manner. Their implementation can’t be reused 100%, but is a good 
starting point.  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

23 
 

 
Figure 11:  Zoom on the CMUL modifications to the pipeline 

 
 

The original idea didn’t include two intermediate asr20 registers (memory and writing) but only one. 
However it became apparent that both are need to allow bypassing of the accumulator in some cases, 
as shown by the multiplexer in the upper right hand of figure 11.  
 
Also note that the output of the CMUL block is not inserted into the “result” register during the 
execute stage (which was the original idea) but during the memory stage. It was also suggested to 
forward it directly to the write stage, but this would not profit of the hazard protection mechanism 
built into the pipeline.  
 
The CMUL executes in only one clock cycle. However the SPARC architecture can only store into two 
processor registers at the same time, not enough for the CMUL instruction.  That means that if the 
next instruction after the CMUL operation operates on the same registers a one cycle stalling could 
be introduced into the pipeline by the hazard protection mechanism. The CMUL modification has not 
taken care of this, as it is expected that it is already taken care of by the original pipeline 
implementation. This assumption should be tested during debugging..  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

24 
 

8- VHDL files modification 
 

8.1- New VHDL files added to LEON 

 
cmul.vhdl 
This is the CMUL block.  
 

 
Figure 1: Cmul block schematic 

 
 
The hold_n signal is not used because all CMUL operations are 1 cycle only. If multicycle operations 
are implemented this signal will be used together with start and hold signals in the processors 
pipeline.  
 
Cmuli is of custom type cmul_in_type and consist of the following records: 
 
 cmuli.op1 : std_logic_vector  (31 downto 0); -- operand 1 
 cmuli.op2 : std_logic_vector  (31 downto 0); -- operand 2 
 cmuli.opsel : std_logic_vector  (2  downto 0); -- select which CMUL instruction 
 cmuli.asr20 : std_logic_vector  (31 downto 0); -- 32 bits accumulator in the asr20 register 
 
Cmulo is of custom type cmul_out_type and consist of the following records: 
 
 result : std_logic_vector  (31 downto 0);  -- 32 bits result 
 icc : std_logic_vector  (3   downto 0); -- Update ICC if there is overflow 
 
All the instructions are implemented in this block, which is then included inside the pipeline in iu.vhd 
which gives the appropriate inputs and expects the correct outputs from the CMUL block.  
 
The current cmul instructions are so simple that the operations are hardcoded inside the block (in a 
similar way to a loockup table, without doing any real arithmetic math). Other implementations can 
be tested without having to change any code outside of cmul.vhd.  
 
A self –contained vhdl testbench was used to test the correct functionality of the isolated block. 
Obviously this didn’t test for timing constraints after synthesis, but made sure the logical 
implementation was correct.  
 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

25 
 

The timing should be tested not in isolation, but once the CMUL block is part of the whole pipeline, 
due to the influence of external factors. The internal functioning of the block is so simple no timing 
constraints are likely to happen.  
 
cmul_config.vhdl 
At the moment the configuration options for the CMUL extension are very limited. However the 
configuration file has been integrated from the beginning to make future expansions easier.  
 
Right now the only configuration option is the cmul_config flag, which can be set to none to disable 
the CMUL expansion all together (then the Leon will act as a normal Leon2FT processor).  
 
Other declarations in the configuration package are constants used by the CMUL block and shouldn' 
t be changed by the user, but they allow customization for the designer.  
 
Specifically, the quantization encoding constants can be changed here.  
 

8.2- OLD LEON VHDL FILES THAT NEED TO BE MODIFIED 

 
sparc.vhdl 
This file includes the all the  instruction definitions for the processor.  
 
They are defined as constants which correspond to the op3 field of every opcode (in case of 
arithmetic instructions of format 3, like the CMUL instructions).  
 
The hex encoding of each instruction is taken from the table shown in figure 1.  
 

CMUL2 = "101100" (Hexadecimal 2C, op3[5:4] = 2,  op3[3:0] =  C) 
CMUL3U = "001001" (Hexadecimal 09, op3[5:4] = 0,  op3[3:0] =   9) 
CMUL3L  = "011001" (Hexadecimal 19, op3[5:4] = 1,  op3[3:0] =   9) 
CMUL4U = "001101" (Hexadecimal 0D, op3[5:4] = 0,  op3[3:0] =  D) 
CMUL4L = "011101" (Hexadecimal 1D, op3[5:4] = 1,  op3[3:0] =  D) 
CMUL7U  = "101101" (Hexadecimal 2D, op3[5:4] = 2,  op3[3:0] =  D) 
CMUL7M = "101110" (Hexadecimal 2E, op3[5:4] = 2,  op3[3:0] =  E) 
CMUL7L = "101111" (Hexadecimal 2F, op3[5:4] = 2,   op3[3:0] =  F) 

 
iu.vhdl 
The pipeline is modified here. New signals are added (cmul inputs and output signals, plus 
write_accumulator signals to control the writing to the asr20 accumulator register).  
 
iface.vhdl 
Two new data types, cmul_in_type and cmul_out_type, have been added to the interface list so that 
they can be recognized by other files in the project. These are the inputs and outputs of the cmul 
block.  
 
Makefile 
The new vhdl files must be added and linked correctly during the make process.  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

26 
 

9- HOW TO ADD NEW OPCODES INTO THE BINUTILS ASSEMBLER 
 

Once the latest binutils package has been downloaded, this are the files that MAY have to be modified 
to add new opcodes into the Sparc  architecture specification. 
 
Once modified, binutils can be built and compiled to have a new toolset that recognizes the new 
opcode instructions.  
 

9.1- FILES THAT HAVE TO BE MODIFIED 

 
binutils/opcodes/sparc-opc.c 
This is the most important file to be modified. It contains the opcodes definition for all the 
instructions.  
 
All opcode definition must follow one of the existing formats (these formats are defined in 
binutils/include/opcode/sparc.h, but unless we are adding new formats of our own we shouldn't 
modify that file). The basic SparcV8 specification has 3 different formats. 
 
Arithmetic expressions like the ones in this project use format 3 and are defined in the following 
manner: 
 

{  
    "opcode_name",  
    F3(2, opcode_address (hex),  immediate_field_flag),  
    F3(~2, ~opcode_address (hex), ~immediate_field_flag),   
    "op1_address, op2 _address, dest_address", 0, v8  

}, 
 
If a single opcode can be used with different addressing method for its operands, it must be declared 
for each case.  
 
For example the declaration of the Leon instruction UMUL accepts three different addressing modes: 
 

{ "umul", F3(2, 0x0a, 0), F3(~2, ~0x0a, ~0)|ASI(~0), "1,2,d", 0, v8 }, 
{ "umul", F3(2, 0x0a, 1), F3(~2, ~0x0a, ~1),  "1,i,d", 0, v8 }, 
{ "umul", F3(2, 0x0a, 1), F3(~2, ~0x0a, ~1),  "i,1,d", 0, v8 }, 

 
 
 
 
This is the most frequent declaration for arithmetic instructions, which usually only have those 
addressing methods for the operands:  
 

"1,2,d"  
"1,i,d"  
"i,2,d" 



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

27 
 

 
Where 1 means rs1, 2 means rs2, i means immediate address of 13 bits, and d means rd. Other more 
complex instructions have fancier addressing modes.  
 
Note that the flag immediate field flag is set to 1 when one of the operand registers is addressed with 
an immediate constant.  
 
Also note that ASI indicates the ASI (Address Space Identifier) field of a format 3 instruction (see 
SparcV8 specification page 10 for information about this register, although understanding it is not 
really needed just to modify the opcodes).  
 

IMPORTANT: All declarations of the same opcode must be defined sequentially. If we declare them 
out of order it will build and compile with no problem, but it may crash later during runtime without 
any clue of what's going on.  
 
For example: 
 

{ "umul", F3(2, 0x0a, 0), F3(~2, ~0x0a, ~0)|ASI(~0), "1,2,d", 0, v8 }, 
{ "smul", F3(2, 0x0b, 0), F3(~2, ~0x0b, ~0)|ASI(~0), "1,2,d", 0, v8 }, 
{ "umul", F3(2, 0x0a, 1), F3(~2, ~0x0a, ~1),  "1,i,d", 0, v8 }, 
{ "smul", F3(2, 0x0b, 1), F3(~2, ~0x0b, ~1),  "1,i,d", 0, v8 }, 

 
The previous declaration will give no warning whatsoever, but the programs created with such 
binutils could have unexpected behaviors. This should be avoided at all cost. Instead we should do: 
 

{ "umul", F3(2, 0x0a, 0), F3(~2, ~0x0a, ~0)|ASI(~0), "1,2,d", 0, v8 }, 
{ "umul", F3(2, 0x0a, 1), F3(~2, ~0x0a, ~1),  "1,i,d", 0, v8 }, 
{ "smul", F3(2, 0x0b, 0), F3(~2, ~0x0b, ~0)|ASI(~0), "1,2,d", 0, v8 }, 
{ "smul", F3(2, 0x0b, 1), F3(~2, ~0x0b, ~1),  "1,i,d", 0, v8 }, 

 
 
binutils/include/opcode/sparc.h 
 
This file defines the different formats of instructions.  
 
The basic Sparc implementation has three formats. Unless we are adding an additional format we 
should not modify this file.  
 
However it is useful to look at it in order to understand some of the more esoteric opcode 
declarations in binutils/opcodes/sparc-opc.c 
 
 
gas/config/tc-sparc.c 
gas/config/tc-sparc.h 
 
Macros and type definitions for the whole Sparc architecture.  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

28 
 

 
Complex projects like the Graz University CIS extension may have to slightly modify this files, but 
for simple projects that don't add new types they shouldn't be changed.  
 
 
opcodes/sparc-dis.c 
 
Sparc disasembler.  
 
This doesn't need to be modified if binutils is being modified for test purposes only.  
 
 
ld/configure.tgt 
 
According to the comments in the file itself: 
 
# This is the linker target specific file.   
# This is invoked by the autoconf generated configure script.  
# Putting it in a separate shell file lets us skip running autoconf when modifying target specific  
# information. 
 
# This file switches on the shell variable ${targ}, and sets the following shell variables: 
#  targ_emul       name of linker emulation to use 
#  targ_extra_emuls      additional linker emulations to provide 
#  targ_extra_libpath      additional linker emulations using LIB_PATH 
#  targ_extra_ofiles      additional objects needed by the emulation 
#  NATIVE_LIB_DIRS  library directories to search on this host (if we are a native or sysrooted linker) 
 
Only the variables used by sparc must be modified. The modified binutils patch from Graz 
university is again a great reference for this.  
http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/downloads/ 
 
Basically sparc*-*-elf, which is just targ_emul=elf32_sparc  by default, must be modified to an if 
statement that checks if we are using a leon processor.  
 
ld/makefile.in 
 
esparcleon.o must be added to the makefile.  
 
  

http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/downloads/


    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

29 
 

9.2- OTHER FILES THAT MUST BE ADDED TO THE BINUTILS DIRECTORY 

The following two files are specific to the Sparc Leon architecture. They will not be included in a 
default binutils download. Other Sparc architectures (like Lynx) are suported by the basic binutils, 
but not Leon.  
 
The best solution would be to download the binutils patch from the Graz University LEON CIS 
project.  That patch has this Leon files modified for their own CIS project on a Leon2 board, and 
they can easily be modified for any Leon processor.  
 
http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/downloads/ 
 
ld/scripttempl/sparcleon.sc  
 
Linker script of sparcleon. 
 
ld/emulparams/sparcleon.sh 
 
This short script is copied directly from the CIS project.  
 
In the CMUL project case the only change made was substituting the format from  elf32-sparc to elf-
sparc. This is not very important, but it will have to be the same as the TARGET we use when 
building binutils.  
 

  

http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/downloads/


 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

30 
 

10- BUILDING THE BINUTILS AND GCC TOOLCHAIN 
 

10.1 - HOW TO BUILD BINUTILS FROM SCRATCH 

 
First binutils has to be downloaded to some directory. Let's call it $WORKDIR. Assuming we have 
the version x.yy of binutils: 
 

1. The binutils sourcecode will be unziped into $WORKDIR/binutils-x.yy  
2. The binutils will be modified to incorporate new opcodes as described in previous sections 
3. Binutils will be built into $WORKDIR/objdir as explained in this section 

 
Assuming the binutils have already been downloaded and modified into  
$WORKDIR/binutils-x.yymod: 
 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
## BUILDING BINUTILS 
 
# Some variables export to make life easier 
export binutils_version=2.14 
export WORKDIR=/home/hugo/leonbuild 
export BINDIR=$WORKDIR/binutils-$binutils_version 
 
# Create objdir where we are going to build everything 
cd $WORKDIR 
rmdir -r objdir 
mkdir objdir 
export OBJDIR=$WORKDIR/objdir 
 
# Run configure script, make and install binutils for the target architecture (sparc-elf) 
cd $BINDIR 
./configure --prefix=$OBJDIR --target=sparc-elf 
make 
make install 
 

10.2 - HOW TO BUILD GCC FROM SCRATCH 

 
Although the tests for the new instructions are going to be done in assembly language only, most of 
the test scripts are c scripts with embedded assembly code.  
 
That's why we also need a compatible gcc compiler. In theory it should be possible to download a 
precompiled crosscompiler for leon sparc and link it with our custom binutils, but it does not seem 
to work properly.  
 
That's why the simplest solution is to download the gcc sourcecode and build it ourselves with a 
sparc target architecture and linking it with our custom binutils from the beginning.  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

31 
 

 
Note that we are not modifying the gcc compiler and we are not making it understand the new 
instructions.  We are building gcc from its source code exactly as downloaded from the gnu project 
website. The only difference is that we use different binutils when building it, so it won’t complain 
when he encounters the new instructions.   
 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
## BUILDING GCC 
 
export gcc_version=4.8.2 
export WORKDIR=/home/hugo/leonbuild 
export GCCDIR=$WORKDIR/gcc-$gcc_version 
cd $GCCDIR 
 
##  
# Downloading MPFR, GMP and MPC (all needed to build GCC) 
# This is  usually done by running the ./contrib/download_prerequisites script from $GCCDIR 
# But the script provided by the default gcc download has two problems: 
# 1-  The version variables $MPFR, $GMP and $MPC  are usually not up to date 
# 2-  The download links point to ftp/gnu, but are blocked by the ESA firewall 
#      We have to use other mirror links.  
 
# This script has to be modified with the instructions provided next 
# Or alternatively the instructions can be run directly in the terminal 
# This will download MPFR, GMP and MPC and create 3 folders in the $GCCDIR where all other  
# sources are 
# Failing to download this files properly will produce very obscure build messages 
  
MPFR=mpfr-3.1.2 
GMP=gmp-5.1.3 
MPC=mpc-1.0.1 
 
wget http://www.mirrorservice.org/sites/ftp.gnu.org/gnu/mpfr/$MPFR.tar.bz2 || exit 1 
tar xjf $MPFR.tar.bz2 || exit 1 
ln -sf $MPFR mpfr || exit 1 
 
wget http://www.mirrorservice.org/sites/ftp.gnu.org/gnu/gmp/$GMP.tar.bz2 || exit 1 
tar xjf $GMP.tar.bz2  || exit 1 
ln -sf $GMP gmp || exit 1 
 
wget http://www.mirrorservice.org/sites/ftp.gnu.org/gnu/mpc/$MPC.tar.gz || exit 1 
tar xzf $MPC.tar.gz || exit 1 
ln -sf $MPC mpc || exit 1 
 
rm $MPFR.tar.bz2 $GMP.tar.bz2 $MPC.tar.gz || exit 1 
 
 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

32 
 

 
 
## No stack overflow checking 
## Because sparc-as has suspicious code and the stack protector will prevent us from building gcc  
export CFLAGS="-fno-stack-protector" 
 
 
## VERY VERY VERY IMPORTANT 
# The gcc configure script should NEVER be run directly from the gcc directory.  
# Doing ./configure from the gcc directory will give no warning 
# But this is not supported by the GNU project 
# And will cause many problems when running make. 
# Instead the script should be run from another folder we will call objdir 
# For simplicity this will be the objdir where we previously built the sparc binutils.  
 
export OBJDIR=$WORKDIR/objdir 
cd $OBJDIR 
 
$GCCDIR/configure --target=sparc-elf --prefix=$OBJDIR  --enable-languages=c --with-build-time-
tools=$OBJDIR/sparc-elf/bin  --disable-bootstrap --disable-libssp 
 
## CONFIGURATION OPTIONS EXPLAINED 
 
## -- target  
## could be sparc-elf, sparc-v8-elf, or sparc32-elf, as long it is the same used for binutils 
 
## -- with-build-time-tools 
## Tell it where to find the modified binutils tools we compiled previously 
## If the binutils were correctly built this folder should contain at least the elf-sparc version of: 
## as, ld, ar, nm, ranlib, strip, objdump 
 
## --disable-bootstrap 
## By default gcc is built with a 3 steps bootstrap which uses itself as a compiler to compile itself.  
## This is supossed to work also for crosscompilers 
## But it doesn’t. So we just disable it.  
 
## disable-libssp 
## disable the gcc  runtime stack smashing protector 
## the sparc-as and other sparc binutils tools have many suspicious stack operations 
## If we don't disable libssp  
## Will cause the building of gcc to abort when it tests for possible buffers overflows  
 
make 
make install 
 
## Now we should have gcc in objdir/bin and in objdir/sparc-elf/bin with all the other binutils 
  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

33 
 

 

Figure 20: Example of successfully built binutils and gcc 

  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

34 
 

11- RESULTS 
 

The increase is size of the vhdl files is not considered important, but is discussed here for the sake of 
completeness. Obviously factors like the effects of the modification on area and efficiency are 
considered much more critical.  
 
The resulting VHDL code after adding the modifications is not much bigger than the original LEON. 
The following table shows all changes in number of code lines: 
 

Vhdl block Original CMUL extension  

iu.vhdl 3669 4075 376 

iface.vhdl 301 312 11 

sparc.vhdl 1104 1115 10 

makefile 240 250 10 

cmul.vhdl - 256 256 

cmul_config.vhdl - 75 75 
Figure 21: Comparison of vhdl files before and after modification 

 

The total increase in lines was only 739, which is negligible compared to the total size of the vhdl 
project. The only file with a significant increase in size was the iu.vhdl due to the complexity of 
integrating the instructions into the pipeline. This corresponds to a 10,25% increase in the number 
of lines in the iu.vhdl file.  
 
However the total size of the vhdl files is 2,6 MB in both cases, which shows how negligible this small 
increase in code is for the whole process.  
 
Note that the original code hasn’t been changed despite temptations to do so, in order to keep this 
comparison more realistic. The original code lacks comments and should be rewritten in a cleaner 
style in order to make it understandable by mere mortals.  
 
The new code has not followed this principle of unreadability and includes such things as comments 
and relevant variable names.  
  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

35 
 

The modified processor has been tested with the testbench for the original LEON2FT to make sure 
the changes do not interfere with the operation of the basic LEON.  
 

 

Figure 22: Simulation to ensure that the modifications don’t interfere with proper operation.  

 

Synthesis tools were also used to perform an analysis. The target device was a Spartan 6 FPGA. The 
results showed that device utilization, area and power consumption were almost not altered by the 
modifications.  
 
This are the results of the synthesis on a Spartan 6 FPGA using Xilinx ISE: 
 

Slice Logic Utilization: 
Number of Slice Registers:                     125 out of    18,224     1% 
Number used as Flip Flops:                   125 
Number used as Latches:                        0 
 Number used as Latch-thrus:                    0 
 Number used as AND/OR logics:                  0 
Number of Slice LUTs:                          227 out of    9,112      2% 

Number used as logic:                        225 out of     9,112      2% 
Number using O6 output only:  213 
Number using O5 output only:  0 
Number using O5 and O6:  12 
Number used as ROM:                         0 
Number used as Memory:                   0 out of     2,176      0% 
Number used exclusively as route-thrus:    2 
Number with same-slice register load:       2 
Number with same-slice carry load:          0 
Number with other load:                    0 

 
Slice Logic Distribution: 

Number of occupied Slices:                      89 out of     2,278      3% 



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

36 
 

Number of MUXCYs used:                          12 out of    4,556      1% 
Number of LUT Flip Flop pairs used:            235 
Number with an unused Flip Flop:             112 out of       235     47% 
Number with an unused LUT:                     8 out of       235      3% 
Number of fully used LUT-FF pairs:           115 out of       235     48% 
N of slice register lost to control set restrictions: 0 out of    18,224     0% 

 
 
IO Utilization: 

Number of bonded IOBs:    188 out of       232    81% 
 
 
Specific Feature Utilization: 

Number of RAMB16BWERs:   0 out of        32      0% 
Number of RAMB8BWERs:   0 out of        64      0% 
Number of BUFIO2/BUFIO2_2CLKs:  0 out of        32      0% 
Number of BUFIO2FB/BUFIO2FB_2CLKs:  0 out of        32      0% 
Number of BUFG/BUFGMUXs:   3 out of        16     18% 
Number used as BUFGs:    3 
 Number used as BUFGMUX:   0 
Number of DCM/DCM_CLKGENs:   0 out of        4      0% 
Number of ILOGIC2/ISERDES2s:   0 out of       248      0% 
Number of IODELAY2/IODRP2/IODRP2_MCBs:      0 out of       248      0% 
Number of OLOGIC2/OSERDES2s:                    0 out of       248      0% 
Number of BSCANs:                                0 out of         4      0% 
Number of BUFHs:                                 0 out of      128      0% 
Number of BUFPLLs:                               0 out of         8      0% 
Number of BUFPLL_MCBs:                           0 out of        4      0% 
Number of DSP48A1s:                              0 out of       32      0% 

   Number of ICAPs:                                 0 out of         1      0% 
   Number of MCBs:                                  0 out of         2      0% 
   Number of PCILOGICSEs:                           0 out of         2      0% 
  Number of PLL_ADVs:                              0 out of         2      0% 
   Number of PMVs:                                  0 out of         1      0% 
  Number of STARTUPs:                            0 out of         1      0% 
   Number of SUSPEND_SYNCs:                         0 out of         1      0% 
 
Peak Memory Usage:  193 MB 

 

 

The test scripts for the original LEON2FT were also run showing that everything was working fine.  

  



    
SPARC instruction set extension for GNSS SW receivers on LEON2FT processor 

  Hugo Arguiñáriz Bridonneau 
 
 

37 
 

12- FURTHER DEVELOPEMENT 
 
The main goal of the project was to study the feasibility of the idea. This was not only proved, but a 
vhdl prototype was fully implemented.  
 
The results showed that it is possible to add new instructions with minimum impact on the processor. 
The size of the processor was not affected very much, making the idea of adding custom instructions 
quite reasonable.  
 
It was tested and proved that the modifications with the processor don’t interfere with the processor 
functioning normally. The new CMUL instructions were superficially tested, but a deeper testing 
would be needed to ensure 100% proper functioning under any circumstance. Such a thorough 
testing was beyond the resources and timeframe of this project.  
 
Now that the binutils chain has been rebuilt to recognize the new instruction further testing would 
be required. Due to the lack of testing on the new implementation, bugs are likely to occur. 
Several special cases should be tested: 
 

1. Single CMUL operations handle wrong inputs in the appropriate manner.  
2. Consecutive CMUL operations don’t cause data hazards.  
3. CMUL instructions just before or after other instructions on the same operands/destination 

registers don’t cause data hazards.  
 
The two last cases are the most critical ones, because the biggest point of failure are data 
dependencies and data bypassing. This has been implemented for CMUL instructions and the %asr20 
accumulator register inside the iu. However due to the complex nature of the pipeline (and chaotic 
vhdl implementation of the LEON2FT processor) errors are likely to sneak in.  
 
Due to all the above factors, the CMUL expansion should be subject to merciless testing and 
debugging processes.  
 
After the implementation is 100% bug free, comparative analysis on efficiency could be carried out.  
  



 
UPNA / European Space Agency 

Hugo Arguiñáriz Bridonneau 
 

38 
 

 

Reference documents 
 

[1]  Oracle, "Sparc T4 Architecture," 2011. [Online]. Available: 

http://www.oracle.com/technetwork/systems/opensparc/sparc-architecture-2011-1728132.pdf. 

[2]  P. A. a. F. P.Guironnet de Massas, "On SPARC LEON-2 ISA Extensions Experiments for MPEG Encoding 

Acceleration," 2007. [Online]. Available: http://www.hindawi.com/journals/vlsi/2007/028686/abs/. 

[3]  Tu Graz, "Performance Evaluation of Instruction Set Extensions for Long Integer," 2007. [Online]. Available: 

http://www.iaik.tugraz.at/content/research/vlsi/archive/isec/leon2-cis/. 

[4]  SPARC, "The Sparc V8 specification," 1992. [Online]. Available: http://www.sparc.com/standards/V8.pdf. 

 

 

 


	PFC_Hugo_Arguiñariz

